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Abstract

The aim of survey statistics is to depict the public opinion by using representative

samples of the whole population. Therefore, in this field of research it is focused on

collecting data with a minimum of errors, which is an important prerequisite for the

subsequent steps of data analysis. However, there are many sources of errors having

different influence on parameter estimation. Those impacts can be quantified with

the help of the Mean Squared Error (MSE), comprising both, systematic and random

error. Viewing the different error sources and their impacts leads to the concept of

the Total Survey Error (TSE). It contains the different components sampling error,

specification error, coverage error, nonresponse error, measurement error, processing

error and includes further constraints and theories. One aim of this thesis is to

determine the impacts of the different error sources by simulating a realistic data

set which orientates on the structure of the Allbus 2014 and applying constructed

error models to this data set. This way, direction and magnitude of the different

error sources can be evaluated. It is shown that nonresponse error is a major error

component of the TSE. Hence, in the second part of this thesis, it is concentrated on

different approaches for handling missing data as consequence of nonresponse error.

Besides common weighting and imputation methods, likelihood-based approaches,

either ignoring or explicitly modeling the missing process, will be introduced, applied

and discussed critically especially with respect to their assumptions. The application

of the correction methods again is based on simulated data sets including missing

values following the different missing mechanisms Missing Completely at Random

(MCAR), Missing At Random (MAR) and Missing Not At Random (MNAR). It

results that the performances of missing data methods strongly depend on these

underlying processes. While in the case of MCAR data simple ad-hoc procedures

should be preferred, for MAR or MNAR data more advanced methods are required.

I



Contents

Contents

1 Introduction to the Total Survey Error Approach 1

1.1 Total Survey Error Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Types of Survey Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Quantifying the Total Survey Error . . . . . . . . . . . . . . . . . . . . . . . 14

2 Effects of the different Types of Survey Error 17

2.1 Simulated Data Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Creation of Data Sets with selected Error Models . . . . . . . . . . . . . . . 24

2.3 Direction and Magnitude of Effects on Parameter Estimation . . . . . . . . 29

3 Nonresponse as a Main Error Component of the Total Survey Error Approach 46

3.1 Minimizing Impacts of Nonresponse Error in Survey Data . . . . . . . . . . 46

3.2 Correction Methods for Nonresponse Error and their Limitations . . . . . . 48

3.2.1 Ad-Hoc Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2.2 Weighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2.3 Imputation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2.4 Maximum Likelihood Procedures . . . . . . . . . . . . . . . . . . . . 53

3.3 Partial Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.4 Simulated Data Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.5 Performance of different Correction Methods . . . . . . . . . . . . . . . . . 70

3.5.1 Ad-Hoc Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.5.2 Weighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.5.3 Imputation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.5.4 Maximum Likelihood Procedures . . . . . . . . . . . . . . . . . . . . 85

4 Limits of Simulation and extended Applications due to Points of Criticism 95

5 Conclusion and Further Research 103

A Mathematical Derivations 113

B Figures 116

C Tables 123

D Electronic Appendix 192

II



List of Figures

List of Figures
1.1 Components of the Total Survey Error (graphical representation based on

Biemer (2010b)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Truncated Histogram of income in the Allbus data set . . . . . . . . . . . . 12

1.3 Illustration of main error sources of the Total Survey Error . . . . . . . . . 13

1.4 Quantification of the TSE (graphical representation based on Biemer (2010)) 16

2.1 Histogram of age in the Allbus data set containing a normal curve . . . . . 19

2.2 Normal Quantile-Quantile-Plot of age in the Allbus data set . . . . . . . . . 20

2.3 Boxplots of income mean estimates for different sample sizes . . . . . . . . . 30

2.4 Boxplots of intercept estimates for different sample sizes . . . . . . . . . . . 32

2.5 Boxplots of income mean estimates for different sample sizes containing

coverage error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.6 Boxplots of intercept estimates for different sample sizes containing coverage

error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.7 Boxplots of income mean estimates for different nonresponse mechanisms . 38

2.8 Boxplots of intercept estimates for different nonresponse mechanisms . . . . 39

2.9 Boxplots of income mean estimates for different measurement mechanisms . 42

2.10 Boxplots of intercept estimates for different measurement mechanisms . . . 43

A.1 Normal distributed and truncated variable (graphical representation based

on Stocker (2016)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

B.1 Boxplots of regression coefficient estimates for sample size 500 . . . . . . . . 116

B.2 Boxplots of regression coefficient estimates for sample size 1000 . . . . . . . 116

B.3 Boxplots of regression coefficient estimates for sample size 2000 . . . . . . . 117

B.4 Boxplots of regression coefficient estimates for sample size 3000 . . . . . . . 117

B.5 Boxplots of regression coefficient estimates for sample size 500 containing

coverage error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

B.6 Boxplots of regression coefficient estimates for sample size 1000 containing

coverage error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

B.7 Boxplots of regression coefficient estimates for sample size 2000 containing

coverage error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

B.8 Boxplots of regression coefficient estimates for sample size 3000 containing

coverage error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

B.9 Boxplots of regression coefficient estimates for data containing nonresponse

error following MCAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

B.10 Boxplots of regression coefficient estimates for data containing nonresponse

error following MAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

B.11 Boxplots of regression coefficient estimates for data containing nonresponse

error following MNAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

III



List of Figures

B.12 Boxplots of regression coefficient estimates for data containing measurement

error following MCAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

B.13 Boxplots of regression coefficient estimates for data containing measurement

error following MAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

B.14 Boxplots of regression coefficient estimates for data containing measurement

error following MNAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

IV



List of Tables

List of Tables
2.1 Joint sampling probabilities of coverage error model . . . . . . . . . . . . . 25

2.2 Expected value, variance, bias and MSE of mean estimation of income in

order to quantify sampling error . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3 MSE of regression coefficient estimates in order to quantify sampling error . 31

2.4 Expected value, variance, bias and MSE of mean estimation of income in

order to quantify coverage error . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.5 MSE of regression coefficient estimates in order to quantify coverage error . 36

2.6 Expected value, variance, bias and MSE of mean estimation of income in

order to quantify nonresponse error . . . . . . . . . . . . . . . . . . . . . . . 37

2.7 MSE of regression coefficient estimates in order to quantify nonresponse error 40

2.8 Expected value, variance, bias and MSE of mean estimation of income in

order to quantify measurement error . . . . . . . . . . . . . . . . . . . . . . 41

2.9 MSE of regression coefficient estimates in order to quantify measurement

error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.1 Expected value, variance, bias and MSE of mean estimation of income in

order to evaluate the performance of ad-hoc methods . . . . . . . . . . . . . 70

3.2 Expected value, variance, bias and MSE of mean estimation of income in

order to evaluate the performance of weighting (weighting variables: gender,

education, willingness) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.3 Expected value, variance, bias and MSE of mean estimation of income in

order to evaluate the performance of weighting (weighting variables: gender,

education, professional activity, family status, election intention) . . . . . . 74

3.4 Expected value, variance, bias and MSE of mean estimation of income in

order to evaluate the performance of weighting (weighting variable: willing-

ness) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.5 Expected value, variance, bias and MSE of mean estimation of income in

order to evaluate the performance of weighting (weighting variable: profes-

sional activity) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.6 Expected value, variance, bias and MSE of mean estimation of income in

order to evaluate the performance of weighting (weighting variable: education) 76

3.7 Expected value, variance, bias and MSE of mean estimation of income in

order to evaluate the performance of single imputation (random imputation) 77

3.8 Expected value, variance, bias and MSE of mean estimation of income in

order to evaluate the performance of single imputation (mean imputation) . 78

3.9 Expected value, variance, bias and MSE of mean estimation of income in

order to evaluate the performance of single imputation (deterministic re-

gression imputation) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

V



List of Tables

3.10 Expected value, variance, bias and MSE of mean estimation of income in

order to evaluate the performance of single imputation (stochastic regression

imputation) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.11 Expected value, variance, bias and MSE of mean estimation of income in

order to evaluate the performance of single imputation (predictive mean

matching imputation) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.12 Expected value, variance, bias and MSE of mean estimation of income in or-

der to evaluate the performance of multiple imputation (multiple regression

imputation) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.13 Expected value, variance, bias and MSE of mean estimation of income in or-

der to evaluate the performance of multiple imputation (multiple predictive

mean matching imputation) . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.14 Expected value, variance, bias and MSE of mean estimation of income in or-

der to evaluate the performance of Maximum Likelihood Procedures (FIML

estimation in Structural Equation Model) . . . . . . . . . . . . . . . . . . . 86

3.15 Expected value, variance, bias and MSE of mean estimation of income in

order to evaluate the performance of Maximum Likelihood Procedures (EM

algorithm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.16 Expected value, variance, bias and MSE of mean estimation of income in or-

der to evaluate the performance of Maximum Likelihood Procedures (Heck-

man Selection Model) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.17 Expected value, variance, bias and MSE of mean estimation of income in or-

der to evaluate the performance of Maximum Likelihood Procedures (Heck-

man Selection Model with different selection variables) . . . . . . . . . . . . 90

3.18 Expected value, variance, bias and MSE of mean estimation of income in

order to evaluate the performance of Maximum Likelihood Procedures (Pat-

tern Mixture Model) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.19 Expected Value of income in order to evaluate the performance of Maxi-

mum Likelihood Procedures (Pattern Mixture Model with different selection

variables and different assumptions for the relationship between patterns) . 93

4.1 Expected value, variance, bias and MSE of mean estimation of income in

order to evaluate the performance of different correction methods on alter-

native MNAR model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.2 Expected value, variance, bias and MSE of mean estimation of income in

alternative coverage model with overrepresentation of low educated and

female units in order to quantify coverage error . . . . . . . . . . . . . . . . 99

4.3 Expected value, variance, bias and MSE of mean estimation of income in

alternative coverage model with overrepresentation of high educated units

in order to quantify coverage error . . . . . . . . . . . . . . . . . . . . . . . 99

VI



List of Tables

4.4 Expected value, variance, bias and MSE of mean estimation of income in

alternative rounding model with threshold 100 in order to quantify mea-

surement error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.5 Expected value, variance, bias and MSE of mean estimation of income in

alternative rounding model with threshold 1000 in order to quantify mea-

surement error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.6 Expected value, variance, bias and MSE of mean estimation of income in

rounding model with threshold 1000 and increased rounding probability in

order to quantify measurement error . . . . . . . . . . . . . . . . . . . . . . 101

C.1 Summaries of metric variables in the simulated data set . . . . . . . . . . . 123

C.2 Absolute and relative frequencies of dichotomous and categorical variables

in the simulated data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

C.3 Regression coefficients of the independent variables in the simulated data set124

C.4 Summaries of the metric variables in the Allbus 2014 data set . . . . . . . . 124

C.5 Absolute and relative frequencies of dichotomous and categorical variables

in the Allbus 2014 data set . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

C.6 Expected value, variance, bias and MSE of regression coefficient estimates

in order to quantify sampling error . . . . . . . . . . . . . . . . . . . . . . . 128

C.7 Comparison of p-values of regression coefficients of different samples . . . . 129

C.8 Expected value, variance, bias and MSE of regression coefficient estimates

in order to quantify coverage error . . . . . . . . . . . . . . . . . . . . . . . 132

C.9 Comparison of p-values of regression coefficients of different samples con-

taining coverage error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

C.10 Expected value, variance, bias and MSE of regression coefficient estimates

in order to quantify nonresponse error . . . . . . . . . . . . . . . . . . . . . 136

C.11 Comparison of p-values of regression coefficients of data containing nonre-

sponse error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

C.12 Expected value, variance, bias and MSE of regression coefficient estimates

in order to quantify measurement error . . . . . . . . . . . . . . . . . . . . . 140

C.13 Comparison of p-values of regression coefficients of data containing mea-

surement error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

C.14 Expected value, variance, bias and MSE of regression coefficient estimates

on income in order to evaluate the performance of ad-hoc methods . . . . . 144

C.15 Comparison of p-values of regression coefficients of data after applying Ad-

Hoc-method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

C.16 Expected value, variance, bias and MSE of regression coefficient estimates

on income in order to evaluate the performance of weighting (weighting

variables: gender, education, willingness) . . . . . . . . . . . . . . . . . . . . 148

VII



List of Tables

C.17 Comparison of p-values of regression coefficients of data after applying

weighting (weighting variables: gender, education, willingness) . . . . . . . 149

C.18 Expected value, variance, bias and MSE of regression coefficient estimates

on income in order to evaluate the performance of single imputation (ran-

dom imputation) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

C.19 Comparison of p-values of regression coefficients of data after applying single

imputation (random imputation) . . . . . . . . . . . . . . . . . . . . . . . . 153

C.20 Expected value, variance, bias and MSE of regression coefficient estimates

on income in order to evaluate the performance of single imputation (mean

imputation) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

C.21 Comparison of p-values of regression coefficients of data after applying single

imputation (mean imputation) . . . . . . . . . . . . . . . . . . . . . . . . . 157

C.22 Expected value, variance, bias and MSE of regression coefficient estimates

on income in order to evaluate the performance of single imputation (de-

terministic regression imputation) . . . . . . . . . . . . . . . . . . . . . . . . 160

C.23 Comparison of p-values of regression coefficients of data after applying single

imputation (deterministic regression imputation) . . . . . . . . . . . . . . . 161

C.24 Expected value, variance, bias and MSE of regression coefficient estimates

on income in order to evaluate the performance of single imputation (stochas-

tic regression imputation) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

C.25 Comparison of p-values of regression coefficients of data after applying single

imputation (stochastic regression imputation) . . . . . . . . . . . . . . . . . 165

C.26 Expected value, variance, bias and MSE of regression coefficient estimates

on income in order to evaluate the performance of single imputation (pre-

dictive mean matching imputation) . . . . . . . . . . . . . . . . . . . . . . . 168

C.27 Comparison of p-values of regression coefficients of data after applying single

imputation (predictive mean matching imputation) . . . . . . . . . . . . . . 169

C.28 Expected value, variance, bias and MSE of regression coefficient estimates

on income in order to evaluate the performance of multiple imputation

(multiple regression imputation) . . . . . . . . . . . . . . . . . . . . . . . . 172

C.29 Comparison of p-values of regression coefficients of data after applying mul-

tiple imputation (multiple regression imputation) . . . . . . . . . . . . . . . 173

C.30 Expected value, variance, bias and MSE of regression coefficient estimates

on income in order to evaluate the performance of multiple imputation

(multiple predictive mean matching imputation) . . . . . . . . . . . . . . . 176

C.31 Comparison of p-values of regression coefficients of data after applying mul-

tiple imputation (multiple predictive mean matching imputation) . . . . . . 177

VIII



List of Tables

C.32 Expected value, variance, bias and MSE of regression coefficient estimates

on income in order to evaluate the performance of FIML estimation in

Structural Equation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

C.33 Comparison of p-values of regression coefficients of data after applying

FIML estimation in Structural Equation Model . . . . . . . . . . . . . . . . 181

C.34 Expected value, variance, bias and MSE of regression coefficient estimates

on income in order to evaluate the performance of Heckman Selection Model184

C.35 Comparison of p-values of regression coefficients of data after applying Heck-

man Selection Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

C.36 Expected value of regression coefficient estimation on income in order to

evaluate the performance of Pattern Mixture Model . . . . . . . . . . . . . 188

C.37 Expected value, variance, bias and MSE of regression coefficient estimates

on income in order to evaluate the performance of different correction meth-

ods on alternative MNAR model . . . . . . . . . . . . . . . . . . . . . . . . 191

IX



List of Abbreviations

List of Abbreviations

Allbus Die Allgemeine Bevölkerungsumfrage der Sozialwissenschaften

(The German General Social Survey)

EM Expectation Maximization

FIML Full Information Maximum Likelihood

MCAR Missing Completely At Random

MAR Missing At Random

MNAR Missing Not At Random

MI Multiple Imputation

ML Maximum Likelihood

PI Partial Identification

PMM Pattern Mixture Model

RCAR Rounding Completely At Random

RAR Rounding At Random

RNAR Rounding Not At Random

SEM Structural Equation Model

SM Selection Model

TSE Total Survey Error

X



List of Notations

List of Notations

Symbols Meaning

E expected value

Var variance

Varwithin within-variance in context of MI

Varbetween between-imputation-variance in context of MI

σ standard deviation

Bias bias

Biasrel relative bias

MSE mean squared error

L likelihood

ℓ log-likelihood

P probability distribution

Γ set of possible probability distributions

in context of sensitivity analysis

| | absolute value

⌊ ⌋ floor function

⌈ ⌋ rounding function

Indices and Superscripts1 Meaning

i = 1, ..., N subject of population

i = 1, ..., n subject of sample

j = 1, ..., k variables

t = 1, ..., T iterations

Parameters Meaning

N population size

n sample size

m number of missing units

k number of variables or categories

θ parameter (vector) of interest

θ̂ estimation of parameter (vector) of interest

µ mean (vector)

β vector of regression coefficients

b vector of regression coefficients of selection equation

in context of SM

XI



List of Notations

ρ correlation coefficient

ǫ error term

e error term of selection equation in context of SM

ξ unknown parameter (vector) determining missing mechanism

X data set

Xobs observed part of data set

Xmis missing part of data set

Xj variable j

X∗
j latent variable j

xij value of unit i in variable Xj

M missing data indicator (matrix)

Y dependent variable of linear regression model

p probability

w weight

l number of adjustment cells in context of weighting

h rounding threshold

z z-value of standard normal distribution

a level of accuracy

α significance level

λ inverse Mills Ratio

γ not identified parameter in context of PI

H identification region in context of PI

η set of values encompassed in identification region H

1 superscripts in cases of iterations are written in round brackets

XII



1 Introduction to the Total Survey Error Approach

1 Introduction to the Total Survey Error

Approach

1.1 Total Survey Error Theory

During the last decades the importance of public opinion has consistently increased

in many different fields like politics, marketing or economy. Therefore, survey re-

search, which gathers those desirable information with the help of polls and provides

them to the customer, has attracted more and more attention and has been devel-

oped further. Not only technology and professionalization especially with respect to

statistical understandings and methodology, have evolved, but also the approaches

to this field have changed, as is summarized in Biemer and Lyberg (2003). Thus,

standardization came to the fore which means that people strive after guidelines for

good practice.

In this context, a new way of thinking about the different problems and sources of

error in this discipline has developed which can be summarized as the Total Sur-

vey Error (TSE) approach. Weisberg (2005) denotes this framework as a paradigm

which means a set of concepts including theories, basic assumptions, values and re-

search methods that constitute a way of viewing reality and are commonly accepted

by members of the scientific community. Basically, the idea of the TSE approach can

be traced back to different literature sources. Neyman (1934) laid the foundation for

sampling error in the field of survey methodology, whereas other error sources are

ignored in this landmark paper. In contrast to this, Deming (1944) firstly outlined

multiple error sources in sample surveys which affect the usefulness of surveys. Over

the years, this concept has been developed further (cp. Groves and Lyberg (2010)),

until it finally predominated survey research in the 1990s. Thus, TSE illustrates

several possible sources of survey error which arise during the process of data collec-

tion and analysis and may diminish the accuracy of inferences derived from survey

data due to deviation of survey responses from the underlying true value so that

consequently the survey quality may be compromised. Survey research then seeks

to minimize Total Survey Error which, according to Biemer (2010b), refers to the

accumulation of all errors that may arise in the design, collection, processing, and

analysis of survey data. Besides, those quantitative aspects, which form the central

point of the TSE approach, also constraints like time, costs and ethics are considered

that affect the minimization of these errors. Therefore, the TSE approach cannot

1



1 Introduction to the Total Survey Error Approach

only be viewed as a framework to understand the difficulties of survey research and

to assess the quality of surveys, but also as a planning criterion. Hence, among a

set of alternative designs for a given cost and timeliness situation, the one with the

smallest Total Survey Error should be chosen, since it maximizes the accuracy of

the results which is according to Biemer and Lyberg (2003) one dimension of the

multidimensional concept of survey quality.

All those aspects show the important role of the TSE approach in the field of sur-

vey research and form the motivation for the TSE approach to be the basis of the

following thesis. One main objective of this work is to outline the different problems

and consequences that can arise in the different stages of a survey. For this purpose

a realistic data set, resembling the Allbus 2014 data set regarding its main features,

is simulated and analyses of substantive interest are conducted in R 3.0.1 (see R

Core Team (2013)). Here, analyses mean the estimation of unknown population

parameters, in general abbreviated as θ. This thesis concentrates on the estimation

of the income mean µincome and the regression coefficients β of a certain linear re-

gression model. In the next step, different error models are constructed, consciously

applied to this data set and consequences are illustrated by comparing the results

of the corresponding statistical analyses to those of the underlying basic simulation

data set. Researchers often put emphasis on sampling error (cp. Weisberg (2005))

which should be queried, when analyzing the impacts of the different error sources,

since they partly have more serious impacts on the survey results compared to the

sampling error. It should be made clear that statistics calculated on the collected

survey data, can easily be biased and therefore lead to wrong conclusions when con-

sequences of different survey errors are ignored. Therefore, this thesis should be a

warning. Since the introduced error sources are commonly arising, when dealing

with survey data, a certain expertise in this field is required to identify and handle

those errors, which can be gained with the help of this work.

So besides the illustration of the impacts, another objective of the thesis is to provide

different ways to handle those problems. Since it is too comprehensive to explain and

challenge methods for handling all the different error sources, this part of the thesis

focuses only on the nonresponse error as one of the main error sources of the TSE.

First, a naive ad-hoc method is presented and applied to the simulated data sets

with missing values following different mechanisms. Here it is focused on the aspects

that are still useful about this approach. This critical presentation aims to make

clear that there are better approaches to deal with missing data and to convince

researchers, who still often go back to these older and less complicated methods in

practice. Then, established approaches like weighting, imputation procedures and
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finally modern Maximum-Likelihood approaches are presented and evaluated due

to their performances on the same data sets. However, also limitations and critical

assumptions are discussed, in order to emphasize that even though there are quite

good methods for correcting missing values in survey data in general there are re-

strictions and moreover uncertainty about the results remains. In order to close the

circle back to the TSE approach, the second part of the thesis, concentrating on

the nonresponse error, also contains a literature overview about possible attempts

to minimize this error and their consequences for other error sources of the TSE.

Thus, the following structure of the thesis results: First, the different error sources

are introduced in the following subsection 1.2 as well as a possible measure of quan-

tification in section 1.3. Secondly, the impacts of the different errors are shown

based on a simulation in chapter 2, before focusing on the main error component of

the nonresponse error in chapter 3. Besides the current state of research concern-

ing minimizing nonresponse (cp. section 3.1), the previously described methods for

handling nonresponse error are introduced in section 3.2 and applied (cp. section

3.5) to the simulated data set (cp. section 3.4). The nonresponse chapter then is

completed with section 3.3, containing a critical view concerning the assumptions of

the applied nonresponse methods, resulting in the approach of partial identification.

The following chapter 4 then points out limits of the simulation and presents a few

modeling extensions in order to make further statements. All conclusions as well as

an outlook for further research are summarized in the last chapter 5.

1.2 Types of Survey Error

In literature sources describing the Total Survey Error (cp. e.g. Weisberg (2005),

Groves and Lyberg (2010), Biemer (2010b), Faulbaum (2014)), the different com-

ponents are not consistently defined, but differ with respect to classification and

naming. However, they all share a major division of sampling and nonsampling

error, whereas the latter is decomposed in many components. In the following

nonsampling error is determined as specification error, coverage error, nonresponse

error, measurement error and processing error. Figure (1.1) illustrates this partition

before introducing and considering the different sources of error in detail.
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Total Survey Error

Sampling Error Nonsampling Error

Specification Error
Coverage Error
Nonresponse Error
Measurement Error
Processing Error

Figure 1.1: Components of the Total Survey Error (graphical representation based
on Biemer (2010b))

Sampling Error

Indeed, the best-known and researched source of survey error is sampling error. It

arises, when not the whole population can be included in a survey, but only a subset.

The sample is called representative, if it is a smaller picture of the population of

interest which is the case, when attributes have roughly the same distribution in

population and sample. The aim is to generalize the results beyond the people

who have been sampled and to be able to make statements which are applicable

for the whole population. However, this approach is only possible, when the drawn

sample is based on simple random sampling, which means that each observation of

the population has the same known probability to be sampled. Since each sample

gives a different estimation, which deviates from the true population value, the

representativeness of a sample is not guaranteed. Sampling error is often expressed

through standard errors, since estimates derived from any sample are subject to

sampling variability, which is usually measured as the standard error. The standard

error can be received by the following formula (cp. Kauermann and Küchenhoff

(2010)):

standard error =
σ

√
n

(1)

It shows that in general a larger sample size n results in decreased standard errors,

which is equivalent to a gain in precision. Thus, larger samples are in general more

representative, but this relationship of equation (1) is a square root relationship,

which means that quadrupling the sample size only halves the standard error, if the

other component σ is held constant. For large populations σ, which describes the
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standard deviation in the population, can be determined by

σ ≤

√
√
√
√
√

n · a

z2
1− α

2

, (2)

where z1− α

2
is the critical z-value for a two sided test resulting from the correspond-

ing quantile of the standard normal distribution and a is the demanded level of

accuracy. For closer interpretations and remarks see Kauermann and Küchenhoff

(2010). Even though an increase of the sample size can reduce the uncertainty of

the sampling error, it cannot be prevented, since in general the maximal sample size

is limited by factors like time and money. Furthermore, there are other factors that

have an influence on sampling error. Besides the sample design and the proportion

of the sample size and the population size, the heterogeneity is crucial. If there is

less variability in the variable within the population, the standard errors are smaller

and consequently the sample is more representative. All those aspects show that

sampling error plays an important role in the Total Survey Error approach.

Specification Error

The first component of the nonsampling error is called specification error. It de-

scribes the problem that information gathered through the survey differ from the

concept that should originally have been measured. This definition is obviously

closely related to the notation of validity (cp. Winker (2010)). Specification error

can lead to invalid inferences, since wrong parameters are estimated by the survey,

when the wrong construct is measured. Of course, the interpretation of invalid mea-

surements is doubtful. Since basically useless results are obviously the worst case,

specification error is often in the focus of researchers. However, specification error

can be quite difficult to detect without the help of subject matter experts. Biemer

and Lyberg (2003) provide a good example for this kind of error source. Besides

expert knowledge, there are some statistical measures like cronbach’s alpha which

can hush these fears about specification error. Yet, in order to avoid this scenario in

the first place, a good questionnaire design is necessary, wherefore an efficient com-

munication between the researcher and the questionnaire designer is fundamental.

Coverage Error

The second nonsampling error, denoted as coverage error or also often as frame

error, is closely related to the previously described sampling error. In the section
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of sampling error simple random sampling is assumed. Often this assumption is

not fulfilled, because some members of the target population are not listed in the

sampling frame, whereas others are even duplicated or have another divergent prob-

ability to be sampled. The sampling frame is the actual set of units from which the

sample is drawn. Thus, in the optimal case, it contains all members of the target

population without any duplicates and no elements that should not be included.

Unfortunately, these ideals are rarely satisfied.

An example for such a sampling frame are telephone interviews, where households

are randomly selected from white pages. Households without phone, cell phone-only

households or households that are not listed cannot be taken into account. The el-

ements in the sampling frame do not correspond correctly to the target population

to which the researcher wants to make inferences, instead there is an over- or un-

derrepresentation of certain subgroups. If the part of the population, not included

in the list, is different on key features of interest, the results are biased. Statistics

calculated for the underlying target population differ from the statistical estimates

of the drawn sample. This phenomenon is referred to as coverage error. Besides

the degree of difference between the observations of the sampling frame and those

that are not included, the extent of coverage error obviously also depends on the

proportion of those subpopulations. None of the different types of surveys, including

telephone interviews, internet surveys and face-to-face interviews, are spared from

this error.

There are several studies, trying to find distinctive characteristics of participants

and non-participants, in order to draw conclusions about the overrepresentation of

different groups. For instance the European Health Examination Survey provides

an overview of literature concerning this topic (see Homepage of European Health

Examination Survey (2016)). Findings differ, but nevertheless trends about who

is more likely to be considered in surveys, exist. In general more educated, more

affluent and younger people are often overrepresented in surveys, as well as women

and white people (cp. Smith (2008)). This knowledge will be used in section 2.2 to

simulate coverage error.

Nonresponse Error

After having obtained a correctly specified sample of the target population, another

common source of error can occur that bears upon the refusal of responses of the

selected units. In this case data are missing. This so called nonresponse error com-

prises both, unit and item nonresponse. Unit nonresponse describes the fact that
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it is not possible to interview an intended respondent. This can be due to a com-

plete refusal of the individual to take part in the interview or simply due to missing

accessibility. In contrast to that, item nonresponse error occurs, when the question-

naire is only partially completed. This comprises interviews that are prematurely

terminated and interviews with questions that are skipped or left blank. Latter

case usually occurs, if a question is sensitive, like questions about income. But of

course there are several other reasons why people refuse to give answers (cp. Gra-

ham (2012)). There can be respondent burdens, which means that the responders

simply do not know the answer or do not understand the question. But data can

also get lost during the collection stage or due to a mechanical breakdown.

Anyhow, in present times, characterized by a large number of polls and surveys, the

presence of nonresponse error rises, which results in a mass of missing data and low

response rates. However, response rates per se are not suitable indicators for repre-

sentative and credible samples, since this measure does not give information about

the degree of dissimilarity between the responders and nonresponders. Nonresponse

error has its effect through two components, the nonresponse rate n−m
n

and the dif-

ference between nonresponders and responders in the survey concerning the variable

of interest (cp. Groves (1998)). Thus, nonresponse becomes a problem, when the

nonresponders differ from reponders systematically regarding key measures. When

this happens it typically biases the findings of the study.

In order to appraise, whether nonresponse is a problem, it is advisable to consider

the underlying nonresponse mechanism which models the reasons for the dropout.

In this thesis dropout is not only defined as unit nonresponse, but also describes the

absence of responses to certain questions. By viewing the underlying nonresponse

mechanism, the aim is to identify the dependency structure between the observed

and the missing data, thus to characterize a model describing the present situation

a priori. This way at least some additional information about the data can be gath-

ered. Ignoring the underlying missing mechanism in general leads to biased results,

so does the assumption of wrong missing models. According to Rubin (1976), who

has been the first to formalize these mechanism, it is differentiated between three of

them:

• Missing Completely At Random (MCAR)

• Missing At Random (MAR)

• Missing Not At Random (MNAR)
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MCAR describes the situation, when there is no systematic difference between peo-

ple who answered the question and those who did not respond. The responders then

can be considered as a subsample of the original sample which usually does not lead

to any problems considering parameter estimation. MCAR only becomes a problem,

if many variables have single missing values. Then, the loss of information is big, if

those observations are simply ignored. Apart from that situation, data with MCAR

structure is considered as ignorable, which means that estimates of the unknown pa-

rameters maintain their behavioral properties, even if the underlying missing mech-

anism is ignored during the process of estimation. Those properties for estimates

include amongst others unbiasedness and consistency. Bias will be explained in

chapter 1.3 and consistency, formally denoted as lim
n→∞

p(|θ̂n − θ| > ǫ) = 0, ∀ǫ > 0

(cp. Spieß (2008)), describes the property that the probability of large deviations

between the true and the estimated parameter value decreases for increasing sample

sizes n. Ignorability is a strong condition that is fulfilled, when the probability of a

dropout of a variable cannot be predicted with the help of any other available data

for that unit. Thus, the probability of missing data of a variable is independent of

the values of the affected variable and all the other variables.

If the latter assumption does not hold, we are dealing with MAR. In this case, the

dropout of a considered variable can be explained through the observed data, but it

is not related to the person’s actual value on the missing variable. In other words,

there is a systematic relationship between the propensity of missing values and the

observed data. MAR is often referred to as ignorable which does not mean that

the cause of missingness may be ignored, but the underlying missing data creation

model. Thus, it is sufficient to include the causing variable in the analysis model,

but it is not necessary, to know the precise probability distribution generating the

dropout. When dealing with the missing data, in the case of MAR no information

about the missing data itself has to be included.

The situation is different with MNAR. Here, the probability that a value is missing,

depends, possibly besides other factors, on the true, unobservable, missing value

itself. Thus, there is a correlation between the cause of missingness and the variable

of interest. However, the variable, causing the dropout, is not completely observ-

able and consequently cannot be included in the missing data analysis model. In

this case, missing data is not ignorable, because the cause of missingness has not

been measured and is therefore not accessible for analysis. Instead, the missing

data mechanism itself has to be modeled as you deal with the missing data. It

is important to note that in the situation of MNAR the obtained data set is not

representative for the population of interest.
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According to which of these causes of missingness is present, there are different

ways to handle the situation. However, the missingness mechanism is not necessar-

ily consistent for all units and moreover, in general these conditions cannot be tested

directly (cp. Graham (2012)). It is only possible, to examine patterns in the data

in order to get an idea of what is the most likely mechanism. Often researcher just

assume a certain mechanism, in general MCAR or MAR, since for MNAR special

nonignorable methods are necessary, but common techniques like ad-hoc methods

or imputation assume MCAR or rather MAR. When this assumption is not ful-

filled, biased results of population parameters can be produced (cp. Collins et al.

(2001)). This thesis does not focus on the burden of trying to find out which of

the nonresponse mechanisms is given. Instead, the different scenarios are simulated

and considered as known. In the following those missing data mechanisms are in-

troduced formally and regarded as probability models:

Let X be a (n × k) data set, where xij is the value of variable Xj for subject i and

let further M be the missing data indicator matrix with components

mij =







1, if xij is missing

0, if xij is present

M can then be written as a function of the unknown parameter vector ξ and the

data, consisting of observable and missing values X = {Xobs, Xmis}. Following

Little and Rubin (1987) or rather Little and Rubin (2002), the dropout process is

described with the help of the conditional probability and consequently the notation

for the three previously described mechanism is constituted by

1. MCAR: f(M |X, ξ) = f(M |ξ), ∀X, ξ

2. MAR: f(M |X, ξ) = f(M |Xobs, ξ), ∀Xmis, ξ

3. MNAR: f(M |X, ξ) = f(M |X, ξ), ∀X, ξ.

Measurement Error

Measurement error is often viewed as one of the most damaging sources of error

and has therefore been studied extensively in the survey methods literature (cp.

e.g. Biemer and Lyberg (2003)). Measurement error refers to continuous variables,

whereas in the case of categorical variables it is spoken of misclassification. There
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are different sources of measurement errors: the responders, the interviewer, the

survey questionnaire and other interview factors. But the consequence is always

that responders wittingly or unwittingly give incorrect information as response to

survey questions. Deliberate, false statements are often based on the respondent’s

unwillingness to give an answer to a sensitive question. Again, income can be in-

stanced which is often provided as a rounded value (cp. Hanisch (2005)). If this

behavior is not on purpose, often the interviewer causes this inaccurate measures of

the phenomena of interest due to his speech, appearance, subconscious manipulation

or failure in the transcription of the responses. But also the questionnaire can be a

major source of error, if it contains ambiguous questions or confusing instructions.

In any case, the recorded survey statistic differs from its true value due to imper-

fections in the way the statistic is collected.

This concept can be represented with the help of a measurement error model, which

is a regression model containing measurement errors in the variables. Ignoring those

errors, when estimating the regression parameters, results in asymptotically biased

estimates, meaning that the parameters do not tend to the true values, even if the

sample size is very large. In simple linear models, which we are dealing with in

this work, the effect of measurement errors express through systematically underes-

timated effects (cp. Schneeweiss and Augustin (2006)).

Usually measurement error models are described using latent variables. Thus, let

X be the observable variable and X∗ the latent variable that would be obtained, if

there were no errors in measurement. The true variable X∗ is related to the response

variable X by a conditional distribution f(X|X∗, θ), where θ is a vector of unknown

model parameters. X then can be understand as noisy observation of X∗, which

gives

X = X∗ + ǫ.

The first differentiation in the context of measurement errors then is between system-

atic and stochastic errors. In the case of systematic errors, the observable variable X

is linked to the true latent variable X∗ by a fixed functional relationship. Examples

are the shifting of a constant or a proportional error. When the structure of these

kind of errors are known, a correction is straightforward, which is why focus should

be set on random errors.

In this case, there are different models to describe the relationship of the measure-

ment error ǫ and the corresponding variable. The most common assumption is that

of classical measurement errors. It contains an additive or rather multiplicative ran-

dom error ǫ with mean zero and independence of the true value, so E(ǫ) = 0 and
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ǫ ⊥ X∗. Typically, ǫ is assumed to be normally distributed with ǫ ∼ N(0, σ2
ǫ ). Thus,

in the case of classical measurement errors, observed values are viewed as imperfect

measurements of the true values.

Another relationship is described with the so called Berkson model which differs

from the classical measurement model by the assumption of the measurement er-

ror’s independence with the observed value X, instead of the true underlying value

X∗, so ǫ ⊥ X. Thus, in this case the magnitude of the measurement errors does

not depend on the variable values being measured. Berkson errors arises in par-

ticular, when instead of individual measurements each unit is assigned a certain

corresponding group’s average value, so that the observed values obviously are less

variable than the true underlying values.

Finally, besides the classical and the Berkson error there is also the measurement

error of rounding, as has been mentioned before. In this case

X∗ = h · ⌈(
X

h
)⌋,

whereas h describes the threshold, the corresponding value is rounded to. This

simple rounding results in a rounding model, where the corresponding rounding

error ǫ then is defined as

ǫ = X∗ − X

which equals equation (1.2) of the classical measurement error model. But in the case

of rounding, the error ǫ clearly is not independent of X∗ and also not independent

of X (cp. Schneeweiss et al. (2010)). Globally, the expectation of ǫ equals zero.

Therefore, rounding is usually not a problem, when the focus is on the average of

the variable of interest, since the expectation of rounded and not rounded values

are approximately equal (cp. Schneeweiss et al. (2010)). However, the measurement

error of rounding leads to an abnormal concentration of observations at certain

numbers, which is why it is often spoken of heaped data. Consequently, this kind of

error distorts the distribution of the variable of interest. Obviously, estimates can

be biased, when these are dependent on the shape of the distribution, as it is for

example the case, when focus lies on estimating variance. Under certain conditions,

however, this distortion can be corrected by a term called Sheppard’s correction

(cp. Schneeweiss et al. (2010)), which shall not be expanded here. Anyway, due to

the impacts on variance estimation, also regression coefficient estimation based on

rounded data might be distorted, but according to Schneeweiss et al. (2010) only in

the case of rounded explanatory variables. Later, in section 2 the impacts of rounded
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response values on regression coefficient estimation will be evaluated. But now, in

order to initially get an impression of heaped data, the income data of the Allbus

data set is viewed and presented with the help of a histogram (see figure (1.2)). For

reasons of clarity, the x-axis is truncated after an income value of 3000, which means

that 176 observations with higher income value are not plotted. This way, however,

the peaks in the distribution can be seen even more distinctly. Income values that

are divisible through 100 are reported very often. Hardly any respondent gave the

exact income value, in general it is at least rounded to the next threshold of 10.
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Figure 1.2: Truncated Histogram of income in the Allbus data set

Processing Error

Finally, the raw data that is gathered in a research study typically needs to be

processed before it can be analyzed. Also in this step of the survey, crucial errors

can occur. Errors in editing, data entry, coding, treatment of outliers or assignment

of survey weights are only some of them. Biemer and Lyberg (2003) give a close

overview of different data-processing errors, their effects on survey estimates and

ways to control them.

All those errors of the TSE are illustrated in the following figure (1.3), which inte-

grated their possible appearance in the different stages of a survey.
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Figure 1.3: Illustration of main error sources of the Total Survey Error

In order to guarantee optimal quality of a survey, all described components have to

be considered carefully and minimized with available sources. That way, alternative

survey designs, satisfying the specified quality and cost constraints can be compared,

using TSE as criterion. Obviously, errors and their consequences on survey results

cannot be completely avoided. Besides, there is also the fact of survey-related effects
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(cp. Weisberg (2005)), which arise due to decisions during the survey. These include

effects which are related to the questions, to the order or to the mode of the survey.

More precisely, factors like the question wording, the order of questions or response

options and the interviewer as an error source itself compared to self-administered

surveys can also affect survey results. This shows clearly that survey results are

vulnerable to distortion, which makes it necessary, to study the different sources, in

order to obtain reliable results. For this purpose the TSE is a good tool. It recognizes

distinct ways that survey statistics can depart from some target parameters and

it consequently has the potential of protecting against various errors of inference.

By separating the types of errors, it is possible to learn about their impacts and

handling. This way, the different components can be viewed as a causal, connected

system that has to be understand and studied.

1.3 Quantifying the Total Survey Error

Since the main objective of the next section is to evaluate, whether the estimates

of the data sets containing errors, are close to the true population parameters, an

acceptable metric for quantification of those differences between true and estimated

value is needed. This way, the statistical impacts of the different types of errors

can be assessed. For this purpose the Mean Squared Error (MSE), which is a

measurement of the accuracy of survey data, is appropriate (cp. Biemer (2010a)),

as the following details confirm.

Let θ be the true parameter of interest which is in the case of this analyses the

income mean µincome and the regression coefficients β. Each corresponding estimate

θ̂ that is computed from the survey data, has a corresponding MSE that reflects

the effects of the underlying sources of error on the estimates. Thus, the MSE

gauges the magnitude of those effects. A small MSE then indicates that the TSE

is small and under control. The MSE is defined as the average of the square of

the error, with the error being the amount by which the estimate θ̂ differs from the

quantity to be estimated, denoted with θ. In practical situations the true, error-free

parameter is usually not known. However, this thesis is based on a simulated data

basis (cp. section 2.1), which means that this problem is not present. Reformulating

the definition of the MSE (cp. appendix A) results in the sum of the squared bias

and the observed variance of the estimate:

MSE(θ̂) = E(θ̂ − θ)2 = Bias(θ̂)2 + Var(θ̂) (3)
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As equation (3) then shows, the MSE considers both, systematic and random error.

The bias of an estimate is an appropriate measurement for systematic errors. It

is defined as the difference between this estimate’s expected value E(θ̂) and θ, the

true value of the parameter, being estimated, so Bias(θ) = E(θ̂) − θ. Instead of the

absolute bias, often the relative bias Biasrel(θ) = Bias(θ)
|θ|

is considered for reasons of

easy interpretation, since the bias is set in relation to the true population value. A

negative or positive relative bias can be interpreted as an under- or overestimation

of the true value by the received estimate, whereas a relative bias of 0 indicates that

the estimation is not biased. Besides the bias, the second components of the MSE

is the variance of the corresponding survey estimate. It reflects the impacts of ran-

dom errors and consequently gives information about the goodness of an estimated

parameter by reflecting its variation.

Let now the focus be on a certain characteristic Xj, which is the basic for a statistic

of interest like the mean. Its value xij for a particular unit i in the survey is higher

or lower than its true value x∗
ij, since there are various error sources in the survey

that have a cumulative effect on the responses.

x∗
ij = xij + ǫi

is received. In the case of systematic error, the sum of the errors is not zero, be-

cause either positive or negative errors are dominant. E(ǫij) 6= 0 directly affects the

average value of a variable, µ̂j =
∑n

i=1
1
n
xij, so that the estimated mean is either

negatively or positively biased. In contrast to that, random errors do not add bias to

an observation, which means they have a mean of zero. Due to E(ǫij) = 0, random

errors do not affect the estimated mean of the variable, but they only increase the

variance of the estimated values, which is the second component in equation (3).

Since Var(ǫij) 6= 0, Var(x∗
ij) = Var(xij)+Var(ǫij) increases with constant Var(xij).

Increased variance has for example a weakening effect on regression coefficients of

the independent variables.

Thus, in the following section 2.3, which deals with the analysis of direction and

magnitude of the different TSE effects on selected parameter estimation, it is fo-

cused on those parameters, mean µ and regression coefficients β. More precisely,

µincome is chosen as well as all regression coefficients of the predictors from the linear

regression model (4) presented later on. This model contains the estimation of the

intercept, as well as 21 further regression parameter β belonging to one continuous,

one binary and 4 categorical predictors.
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To sum up, each discussed error source contributes a systematic error, a random

error or both to the TSE. Thus, Biemer (2010a) shows a further fragmentation of

the MSE, differentiating between the contributions of the diverse error sources. In

the following analyses, the impacts of the different errors are studied separately,

which is why it is only referred to this separation. However, this chapter should

have pointed out that the MSE is an appropriate measure to quantify the TSE,

since it considers both components, systematic and random errors. Therefore, it

will be used in the following chapter 2, to quantify the impacts. Figure (1.4) finally

illustrates, what has been described before.

Total Survey Error

Sampling Error

Nonsampling Error

• Specification Error
• Nonresponse Error
• Coverage Error
• Measurement Error
• Processing Error

Systematic Error

Random Error

Bias

Variance

MSE

Figure 1.4: Quantification of the TSE (graphical representation based on Biemer
(2010))
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2 Effects of the different Types of Survey Error

2 Effects of the different Types of Survey

Error

2.1 Simulated Data Basis

In order to demonstrate, whether and, if applicable, how much the different types of

survey error affect the considered parameter estimation, a data basis is needed which

is regarded as gold standard. This implies that the parameters of the data basis

are known and are considered as true values. That way, deviations can be detected,

when error model are applied and traced back to the different sources of the TSE.

For this approach it is reasonable to simulate data, since then the data generating

processes are known and consequently also their parameters. Available data sets,

however, are not suitable, since they already contain different errors like missing

data or measurement error, therefore it is not justifiable to consider those values as

true. Nevertheless, it is desirable to have a data set that is close to reality. That

means distributions and dependence structures between different variables should

not be pure invention and furthermore the focus should be on attributes that are

often considered in the field of survey research. From these considerations it appears

that the structure of the simulated data should orientate on an established and rep-

utable national Social Survey, in order to fulfill the previously mentioned criteria.

For this purpose the German General Social Survey (Allbus) 2014 is chosen. Since

the Allbus gives a representative cross section of attitudes, behavior and social struc-

ture of the German population every two years, this version is the recently published

one at the time, when the analysis within the framework of the thesis started. For

further information to this study it is referred to the Allbus-Homepage (cp. GESIS

(2016)). Here, also the underlying data set, consisting of 3471 observations and 861

variables, is freely accessible.

After reduction of the Allbus 2014 data set to the selected, relevant variables Xincome,

Xage, Xgender, Xeducation, Xprofessional activity, Xfamily status, Xelection intention and Xwillingness

and afterward combination of several factor levels with only few observations, the

pattern of this data set is analyzed in order to re-simulate it. Xincome is the variable

of interest and will form the dependent variable of the analysis model. The remain-

ing variables will serve as predictors. Their influence on the values of Xincome should

obviously differ according to the Allbus.
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2 Effects of the different Types of Survey Error

The construction process of the categorical covariates is based on the idea of sam-

pling the possible values from the appropriate Allbus contingency tables. This ap-

proach is equivalent of drawing balls from an urn with replacement which implicates

that the distributions of the constructed variables are known.

In the first step the characteristic gender is simulated. Therefore, 3500 observations,

which is determined as size of the new simulated data set, are drawn randomly with

replacement, whereas the probability of 0.508 for a male outcome, or rather the

converse probability 0.492 for a female outcome, are given, based on the relative

frequencies in the Allbus data set. Thus, the simulated variable gender then follows

a binomial model with parameters n = 3500, p = 0.508 and 1 − p = 0.492, abbrevi-

ated as Xgender ∼ Bin(3500, 0.508, 0.492) (cp. Fahrmeir et al. (2007)).

In order to roughly maintain the dependency structure between attributes, the next

categorical variable education is constructed the same way, but conditional on the

simulated variable gender. Thus, the distribution of education for male observations

differs from that for females which results in two multinomial models with given pa-

rameters. As before, those are determined by joint contingency tables of the variables

gender and education in the Allbus data set. So, if an observation has the value male,

a corresponding value of the appropriate distribution for education is attached. The

multinomial distribution, abbreviated as X ∼ Multin(n, p1, · · · , pk), is a generaliza-

tion of the binomial distribution with regard to the number of categories k. In the

case of education it is distinguished between k = 6 categories, namely “no gradua-

tion”, “volks-, hauptschule”, “mittlere reife”, “fachhochschulreife”, “hochschulreife”

and “other graduation”. Thus, Xeducation|Xgender ∼ Multin(n, p1, · · · , p6) with dif-

ferent probabilities p for men and women. It is received:

Xeducation|(Xgender = male) ∼ Multin(1746, 0.018, 0.307, 0.305, 0.085, 0.276, 0.010),

Xeducation|(Xgender = female) ∼ Multin(1754, 0.019, 0.254, 0.356, 0.071, 0.287, 0.012)

This chain of dependency between the simulated covariates is then carried on in

the same way, so that the next categorical covariate depends on all those variables

that have been simulated before. This way, the construction of the third covariate

Xprofessional activity equals drawing values from 12 different distributions with replace-

ment, whereas it is differed between 4 possible outcomes for the job variable, namely

“full-time”, “half-time”, “part-time” and “not employed”. The 12 urns arise from the

different possible combinations of gender and education. Finally, this approach is

pursued, when focusing on the outstanding categorical covariates family status and

election intention. Those can take the values “married living together”, “married

living apart”, “single”, “divorced”, “widowed” and “CDU-CSU”, “SPD”, “die grue-

nen”, “die linke”, “extreme right-wing”, “FDP”, “Other Party”, “would not vote”.
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Obviuosly, the order of constructing the categorical variables has an influence on

the resulted variable values. Since the dependence structure of the Allbus data set

shall only roughly be maintained, the determination due to careful consideration is

suitable and the outcome satisfies claims.

In order to simulate the continuous variable age, its distribution in the Allbus data

set has to be analyzed. As the following plots (2.1) and (2.2) show, the variable Xage

in the Allbus data set does not exactly follow a normal distribution. The bars of the

histogram (2.1) illustrate the true age distribution in the Allbus data set, whereas

the drawn blue line indicates the corresponding normal distribution. Obviously,

there is a deviation from the normal distribution especially in lower age categories.

Here, we have more observations with small age values than it would have been

expected, if age follows a normal distribution.

Histogram with Normal Curve
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Figure 2.1: Histogram of age in the Allbus data set containing a normal curve

The Normal Quantile-Quantile-Plot (2.2) confirms these deviations. By plotting the

quantiles of the observed age distribution against the theoretical quantiles of the

normal distributions, those two distributions are compared. The closer all points lie

to the drawn, blue line, the closer the distribution of the sample comes to the normal

distribution. It can be seen that for middle aged people of the sample, the normal
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2 Effects of the different Types of Survey Error

distribution provides a quite good approximation, whereas extreme values obviously

deviate from the line. However, the assumption of normal distributed simulated age

values is not completely devious, when viewing those results.
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Figure 2.2: Normal Quantile-Quantile-Plot of age in the Allbus data set

As a consequence, Xage will be simulated as a truncated normal distribution, which

means that the probability distribution of the normally distributed random variable

age is bounded below and above. This way, the simulated age variable is closer to

the given distribution in the Allbus data set and especially satisfies the condition

that only full-aged people are regarded. Furthermore, it has been revealed that the

distribution of age differs between the different categories of the other variables,

except gender. That means, comparing the distribution of age between men and

women, a roughly identical distribution is obtained, whereas it becomes apparent

that the subsamples of the other variables education, professional activity, family

status and election intention, do not originate from the same distribution regard-

ing age. Therefore, the idea is to simulate the distributions of age for the different

combinations of those categorical variables according to minimum, maximum, mean

and variance in the Allbus data set. Since considering all those categorical vari-

ables would expend too much effort and the aim is just to roughly maintain the

dependence structure of the Allbus 2014, the approach is restricted to the covari-
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2 Effects of the different Types of Survey Error

ates Xeducation and Xfamily status. Thus, for each combination of those two variables,

the distribution of the Allbus data set is reconstructed via a truncated normal dis-

tribution. Then, according to which value combination is given in the previously

simulated data, a value for age is drawn from the appropriate distribution and is

assigned to the corresponding observation. Thus, also the continuous independent

variable Xage is constructed with a certain dependence structure to the other vari-

ables, namely by

Xage | Xeducation, Xfamily status ∼ trunc N(µage(Allbus)|education(Allbus),family status(Allbus),

σ2
age(Allbus)|education(Allbus),family status(Allbus)).

Besides those covariates, the simulated data set should contain a dependent variable

whose dependency with all the other covariates should be defined with the help of

a linear regression model. In this case Xincome is chosen as the dependent variable.

First, the considered regression model

log(Xincome) = β0 + βageXage + βgenderXgender + βeducationXeducation+

+ βprofessional activityXprofessional activity+

+ βfamily statusXfamily status+

+ βelection intentionXelection intention + ǫ (4)

is fit on the Allbus data. At this point it is important to note that the output of

the fitted regression model contains estimators for each category of a categorical

variables, except the reference category, but equation (4) summarizes the regression

coefficients of each categorical variable in a β-vector, in order to maintain clar-

ity. Thus, βeducation for example comprises βno graduation, βvolks-, hauptschule, βmittlere reife,

βfachhochschulreife and βhochschulreife. The received, estimated regression coefficients β̂ are

then treated as true values and are also assumed for the simulated data set. With

those beta coefficients, the previously simulated variable values and a normally dis-

tributed error term ǫ ∼ N(0, 0.5), which also orientates on the regression output of

the Allbus data set, predictions for the income variable of the simulated data set

are made. Since the model contains the logarithmized dependent variable, which

prevents from negative response values, the result has to be transformed afterwards

in order to receive the interesting income values. Due to the normally distributed

error terms, it follows then that log(Xincome), conditional on the other covariates X,

is also normally distributed.
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2 Effects of the different Types of Survey Error

As last step, another categorical covariate, describing the willingness to take part in

the interview, is constructed. In the Allbus data set this ordinal variable takes four

possible values, evaluating the cooperation of the participant, lasting from “very

easy”, over “rather easy” and “rather difficult” to “very difficult”. The simulation

procedure of willingness then is analogous to the approaches of the other categorical

variables before. Hereby, Xwillingness is simulated conditional on Xgender and Xeducation.

The other covariates are omitted for the sake of convenience. The property of the

variable Xwillingness is that it is not part of the linear regression model (4), which

means, it is not constructed with a conscious influence on the dependent variable

income. However, it cannot be excluded that there is any relationship between those

two variables in the simulated data set. This variable will later play a role in the

Heckman Selection Model in chapter 3.2, dealing with likelihood-based approaches,

modeling the missing data process. There, a covariate is desirable that, among oth-

ers, explains the dropout of a variable, but not the values of the affected variable

itself. This aspect, however, will be discussed more precisely later on.

Now the data basis is received which contains the income as the dependent variable

of the linear regression model, the corresponding predictors and an additional vari-

able describing the willingness of the individuals to take part in the survey. For a

better overview of the simulated data set view appendix C. Here, the frequencies of

the categorical covariates, as well as the summaries of the constructed continuous

variables are presented. In order to be able to compare the results of the simulated

data set and the underlying Allbus 2014, also the summaries of the shortened Allbus

2014 data set are listed there.

It shows that in the simulated data set a few more women are included, whereas

in the Allbus 2014 the male participants slightly dominate. More important, how-

ever, is the fact that the distribution of income in the Allbus 2014 contains more

outliers compared to the simulated data set which could lead to overoptimistic re-

sults in the analyses to come. Apart from these two points, the two data sets are

not deviating remarkably. Nevertheless, despite the similarity, it is noteworthy, to

be careful with interpretations and inferences to the underlying Allbus population.

The distributions and dependencies are only approximated and furthermore, the

Allbus 2014 data set itself contains errors like missing data or measurement errors.

Therefore, it is quite possible that the simulated data set is not representable for

the underlying population of the Allbus, which is the whole adult population of

Germany. Moreover, it is not possible, to test the goodness of the error models,
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2 Effects of the different Types of Survey Error

which are consciously build in chapter 2.2, in order to demonstrate the impacts of

the different errors of the Total Survey Error. They are orientated as effectively as

possible on the errors of the Allbus data set, however, they are very specific and

cannot be tested, as mentioned before.

Nevertheless, this simulation approach results in a realistic data set which will be

viewed as gold standard in the following analyses. As a result, the parameters of

this data set are considered as true population values. As mentioned before, the fol-

lowing analyses of the parameters focus on the mean of the income variable and the

regression coefficients of the independent variables in the linear model (4). Both, the

income mean µincome of 1492.951 and the exact values of the regression coefficients

β can be seen in appendix C.

For a better understanding of those values, some of the parameters shall be in-

terpreted briefly before proceeding with the creation of the different error models.

The intercept estimate indicates the income value that is predicted for a person

belonging to the reference category for all variables and having value 0 for all con-

tinuous predictor variables. In this case those category comprises divorced men

of age 0 with other education, full-time work, who vote other parties. Obviously,

the value of this reference group cannot be interpreted meaningfully. Considering

then the parameter value of the only continuous variable age, the corresponding

beta value of βage = 0.0113720951 represents the difference in the predicted income

value for each one-unit difference in age, if all the other variable values remain

constant. This means that if the age increased by one unit, and all the other

variables stayed the same, the income rises by exp(0.0113720951) = 1.0114370032

units, on average. Interpreting then exemplary βfemale, the regression coefficient for

females, βfemale = −0.3783040793 is the average difference in the logarithmized in-

come between the reference group of men and the category, for which Xgender = 1,

namely women. So compared to man with the same attributes, represented by

the other variables, we would expect the income of a woman to be smaller by

exp(−0.3783040793) = 0.6850221679, on average. The interpretation of the other

categorical variables is then straightforward and also has to be conducted with

respect to the reference category. Besides the intercept estimate, also those param-

eters of age, females, mittlere reife, no graduation, volks-, hauptschule, half-time,

part-time, no employment, single, married living apart, married living together, die

gruenen, FDP and would not vote, display a p-value smaller than the alpha level of

0.1 in the simulated data basis. Thus, those effects differ statistically significant at

a significance level of 0.1 from the respective reference category.
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2 Effects of the different Types of Survey Error

2.2 Creation of Data Sets with selected Error Models

In the following chapter it is described, how the data basis is deliberately changed,

in order to reconstruct the different errors of the TSE approach for analyzing their

impacts on parameter estimation. The sources of specification and processing error

are omitted in those analyses, since on the one hand specification error is based

on a particular research question which is not given in the present situation and

process error arises in the step after data collection which is not focused on at this

point. Therefore, it is concentrated on sampling error, coverage error, nonresponse

error and measurement error. In these cases, data sets with simulated errors are

constructed, whereas this approach is repeated T = 100 times, respectively, so that

a set of data sets containing the same error model is obtained. Obviously, the main

objective by iteratively creation of several data sets with the same error model is

to avoid randomness of the results. These data sets are then the basis for the pa-

rameter estimation of interest. In each of those 100 data sets income mean and

regression coefficients are calculated and these estimates will then be compared to

the true population values in section 2.3. This way a raw bias is received and the

relative bias can be easily calculated. Furthermore, a sampling distribution for those

estimated parameters of the different samples is received. The variance of those es-

timates gives information about the goodness of the average parameters, so does the

corresponding MSE.

Sampling Error

In order to demonstrate the impacts of this error source, random samples of size

n are repeatedly and independently drawn from the total data set of N = 3500

observations. n is varied and takes the values n = 500, 1000, 2000, 3000. This way,

differences between comparatively small, medium-sized and large sample sizes can

be shown.

Coverage Error

As it has been the case in the previous section of sampling error, also the cre-

ation of coverage error is based on random samples of different sizes n which are

repeatedly and independently drawn. In doing so, the different sample sizes of

n = 500, 1000, 2000, 3000 stay the same. However, coverage error arises, when some

subpopulations are more likely to be overrepresented in the sample than others.
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2 Effects of the different Types of Survey Error

This can be simulated by not attributing each of the N = 3500 observations the

same probability of 1
N

to reach the sample. Instead those probabilities differ and

are dependent of certain variable values. Due to literature (cp. Smith (2008)) and

careful considerations, the variables Xgender and Xeducation are chosen for this pur-

pose. First, women shall be overrepresented, since they tend to have less working

hours compared to men which has an influence on their reachability. Consequently,

it is assumed that it is more likely for a female individual to take part in a survey

than a man who just differs from her with respect to gender. Thus, the probability

for a woman to be sampled shall be doubled, whereas the probability for men is

halved. Furthermore, it is assumed that the educational achievement is determin-

ing for the probability to be sampled. Well-educated people, including the variable

values “hochschulreife” and “fachhochschulreife”, shall be overrepresented and are

assigned the doubled probability of 2
N

. Observations with value “mittlere reife” and

“volks-, hauptschule” still have the same probability of 1
N

and the probability of

low educated individuals (“no graduation”), as well as other educated individuals,

is halved. From above the following joint sampling probabilities arise:

male female
( 1

2N
) ( 2

N
)

hochschulreife ( 2
N

) 1
N2

4
N2

fachhochschulreife ( 2
N

) 1
N2

4
N2

mittlere reife ( 1
N

) 1
2N2

2
N2

volks-, hauptschule ( 1
N

) 1
2N2

2
N2

no graduation ( 1
2N

) 1
4N2

1
N2

other graduation ( 1
2N

) 1
4N2

1
N2

Table 2.1: Joint sampling probabilities of coverage error model

Those probabilities, which obviously have a strong influence on the degree of rep-

resentativeness of the sample and consequently on the magnitude of the impact,

seem to be chosen arbitrarily. But since they have to be determined some how, to

conduct the simulation, it is the best way to orientate them on literature knowledge.

However, their choice can of course still be seen as critical. Because of the different

drawing probabilities of observations, it is possible that in some samples with small

sample sizes certain variable combinations are not only underrepresentated, but even

not present. In order to receive fairly representative regression coefficient estimates,

only samples with at least one observation of each gender-education combination

are used for further analyses, while others are discarded and sampling is repeated

until 100 data sets are received.
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2 Effects of the different Types of Survey Error

Nonresponse Error

Showing the impacts of nonresponse error requires the differentiation of the three

nonresponse mechanism (see section 1.2). Therefore, the different error models are

regarded separately. In all three situations, however, it is confined to the case, where

just one variable, namely Xincome, has missing data, while all the other predictors

of the analysis model are always observable. Yet, this case could be extended to

the case in which explanatory variable values are also sometimes missing. For sim-

ulating MAR the Allbus data set, which has missing values in the income variable

itself, can serve as a model again by orientating the dropout-probabilities on the

given variable values. In the Allbus data set the dropout depends amongst others

on the variables Xgender, Xeducation and Xwillingness, as corresponding χ2-tests showed.

Consequently, with those variables a logit model is built on the Allbus data, hav-

ing a binary “missing” indicator M as dependent variable that shows, whether the

observation i has a missing value in the income variable (mi = 1) or not (mi = 0).

P(M = 1) = (5)

exp(β0 + βgenderXgender + βeducationXeducation + βwillingnessXwillingness)

1 + exp(β0 + βgenderXgender + βeducationXeducation + βwillingnessXwillingness)
=

1

1 + exp(−(β0 + βgenderXgender + βeducationXeducation + βwillingnessXwillingness))

With the resulted regression coefficients β and the previously simulated covariates,

the dropout in the simulated data set is predicted, since for each observation the

probability for a dropout is obtained. Thus, the individual dropout of the income

variable is following a bernoulli distribution with given probability. As a result,

a data set of length N = 3500 is received that contains a not predefined number

of missing values in the income variable. As it has been the case when focusing

on the other error sources, this procedure of creating missing values with a given

probability is repeated T = 100 times. Here, the calculated probabilities resulting

from the logit model remain the same for all 100 iterations, but the random process,

deciding, whether the income value drops out or not, is performed again. That is

why the number of missing values in those T = 100 data sets differ, even though

the underlying error model is the same. Again, those resulting data sets are then

the basis for further analysis.

If the underlying dropout process follows MNAR, the missingness depends not only

on the values of the independent variables, but also on the values of the focused

variable with missing values itself. In this case the income. The modeling approach

26



2 Effects of the different Types of Survey Error

then is equivalent to (5), except for the income variable which is added as covariate:

P(M = 1) = (6)

exp(β0 + βgenderXgender + βeducationXeducation + βwill.Xwill. + βincomeXincome)

1 + exp(β0 + βgenderXgender + βeducationXeducation + βwill.Xwill. + βincomeXincome)
=

1

1 + exp(−(β0 + βgenderXgender + βeducationXeducation + βwill.Xwill. + βincomeXincome))

For β0, βgender, βeducation and βwillingness the preassigned values from model (5) are

maintained. However, since the true values of the missing income values in the

Allbus data set are not known, βincome can not be calculated in the same way.

Instead the beta value for the income value has to be determined in a plausible way.

It is set to βincome = 0.00005 which can be interpreted as an increase of the odds ratio

by exp(0.00005) = 1.00005, if the income rises of one unit. The odds ratio is defined

as ratio between the probability of a dropout and the probability of no dropout (cp.

Fahrmeir et al. (2007)). Due to this determination, it can be proceeded in the same

way as in the MAR case. However, it is important to note that this determination

has an influence on further analysis. Choosing a larger value for βincome would

implicate a higher odds ratio and consequently a higher probability for a dropout.

Nevertheless, this value has to be set to a realistic, fix value. Choosing 0.00002 for

βincome would give nearly the same data sets, as have resulted, when applying the

MAR mechanism. Since in this case, nearly the same observations have a dropout,

the income of a person would not have a great influence on the missingness and the

differences between those two models could not be analyzed. Therefore, a larger

value for βincome is necessary. However, choosing βincome even larger than 0.00005

would have resulted in dropout-probabilities close to 1. Thus, this parameter choice

of βincome = 0.00005 is quite reasonable.

Finally, the last missingness process MCAR is based on randomness. Consequently,

a certain, determined number of missings, which orientates on the number of missing

values in the income variable of the Allbus data set, is created with some completely

random process. In the income variable of the Allbus data set a number of 746 values

are missing, which constitutes a proportion of 0.215. Transferring this percentage

to the simulated data set, finally results in T = 100 data sets of size N = 3500 with

750 missing values in the income variable, respectively.
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2 Effects of the different Types of Survey Error

Measurement Error

As it has been described before, measurement error comprises many different sources.

Consequently, the analysis of this error source has to be specified. While a lot of

research has already been done in this field of application (see e.g. Schneeweiß

and Mittag (1986), Buzas et al. (2005), Chesher (1991)), it is now only focused on

one specific type of measurement error, namely the measurement error of rounding

which is a typical behavior of people having to answer questions about the own

income. Rounding is a subcategory of coarse data which is defined as data that are

neither entirely missing nor are perfectly present (cp. Heitjan and Rubin (1991)).

Coarse data also encompasses heaping, censoring and missing data which connects

this error source with that of nonresponse error. In order to find out about the

impacts of this error model, rounded values in the data set have to be created. At

this, rounding to the next multiple of 10 is considered, which results in the rounding

function f10(x) = 10 ·⌊ x
10

+ 1
2
⌋. This rounding threshold is chosen, since the resulting

number of income values that are divisible through 10, 100 and 1000 this way is most

similar to the corresponsing percentage of the Allbus data set.

Based on the approach of the nonresponse error, different models for the creation of

rounding behavior are chosen. It is differentiated between rounding behavior that is

completely at random, rounding behavior that depends on covariates of the data set

and finally rounding behavior that cannot only be traced back to certain covariates,

but also to the values of the interested, rounded variable itself, here the income

variable. Thus, those models are similar to those of MCAR, MAR and MNAR and

are consequently in the following abbreviated as RCAR, RAR and RNAR. In order

to avoid confusion, even the same covariates, namely Xgender, XElection and X willingness

are chosen, to have an influence on the rounding behavior, when focusing on the

appropriate rounding mechanisms.

The simulation of the two rounding models RAR and RNAR is then proceeded

analogous to the nonresponse case, except that the dummy variable of interest M ,

having indicated the dropout of an income value before, is now replaced by a dummy

variable Xrounding that indicates, whether the income value is rounded (Xrounding = 1)

or not (Xrounding = 0). Based on the previously introduced rounding function, an

income value is regarded as rounded, if it is divisible through 10. In this case, it

is assumed that the individual has not stated its exact income. Even though these

numbers appeal to be rounded, it is important to note that they could nevertheless

be the true values and consequently have no measurement error.

For the last rounding model RCAR again the Allbus data set serves as a role model.

Analyzing the rounding behavior of the income variable in the Allbus data set gives
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2 Effects of the different Types of Survey Error

that 71.795% of the listed values are divisible through 10. However, this percentages

is transferred to the simulated data set, so that 100 data sets are created containing

2200 observations which are rounded to the next threshold of 10, respectively. Which

observations are rounded is chosen randomly. With the already existing number

of 313 income values of the simulated data set that have already been divisible

through 10 before simulating the rounding error consciously, there are then 2513

income values divisible through 10 in each of the 100 data sets, which corresponds

to the given percentage of the Allbus data set. This way, data sets with different

rounding errors are received and the impacts of this kind of measurement error can

be analyzed in the next step.

2.3 Direction and Magnitude of Effects on Parameter

Estimation

Sampling Error

Starting with the impacts of the sampling error, the following tables and figures

give an overview of the results. First, it is focused on the estimates for the income

mean µincome. Table (2.2) comprises the expected value, the corresponding bias and

relative bias, the variance and the MSE of the estimates for the different sample

sizes. The listed values are the averages of the 100 data sets, respectively.

n = 500 n = 1000 n = 2000 n = 3000
µincome 1492.951 1492.951 1492.951 1492.951
E(µ̂income) 1490.602 1492.278 1492.281 1493.053
Bias(µ̂income) -2.34902 -0.67283 -0.67011 0.10241
Biasrel(µ̂income) -0.00157 -0.00045 -0.00045 0.00007
Var(µ̂income) 2006.50326 1094.93459 275.11373 61.83687
MSE(µ̂income) 2012.02115 1095.38729 275.56277 61.84736

Table 2.2: Expected value, variance, bias and MSE of mean estimation of income in
order to quantify sampling error

It shows that for all regarded sample sizes, E(µ̂income) is close to the true population

mean of 1492.951, whereas, as expected, the estimates are better for larger sam-

ples. The bias takes the highest value of −2.34902 in the case of a small sample

of n = 500. Here, the result is a negative bias, which means that the parameter

is underestimated. However, this is not the case for all sample sizes. It should be

noticed that besides the decreasing bias for larger sample sizes, also the variances of
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2 Effects of the different Types of Survey Error

the estimates decrease distinctly which results in smaller MSEs and a higher repre-

sentativeness.

In order to make sure that these deviations from the true mean income values are

statistically not significant, a two-sided t-test can be conducted. The null hypothe-

sis contains the statement that the true income mean of 1492.951 could also be the

mean value of the sample containing a certain error, here the sampling error. This

means that the resulting bias might be by chance, whereas the alternative hypothe-

ses states that there are significant differences. These deviations between the true

mean income and each of the 100 resulting mean income estimates per error model

are tested on a significance level of α = 0.05. As a result, none of the average mean

estimates for n = 500, n = 1000, n = 2000, n = 3000 differ significantly from the

true income mean, since in the sample scenario of n = 500 in 98 of 100 times the null

hypothesis may not be rejected, for n = 1000 it is in 97% of the cases, for n = 2000

in 99% and for n = 3000 in all 100% of the cases. Consequently, mean estimation

here is not noticeably affected by sampling error which can also be seen in the fol-

lowing figure, showing for the different sample sizes the corresponding boxplots of

the different mean estimates of the T = 100 samples, respectively.
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Figure 2.3: Boxplots of income mean estimates for different sample sizes
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Whereas the drawn black line within the box represents the median of the sample,

the blue line indicates the true value µincome of the target population. Consequently,

those two values should not be compared directly, since they indicate different sta-

tistical measurements. Instead the difference between the blue line and the blue

dot, noting the estimated value, should be assessed. For increasing sample sizes,

the boxes, displaying the variation in those samples, obviously get smaller and the

prediction of the true value more precise.

In order to make also statements about the estimation of the regression coefficients,

we consider table (2.3), which is confined to the representation of the resulting MSEs

for reasons of clarity. The complete table (C.6) with expected values, variances and

biases can be found in the appendix.

n = 500 n = 1000 n = 2000 n = 3000

MSE(β̂0) 0.0825926243 0.0290543619 0.0098488046 0.0020103048

MSE(β̂age) 0.0000025652 0.0000015689 0.0000004719 0.0000001000

MSE(β̂female) 0.0021497401 0.0007941525 0.0002463387 0.0000420196

MSE(β̂no graduation) 0.0741067867 0.0365600113 0.0105487393 0.0019236736

MSE(β̂volks-, hauptschule) 0.0601953276 0.0203148217 0.0075737900 0.0012522573

MSE(β̂mittlere reife) 0.0649202739 0.0219705149 0.0077103756 0.0012620555

MSE(β̂fachhochschulreife) 0.0693787401 0.0229147785 0.0078471397 0.0012432106

MSE(β̂hochschulreife) 0.0635400125 0.0225464891 0.0077629780 0.0014164809

MSE(β̂half-time) 0.0043497917 0.0022160056 0.0006491382 0.0001424458

MSE(β̂part-time) 0.0068955666 0.0026568048 0.0010621736 0.0002127282

MSE(β̂not employed) 0.0017520438 0.0009080421 0.0002696788 0.0000709569

MSE(β̂married living together) 0.0054620948 0.0024377131 0.0006165484 0.0001583126

MSE(β̂married living apart) 0.0359318615 0.0115208465 0.0032639055 0.0008976778

MSE(β̂widowed) 0.0118854566 0.0047788168 0.0015703984 0.0003322932

MSE(β̂single) 0.0063128172 0.0026525454 0.0008721015 0.0002047679

MSE(β̂CDU-CSU) 0.0095949533 0.0048627868 0.0012408221 0.0002995102

MSE(β̂SPD) 0.0117203007 0.0051882874 0.0013938861 0.0002574235

MSE(β̂die gruenen) 0.0097938571 0.0054435135 0.0017723805 0.0003103283

MSE(β̂die linke) 0.0110373558 0.0068738564 0.0017512232 0.0003130554

MSE(β̂extreme right-wing) 0.0149759706 0.0070284133 0.0019085982 0.0004188738

MSE(β̂FDP) 0.0157995717 0.0078989014 0.0022400439 0.0004134289

MSE(β̂would not vote) 0.0140761716 0.0061615106 0.0021898871 0.0003425453

Table 2.3: MSE of regression coefficient estimates in order to quantify sampling error
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2 Effects of the different Types of Survey Error

With increasing sample size the MSEs of the regression coefficient estimates become

smaller which corresponds to the findings of table (2.2) and confirms that with larger

samples we can have more confidence in the sample’s representativeness. Viewing

the average values of the beta coefficients resulting from the different samples gives

that they slightly differ from the true values. In theory, the expected values of the

coefficients are not affected by changes in sample size, but actually the coefficients

differ because of the sampling variation which comes along with different samples.

This can be seen in the following figure, representing exemplary the distribution of

the estimated intercepts for the different sample sizes.
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Figure 2.4: Boxplots of intercept estimates for different sample sizes

Variation is obviously systematically influenced by the sample size, which means

that it becomes smaller for increased n. There is not such a systematic trend in the

estimated average of the intercept. Thus, for certain sample sizes E(β̂0) the true

value of β0 = 7.0070608279 is slightly underestimated, in others cases this value is

overestimated. However, the bias of estimating β0 is small for all sample sizes and

takes a maximal value of 0.0171504762 for n = 2000. These findings can also be

assigned to the other beta coefficients, whereas the sample size of n = 2000 does not

always yield the worst result concerning bias. For reasons of clarity the boxplots of

the remaining coefficient estimates are placed in appendix B.
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As a last step of interpretation, the change in significance of statistical effects due

to sampling error is analyzed. Conclusions based on significance can be ascribed

to a test with null hypothesis implying that the corresponding regression coefficient

is equal to zero under the assumption of normally distributed error terms. A test

statistic can be calculated which is based on the value of the estimated regression

coefficient, as well as its variance. The null hypothesis is then rejected at a certain

significance level α, if the test statistic has a larger value than the corresponding

(1 − α
2
)-quantile of the t-distribution. The corresponding degrees of freedom are

calculated by the difference of sample size and number of estimated parameters.

In theory, the crucial test statistic becomes smaller, if the variance of the estimate

increases. This is the case, when sample size decreases. Then there is a tendency to

that effect that the null hypothesis, indicating that there is no significant effect, can-

not be rejected. All in all, when sample size decreases, the corresponding p-values

tend to become larger and effects tend to become non significant.

Viewing the average p-values, resulting from the regression models of the different

sample sizes, which are presented in table (C.7), this continuous increase of the

p-values can be recognized for all statistical significant effects. While for example

the group of participants that are “married living together” in the true underlying

sample have a significant higher logarithmized income than the reference group of

“divorced” participants, this effect remains at the same level of significance for the

sample size of n = 3000, namely smaller 0.01, but then changes for smaller sample

sizes. For n = 2000 the corresponding p-value is only smaller 0.1 and for n = 1000

and n = 500 this effect is not significant anymore. In contrast to that, the highly

significant effects of the intercept, “age”, “female”, “half-time”, “part-time” and

“not employed” remain highly significant for all sample sizes. Also the non signifi-

cant effects of “fachhochschulreife”, “hochschulreife”, “widowed”, “CDU-CSU”, “die

linke”, “extreme right-wing” and “SPD” do not become significant, when drawing

samples. In these cases, the corresponding p-values increase for larger sample sizes

and thus approach to the true underlying p-values of those regression coefficients.

In conclusion, sampling error can not only affect the values of the estimated regres-

sion coefficients, but also the significance of statistical effects, which are attenuating

with decreasing sample size.
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Coverage Error

As a next step, focus is set on the impacts of coverage error and as before, it first

of all lies on the estimates for the income mean µincome:

n = 500 n = 1000 n = 2000 n = 3000
µincome 1492.951 1492.951 1492.951 1492.951
E(µ̂income) 1289.939 1304.254 1352.104 1438.092
Bias(µ̂income) -203.01198 -188.69738 -140.84656 -54.85946
Biasrel(µ̂income) -0.13598 -0.12639 -0.09434 -0.03675
Var(µ̂income) 1880.28475 596.53409 194.77684 54.30150
MSE(µ̂income) 43094.14877 36203.23531 20032.53030 3063.86149

Table 2.4: Expected value, variance, bias and MSE of mean estimation of income in
order to quantify coverage error

In all four cases of n, the true population income mean of 1492.951 is clearly under-

estimated. The averages of the samples deviate up to an absolute value of 203.01198

from the true value in the case of n = 500. Those deviations can be traced back to

the different average incomes of men and women in the target population. Whereas

the average female income in the simulated data set comes to 1118.066, those of

men reaches a value of 1869.554. Since women are purposely overrepresented in

these samples, the average income is underestimated. Apparently, a larger sample

size decreases both, bias and variance of the estimations, which leads to consider-

ably smaller MSEs. With increased sample size the corresponding MSEs decrease

remarkably from a value of 43094.14877 in the case of n = 500 to 3063.86149 in the

case of the largest sample size.

Before viewing the boxplots, which complete what was said before, a short state-

ment about the corresponding t-tests that have already been conducted in the case

of sampling error, is made. Here, the null hypothesis of equality between true and

estimated mean income value could be rejected in the majority of the 100 cases for

n = 500, n = 1000, n = 2000. Therefore, in these scenarios we can assume significant

deviations. Concentrating then on the corresponding boxplots shows that all four

boxes are located markedly below the blue line, denoting the true population mean.

Due to the larger variation in smaller samples the whiskers of the boxplot in the case

of n = 500 include the true value. However, the estimated sample means, denoted

by the blue dots, are far from the true value, but approaching the true population

mean with increasing n.
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Figure 2.5: Boxplots of income mean estimates for different sample sizes containing
coverage error

In order to get an overview of the impacts on regression parameter estimation, first

the abbreviated table of MSEs is discussed:

n = 500 n = 1000 n = 2000 n = 3000

MSE(β̂0) 0.1746848145 0.0759675696 0.0241422798 0.0043063296

MSE(β̂Age) 0.0000032080 0.0000014495 0.0000004963 0.0000000899

MSE(β̂Female) 0.0030964218 0.0010819041 0.0002826789 0.0000618589

MSE(β̂No Graduation) 0.2175205198 0.0954216295 0.0233456802 0.0050660246

MSE(β̂Volks-, Hauptschule) 0.1419779418 0.0691553314 0.0158626008 0.0031987587

MSE(β̂Mittlere Reife) 0.1328235799 0.0654806901 0.0163393849 0.0031121287

MSE(β̂Fachhochschulreife) 0.1384112213 0.0673351515 0.0162798288 0.0032720538

MSE(β̂Hochschulreife) 0.1381689489 0.0659550599 0.0167554420 0.0033723480

MSE(β̂half-time) 0.0030096672 0.0010350722 0.0003176226 0.0000465588

MSE(β̂part-time) 0.0059792038 0.0020730085 0.0005645777 0.0001427316

MSE(β̂not employed) 0.0020576189 0.0008079692 0.0002343462 0.0000777910

MSE(β̂married living together) 0.0059394476 0.0027431138 0.0008551152 0.0001597583

MSE(β̂married living apart) 0.0314244963 0.0158825772 0.0050882673 0.0005327739

MSE(β̂widowed) 0.0114055652 0.0065996384 0.0021758343 0.0003362787

MSE(β̂single) 0.0066799580 0.0030803743 0.0009767531 0.0001433286

MSE(β̂CDU-CSU) 0.0087138946 0.0034270689 0.0014494486 0.0004083341
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MSE(β̂SPD) 0.0099441068 0.0039823616 0.0014282208 0.0004098157

MSE(β̂Die Gruenen) 0.0096541134 0.0043957662 0.0017913425 0.0004791308

MSE(β̂Die Linke) 0.0128880915 0.0045721882 0.0021619391 0.0005436597

MSE(β̂Extreme Right-Wing) 0.0145632891 0.0058501670 0.0016206209 0.0007477504

MSE(β̂FDP) 0.0180285383 0.0077475888 0.0026027662 0.0005778129

MSE(β̂Would not vote) 0.0140062628 0.0048118330 0.0025309676 0.0006097294

Table 2.5: MSE of regression coefficient estimates in order to quantify coverage error

Obviously, the estimates for all regression coefficients become more representative

with increased sample size, which is reflected through smaller MSEs. The corre-

sponding expected values and variances of the estimated regression coefficients are

listed in the full table (C.8) in the appendix and are illustrated with the help of

boxplots (see (B.5), (B.6), (B.7), (B.8)). Due to the underrepresentation of certain

groups of participants, regression coefficient estimation should be viewed critically.

In the samples of size 500 for example, we only have on average 2.620 observations

with education category “other graduation”, which is the reference category of this

variable in the regression model. This obviously cannot result in good estimates and

comparability. Interpreting table (C.8) further gives that in contrast to the MSEs,

the corresponding biases of regression coefficients do not decrease consistently with

increased sample size. But in nearly all cases of regression coefficient estimation,

the true value is consistently over- or underestimated through the average expected

value of the different sample sizes. This statement is for example valid for the in-

tercept estimation. As the boxplots in figure (2.6) show, the expected values of the

estimates in all samples are close to the true population value, which is only slightly

overestimated. In all four cases, the true value lies within the boxes, in other words

between the 25%- and the 75%-quantile. Thus, the box contains 50% of the data,

which here means half of the mean estimates, respectively.

Finally, regarding the significances of the different effects reveals that highly signif-

icant results stay highly significant independent of the size of the sample and so do

effects which are not significant in the target population. In the other cases there

can be seen a tendency of decreasing p-values (cp. table (C.9)) and consequently a

trend towards less or rather not significant effects for smaller sample sizes. Summa-

rizing those findings gives that coverage error has more serious impacts on parameter

estimation than sampling error, if the sampling frame noticeably differs from the

target population, which is obviously the case in the present situation. Then both,

mean and regression coefficient estimation are affected.
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Figure 2.6: Boxplots of intercept estimates for different sample sizes containing cov-
erage error

Nonresponse Error

In the case of nonresponse error it is not distinguished between different sample

sizes, but between the three dropout mechanisms. First, the impacts of MCAR,

MAR and MNAR nonresponse errors on the estimation of the income mean are

presented:

MCAR MAR MNAR
µincome 1492.951 1492.951 1492.951
E(µ̂income) 1492.019 1544.401 1529.321
Bias(µ̂income) -0.93241 51.44947 36.36994
Biasrel(µ̂income) -0.00062 0.03446 0.02436
Var(µ̂income) 124.98964 232.82946 198.20299
MSE(µ̂income) 125.85902 2879.87698 1520.97589

Table 2.6: Expected value, variance, bias and MSE of mean estimation of income in
order to quantify nonresponse error

In the case of MCAR the average mean of 1492.019 is a very good estimate for

the true population mean of 1492.951. Consequently, the bias is small, so are the

variance of the estimates and the resulting MSE of 125.85902 in this case. Thus,
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if there exists a nonresponse error, with a dropout that is completely at random,

the situation can be compared to a random sample, since we are only observing

some of the values. As a result, mean estimation is not influenced and the outcomes

can be transferred to the target population. This is not equally the case in the

second scenario, where the MAR mechanism is present. The estimated income

mean of 1544.401 obviously is worse compared to the MCAR mean. It differs from

the true value by an absolute amount of 51.44947 which brings along a noticeable

overestimation of the true population mean. The MSE of 2879.87698 quantifies this

large difference between the estimate and what is estimated. Consequently, the mean

estimate in this situation tends not to be very representative. Finally, the impacts of

the MNAR nonresponse mechanism can be classified close to that of MAR, but not

that bad. Its mean estimation of 1529.321 is closer to the true population income

mean, since now people with higher income value have a tendency to dropout more

likely. Therefore, the income mean of the remaining responders is pushed down

which leads to a smaller overestimation compared to the MAR scenario. Moreover,

in the presence of MNAR the variance of the estimate is smaller which brings along

that the MSE becomes smaller compared to the MAR case and reaches a value of

1520.97589. All those findings are again illustrated with the help of boxplots.
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Figure 2.7: Boxplots of income mean estimates for different nonresponse mechanisms
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Those statistical key figures show that the dropouts which are MAR or MNAR ob-

viously affect mean estimation, even though these deviations from the true income

mean value are in the majority of cases not significant according to t-tests. Never-

theless, the average range of the corresponding bias is not small, which is why the

dropouts may not be ignored, but should be handled in a suitable way.

In order to find out, whether the different missing data mechanisms have a similar

influence on regression parameters as they had on mean estimation, focus is first set

on the statistical measures corresponding to the regression intercept. Here we see

very similar estimates for MCAR, MAR and MNAR. All three average estimates

are close to the true value of 7.0070608279 (see figure (2.8)), whereas it is noticeable

that in the MCAR case we still have the smallest bias, which is represented by the

distance between the true value line and the estimated value dot in color blue, the

smallest variance, represented by the width of the box and consequently the smallest

MSE, consisting of those two components.
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Figure 2.8: Boxplots of intercept estimates for different nonresponse mechanisms

Considering the remaining regression coefficients, it eventuates that in all the cases,

except βhochschulreife, the MSE is smallest, when the nonresponse dropout is com-

pletely at random (see table (2.7)). This confirms the findings that MCAR dropout

does not have a strong impact on parameter estimation and attention should be
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2 Effects of the different Types of Survey Error

focused on MAR and MNAR. However, the more detailed table (C.10) in the ap-

pendix reveals that for all three nonresponse mechanisms the bias of the estimated

regression parameters is small. Thus, the significances do not change heavily, as

table (C.11) shows. Strongly significant effects stay strongly significant for all non-

response mechanisms and not significant effects do not become significant. However,

effects that are significant at a higher significance level in the true underlying data

situation are obviously weakened, when considering the regression outputs of the

data with nonresponse error. However, except in the case of “die gruenen” all

significant effects are also recognized as statistically significant in the presence of

nonresponse. While the p-values in the MAR and MNAR scenarios make not much

of a difference, the one of MCAR in general are smaller and therefore closer to the

true p-values, if effects are significant.

MCAR MAR MNAR

MSE(β̂0) 0.0042048848 0.0050811213 0.0044771267

MSE(β̂age) 0.0000001380 0.0000002427 0.0000002409

MSE(β̂female) 0.0000938447 0.0001526323 0.0001763245

MSE(β̂no graduation) 0.0039788141 0.0048166650 0.0050870244

MSE(β̂volks-, hauptschule) 0.0029842714 0.0034675059 0.0033753390

MSE(β̂mittlere reife) 0.0030929637 0.0032046833 0.0031922267

MSE(β̂fachhochschulreife) 0.0033685208 0.0034415262 0.0035441220

MSE(β̂hochschulreife) 0.0031050359 0.0031316799 0.0030277848

MSE(β̂half-time) 0.0002298237 0.0002937056 0.0003132581

MSE(β̂part-time) 0.0003782038 0.0004203327 0.0005391832

MSE(β̂not employed) 0.0000947949 0.0001578360 0.0001497775

MSE(β̂married living together) 0.0002629782 0.0003101631 0.0004059300

MSE(β̂married living apart) 0.0013381430 0.0014205419 0.0015812653

MSE(β̂widowed) 0.0004501837 0.0008222669 0.0010445201

MSE(β̂single) 0.0003023645 0.0005154555 0.0005888173

MSE(β̂CDU-CSU) 0.0004781217 0.0006275838 0.0006547944

MSE(β̂SPD) 0.0005395279 0.0006281904 0.0006324777

MSE(β̂die gruenen) 0.0004821276 0.0006507621 0.0007183523

MSE(β̂die linke) 0.0006105415 0.0007766607 0.0008841787

MSE(β̂extreme right-wing) 0.0005917100 0.0009249487 0.0011073786

MSE(β̂FDP) 0.0009082497 0.0009917881 0.0010519991

MSE(β̂would not vote) 0.0006573288 0.0011008500 0.0011391278

Table 2.7: MSE of regression coefficient estimates in order to quantify nonresponse
error
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Finally it is important to note that the quality of those estimates is massively in-

fluenced by the number of missing values in the data set. The more missing values

a variable has, the worse is its representativeness. The number of missing values in

the income variable does not coincide in the three cases, since the probability for a

dropout is different for a certain observation, respectively. Whereas in the situation

of MAR the number of missing values within the 100 iterations varies between a

minimum of 962 and a maximum of 1094, the respective values of the MNAR pro-

cess are 1017 and 1138. The corresponding median of the MAR process is given

by 1045, those of the MNAR process by 1091. The number of completely random

missings has been orientated on the Allbus data set and is with a total number

of 750 much smaller. The higher this number is chosen, the more converges the

corresponding MSE to those MSEs of MAR and MNAR. However, even in the case

of 1000 completely random dropouts, only a MSE of 175.2621 is received for the

income estimate. Then, the estimates for the MCAR case become worse and the

impacts of the underlying nonresponse error more remarkable, but the consequences

are nevertheless not comparable to those of MAR and MNAR.

Measurement Error

After application of the three measurement error models to the simulated data set,

a large number of rounded income values is received in the case of RAR and RNAR.

While the 100 data sets with rounding behavior at random have between 3113 and

3208 values that are divisible through 10, this amount varies between 3106 and 3202

in the RNAR case. However, the RCAR model takes the percentages of rounded

values of the Allbus data set, as has been described before. Thus, in each of the

iterations it displays a total number of 2513 income values that are divisible through

10. Obviously, this number widely differs from those of the other models which has

to be kept in mind, when comparing the results in the following.

RCAR RAR RNAR
µincome 1492.951 1492.951 1492.951
E(µ̂income) 1493.299 1493.406 1493.407
Bias(µ̂income) 0.34795 0.45484 0.45603
Biasrel(µ̂income) 0.00023 0.00030 0.00031
Var(µ̂income) 0.00056 0.00023 0.00022
MSE(µ̂income) 0.12163 0.20711 0.20818

Table 2.8: Expected value, variance, bias and MSE of mean estimation of income in
order to quantify measurement error
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2 Effects of the different Types of Survey Error

Estimating the mean of the income gives good results for all three error models as

the following graphical illustration confirms.
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Figure 2.9: Boxplots of income mean estimates for different measurement mecha-
nisms

The average income value of the 100 data sets, respectively, only slightly overes-

timates the true population mean. However, those differences are statistically not

significant and are only extended to differences in the decimal place which is re-

flected through the small range of values on the y-axis of the boxplots. Here also

very small variances are noticed, which means that the estimation of the popula-

tion mean does not vary much in the different data sets containing the simulated

measurement errors. This fact can be explained by the large number of rounded

values, which is why the income values of the different data sets and consequently

also their corresponding means do not differ much. Even though the percentage of

roundings is decreased, the variances would stay small, since it is only rounded to

the next threshold of 10, which either means an additional small positive or a small

negative change of the income value, which finally does not influence the mean of

the income variable noticeably. Due to those very small variances of the estimates,

also remarkable small MSEs result for all three models. The RCAR model results in

the smallest bias and, despite the largest variance, in the smallest MSE. However,
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2 Effects of the different Types of Survey Error

if the number of income values that are rounded to the next threshold of 10 is in-

creased close to the total number that the other two models provide (e.g. additional

2800 rounded values instead of 2200), then statistics approximate. The MSE of the

RCAR model then is close to those of RAR and RNAR, which are nearly the same.

The findings of the regression coefficient estimation coincide with those of the mean

estimation in all aspects. The three resulting MSEs of the different rounding scenar-

ios are very similar, whereas the one of RCAR in most cases is the smallest. However,

those differences are not considerable and vanish, if the number of rounded values

for RCAR is increased. Summarizing, the estimated regression coefficients in all

three scenarios are unbiased which confirms the following, theoretical findings of

Schneeweiss et al. (2010) before: In the underlying regression application, the re-

sponse variable income has rounded values, whereas all the explanatory variables

are not rounded. In this situation the values of the estimated regression parameters

are not affected. Again, the intercept boxplots are brought in as an example.
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Figure 2.10: Boxplots of intercept estimates for different measurement mechanisms

The boxplots of the remaining regression coefficients in appendix B display even

smaller ranges, since the corresponding variances only take values between 10−07

and 10−12. As a consequence, the estimated values, represented by the dots, always

lie on the line, representing the true values. Those good estimates of the regression
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2 Effects of the different Types of Survey Error

coefficients are confirmed by the following table (C.12), containing the correspond-

ing MSEs. Thus, it can be concluded that the range of values of the regression

coefficients does not change noticeably due to these kind of errors. Also the signifi-

cances of the regression effects are not influenced as table (C.13) provides.

RCAR RAR RNAR

MSE(β̂0) 0.0000022895 0.0000036333 0.0000036287

MSE(β̂age) 0.0000000000 0.0000000000 0.0000000000

MSE(β̂female) 0.0000000058 0.0000000023 0.0000000023

MSE(β̂no graduation) 0.0000002461 0.0000000917 0.0000000908

MSE(β̂volks-, hauptschule) 0.0000002079 0.0000001121 0.0000001104

MSE(β̂mittlere reife) 0.0000004746 0.0000005191 0.0000005157

MSE(β̂fachhochschulreife) 0.0000003686 0.0000003532 0.0000003495

MSE(β̂hochschulreife) 0.0000004555 0.0000005107 0.0000005064

MSE(β̂half-time) 0.0000000519 0.0000000703 0.0000000705

MSE(β̂part-time) 0.0000001699 0.0000002322 0.0000002324

MSE(β̂not employed) 0.0000000225 0.0000000279 0.0000000281

MSE(β̂married living together) 0.0000003167 0.0000005033 0.0000005047

MSE(β̂married living apart) 0.0000005364 0.0000008253 0.0000008284

MSE(β̂widowed) 0.0000002367 0.0000003829 0.0000003835

MSE(β̂single) 0.0000003116 0.0000005002 0.0000005027

MSE(β̂CDU-CSU) 0.0000001028 0.0000001625 0.0000001636

MSE(β̂SPD) 0.0000000488 0.0000000632 0.0000000634

MSE(β̂die gruenen) 0.0000001028 0.0000001625 0.0000001636

MSE(β̂die linke) 0.0000000563 0.0000000872 0.0000000877

MSE(β̂extreme right-wing) 0.0000001024 0.0000001827 0.0000001822

MSE(β̂FDP) 0.0000000985 0.0000001663 0.0000001665

MSE(β̂would not vote) 0.0000000679 0.0000001302 0.0000001310

Table 2.9: MSE of regression coefficient estimates in order to quantify measurement
error

Drawing a conclusion for the first part of the thesis, it contains that in this ap-

plication, nonsampling error mostly causes a considerably larger bias compared to

sampling error and therefore has stronger impacts on the considered parameter es-

timation. Thus, when conducting a survey, at least as much attention as focused

on reducing sampling error should be spend on the other components of the TSE.
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Considering the impacts of the different nonsampling errors, it shows clearly that

coverage error has strong effects on parameter estimation, if the sampling probabil-

ities differ noticeably from simple random sampling. In contrast to that, measure-

ment error, which is analyzed here in the specific form of rounding error, yields small

deviations between the true parameter values and the corresponding estimates, in

fact for all different rounding processes RCAR, RAR and RNAR. This is different in

the scenario of nonresponse error. Here, the underlying dropout process is crucial.

While MCAR hardly influences parameter estimation, estimates are biased in the

case of systematic dropouts including MAR and MNAR.

This finding forms the basis of the second part of the thesis which focuses on non-

response error as a main error component of the TSE. Nonresponse error, which

results in missing data, is an omnipresent problem in survey statistics, since nearly

each survey contains missing values, which has to be dealt with in an appropriate

way. However, there is no gold standard approach to handle missing data, but a

wide range of methods. Often analysts are overcharged with the task of finding the

right way to handle the missing data situation, which is why they go back to tradi-

tional approaches. Those, however, simply ignore the missing values or are based on

assumptions that are not justified. The second part of the thesis shall present the

different types of methods including their limitations and drawbacks, shall establish

the advantages of modern approaches and apply them to compare the performances.

Of course, all those theories and analyses shall be embedded in the context of the

TSE approach, in order to associate the two parts of the thesis.
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3 Nonresponse as a Main Error Component of the Total Survey Error Approach

3 Nonresponse as a Main Error Component

of the Total Survey Error Approach

3.1 Minimizing Impacts of Nonresponse Error in

Survey Data

Focusing on the nonresponse error as a major component of the TSE, two important

features arise that aim to minimize the impacts of this source of error. The first fam-

ily of approaches sets out from a point before or during the data collection process

and involves minimizing the impacts of nonresponse error by keeping nonresponse

in the survey data at a minimum. This section will deal with those attempts before

focusing then on methods whose aim is to correct or improve parameter estimation

in the case of present nonresponse in the data (see section 3.2). While concentrating

on all those approaches in the field of nonresponse, it may be taken into account that

this error is just one major component of the TSE and focusing only on the nonre-

sponse error might have impacts on the other components, since in some cases there

is a link between the different errors. Therefore, efforts to minimize nonresponse

error can have the consequence of an increased overall TSE, because the impacts

of other error sources increased simultaneously. This will become clear at certain

points of this chapter.

Minimizing nonresponse error is often put on the same level with increasing response

rates. However, response rates per se do not necessarily obtain information about

the corresponding bias, which comes along with the dropout. Thus, response rates

do not inform about the underlying missing mechanism and consequently about

the differences between responder and nonresponder, which is why, literature con-

cerning this field of research suggest alternative measures (cp. Kreuter (2013)),

depending on auxiliary information about responders and nonresponders. With ad-

ditional knowledge about the dropout in terms of paradata or auxiliary variables

it is possible, to better asses data and survey quality and moreover, appropriate

methods for handling the missing data can be found (see section 3.2).

Also linking surveys to administrative data or combining information from different

surveys might help to better understand the reasons, why people do not respond.

Often, the cost-benefit equation of taking part in a survey does not seem profitable

for the selected people. Then, on the one hand, benefits should be maximized, for

example in terms of incentives (cp. Pforr et al. (2015)). This procedure can moti-

46



3 Nonresponse as a Main Error Component of the Total Survey Error Approach

vate people to participate in the survey, but often the participation is only based on

the promised incentive which might lead to sloppy and non reliable answers. Then,

the bias due to measurement error can increase. On the other hand burdens for

participants should be minimized. This can for example be achieved by so called

multiple-matrix-sampling which is a technique that aims to reduce the number of

questions for each participant by randomly dividing the questionnaire in subtests.

Although each participant receives only a proportion of the complete set of items,

the estimated parameters of interest are equivalent to those obtained by testing all

participants on all items. Another approach for reducing respondent burdens are

mixed-mode surveys. In these surveys different modes like face-to-face interviews or

self-administered designs are provided, from which the participants can choose their

favorite procedure. Staying in this context, in general choosing the mode of data

collection can have obvious impacts on nonresponse error. Thus, self-administration

reduces measurement error, but increases nonresponse (cp. Sakshaug et al. (2010)),

compared to designs based on interviewers. But of course, also the interviewer him-

self can be the source of nonresponse error, which is why, effort should be made in

the field of interviewer trainings (cp. West and Olson (2010), O’Brien et al. (2006)).

Another source for nonresponse error might be the questionnaire. Bad wording of

questions for example can cause dropouts and should therefore be identified, in or-

der to avoid the resulting bias (cp. Kreuter et al. (2008)). For this purpose small

pilot studies before the start of the main survey might help to identify unexpected

problems (cp. Van Teijlingen and Hundley (2002)). Finally, a last obvious approach

for minimizing the nonresponse in a survey is to increase the effort of contacting the

selected people (cp. Kreuter et al. (2010), Fricker and Tourangeau (2010)). This

way, non-contact bias as a part of nonresponse bias becomes smaller and moreover

larger response rates decrease sampling error and desirably improve the coverage of

the population of interest. Yet, putting pressure onto selected people might have

the negative effect of resulting in worse data quality resembled through larger mea-

surement errors.

Concluding, all those described approaches are just a subset of possibilities which

can help to minimize nonresponse error a priori. Obviously, they can also have neg-

ative effects on other TSE components and so the pros and cons of each attempt

have to be balanced, in order to decide, where effort in terms of money and time is

useful to spend. However, in general all those attempts do not completely avoid the

dropout of people, which is why, a strong need for methods to handle those missing

data situations in the field of surveys arises.
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3.2 Correction Methods for Nonresponse Error and

their Limitations

When dealing with incomplete data, there are several approaches. According to Lit-

tle and Rubin (1987) they can generally be divided into different groups of methods:

• Methods based on the available data (ad-hoc methods)

• Methods based on weighting the observed cases (weighting)

• Methods based on replacing the missing values (imputation)

• Methods based on maximum-likelihood (maximum-likelihood procedures)

3.2.1 Ad-Hoc Methods

One of the oldest and without a doubt easiest approaches to deal with missings in

survey data are ad-hoc methods which are based on analyzing the available data

and in some way ignoring the missings (cp. Weisberg (2005), Spieß (2008) or Little

and Rubin (1987)).

The first method within this field is the so called complete-case-analysis, often also

referred to as listwise deletion. Here, all observations, having missing data on any

of the variables, are discarded and it is then proceeded with the analysis of inter-

est using standard methods. The advantage of this approach is the simplicity. No

expertise is necessary and application in all standard software is straightforward.

Moreover, this method results in a single data set with given size, which makes

univariate statistics comparable. However, those advantages are minor, when con-

sidering on the one hand the huge loss of information and on the other hand the

resulting estimates which are in general biased, except when the underlying missing

mechanism follows MCAR. In this case, the complete cases are representative for the

whole sample and the estimates will be unbiased. Then this procedure only becomes

a problem, when too many variables have missings so that the sample size becomes

too small. Since it is not rational for univariate analyses, to discard values of a

particular variable, when they belong to cases that have missings in other variable,

another ad-hoc procedure arose.

The available case analysis, often called pairwise deletion, uses all values that have

been observed for the relevant variables of a specific research question. As a con-

sequence, the sample base for different analyses changes. This disadvantage affects
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comparability and the estimation of standard errors, which requires a specific sam-

ple size (cp. Graham (2012)).

Both procedures should be viewed as critical and their application should only be

accepted, when dropouts are following MCAR and the number of missings is small.

However, even if those conditions are fulfilled, Graham (2012) stated that there are

modern methods which bring along at least as good results, in general even results

that are better than simple ad-hoc procedures. In order to evaluate this statement

and to demonstrate the limitations of ad-hoc methods, they should be briefly ap-

plied to the simulated data. The results can be seen in section 3.5. At this point

it should be hinted that the different, simulated data sets only have missing values

in the income variable. Therefore, the two approaches, complete-case-analysis and

available-case-analysis, here are equal and produce same results concerning mean

and regression coefficient estimation, which is why the performance of ad-hoc pro-

cedures in chapter 3.5 shortens to a single application.

3.2.2 Weighting

The second approach in general is used to compensate for unit nonresponse in sur-

veys, but it is also applied for item nonresponse as in the underlying data situation

of the thesis. It involves attaching weights to each subject, included in the analysis,

to represent those who were excluded due to missing values. This way, the calcu-

lated statistics based on the sample become more representative and bias is reduced.

However, as the reasons of nonresponse are complex and individual, bias obviously

cannot be eliminated through this approach.

In the case of poststratification weighting, which contains that the different units are

assigned their weights after the process of data collection based on external informa-

tion, the survey sample is adjusted towards the underlying population proportions

along a small number of dimensions represented by several variables (cp. Weisberg

(2005)). Of course, this approach works best, if those attributes are strongly related

with the variable of interest. If those variables are not predictive for the variable of

interest, having missing values, bias is not reduced due to weighting, but variance

increases. There are different ways to construct the weights, but here it is focused

on the adjustment-cell method, where the weighting variables form the so called

adjustment cells. Lets assume there are l of them, consisting of responders and non-

responders, respectively, whereas weights based on the inverse of the probability of
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selection and response (cp. Little and Rubin (1987)) are attached to the responders

in each group, to compensate for the nonresponders in the same group. Thus, let

p
sample
i be the probability for unit i to be sampled from the population. When view-

ing a situation based on probability sampling, usually p
sample
i is equal for all i and

can be determined due to sample size and population size. Let furthermore p
respond
i

be the probability for individual i to respond, when i has been sampled. This prob-

ability in general is not known and has to be estimated. Considering that, constant

response probabilities for each unit i within an adjustment cell l are assumed (cp.

Raghunathan (2004)), as well as a dropout that is completely at random within

the different adjustment cells. This results in weights wi = 1

p
sample
i

·p̂respond
i

, whereas

the weights are equal for all units of an adjustment cell l. Those weights wi then

can be incorporated in the analyses of interest. Thus, for a variable Y , for which

not all n units have recorded values, the corresponding weighted mean is calculated

by 1
n

∑n
i=1 yi · wi and in the context of linear regression the weighted least squares

∑n
i=1 wi(yi − xT

i β) have to be minimized instead of the residual sum of squares.

3.2.3 Imputation

One of the most common approaches for handling missing data are imputation meth-

ods. The idea behind is to replace the missing values with plausible values before

applying standard statistical analyses. The observed values of the data set form the

basis for a predictive distribution from which the imputed values are derived. Ob-

viously, there are different approaches for choosing those values from the predictive

distribution which leads to a classification of the imputation methods.

First of all, it has to be differentiated between single and multiple imputation.

Whereas single imputation methods are based on the idea that each missing value is

replaced by one single value before standard statistical analyses are applied without

modification, multiple imputation implies the replacement of each missing value by

T ≥ 2 imputed values. This equals a repeated draw from the predictive distribution.

Then statistical analyses are conducted at each resulting data set, which differ only

with respect to the imputed values. In a last step, these results are then combined

to form one inference. In the literature there can be found different ways to combine

those statistics, but the original combination rule that has been adapted over the

years, goes back to Rubin Donald (1987). It is based on asymptotic theory, more

precisely, it assumes that inferences about θ, the population parameter of interest,

can be based on normal distribution (cp. Reiter and Raghunathan (2007)). When
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the normality assumption appears inappropriate for estimates of the parameters of

interest, suitable adaptions should be considered or alternative, robust measures for

combinations, such as the median should be applied. Since here, it is focused on

the population mean and the regression coefficients for θ, Rubin’s rule is appropri-

ate, since those parameters are asymptotically normal, at least for larger samples

(cp. Marshall et al. (2009)), which is given in the present scenario. Therefore, later

analyses rest upon this combination rule which is also used in the majority of the

literature (cp. Marshall et al. (2009)) and therefore presented in detail.

Let θ̂(t) be the corresponding estimate in data set t = 1, · · · , T for the popula-

tion parameter of interest. Then the final point estimate is given by the average

of the T estimates, thus by θ̂ = 1
T

∑T
t=1 θ̂(t). The associated variance of this point

estimate results from a combination of within-variance and between-imputation-

variance. ˆVarwithin = 1
T

∑T
t=1 Varwithin

(t) gives the within-variance, reflecting the

variability that would have appeared, even if the data were complete. At this,

Varwithin
(t) = 1

n
Var(X(t)) gives the variance of the data within the data set t.

Apart from that, ˆVarbetween = 1
T −1

∑T
t=1(θ̂

(t) − θ̂)2 is a measurement of the vari-

ance, emerging from the repeated imputation procedure and consequently ascribing

to the missing data. Hence, the formula for the variance can be derived and is given

by ˆVarwithin + (1 + 1
T

) ˆVarbetween. The factor (1 + 1
T

) reflects the fact that only a

finite number of estimates provide the basis for estimating the final point estimate

by averaging them together.

Thus, the advantage of multiple imputation becomes clear. Due to the repeated

imputation, the uncertainty that comes along with the missing values is reflected,

whereas single imputation methods treat the imputed values like original values (cp.

Dempster and Rubin (1983)). As a consequence standard errors are underestimated

and p-values too small. In contrast to that, multiple imputation results only in

guesses for the real value which results in additional uncertainty. Since the goal of

imputation is not to replace the missing values, but rather to obtain valid infer-

ences, which are within the realm of statistical plausibility of inferences that would

have been obtained, had there been no missing data, multiple imputation in general

should be preferred in theory. Those theoretical findings shall later in section 3.5 be

evaluated.

Yet, imputation methods cannot only be differentiated with respect to the number

of imputed values, but also with respect to the way, those values are derived from

the predictive distribution. There can be either random draws or the choice can be

based on statistical models or algorithms. Thus, orientating on Little and Rubin

(1987) the following methods are made out, which can be subdivided even further,
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as can be seen in Weisberg (2005):

• random imputation

• mean imputation

• regression imputation

• hot or cold deck imputation

Let again Xj be the variable of interest, having some missing values, so that Xj

can be split into Xobs
j and Xmis

j . For purpose of easier notation, let the first m

observation be missing, whereas the observations xij with i = (m + 1), · · · , n are

reported. In the case of random imputation, each missing value of Xj is replaced by

a random value of the remaining, observable n − m values xij. In doing so, it can

be differentiated between drawing these values with or without replacement. This

approach does not impute values that are completely out of range, but it does not

use much information from the observed data either.

Hence, mean imputation replaces all missing values of the variable Xj by the uncon-

ditional arithmetic mean of the observed values, thus by X̄j

obs
= 1

n−m

∑n
i=m+1 xij.

Consequently, the estimated mean of the imputed variable Xj does not differ from

the average value of the observed part and the variance of the imputed variable Xj

is underestimated by n−m−1
n−1

(see appendix A). Using also the information gathered

through the other variables, this approach can be extended by using the mean, con-

ditional on the other variable values, recorded in the incomplete cases. Since this

approach, called conditional mean imputation, can then be carried forward to the

procedure of the regression imputation, it is not focused on here, but referred to

Little and Rubin (1987) or Spieß (2008) for details.

When performing regression imputation, an appropriate regression model is fit,

where the interested variable Xj with missing values is the dependent variable and

the other collected variables without missings, here denoted as X1, · · · , Xk, take on

the role as regressors. Based on the n − m fully observed units of the data set,

the regression coefficients β are derived which serve to predict the missing values

x1j, · · · , xmj. Then, all missing cases of Xj are replaced by the predicted values

derived from the regression equation β0 + β1X1 + · · · + βkXk. This approach the-

oretically gives good point estimates for the missing values, since information of

the individual is used for prediction. However, variances are too low which can be

ascribed to the fact that the imputed values always fall right on the regression line,

whereas in fact there are always differences between observed values and the predic-

tions, resembled through the regression line. This problem can be solved, if random
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normal errors ǫ ∼ N(0, σ2
ǫ ) are added to the predicted values before imputing them.

This is what is understood by stochastic regression imputation.

The last category of single imputation approaches is based on algorithms, searching

for equal observations with respect to the remaining observable variables X1, · · · , Xk.

Having found one or more observations that are similar, these observations serve as

donors and their observed value of the variable of interest is imputed. Again, there

are differentiations. First of all, these donors can be searched in the same data

set which is called hot deck imputation or in a different data sets which is equiv-

alently called cold deck imputation. It is either possible to search only one donor

or several donors whose values are then combined and imputed. Moreover, there

are different methods to find those hot or rather cold deck values. One possible

approach is to define adjustment cells especially based on different categorical vari-

ables of X1, · · · , Xk in which observations are close to each other with respect to

their variable values. Then, for a missing value of Xj one ore more donors of the

corresponding adjustment cell are chosen. On the other hand it is also possible to

search the nearest neighbor, which is the fully observed unit that is most similar to

the observation whose variable value shall be imputed. In doing so, similarity has to

be defined, which means that a metric for measuring the distance between the units

has to be determined. There are different options like the maximum deviation, the

mahalanobis distance or the euclidean distance.

In the application of this thesis it is focused on the predictive mean matching as a

certain form of nearest-neighbor hot-deck imputation. There, the distance is speci-

fied through a prediction model for the missing values and for possible donor values.

That means a value is filled in for the missing value that is chosen randomly from the

(here) 5 observed donor values whose regression-predicted values are closest to the

regression-predicted value for the missing value from the regression model. This way,

it is ensured that the imputed values are plausible, since predictive mean match-

ing is restricted to observed values. The performances of the different imputation

procedures will later in section 3.5 be evaluated.

3.2.4 Maximum Likelihood Procedures

Another approach for handling the missing data problem treats population values

as realizations of random variables (cp. Little (1982)). Thus, a distribution as-

sumption, in general multivariate normal distribution, is made for the data. Due

to this model distribution, likelihood-based inference (cp. Royall (1970)) can fol-
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low. In order to understand the different approaches, classified to the category of

likelihood-based procedures, some more theory concerning this field is needed.

Let X be the data, having several missing values and θ the unknown parameter,

which governs the distribution of X, abbreviated by f(X|θ). Thus, interests are

mainly focused on θ which determines the assumed model for the given data. Let

furthermore M be the previously introduced missing data indicator. M is following

a bernoulli distribution, with parameter ξ, so f(M |X, ξ). We are then interested in

the joint distribution of X and M which can be specified, according to the definition

of conditional densities (cp. Fahrmeir et al. (2007)), as the product of the density

of X and the conditional distribution of M given X. That is

f(X, M |θ, ξ) = f(X|θ) · f(M |X, ξ).

However, this relation is only valid, if the joint distribution does not depend on

the observation i and furthermore the parameters θ and ξ are distinct (cp. Rubin

(1976)). With this joint distribution, a statistical model is specified and the likeli-

hood function can be derived.

In general the likelihood L(θ|X) is defined as a function of the parameter θ for

fixed outcome X, so any function of θ that is proportional to f(X|θ) is defined as

likelihood (cp. Fahrmeir et al. (2007), Schafer (1997)):

L(θ|X) ∝ f(X|θ)

Then, a maximum likelihood estimate θ̂ is defined as a value of the unknown pa-

rameter θ that maximizes the likelihood L(θ|X) or rather the log-likelihood ℓ(θ|X)

(Spieß (2008)).

According to these definitions the complete-data likelihood corresponding to the

joint distribution f(X, M | θ, ξ) is given by

L(θ, ξ | X, M) ∝ f(X, M | θ, ξ)).

Splitting X into the observable part Xobs and the missing part Xmis, then gives

L(θ, ξ | X, M) ∝ f(Xobs, Xmis, M | θ, ξ). In the Maximum Likelihood approach

missing values are viewed as random variables that have to be removed from the

likelihood function, for example by integrating them out. Integrating out the missing
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data from the joint distribution results in the joint distribution of observed data and

the missing indicator. The observed-data likelihood of θ and ξ then is any function

of those two parameters that is proportional to f(Xobs, M |θ, ξ):

f(Xobs, M | θ, ξ) =
∫

f(Xobs, Xmis, M |θ, ξ)dXmis

L(θ, ξ | Xobs, M) ∝ f(Xobs, M | θ, ξ)

∝
∫

f(Xobs, Xmis | θ) · f(M | Xobs, Xmis, ξ)dXmis (7)

This likelihood of equation (7) consists of two separate factors which are determined

by different parameters: The distribution of X and the distribution for the underly-

ing missing data mechanism, which has already been formalized before in equations

(1), (2), (3) by Rubin (1976). According to those formulas f(M |Xobs, Xmis, ξ) can

be rewritten due to which of the missing mechanisms is present. In the case of

MCAR and MAR, this factor is independent of Xmis and consequently the second

term of equation (7) can be drawn out of the integral:

• MCAR:

L(θ, ξ|Xobs, M) =
∫

f(Xobs, Xmiss|θ) · f(M |ξ)dXmis

=f(M |ξ) ·
∫

f(Xobs, Xmis|θ)dXmis

=f(M |ξ) · L(θ|Xobs) (8)

• MAR:

L(θ, ξ|Xobs, M) =
∫

f(Xobs, Xmis|θ) · f(M |Xobs, ξ)dXmis

=f(M |Xobs, ξ) ·
∫

f(Xobs, Xmis|θ)dXmis

=f(M |Xobs, ξ) · L(θ|Xobs) (9)

Thus, when the aim is to receive maximum likelihood estimates for the parameters

θ, it is sufficient in the case of MCAR and MAR to maximize the simpler likelihood

L(θ|Xobs) which ignores the nonresponse mechanism, instead of L(θ, ξ|Xobs, M), be-

cause here, likelihood-based inferences for θ will be the same due to proportionality

of the likelihoods (cp. Little and Rubin (1987)). Therefore, no missing data model

has to be set up, but maximum likelihood estimates are only based on the specified

data generation model that is assumed for the variables with missing values.
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Based on this background, the first maximum-likelihood approach is a direct method

in the sense that model parameters and standard errors are estimated directly from

the available data in a Structural Equation Model (SEM). For closer information to

SEMs see for example Westland (2015), which provides a history of this models or

Fox (2006), which familiarizes with the application of SEMs in the software R. To

raise the subject shortly, the advantages of SEMs encompass the consideration of

latent variables and the possibility of modeling more complex associations compared

to a regression model. Therefore, SEMs consist of two model equations, the mea-

surement submodel, defining latent variables with the help of one or more observed

variables and the structural submodel, measuring the relationship between the dif-

ferent elements including latent constructs and observable variables. Then the first

step is to formulate the SEM, generally based on prior information, literature or

careful consideration, only then this model is tested empirically. This order of steps

already reveals that SEMS are often used to determine, whether a certain model is

valid, rather than finding a suitable model. In the application of the thesis, based

on simulation, the underlying model is already known, consequently, the application

of a SEM on the data including missing values is standing to reason. Here, we are

not dealing with latent constructs, which is why the measurement submodel is not

specified, but disregarded. The structural submodel equals the regression model

of interest, already introduced in equation (4). Regression models are one of the

major applications of structural equation modeling or viewed differently, the linear

regression model is just a special case of the SEM.

If the data in a SEM has missing values, which in our underlying situation is the ma-

jor subject, parameter estimation can be handled with direct Maximum Likelihood

or also called Full Information Maximum Likelihood (FIML) which is a Maximum

Likelihood approach on all available data. Originally, it was outlined by Finkbeiner

(1979) for use with factor analysis. Instead of deleting observations with missing

values and just calculating maximum-likelihood estimates based on the fully ob-

served units, which would lead to a strong reduction of the estimation’s efficiency,

the FIML method uses all available information in all observations by integrating

the likelihood function over the variables with missing data. Assuming multivariate

normality, the overall likelihood function value is obtained by summing the n case-

wise likelihood functions of the observed data (cp. Enders (2001b)), which leads

to a more complicated function. Thus, for each observation a separate likelihood

function is set up and then maximized together to find the estimates of interest.
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Let here in general X be the entire data set of i = 1, · · · , n observations, containing

missing values in different variables. Then the likelihood of a certain row i of the

data is given (cp. Arbuckle et al. (1996)) by

Li = ki ln(2π) + ln(|Σi|) + (xi − µi)Σ
−1
i (xi − µi)

T (10)

which is equal to (−2) times the logarithm of the probability density function of the

multivariate normal distribution (see appendix A), which is the probability of the

data given the model. Here, ki denotes the number of non-missing observed variables

of observation i, xi is the filtered row i of the data set, µi the filtered model-implied

mean row vector and Σi the filtered model-implied covariance matrix. Filtering

in the context of FIML means the removal of the appropriate missing entries. If

for example, the value of the third variable is missing in the observed row, the

corresponding µ vector consists of the mean of all the variables except that one of

the third variable. Adequately, the covariance matrix diminishes by leaving out the

third row and third column of the model-implied covariance. So the determinant of

Σi is calculated based on all variables that are observable for unit i. Consequently,

these separate likelihoods Li measure the discrepancy between the observed data of

unit i and the parameter estimates. This way, for each observation i all available

information are used and then combined in the likelihood of the entire data which

is obtained by summing over the casewise likelihoods Li:

L =
n∑

i=1

Li (11)

By maximizing this likelihood, those values are chosen as estimates for the popu-

lation parameters of interest that are most likely to have resulted in the observed

data. Finally, it is important to note that for the process of FIML estimation two

assumptions are made: First, in order to use maximum likelihood, distributional as-

sumptions are required for all variables with missing values. Normality is not far to

seek, but deviations from this assumption can have noticeable impacts on parameter

estimation (cp. Enders (2001a)). In the application of the FIML estimation on the

simulated data set to come, the only variable having missing values is the income

variable, which has been constructed by a linear regression model (see equation (4)).

Consequently, the logarithmized income here is normally distributed conditional on

the other covariates. The second assumption is MAR, as we have seen in the intro-

duction, which again is a strong assumption and limits the range of application of

the FIML estimation.
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Another approach to solve the likelihood equations in (8) or rather (9), to receive pa-

rameter estimates, are iterative methods. They are applied, since the log-likelihood

equation tends to be complex for incomplete data, amongst others having no ob-

vious maximum, and consequently calculating maximum likelihood estimates can

be a major task (cp. Little (1982)). The most common iterative procedure for

finding maximum likelihood estimates for parametric models, when data are not

fully observed, is the Expectation-Maximization (EM) algorithm (cp. Dempster

et al. (1977)) which is named after the two steps it combines by reiteration: The

Expectation-step and Maximization-step.

The basic idea of the EM algorithm is that with the help of start values for the (set

of) parameter θ it yields plausible values for the missing data which are the basis for

re-estimating θ so that a sequence of estimations θ(t), t = 1, · · · , T are received, con-

verging against the maximum θ̂, which is the maximum-likelihood estimate. Thus,

the EM algorithm benefits by the interdependence between missing data and pa-

rameters θ: The missing data contains relevant information for the estimation of θ,

while θ in turn helps to find likely values of the missing data (cp. Schafer (1997)).

More detailed, in the starting situation we are observing data with missing values

and given start values for the parameter θ. Here, the conditional expectation of the

missing data is calculated, given the observed data and the current parameter esti-

mates. These expectations then replace the missing values, so that the parameters

θ can be re-estimated. This approach is finally iterated until the estimated param-

eter converge. Little and Rubin (1987) provide the underlying theory by presenting

a formalization of the algorithm which is roughly presented in the following. Let

the starting point again be the simpler Likelihood L(θ | Xobs) =
∫

f(Xobs, Xmis |
θ)dXmis in equations (8) or rather (9) which should be maximized with respect to

θ. For this purpose, focus is set on the complete data density f(Xobs, Xmis | θ)

which again can be factored into the density of the observed data and the density

of the missing data conditional on the observed data. The adequate decomposi-

tion of the log-likelihood then is given by ℓ(θ|X) = ℓ(θ|Xobs) + ln f(Xmis|Xobs, θ),

whereas ℓ(θ|X) is the complete-data-log-likelihood, ℓ(θ|Xobs) is the observed or

rather incomplete-data-log-likelihood and finally ln f(Xmis|Xobs, θ) is the missing

part of the complete-data-log-likelihood. After reposition, the equation is given by

ℓ(θ|Xobs) = ℓ(θ|X) − ln f(Xmis|Xobs, θ).
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Let now θ(t) be the current estimate of parameter θ. After some steps of calculation

(see appendix A) this results in

ℓ(θ|Xobs) =
∫

ℓ(θ|Xobs, Xmis)f(Xmis|Xobs, θ(t))dXmis

︸ ︷︷ ︸

Q(θ,θ(t))

−
∫

ln f(Xmis|Xobs, θ)f(Xmis|Xobs, θ(t))dXmis

︸ ︷︷ ︸

H(θ,θ(t))

.

The algorithm then builds upon part Q(θ, θ(t)). Under the assumption that the ac-

tual parameter value θ(t) is the true parameter value θ, the E-step finds the expected

value of this log-likelihood given the observed data:

Q(θ, θ(t)) = E(ℓ(θ|X)|Xobs, θ(t))

Then the M-step finds θ(t+1), such that

Q(θ(t+1), θ(t)) ≥ Q(θ, θ(t)), ∀ θ.

Thus, the M-step maximizes the expected value with regard to θ, to receive the

next estimate θ(t+1). Consequently, the log-likelihood increases in each iteration

which is equivalent to the statement that the plausibility of the current estimate

increases given the observed data (cp Little and Rubin (1987)). Obviously, the EM

algorithm estimates the parameters of the normal distribution, namely mean, vari-

ance and covariances. Those estimates can be delivered to a regression procedure

in order to receive consistent regression coefficients. However, the corresponding

standard errors are not produced as a by-product, since the derivatives of the log

likelihood function are not computed (cp. Dong and Peng (2013)). Consequently,

computationally complex extensions are necessary, to receive corresponding stan-

dard errors (cp. Baker (1992)) which then gives that the EM algorithm results in

quasi the same point estimates as FIML, but due to the complicated standard error

calculation, FIML should be preferred, when focus is set on regression coefficient

estimation. Consequently, the analysis of regression coefficient estimation with the

EM algorithm will be omitted later in the performance section 3.5, also because of

not available implementation in R.
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Since the presented procedures FIML and EM ignore the dropout mechanism, they

only provide good estimates for the ignorable mechanisms MCAR and MAR. In

the case of MNAR, however, the likelihood of equation (7) does not simplify like

in the cases (8) and (9), since the missing data mechanism here depends on Xmis

and therefore this term cannot be drawn out of the integral, as can be seen in the

following:

• MNAR:

L(θ, ξ|Xobs, M) =
∫

f(Xobs, Xmis|θ) · f(M |Xobs, Xmis, ξ)dXmis

Consequently, this scenario requires special attention, since here, the dropout pro-

cess, represented by M , has to be modeled explicitly and inference has to be done

regarding θ and ξ. However, finding a model that correctly represents the underlying

response mechanism is difficult, so these approaches are highly sensitive for misspec-

ification. Wrong models then can produce strongly biased results (cp. Demirtas and

Schafer (2003)). Yet, when finding a model that tends to represent the nonresponse

mechanism in a good way, unbiased estimates even for the scenario of nonignorable

nonresponse mechanism can be received.

Summarizing, Maximum Likelihood estimation is possible even in the scenario of

MNAR, but in general it is complicated, since the joint distribution of data and the

missing mechanism has to be considered. Thus, the joint distribution is factorized

in an appropriate way, which leads to two model-based approaches: The Selection

Models (cp. Heckman (1976)) and Pattern Mixture Models (cp. Little (1993)).

Both are based on the basic approach of formulating a statistical model for the joint

distribution of data and the missing process and estimating then the corresponding

model parameters.

Starting with the Selection Model (SM), the joint distribution of X and M is fac-

torized into the marginal distribution of X and the conditional distribution of M

given X:

f(X, M |θ, ξ) = f(X|θ) · f(M |X, ξ)

Behind this factorization is the idea of Heckman’s two-step-statistical approach for

correcting for non-randomly selected samples (cp. Toutenburg et al. (2004)). The

basic idea of this model is the presence of two latent variables: The first one is the

dependent variable of interest itself, in later application the income variable, but
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here in general it is denoted with Y ∗. This variable is only observable for a certain

part of the sample, depending on a selection process, so instead of Y ∗ we only have

information about Y . On the other hand there is a non-observable variable M∗

which governs the selection process dependent on different explanatory variables (cp.

Windzio (2013)). Instead of this unobservable variable, only information about the

dropout of an individual are present which are gathered in the previously introduced

missing indicator M , taking value 1, if M∗ ≤ 0 and value 0 otherwise. The true latent

model of interest is specified by E(Y ∗|X), but fitting it only to the participating

part of the sample might lead to biased estimates, since the missing part of the

sample might differ with respect to the dependent variable which then leads to

wrong inferences. The Heckman selection model identifies this sample-selection bias

and corrects it.

Considering that, two models for the two latent variables, namely the so called

selection model and the outcome model, have to be fit and combined in an adequate

way. In order to model the dependence structure of those models, a correlation

is assumed between the error terms of the two model equations, leading to the

assumption of a bivariate normal model (cp. Toutenburg et al. (2004)). Then, the

selection bias, if present, will be traced back exclusively to this correlation. So if

there is no correlation between the error terms, the effects of the outcome model,

fitted for the participating subsample, are valid for the whole population, otherwise

a correction is necessary.

Let

y∗
i = xT

i β + ǫi (12)

be the outcome model of the Heckman selection model, with the dependent variable

Y ∗, covariates X and error term ǫ.

P(mi = 0|zi) = Φ(zT
i b) or rather m∗

i = zT
i b + ei (13)

represents the selection model, a probit model, where the explanatory variables Z

determine the probability of being selected and where the dependent variable gives

information about, whether Y ∗ is observable for a certain individual i. In principle,

the two equations (12), (13) could have the same set of regressors, but in order to

avoid collinearity and to get a good estimate of the selection model, it is desirable

to have at least one variable in the selection equation that is expected to affect the

selection process, but not directly the variable of interest, except through selection.

This is why the variable “willingness” has been included in the simulated data set.
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Estimating the selection model (13) for all units gives a prediction of the participation-

probability for each individual (cp. Guo and Fraser (2014)). If ǫ and e are not cor-

related and furthermore ǫ and X are not correlated, then the regression model (12)

does not give biased estimates. However, since Y ∗ is only partly observable, those

assumptions are in general not fulfilled. Then the expected value of y∗
i does not only

depend on xi, but also on the selection process which decides over mi = 0 or mi = 1

and consequently over the observability of y∗
i (cp. Windzio (2013)). Thus, instead

of the latent model of interest E(Y ∗|X), a possible model based on the available

information has to be specified correctly and estimated afterwards. The true, latent

model only for the participated part is given by

E(Y |X, M = 0) = E(Y ∗|X, M∗ > 0) = E(XT β + ǫ|X, e > −ZT b) =

= XT β + E(ǫ|e > −ZT b) (14)

Equation (14) then shows that the error of the model of interest is not random,

but depends on the selection process which itself is conditioned by ZT b. Fitting the

model without considering the underlying situation, would result in biased estimates

of the regression model, as indicated by the additional term E(ǫ|e > −ZT b) that

can be transformed, according to truncated normal distribution (cp. derivation in

appendix A), to

E(ǫ|e > −ZT b) = σs

φ(ZT b)

Φ(ZT b)
︸ ︷︷ ︸

λ

. (15)

σs is the selection bias and the following ratio is called inverse Mills Ratio and can

be abbreviated as λ. The selection bias takes value 0, if there is no correction, oth-

erwise it can be calculated by σǫ · ρǫ,e, whereas σǫ is the standard deviation of ǫ and

ρǫ,e the correlation coefficient between the two error terms ǫ and e.

The inverse Mills Ratio λ is the ratio of the probability density function over the

inverse cumulative distribution function of the standard normal distribution (cp.

Toutenburg et al. (2004)) and equals a transformation of the predicted individual

probabilities from the selection model of (13). Thus, the inverse Mills Ratio mea-

sures the individual observability of the latent dependent variable Y ∗ and can take

values between [0, ∞[. Small values serve as indicator for a small probability of

participation and high values represent a high probability of participation. By in-

cluding λ as an additional explanatory covariate in the outcome model (12), which

is fitted only on the participating part of the sample, the sample-selection bias is

corrected. Solving the regression equation is then straightforward and can be done
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by standard least squares method (cp. Guo and Fraser (2014)). By including the

inverse Mills Ratio as additional covariate, the Heckman Selection Model uses in-

formation from participants who dropped out and therefore did not respond. Thus,

a great advantage of the Heckman Selection Model contains that the same model

that would have been chosen for the naive approach, can be modified by a model

for the missing mechanism and then used the same way. Finding an appropriate

model for the selection process, however, is definitely the pitfall of this approach.

Also the assumption of an underlying normal distribution restricts the application

of this approach to special cases.

In contrast to the Heckman SM, it is spoken of a Pattern Mixture Model (PMM), if

the joint distribution of data X and missing process M is specified through a model

for the marginal distribution of M and the conditional distribution of X given M :

f(X, M |θ, ξ) = f(M |ξ) · f(X|M, θ)

It is important to note that in general the parameters θ and ξ of the PMM are not

identical with the parameters of the SM. Both models may only be equivalent for

the case of MCAR (cp. Little (1994)). Nevertheless, the same parameter notation

is chosen here for reasons of clarity.

This PMM approach quasi represents the analyst’s or the survey sampler’s point

of view, having to deal with the given missing data, represented by the marginal

distribution f(M |ξ), but actually being interested in the underlying true values,

represented by the conditional distribution f(X|M, θ). Thus, on the one hand,

PMMs specify the conditional distribution of the data, given that the variable of

interest is observed or missing respectively and on the other hand the marginal

distribution of the binary missing indicator. Consequently, two pattern are taken

as a starting point, the pattern of responder (M = 0) and nonresponder (M = 1).

This leads to f(X|θ) being a mixture of two distributions, which then results in

two models and the name ’pattern mixture’. Only for the case of MCAR those

are equivalent, otherwise it is dealt with two separate models and consequently

two different distributions with different parameters, namely f(X|M = 0, θ0) and

f(X|M = 1, θ1). Nevertheless, substantive interest concerns the distribution and

the corresponding parameters averaged over patterns. Hence, maximum-likelihood

estimates are received as a mixture of the estimates resulting from both models.

Concentrating for example on estimating the mean of the variable of interest with
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missing values, denoted as before with Y , it is given by

µ̂Y = P(M = 0) · µ̂0
Y + P(M = 1) · µ̂1

Y , (16)

whereas µ̂0
Y or rather µ̂1

Y are the averages of Y for the responders and nonresponders,

respectively (cp. Little (1994)). At this point it conveys that some of the param-

eters from the PMM are not identified from the data. In the case of the marginal

mean estimation, the likelihood does not give an estimate for the component µ̂1
Y ,

resembling the mean of the incomplete cases. PMMs are, in general and especially

in the case of univariate nonresponse, which we are focused on here, underidentified

(cp. Little (1993)), since in the stratum of nonresponders there is no knowledge

about the distribution of the variable of interest conditional on the other covariates.

In order to then being able to identify those parameters, additional information

have to be given or restrictions regarding the missing mechanism M have to be

imposed. Those restrictions, explained in Little (1994) are based on two continuous

variables, with one having missing values and both following normal distributions.

The dropout then is assumed to be either completely at random or depending on

one or both of those variables. This dependence structure may obviously be in

many different ways and is not known in general therefore it is assumed to be an

arbitrary unspecified function of a linear combination of those continuous variables.

The simulated data basis of this thesis, however, provides a dropout process that

depends only on categorical variables in the case of MAR and additionally on the

income variable itself in the MNAR scenario. The only considered continuous vari-

able besides income is age. Assuming a dependence structure between this variable

and the missing mechanism gives biased estimates, since it does not agree with the

underlying data situation.

Therefore, the application of the PMM later primarily concentrates on assumed

priori information, instead of those restrictions. This means, the inestimable pa-

rameters are set equal to the parameters, or rather to a function of the parameters,

resulting from the distribution of the responders, whereas this connection is based

on priori information. Obviously, those different restrictions are often viewed as

the drawback of the PMMs, but the need of additional assumptions also forces the

analysts to think about their justification and usefulness. Thus, this can form the

starting point of sensitivity analysis (cp. Thijs et al. (2002)) or the approach of

partial identification (cp. Manski (2003)).
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3.3 Partial Identification

The preceding chapters of this thesis have shown that development regarding han-

dling missing data has been fostered and by now there are many different approaches

providing good precise point estimates. However, many of those methods are based

on strong assumptions especially with regard to the underlying nonresponse mecha-

nism. Without those assumptions many of the models would be non-identifiable, as

we have seen in the previous section about PMMs. Non-identification means that

different values of the parameter θ, the model should estimate, generate the same

probability distribution P of the observable variables, so that even in the case of

an infinite number of observations from the model, the true parameter value is not

known. Lehmann and Casella (2006) provide the corresponding definition: If Y is

distributed according to P(Y | θ), then θ is said to be unidentifiable on the basis

of Y , if there exists θ1 6= θ2 for which P(Y | θ1) = P(Y | θ2). The usual approach

in such a scenario, when the number of known parameters in a model is smaller

than the number of parameters that have to be estimated, is to restrict the model

by setting parameters equal or constant, in order to receive identifiable statistical

models (cp. Casella and Berger (1990)). Often, these assumptions are untenable or

cannot be checked, but made nevertheless, in order to be able to apply a certain

method. Thus, in many cases assumptions are made due to convenience and not due

to plausibility. Stronger assumptions in general lead to more powerful inferences,

but less credibility and reliability (cp. Manski (2003)). Obviously, the results have

to be considered as critical and consequently a new approach comes to the fore.

Manski (2016) described the estimation of parameters without making any assump-

tions about nonresponse. This way, all values that the missing data might take, are

regarded which results in an upper and a lower bound for the population parameter

of interest. The embedded set of possible values is then called identification region

or identified set, abbreviated in the following as H. Moreover, it is either spoken of

a point-identified parameter, if the identification region consists only of one point,

or otherwise of partially identified parameters. Consequently, in the field of partial

identification, it is not only distinguished between parameters that are identifiable

and those that are non-identifiable, but it is also possible to identify the parame-

ters of interest in parts and thus to receive interval estimates (cp. Manski (2003)).

Even though uncertainty remains with this approach, results can contain important

information.
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Let again θ be the statistic of interest, which can be viewed as a parameter of

the outcome probability distribution P(Y ) or rather P(Y |X), whereas for reasons

of clarity it is concentrated on the first notation. With the previously introduced

definition of the missing data indicator variable M and the application of the Law of

Total Probability (cp. Fahrmeir et al. (2007)), the outcome distribution of interest,

which serves as the basis for deducing θ, can be displayed in

P(Y ) = P(Y |M = 0) · P(M = 0) + P(Y |M = 1) · P(M = 1). (17)

In general only a subsample of the population is observed which brings along that

empirical distributions are used to estimate their population counterparts. The

Strong Law of Large Numbers (cp. Fahrmeir et al. (2007)) then implies that the

resulting estimates are consistent and converge almost surely to the real set. Since

in the context of the second part of the thesis we are dealing with a simulated

data set that serves as population gold standard, we are not viewing samples and

consequently we continue with the notation of (17). Here, the distribution of the

observed outcome, as well as the distribution of the missing process, are known, but

not the distribution of missing outcomes P(Y |M = 1) = γ, since no information

about Y is given for the missing data. Therefore, γ is not identified, but all this

knowledge gives rise to conclusions about the identification region of the outcome

distribution and consequently of the identification region of the related parameter.

Thus, P(Y ) lies in the identification region

H[P(Y )] = [P(Y |M = 0) · P(M = 0) + γ · P(M = 1)], γ ∈ ΓY , (18)

whereas ΓY denotes the set of all probability distributions on Y and γ is limited to

[0, 1]. Hence, the identification region of θ comprises all the values that can arise,

when P(Y ) ranges over all of its possible values η encompassed in (18):

H[θ] = {θ(η), η ∈ H[P(Y )]}

Manski also refers this general definition to some specific parameters like the mean

of a function g of Y, having the bounds g0 = infY g(Y ) and g0 = supY g(Y ). The

Law of Iterated Expectations, saying in general that for a continuous variable Y and

a binary variable Z, E(Y ) = EZ(EY (Y |Z)) is valid, gives

E[g(Y )] = E[g(Y )|M = 0] · P(M = 0) + E[g(Y )|M = 1] · P(M = 1),
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which then, due to the knowledge of all elements except E[g(Y )|M = 1], which can

take values in the interval [g0, g1], results in the following identification region for

E[g(Y )]:

H[E[g(Y )]] =[E[g(Y )|M = 0] · P(M = 0) + g0 · P(M = 1);

E[g(Y )|M = 0] · P(M = 0) + g1 · P(M = 1)]

Obviously, the width of the resulting interval varies with the probability of missing

data P(M = 1). It is informative, even if it has infinite length due to either g0 = −∞
or g1 = ∞ (cp. Manski (2003)).

This basic step, presented in general and for the specific population parameter of the

mean, only uses information offered by the data and is therefore referred to as em-

pirical evidence. Obviously, the empirical evidence does not reveal anything about

the distribution of missing data, which is why many possible P(Y ) are imaginable.

Therefore, partial identification may also consist of a second step. The aim is to

constrain the set of possible distributions for the missing outcome ΓY,M=1 ∈ ΓY by

including justified assumptions, which are based on the idea that missing data and

observed data do not differ too much. Different assumptions may shrink the possi-

ble range of distributions from point estimation to estimates with less identification

power. Thus, additional information about P(Y ) can be gathered and correspond-

ing identification regions that are narrower and a middle ground between precision,

which can be reached by strong assumptions like MCAR or MAR (cp. Plass et al.

(2015)) and credibility, can be received. In contrast to sensitivity analyses, which

regard the collection of all precise results from successively relaxed assumptions, the

starting point of partial identification is total uncertainty, where then assumptions

are added gradually (cp. Plass et al. (2015)).

In this context Manski (2003) suggested a few possible assumptions for the distribu-

tion of interest P(Y ), which should be presented and discussed in the following. The

first possibility is to assume that the distribution of responder and nonresponder

does not differ, which can be expressed through

P(Y ) = P(Y |M = 0) = P(Y |M = 1)

and reminds on the definition of MCAR. With this strong assumption, P(Y ) is point

identified, which can be seen by the fact that now each of the elements in equation

(17) can be estimated. However, the assumption can neither be proved wrong, nor
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be checked. In general it is often not valid, so Manski proposed also weaker as-

sumptions that rely on instrumental variables X. In Manski (2003) two attempts

are explained. The first one contains distributional assumptions that use instru-

mental variables to identify the distribution of outcomes. The second one is based

on the statistical independence between outcomes and instrumental variables. Both

assumptions can be relaxed, so that their acceptance becomes more plausible. Nev-

ertheless, at the same time they then lose identifying power. The first assumption

based on instrumental variables is an equality of the distributions between responder

and nonresponder for units having same values in those variables X, so

P(Y |X) = P(Y |X, M = 0) = P(Y |X, M = 1).

This assumption is non-refundable, since the empirical evidence does not reveal any-

thing about P(Y |X, M = 1). However, it is possible to point identify P(Y ), namely

by P(Y ) =
∑

X P(Y |X, M = 0) · P(X), because of the Law of Total Probability

and the previously formulated assumption. Weakening of this assumption can be

achieved by assuming that instead of the distribution, only the mean of observed

and missing outcomes is the same, conditional on X:

E[g(Y )|X] = E[g(Y )|X, M = 0] = E[g(Y )|X, M = 1]

Or finally mean missing monotonicity can be assumed,

E[g(Y )|X, M = 0] ≥ E[g(Y )|X] ≥ E[g(Y )|X, M = 1],

which means that for each realization of X, the mean value of g(Y ), when Y is

observed, is greater than or equal to the mean value of g(Y ), when Y is missing.

The other approach is based on assuming statistical independence, whereas statisti-

cal independence of outcome and instrumental variables is the strongest assumption,

denoted with

P(Y |X) = P(Y ).

In this case, the assumption is refutable and the identification power can range

from a point identification of P(Y ) to no identification power, if there is statistical

independence between M and X. Also in this case, there are weaker versions of

this assumption. On the one hand, statistical mean independence of outcomes and

instruments can be assumed:
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E[g(Y )|X] = E[g(Y )]

Or on the other hand mean monotonicity of outcomes and instruments:

E[g(Y )|X1] ≥ E[g(Y )|X2], ∀X1 ≥ X2

All those assumptions may lead to smaller identification regions compared to using

empirical evidence alone. However, besides the gain of credibility, this shrinkage

also obviously brings along a loss in precision and consequently less stronger conclu-

sions. There is no universal guideline about which middle ground and consequently

which assumption to choose, instead it has to be considered in each situation, where

importance should be attached and consequently which assumptions are reasonable.

This approach to deal with missing data obviously differs from the other methods

presented before. Thus, this chapter of partial identification rather proposes a new

perspective on the underlying problem, which is recommended to follow up in other

scientific works. However, in this thesis, which will concentrate on the application

of the presented methods in the chapters to come, the application of this partial

identification approach would go beyond the constraints and therefore it is focused

on the methods providing point estimates for the statistics of interest. Nevertheless,

when applying the different nonresponse methods, the corresponding assumptions

are emphasized and discussed critically, in order to show the usefulness of the par-

tial identification approach. Moreover, in many cases it is possible, to change the

assumptions of the approaches and to review then the performances which falls in

the category of sensitivity analysis.

3.4 Simulated Data Basis

In order to evaluate the different introduced methods, whose objective is to yield

good estimates for population parameters, again a suitable data basis is needed.

For this purpose, it is approached in the same way, as it has been done in chapter

2.1, where 100 data sets with the different nonresponse mechanism MCAR, MAR

and MNAR have been created, respectively, to show the impacts on parameter

estimation. However, there are little differences to the data sets that are created now:

Besides the comparison of the different correction methods’ performances, the focus

of the next sections is also to analyze whether some methods lead to good results

for some missing data mechanisms, whereas they are not useful for others. Since
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these comparisons can only be drawn, if the number of dropouts in the different data

sets are equal, importance is attached to this fact, now. Therefore, the individual

probabilities for a dropout in the case of MAR are increased deliberately by adding

0.014 to the probabilities that have resulted from the model orientated on the Allbus

data set before. This randomly appearing number guarantees that the number of

dropouts in the 100 iterations of the MAR model is on average and according to its

range very close to that of MNAR, which has a mean and median of 1091 dropouts.

The number of dropouts in the MCAR case is then consequently also set to 1091.

Even though those changes entail a stronger deviation from the underlying Allbus

data set, it is necessary for this part of the thesis. Thus, the simulated data sets for

this part of the thesis again consists of 100 data sets following MCAR, MAR and

MNAR, respectively.

3.5 Performance of different Correction Methods

3.5.1 Ad-Hoc Methods

Evaluating the performance of the complete- or rather available-case analysis, in-

dicates, what estimates can be expected, when the missing data is simply ignored.

Analogous to the structure of the first part of the thesis, it is always first concentrated

on the income mean estimation and afterwards on that of regression coefficients.

MCAR MAR MNAR
µincome 1492.951 1492.951 1492.951
E(µ̂income) 1491.440 1546.533 1529.321
Bias(µ̂income) -1.51143 53.58223 36.36994
Biasrel(µ̂income) -0.00101 0.03589 0.02436
Var(µ̂income) 142.92347 201.75756 198.20299
MSE(µ̂income) 145.20789 3072.81341 1520.97589

Table 3.1: Expected value, variance, bias and MSE of mean estimation of income in
order to evaluate the performance of ad-hoc methods

Obviously only in the case of MCAR, unbiased estimates are received. The resulting

income value of 1491.440, calculated as an average of all 100 MCAR iterations, is

very close to the true value of 1492.951, which results in a very small bias and a

comparatively small MSE. One can conclude that ad-hoc methods in the case of

MCAR dropouts yield good mean estimates, even in a situation of over 30% missing

values and consequently a large loss of information. In such a scenario it is justified
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that analysts resort to simple ad-hoc methods. However, it is important to note

that the MCAR situation is on rare occasions and in general cannot be checked.

Therefore, it is critical to use these methods for mean estimation, since in the other

two scenarios of MAR and MNAR, biased estimates are received. The average mean

estimates then are 1546.533 and 1529.321, whereat the MAR dropout results in an

even larger bias, a littler bit more variance and consequently a larger MSE.

In order to keep the performance subsection clear, the tables (C.14) and (C.15),

containing the evaluation of the average regression coefficient estimation and the

corresponding p-values, are located in the appendix, whereas the associated inter-

pretation can be found here. Since the regression coefficients have very small values,

it is often easier to have a look at the relative biases, instead of the biases, in order

to evaluate the estimation in the case of the ad-hoc approach for all three scenarios

MCAR, MAR and MNAR. Obviously most of the 21 regression coefficients showed

the smallest absolute value of the relative bias, when the dropout followed MCAR.

In these cases the differences compared to the absolute values of MAR or rather

MNAR in general are apparent. Those findings show a tendency towards the fact

that when ad hoc methods are applied, the estimation of regression coefficients are

in average biased less, when data is MCAR. But since this is not the case anywhere

near all regression coefficients, lets have next a look on the corresponding MSEs.

Here no pattern can be noticed, given information about which dropout mechanism

leads to the smallest or largest MSE of regression parameter estimation, when miss-

ing data is simply ignored. As a consequence that would mean that when estimating

regression coefficients with a simple ad-hoc approach, the goodness does not vary

noticeably for different missing data mechanisms. In all three scenarios the average

estimates E(β̂) are close to the true values β, but due to the small values, it is

difficult to assess the dimension of bias.

Therefore, next focus is set on the corresponding p-values, given information about

how the significances of the different regression effects change, when ignoring the

missing data following MCAR, MAR and MNAR, respectively. Table (C.15) shows

that the p-values of the three scenarios are in the same range in the application of

complete-case-analysis. It follows that significances do not differ between MCAR,

MAR and MNAR. β̂would not vote constitutes the only exception, since the correspond-

ing p-value of MAR and MNAR comes below the threshold of 0.05, whereas in the

case of MCAR this effect is only statistically significant at the level of 0.1. More

important, however, is the result that has already been implied in section 2.3, where

the effect of nonresponse error was analyzed: Except the highly significant effects

like that of “age”, “female”, “half-time”, “part-time”, “not-employed” and “married
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living together”, the regression effects attenuate, when missing data is present and

ignored. The other imaginable change that nonsignificant effects become significant,

when data contains missing values, does not exist here. So finally it can be sum-

marized that the dimension of bias for the estimation of regression coefficients is

almost equal for MCAR, MAR and MNAR, when ad-hoc methods are applied, even

though in the case of MCAR and MAR the dropout only depends on the predictors,

but not on the variable of interest, which is the income. As a consequence, the

decision of using ad-hoc methods for estimate regression coefficients, can be made

quasi independent of the underlying nonresponse mechanism. Due to the weakening

of the statistical effects, the application should, however, be viewed as critical.

3.5.2 Weighting

In order to be able to compare the performances of different correction methods,

the weighting approach is applied to the same data sets as all the other methods,

even though weighting in general is rather used for unit nonresponse. However,

application for the item nonresponse problem is also feasible. As it has already

been described in the theoretical subsection before, the choice of suitable weighting

variables is decisive for a good performance of this approach. In order to decrease

the estimation bias that resulted before in the ad-hoc approach, first the categorical

variables gender, education and willingness are chosen as weighting variables, since

due to our simulation background, it is already known that two of those variables,

namely gender and education, have an influence on the income values and all three

variables determine the MAR dropout.

MCAR MAR MNAR
µincome 1492.951 1492.951 1492.951
E(µ̂income) 1491.906 1492.272 1477.161
Bias(µ̂income) -1.04534 -0.67873 -15.79006
Biasrel(µ̂income) -0.00070 -0.00046 -0.01058
Var(µ̂income) 108.82952 119.01859 136.46785
MSE(µ̂income) 109.92226 119.47926 385.79388

Table 3.2: Expected value, variance, bias and MSE of mean estimation of income
in order to evaluate the performance of weighting (weighting variables:
gender, education, willingness)

The corresponding average mean estimation in table (3.2) shows that in the case of

MCAR again unbiased estimates result. Compared to the ad-hoc estimation before,

the value of 1491.906 is even closer to the true value and the variance decreased as
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well which then gives an improved MSE. Also in the MAR scenario unbiased esti-

mates are received, which may be traced back to the fact that the choice of weighting

variables agrees with the MAR dropout variables. Of course, this is not possible

in a real data situation, because then the variables, which are responsible for the

dropout, are not known, or at least not completely known. However, having this

prior knowledge given, shows that then weighting offers a quite good possibility for

correcting the biased estimates. Finally, in the MNAR scenario we may not expect

unbiased estimates as in the MAR case, since here the dropout additionally depends

on the income values itself, which cannot be compensated with the help of weight-

ing variables. Thus, the absolute bias of 15.79006 obviously exceeds the values of

MAR and MCAR. However, compared to the performance of the previously ad-hoc

approach, even in the MNAR scenario bias and variance is decreased, which results

in better mean estimations.

For comparing next the performance of regression parameter estimation between

simple ad-hoc and weighting approaches, focus has to be set on tables (C.16) and

(C.17) in the appendix, indicating the estimation results of the weighting approach,

as well as the corresponding p-values. 10 of those 21 estimated regression coefficients

in the MCAR scenario are closer to the true values compared to the corresponding

estimates of the complete-case-analysis. This shows that weighting in this applica-

tion has not resulted in a smaller bias, when MCAR is present. Comparing besides

the biases also the MSEs for MCAR, gives an identical picture. In about half of the

cases the ad-hoc approach yields smaller MSEs, in the other half it is the weighting

approach. This result is standing to reasons, since dropout cannot be compensated

by weighting here, because it is completely random. For both other scenarios the

relative bias of regression coefficient estimates is smaller compared to the ad-hoc

approach in two third of the cases. This can be seen as a first tendency towards

a good correction of the weighting approach. Yet, the MSEs for all of those 21

coefficient estimates in the MAR and MNAR scenario are larger compared to the

estimates of the complete-case-analysis, which results in the conclusion that this

weighted regression did not improve the outcome.

Viewing at last the corresponding p-values in table (C.17) shows that they are very

close to those of the ad-hoc method. Going into detail, in the majority of the statis-

tically significant effects, p-values especially in the scenarios of MAR and MNAR,

here are slightly larger than in the ad-hoc estimation, but those differences in gen-

eral amount to differences at the second decimal place or even less, so consequently

significances and interpretations do not change. Then, based on this single weight-

ing approach, the conclusion has to be drawn that weighted regression does not
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improve this kind of parameter estimation, when nonresponse is present. However,

it has to be mentioned that this result might change, when other weighting variables

are used.

All in all, we have seen that weighting can improve the parameter estimation and

therefore is a first step away from simply ignoring the missing data. However, we

have also seen that this is not always the case like in the estimation process of the

regression coefficients. This brings up the question, whether the improved results of

mean estimation are consistent or depend on the choice of the weighting variables.

Until now, we have used weighting variables which knowingly had a relationship

with the variable of interest and the dropout. Since this prior knowledge is in re-

ality not given or rather limited, the performance of this weighting approach shall

be considered also for different weighting variables. In order to remain in a certain

extent, these analyses are limited to the parameter estimation of the mean income.

It is differentiated between the case, where all categorical covariates of the regression

model (4) are used as weighting variables and those cases, where only one variable

is used as weighting variable, respectively. There, at first willingness is chosen as an

example for a variable that influences the MAR and MNAR dropout, but not the

values of income. The second choice is the variable education, having an influence

on both components and finally professional activity, which amongst other variables

predicts the income, but not the dropout. The results can be seen in the following

tables.

MCAR MAR MNAR
µincome 1492.951 1492.951 1492.951
E(µ̂income) 1468.194 1469.151 1458.997
Bias(µ̂income) -24.75687 -23.80027 -33.95418
Biasrel(µ̂income) -0.01658 -0.01594 -0.02274
Var(µ̂income) 125.35169 76.84832 109.03060
MSE(µ̂income) 738.25415 643.30095 1261.91701

Table 3.3: Expected value, variance, bias and MSE of mean estimation of income
in order to evaluate the performance of weighting (weighting variables:
gender, education, professional activity, family status, election intention)

First of all, it is interesting, how parameter estimation for MAR changes, when

instead of all the MAR dropout variables, all independent covariates, playing a role

for the creation of the income values, are now chosen as weighting variables. As

expected, the average mean becomes worse, resulting in a bias of −23.80027. Since

those weighting variables are all predictable for the income, the variance decreases,

however, the corresponding MSE is far larger as in the weighting approach before.
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Also in the case of MNAR the mean estimation becomes worse. The resulting bias

of −33.95418 and the MSE of 1261.91701 are not far from the results of the ad-hoc

approach. Viewing finally the results of MCAR shows that also in this scenario

far worse estimates compared to the ad-hoc and the previous weighting approach

result. Consequently, this choice for weighting variables is not suggestive. In order

to find out, whether these bad results can be traced back to the chosen combination

or rather the amount of weighting variables, we are now viewing mean estimation

with only one weighting variable, respectively.

MCAR MAR MNAR
µincome 1492.951 1492.951 1492.951
E(µ̂income) 1491.457 1547.458 1530.003
Bias(µ̂income) -1.49439 54.50708 37.05162
Biasrel(µ̂income) -0.00100 0.03651 0.02482
Var(µ̂income) 143.03381 214.44520 208.37248
MSE(µ̂income) 145.26701 3185.46716 1581.19489

Table 3.4: Expected value, variance, bias and MSE of mean estimation of income
in order to evaluate the performance of weighting (weighting variable:
willingness)

Willingness is a categorical variable that is simulated without having a deliberate

relationship to the income values. Thus, it is not surprising that parameter estima-

tion in the MCAR case is not influenced, when choosing it as a weighting variable.

However, amongst other variables, willingness has an influence on the simulated

nonignorable dropout. Such a kind of weighting variable leads in average to bad

mean estimations in the MAR and MNAR scenario as column 2 and 3 of table (3.4)

shows.

MCAR MAR MNAR
µincome 1492.951 1492.951 1492.951
E(µ̂income) 1492.071 1523.667 1512.389
Bias(µ̂income) -0.88042 30.71588 19.43825
Biasrel(µ̂income) -0.00059 0.02057 0.01302
Var(µ̂income) 121.22653 99.72755 122.418547
MSE(µ̂income) 122.00168 1043.19281 500.26422

Table 3.5: Expected value, variance, bias and MSE of mean estimation of income
in order to evaluate the performance of weighting (weighting variable:
professional activity)

In contrast to the choice of willingness, now professional activity is chosen as weight-

ing variable, which does not have an influence on the dropout, but is predictive for
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the values of income. Summarizing shortly, this choice gives an unbiased estimation

for the MCAR case, but does not perform in a satisfying way otherwise.

MCAR MAR MNAR
µincome 1492.951 1492.951 1492.951
E(µ̂income) 1491.644 1509.600 1492.656
Bias(µ̂income) -1.30712 16.64919 -0.30049
Biasrel(µ̂income) -0.00088 0.01115 -0.00020
Var(µ̂income) 125.22030 299.49475 245.53625
MSE(µ̂income) 126.92886 576.69030 245.62654

Table 3.6: Expected value, variance, bias and MSE of mean estimation of income
in order to evaluate the performance of weighting (weighting variable:
education)

Finally, as a result of further deliberations, education is chosen as single weighting

variable, since on the one hand it has an influence on income values, but also on

the MAR and MNAR dropout. In all three cases this weighting approach results in

good estimates with no or rather small bias, which are better than the estimates of

ad-hoc, respectively.

Thus, weighting can lead to improved estimations compared to simply ignoring

the missing data. However, prior knowledge concerning the weighting variables is

necessary, since otherwise inappropriate weighting can even result in larger bias

compared to simple ad-hoc methods. Moreover, this application has shown that the

choice of weighting variables obviously depends on the underlying dropout mech-

anism. Correction has worked best for MCAR, when the weighting variable is a

reliable predictor for the variable of interest. The estimation has not differed much

from that one of ad-hoc, if the weighting variable is independent of the income vari-

able. But bias has increased remarkably in the case of many predictive weighting

variables. In contrast to that, the weighting correction is a success for MAR, if

the weighting variables have an influence on the dropout and the variable values

of interest. If you have the choice between a weighting variable that predicts the

variable of interest, but not the dropout or a weighting variable that only predicts

the dropout, but not the vaiable of interest, according to these analyses the first

one should be chosen in the case of MAR. The conclusion about MNAR contains a

surprisingly good outcome for the scenario of the weighting variable education. All

the other performances yield biased estimates, in parts hardly better than in the

ad-hoc approach.
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3.5.3 Imputation

In the following section of single imputation, we are comparing the performances of

the different single imputation strategies that have been presented in the theoretical

part before. As a result, it should be worked out which of these approaches give

better estimations compared to the simple ad-hoc method and under which condi-

tions they are recommended to be a feasible option for the nonresponse problem.

Random Imputation

First, it is started out with simple random imputation which is conducted with

replacement due to the large number of missing values.

MCAR MAR MNAR
µincome 1492.951 1492.951 1492.951
E(µ̂income) 1538.434 1575.896 1564.237
Bias(µ̂income) 45.48266 82.94523 71.28634
Biasrel(µ̂income) 0.03047 0.05556 0.04775
Var(µ̂income) 173.877218 249.06419 243.98141
MSE(µ̂income) 2242.54928 7128.97514 5325.72409

Table 3.7: Expected value, variance, bias and MSE of mean estimation of income in
order to evaluate the performance of single imputation (random imputa-
tion)

Viewing the results for the average income mean estimation shows that in all three

cases of MCAR, MAR and MNAR the deviations between the average estimates

and the true values increase distinctly compared to the results of the ad-hoc meth-

ods. Also the MSEs of the estimates become large and take the values 2242.54928,

7128.97514 and 5325.72409, compared to the MCAR, MAR and MNAR reference

values 145.20789 3072.81341 and 1520.97589 of the complete-case-analysis. Without

going in greater detail, these results clearly indicate that in the case of mean esti-

mation, random imputation should not be an option for dealing with missing data,

independent of the underlying nonresponse mechanism.

Concentrating then on the evaluation of table (C.18) in the appendix, this result

can be transferred to the regression coefficient estimation, too. Unless the intercept,

in all of the other 21 cases of regression coefficient estimation, additional bias arises

which leads to larger MSEs compared to the results of the simple ad-hoc procedure.

Thus, random imputation does not improve parameter estimation, but instead in

addition even obscures effects.

Table (C.19) contains the corresponding p-values which for all three nonresponse
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scenarios obviously deviate from the true values. Thus, only highly significant ef-

fects can still be noticed in the imputed data sets, while all the other effects vanished,

expressed through larger p-values. Only p-values of non significant regression coef-

ficients decreased, which does not have an influence on significance interpretations.

Thus, the performance of p-value estimation is worse compared to the ad-hoc per-

formance. Of course, it cannot be expected that the p-values in all 21 regression

coefficient cases are close to the true values, since about one third of the income

values are missing respectively, so that a lot of the association structure in the

remaining observed data cannot be recognized. However, a comparison with the

performance of ad-hoc is feasible.

Mean Imputation

As next single imputation procedure, focus lies on mean imputation, which is one of

the most common imputation procedures. Replacing missing values with the mean

of the variable for responders naturally causes that mean estimation yields the same

results as complete-case analysis. Thus, the following table (3.8) is identical to table

(3.1) and will not be interpreted further.

MCAR MAR MNAR
µincome 1492.951 1492.951 1492.951
E(µ̂income) 1491.440 1546.533 1529.321
Bias(µ̂income) -1.51143 53.58223 36.36994
Biasrel(µ̂income) -0.00101 0.03589 0.02436
Var(µ̂income) 142.92347 201.75756 198.20299
MSE(µ̂income) 145.20789 3072.81341 1520.97589

Table 3.8: Expected value, variance, bias and MSE of mean estimation of income in
order to evaluate the performance of single imputation (mean imputation)

It is still to be said at this point that mean estimation assumes that responder

and nonresponder are on average alike which is not true for the cases of MAR and

MNAR. Thus, in these cases single mean imputation does not make sense. In the

remaining scenario of MCAR it is not worth expending the effort of conducting

mean imputation, when focus is on mean estimation, since estimates are identical to

simply ignoring the missing values. Thus, besides having now a full data set with-

out missing values, there are no advantages compared to ad-hoc approaches, since

the problem of a severely distorted distribution for the variable of interest, traced

back to the appearance of missing values, remains and leads to complications with

summary measures like the underestimation of standard errors.
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Moreover, mean imputation does not lead to proper estimates of regression coef-

ficients, as tables (C.20) and (C.21) show. As it has been the case before, when

applying random regression, almost without exception regression coefficient esti-

mates are more biased, have a larger MSE compared to ad-hoc and associations

tend to be diluted even more.

Deterministic Regression Imputation

Staying in the field of single imputation, but going one step further regarding the

usage of more information about the other observed variables, leads us to regression

imputation. As has been described before, missing values are replaced by predictions

based on a regression equation, established by the observed part of the data. Of

course this approach yields better results, when good predictors are chosen. Since

analyses here are based on the simulated data set, where the creation of the income

variable knowingly depends on the covariates age, gender, education, professional

activity, family status and election intention (see equation (4)), this best prediction

model is known and chosen here, only deviating by the fact that instead of the

logarithmic income as in the simulation process, the income is chosen as dependent

variable. However, it is important to note that this level of knowledge is not given

in reality, so that a real application of regression imputation would probably lead

to worse predictions and consequently worse estimates. Nevertheless, in choosing

those covariates as predictors, it can be shown which results can be reached by

regression imputation in an ideal world of given information. Regression imputation

with different regression models are not run and compared at this point, since it

would exceed the extend of the thesis.

MCAR MAR MNAR
µincome 1492.951 1492.951 1492.951
E(µ̂income) 1492.481 1491.596 1482.350
Bias(µ̂income) -0.47000 -1.35474 -10.60144
Biasrel(µ̂income) -0.00032 -0.00091 -0.00710
Var(µ̂income) 96.91094 55.67593 65.41347
MSE(µ̂income) 97.13183 57.51124 177.80390

Table 3.9: Expected value, variance, bias and MSE of mean estimation of income
in order to evaluate the performance of single imputation (deterministic
regression imputation)

Interpreting the outcomes of the mean estimation based on regression imputation

gives an obvious improvement of the estimates in all three nonresponse scenarios.

For MCAR and MAR the mean estimates are in average unbiased and for MNAR
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an absolute bias of 10.60144 is received. This is also a good performance which can

be explained due to the fact that income does not have such a large influence in the

MNAR model and all the other predictors of this missing model are taken into ac-

count in the regression model of this imputation approach. Then the corresponding

MSEs of 97.13183, 57.51124 and 177.80390 are only a fraction of the corresponding

ad-hoc values, which brings us to the conclusion that regression imputation can be

a good option for mean estimation with missing values, if information about sug-

gestive predictors are given.

Whether those implications are also true for the regression coefficient estimation,

shows table (C.22). Here, a similar picture as in the other single imputation ap-

proaches arises: In general the biases and MSEs of the resulting regression estimates

are larger than in the ad-hoc approach. This conclusion contains that if the aim is

to fit a linear regression model with missing values in the dependent variable, it is

better to ignore the missing values, independent whether they are following MCAR,

MAR of MNAR, instead of predicting the values via a very good prediction model.

Viewing the p-values in table (C.23), reveals a change compared to the impacts of

the previous single imputation performances. The p-values of the different regres-

sion coefficients change in magnitude, but there is no systematic trend as before. In

some cases they increase in contrast to the true values (e.g. βvolks-, hauptschule, βFDP),

in others they decrease (e.g. βmarried living together, βdie linke). As a consequence, some

effects seem to be significant at a certain significance level, even though this level ac-

tually is lower. But even more worth reporting than the attenuation of some effects

is the fact that due to the smaller p-values in the regression imputed data sets, some

effects become significant at a lower significance level than they actually are, which

even peaks in the nonsignificant effect of βdie linke that becomes significant at the

level 0.1. The obtaining of statistical significance, when it should not be, is a huge

disadvantage and can be ascribed to the underestimation of standard errors and the

corresponding overestimation of statistical tests. The p-values resulting from the

different nonresponse data sets are close to each other and only differ distinctly, in

the case of βwould not vote, where the p-value of the MCAR case increases, the p-value

of the MAR case stays quasi the same and the p-value of the MNAR case decreases

compared to the true value, respectively. Thus, summarizing, all the significant

effects are noticed, but the associations are assumed to be even stronger than they

really are. These results show that regression imputation should be used with cau-

tion, when regression coefficient estimation is the main subject of the analysis.
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Stochastic Regression Imputation

In order to handle the previously described disadvantage of the deterministic re-

gression imputation, stochastic regression imputation is used which is based on

additional random terms that increase the variance and leads to better standard

error estimates.

MCAR MAR MNAR
µincome 1492.951 1492.951 1492.951
E(µ̂income) 1492.302 1492.470 1483.334
Bias(µ̂income) -0.64878 -0.48114 -9.61653
Biasrel(µ̂income) -0.00044 -0.00032 -0.00644
Var(µ̂income) 169.77077 107.89755 140.95240
MSE(µ̂income) 170.19168 108.12904 233.43007

Table 3.10: Expected value, variance, bias and MSE of mean estimation of income
in order to evaluate the performance of single imputation (stochastic
regression imputation)

This modification does not influence mean estimation remarkably, as table (3.10)

shows. Deviations of the final point estimates from the true values are quasi un-

changed in all three nonresponse scenarios. Only variances increased as hinted

before, which leads to larger MSEs. However, this loss can be taken, if there comes

along an improvement in the estimation of regression coefficients or rather concern-

ing the resulting p-values.

In order to find out, next tables (C.24) and (C.25) are viewed. Compared with the re-

sults of deterministic regression imputation the regression coefficient estimates here

in general are less biased, but the corresponding MSEs are smaller in only about half

of the cases. Even higher interest is on the change of the p-values. Indeed, compared

to deterministic regression imputation the p-values of stochastic regression imputa-

tion increased, which results in the consequence that statistical significances, where

they should not be, do not appear anymore. However, due to the increased p-values

the problem of dilution of effects comes to the fore again. In the cases of βmittlere reife,

βvolks-, hauptschule and βFDP statistical effects are not even apparent for the cases of

MCAR, MAR and MNAR, whereas ad-hoc methods here show weakly significant

effects. In the cases of βno graduation, βsingle, βwould not vote this tendency of dilution can

be viewed, too, but effects remained statistically significant at a higher significance

level compared to the ad-hoc and the true values. Especially for the MNAR scenario,

those effects often remain visible. Thus, stochastic regression imputation defrauds

of even more statistical significant effects than deterministic regression imputation,

but it does not create statistical significant effects, where there are none.
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Predictive Mean Matching Imputation

As a last possible single imputation approach, methods remain that are based on

donors. Here we are viewing the performance of the predictive mean matching

imputation, which is, as described in the theoretical part before, a form of nearest-

neighbor hot-deck imputation with a specific distance function.

MCAR MAR MNAR
µincome 1492.951 1492.951 1492.951
E(µ̂income) 1489.049 1536.064 1519.272
Bias(µ̂income) -3.90224 43.11290 26.32063
Biasrel(µ̂income) -0.00261 0.02887 0.01763
Var(µ̂income) 244.57129 310.15347 326.29167
MSE(µ̂income) 259.79879 2168.87587 1019.06746

Table 3.11: Expected value, variance, bias and MSE of mean estimation of income
in order to evaluate the performance of single imputation (predictive
mean matching imputation)

The resulting average mean income estimation in table (3.11) does not entail an im-

provement compared to the (stochastic) regression imputation before, since biases

and MSEs in all three scenarios are far larger. Yet, these results are better than

the average estimates of the ad-hoc approach, of the random imputation and mean

imputation. Consequently, this approach can only convince in this application, if its

performance in regression coefficient estimation and especially the resulting p-values

stands out positively.

Viewing table (C.27) in the appendix gives that the p-values increased much, so that

hardly any of the statistically significant effects remain statistically significant in the

cases of imputed values. Since this result is even worse than in the ad-hoc method,

table (C.26), containing the regression coefficient estimates, will not be discussed.

Thus, it can be summarized conclusively that random imputation and mean im-

putation did not at all provide good results and should therefore not be chosen in

order to handle missing data, independent of the underlying dropout mechanism.

Deterministic and stochastic imputation yield very good mean estimates for MCAR,

MAR and MNAR which might, however, be ascribed to the well-known and cho-

sen prediction model. In the case of predictive mean matching imputation, where

the prediction model is not chosen by hand, the mean estimation obviously has a

larger bias and MSE. Furthermore, all three single imputation methods, based on

prediction models, did not perform satisfactorily with respect to p-value estimation.

Deterministic regression imputation stands out, since here all effects are remained
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in the imputed data set, but due to the underestimation of some p-values these

results have to be interpreted with caution as well. In contrast to that, stochastic

regression imputation and predictive mean imputation diluted statistical effects too

much, compared to the simple ad-hoc approach.

As it has been mentioned before, instead of single imputation, trends go towards

multiple imputation, since this approach reflects the uncertainty of the estimation

by replacing each missing value with several imputed values. Orientating on litera-

ture, the number of imputed values here is set to 5. Due to the bad performances of

random and mean imputation before, those approaches are omitted for the multiple

imputation and focus is set on regression imputation and predictive mean matching

imputation which are both performed with the R package ‘mice’ (version 2.22, see

Van Buuren and Groothuis-Oudshoorn (2011)).

Multiple Regression Imputation

Starting out with multiple regression imputation, the resulted income mean estimate

of the MCAR scenario still has the smallest bias, but with a value of −2.05960 it

is not completely unbiased as it has been in the single imputation version. In the

case of MAR and MNAR, however, the estimates have a far larger bias of 40.46051

and 25.12561. Due to the additional variation, variances of the estimates increased,

which leads to larger MSEs in all three cases.

MCAR MAR MNAR
µincome 1492.951 1492.951 1492.951
E(µ̂income) 1490.891 1533.412 1518.077
Bias(µ̂income) -2.05960 40.46051 25.12561
Biasrel(µ̂income) -0.00138 0.02710 0.01683
Var(µ̂income) 812.23570 855.858657 809.56319
MSE(µ̂income) 816.47764 2492.91117 1440.85935

Table 3.12: Expected value, variance, bias and MSE of mean estimation of income
in order to evaluate the performance of multiple imputation (multiple
regression imputation)

Regarding the coefficient estimates in table (C.28) shows that estimates of the mul-

tiple regression approach are indeed differing from those of single imputation, which

results in the fact that for some regression coefficient estimates corresponding MSEs

are smaller for the multiple imputation approach, for others they are larger com-

pared to the single regression imputation approach. Therefrom no conclusions can
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be drawn, which is why focus is set on the resulting p-values. Due to the increased

variability of the multiple imputation, which comes along with the larger number of

imputed values, standard errors are less underestimated and consequently p-values

become larger. Therefore, especially the resulted p-values of the multiple regression

imputation are of interest, since in the single regression imputation case, tendencies

could be noticed that some of the estimated p-values were too large, as in nearly all

other procedures, but some others were indeed underestimated. Here, the p-values

became very large, which means that hardly any of the statistical effects can still be

seen in the imputed data sets. All those findings do not change remarkably when

the number of imputed values is increased from T = 5 to T = 10. Then, mean

estimation improves a little bit for the MCAR scenario, while it changes little to

the worse for MAR and MNAR. Influences on regression coefficient estimation are

not considerable, so that resulting p-values remain large and statistical effects are

hardly visible. Thus, imputing missing values multiple times by a regression model

obviously obtains the statistical association structure less than simply ignoring the

missingness and testing significances in the observed part of the data.

Multiple Predictive Mean Matching Imputation

Even better comparability with the single imputation approach enables the predic-

tive mean matching method, since here also the single imputation approach has

been applied with the help of the ‘mice’ package. Comparing first the income mean

estimates gives that except of the increasing variance, which results in larger MSEs,

the estimates in all three scenarios do not differ remarkably from those of the single

approach.

MCAR MAR MNAR
µincome 1492.951 1492.951 1492.951
E(µ̂income) 1496.957 1534.194 1518.697
Bias(µ̂income) 4.00636 41.24305 25.74577
Biasrel(µ̂income) 0.00268 0.02763 0.01725
Var(µ̂income) 806.57083 851.27628 805.54525
MSE(µ̂income) 822.62178 2552.26566 1468.39009

Table 3.13: Expected value, variance, bias and MSE of mean estimation of income
in order to evaluate the performance of multiple imputation (multiple
predictive mean matching imputation)
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Comparing the regression coefficient estimates with those of the single imputation

version gives no clear tendency towards the degree of unbiasedness. In some of the

regression coefficient cases both or just one of the statistical measurements of bias

and MSE are larger, when missing values are imputed multiple times, in other cases

they are larger, when a single value is imputed via predictive mean matching. Thus,

special attention is payed to the p-values, in order to find an answer to the ques-

tion, whether multiple imputation here improves the estimation compared to single

imputation. It shows that the resulting, increased p-values again tend to dilute asso-

ciations and heavily prevent from noticing statistical effects in the imputed data sets.

In conclusion, against expectations those two multiple imputation approaches did

not improve the results in this application. There is no clear tendency towards

smaller MSEs of the estimates for the mean income and the regression coefficients

and furthermore p-values are too large, so that significant statistical effects are hid-

den. Those results will not change in the case of increased number of imputed values.

Choosing T = 10 instead of T = 5 will not improve the estimation in general. While

mean estimation in all three scenarios has nearly the same average bias and only

small reduction concerning the MSE, the MSEs of estimated regression coefficients

tend to become only a little bit smaller, but in a range that does not influence p-

values and consequently significance of statistical effects.

3.5.4 Maximum Likelihood Procedures

FIML

First of all, it is started out with parameter estimation based on maximum likelihood

procedures ignoring the dropout process. At this, the first estimation approach is

FIML which is conducted in R with a structural equation model established with

the package ‘lavaan’ (version 0.5.17, see Rosseel (2012)). Before application, the

data has to be prepared, since ‘lavaan’ is not able to handle nominal variables.

Thus, the variables education, family status and election intention are recoded into

dummy variables which are then incorporated in the appropriate model. The income

variable serves as dependent variable and no latent constructs are included, so that

the SEM then equals a linear regression model. In order to receive an estimation

for the income mean, first, the appropriate regression model is fitted and estimated

via full information maximum likelihood, meaning that all available information are
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used to set up the likelihood for a certain observation before summarizing over all

individual likelihoods to receive the likelihood for the entire data (see equations (10)

and (11)). As a result, regression coefficient estimates are received which are used

to predict the missing income values. Finally, the average of these predictions, is

used as estimate of the interested mean income. The results are presented in the

following table.

MCAR MAR MNAR
µincome 1492.951 1492.951 1492.951
E(µ̂income) 1492.481 1491.596 1482.350
Bias(µ̂income) -0.46977 -1.35493 -10.60141
Biasrel(µ̂income) -0.00032 -0.00091 -0.00710
Var(µ̂income) 96.91332 55.66915 65.41175
MSE(µ̂income) 97.13400 57.66915 177.80175

Table 3.14: Expected value, variance, bias and MSE of mean estimation of income in
order to evaluate the performance of Maximum Likelihood Procedures
(FIML estimation in Structural Equation Model)

Obviously, in all three scenarios, the average mean estimates are closer to the true

values as in the ad-hoc approach. For MCAR and MAR the parameters are not

biased and for MNAR, where the application of the modelbased approaches ignor-

ing the missing data mechanism is not justified, a bias of size −10.60141 arises.

However, this still is smaller than in most other ad-hoc, weighting and imputation

applications. Moreover, variances of the estimates are small, which results in com-

parable small MSEs and the conclusion of a good performance. These good results

in the case of MNAR seem unexpected at first sight, since FIML assumes a MAR

dropout. However, it should not be left behind that also in the MNAR model,

dropout depends, besides the income itself, on other variables, which are considered

in the FIML estimation, so that valid information are used. Moreover, the simulated

MAR and MNAR model do not deviate too much, since in the MNAR model income

does not have such a large influence on the dropout of the income values. Conse-

quently, the performance of FIML would probably worsen, if another MNAR model

would have been constructed and evaluated that is based on a stronger influence of

the income variable itself.

In order to receive regression coefficient estimates based on FIML the approach is

similar to that of mean estimation. However, the fitted regression models differ with

respect to the dependent variable, since now the logarithmic income is used, which is

consistent to the usual regression model of interest before. Moreover, the prediction

step is not necessary, but the received regression coefficient estimates, listed in table
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(C.32) can be interpreted directly. They are close to those of the ad-hoc procedure

and in not only a few cases the resulting MSEs are even a little bit smaller. Those

smaller MSEs in the case of FIML estimation occur in all three scenarios. Due to the

previously described theoretical background, which stated at least the assumption

of a MAR dropout, no improvement in the case of MNAR is expected. However,

this result should not be attached too much importance, since those differences ac-

count only for small decimal places and possible reasons have already been adduced

in the section of mean estimation before. Furthermore, table (C.33) with the cor-

responding p-values shows that for all three dropout mechanism highly significant

effects remain highly significant, moderate significant effects weaken and non signifi-

cant effects remain non significant. Actually, this result is nearly identical to that of

the ad-hoc procedure, where all statistically significant effects at least are noticeable.

EM Algorithm

Using next the EM algorithm for estimating the income mean in the presence of in-

complete data, a parametric model specification is required, in order to establish and

maximize the likelihood function. Here, the basic assumption is normal distribution

for the continuous variable of interest, having several missing values. Applying then

the EM algorithm, in order to receive an estimate for the mean income gives the

average value of the observed income values, which is equal to the ad-hoc result.

A step further, making sense with regard to the underlying simulation situation,

is the expansion of the normal assumption to more than just the income variable,

equaling the multivariate normal model described in Dempster et al. (1977). The R

package ‘norm’ (version 1.0.9.5, see Novo and Schafer (2013)) provides the facility

to perform maximum-likelihood estimation on a matrix of incomplete data using

the EM algorithm. It will consequently be used and the resulting mean estimates

are presented in the following table.

MCAR MAR MNAR
µincome 1492.951 1492.951 1492.951
E(µ̂income) 1492.482 1491.651 1482.400
Bias(µ̂income) -0.46926 -1.30011 -10.55061
Biasrel(µ̂income) -0.00031 -0.00087 -0.00707
Var(µ̂income) 96.88839 55.68690 65.45040
MSE(µ̂income) 97.10859 57.37717 176.76574

Table 3.15: Expected value, variance, bias and MSE of mean estimation of income in
order to evaluate the performance of Maximum Likelihood Procedures
(EM algorithm)
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Since those results are quasi equivalent to those of FIML estimation, they will not be

interpreted further. However it is noteworthy that this good performance might not

pertain to situations, where the assumption of normality is unreasonable. Therefore,

it would be interesting for other data situation to evaluate this approach and also

to expand it to applications assuming other parametric models, thus different to the

normal model. Until now, however, no general implementation of the EM algorithm

for handling missing data is provided in R, which is a useful outlook for future re-

search in this field of application. Moreover, the ‘norm’ package is limited to the

estimation of means, variances, covariances and correlation coefficients. This is why

regression coefficient estimation with the EM algorithm is not applied in this thesis.

However, as it has been described in the theoretical part before, regression coeffi-

cient estimates will be analogous to those of FIML, but standard errors calculation

would be more complex, which is why FIML should here be preferred nevertheless.

Heckman Selection Model

After application of the Maximum Likelihood estimation via FIML and EM algo-

rithm, which are based on the ignorance of the missing process and therefore are

theoretically only suggestive for the scenarios of MCAR and MAR, focus next is

set on the application of maximum likelihood approaches, which are based on the

explicit modeling of the dropout process. The previously introduced Heckman SM is

the first of those approaches. In R it can be applied with the ‘selection’ function of

the package ‘sampleSelection’ (version 1.0.2, see Toomet and Henningsen (2008)).

Since this function is only able to deal with numeric and binary variables, the respec-

tive variables have to be recoded, as it has already been necessary in the application

of FIML estimation before. Furthermore, a dichotomous variable “observed” has to

be constructed that takes value 1, if the interested variable income is observable and

value 0 otherwise. Thus, it is the complement of the previously used missing indica-

tor variable M . As described in the theoretical part concerning the SM, besides the

analysis model of interest a selection model has to be established which are both

defined within the ‘selection’ function. At that, the “observed” variable acquires

the position of the dependent variable of the selection model. Gender, education

and willingness are chosen as corresponding covariates, since those are the variables

used to simulate the MAR dropout process. So again, more information is used

than is usually available in a real world application. However, this way, the best

possible performance of the Heckman SM can be seen, since the dropout mechanism

is modeled as good as possible. The second defined model within the ‘selection’
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function again is consistent with the regression model of all other applications (see

equation (4)). For estimating the mean income, however, this regression model as

part of the Heckman SM is fit with the income as dependent variable, instead of

the logarithmic income. The results of the analysis model then serve to predict the

missing income values by considering the correction term consisting of the inverse

Mills Ratio and the selection bias. Herefrom, the following estimates arise which

are received by applying the estimation method ‘2step’, which is equivalent to the

original Heckman 2-step-procedure:

MCAR MAR MNAR
µincome 1492.951 1492.951 1492.951
E(µ̂income) 1532.048 1499.985 1495.219
Bias(µ̂income) 39.09717 7.03424 2.26804
Biasrel(µ̂income) 0.02619 0.00471 0.00152
Var(µ̂income) 88375.310019 1048.99845 972.67315
MSE(µ̂income) 89903.989898 1098.47905 977.81714

Table 3.16: Expected value, variance, bias and MSE of mean estimation of income in
order to evaluate the performance of Maximum Likelihood Procedures
(Heckman Selection Model)

Obviously, this approach may result in good performances, if the dropout mechanism

is modeled close to the true underlying dropout process which, however, actually is

not known. Here, the average estimate of the MNAR scenario is hardly biased. The

relative bias of 0.00152 is very small and so is the corresponding MSE of 977.81714,

compared for example with those of the ad-hoc approach, having value 1520.976.

Also in the MAR scenario, the resulting estimates are far better than in the ad-hoc

approach. The average mean estimate of 1499.985 deviates only by 7.03424 from

the true value and the MSE of 1098.47905 is quite small, too. Thus, in these two

cases the application of this likelihood based approach is reasonable. This is not

the case for the MCAR scenario. Here, an assumption for the dropout mechanism

is made in the modelbased approach that is not accurate. Consequently, it is not

surprising that the outcome is bad compared to the ad-hoc performance or other

simpler weighting and imputation approaches. However, if the aim is to estimate

the mean of a variable having missing values following MAR or even MNAR, the

Heckman SM yields good results. In order to evaluate the performance for different

selection models, the Heckman SM for the mean income estimation is also applied

with changes in the selection equation. On the one hand only the variable willingness

is used to explain the dropout and on the other hand the variables willingness and

family status are chosen. At this point it is important to note repeatedly that the
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dropout is simulated independent of the latter one. The results, which are presented

in table (3.17), but which are limited to the average estimates, show a change for

the worse. Nearly all resulting estimates, independent of the underlying dropout

mechanism, deviate more from the true values than in the previous case, when the

selection model has been fit with all the dropout variables. The only exception

is constituted in the MCAR scenario, where family status is incorporated in the

selection model. The estimates become better, since a wrong dropout variable is

assumed in a scenario, where the dropout actually is arbitrary. However, in the case

of MAR and MNAR, the estimates for the new selection models are still far better

than in the ad-hoc approach which here pleads for the application of the Heckman

SM, even if not too many detailed information are known about the dropout.

selection variables MCAR MAR MNAR
µincome 1492.951 1492.951 1492.951

willingness E(µ̂income) 1525.629 1505.043 1499.039
willingness, family status E(µ̂income) 1529.352 1508.392 1502.106

Table 3.17: Expected value, variance, bias and MSE of mean estimation of income in
order to evaluate the performance of Maximum Likelihood Procedures
(Heckman Selection Model with different selection variables)

If the aim is to receive regression coefficient estimates in such situations, the Heck-

man SM can also be applied. However, the result slightly differs from the outcomes

of other approaches, since here, an additional covariate is included in the analysis

regression model of interest, namely the inverse Mills Ratio, whose value is also pre-

sented in the outcome. Nevertheless, the other estimated regression coefficients are

comparable with those of other applications, since they are already corrected with

respect to the bias that possibly arose due to the censoring of certain observations.

The results, presented in table (C.34) in the appendix, show regression coefficient

estimates that are drifting away from the true values slightly more than the ad-hoc

estimates. Also the p-values are larger than in the ad-hoc approach and all the more

larger than the true values. While the significances of the statistical effects remain

the same as in the ad-hoc approach for MAR and MNAR, in the MCAR scenario

some significant effects like the one of “mittlere reife”, “no graduation” and “volks-,

hauptschule” are not apparent anymore. Thus, the Heckman SM could convince in

the context of mean estimation, but not for regression coefficient estimation, even

though also here full priori knowledge was used. In the case of wrong specification,

the estimates are expected to become worse, so that the application of the Heckman

SM is only justified for cases of known information about the dropout mechanism.
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Pattern Mixture Model

The application of the PMM, which is the second approach, based on explicit model-

ing of the dropout process can either be based on further restrictions of the missing

mechanism or on priori information, as has been explained before in the theoreti-

cal chapter. First, in the case of mean income estimation, the approach based on

restrictions is briefly mentioned, but due to reasonableness not carried out much

further and focus will then be set on evaluation of the approach based on priori

information.

Restricting the missing mechanism according to Little (1994), sets focus on the two

variables income and age, since those restrictions are based on normal data and

all the other variables, which in fact are simulated as having an influence on the

dropout, are categorical. Age, however, actually does not have an influence on the

dropout, so assuming MAR in the PMM does not make sense, since it means that

the dropout only depends on age. Consequently, then the mean income is biased

for all three simulated dropout scenarios. In the case of MCAR a mean income

of 1491.498 is received, for MAR 1552.947 and for MNAR 1535.67, which shows

that this assumption is not suitable. Hence, formulating a statistical model that

assumes MNAR instead of MAR improves the results, since then, besides the influ-

ence of age, also the influence of the income values itself on the dropout is assumed,

which is at least closer to the simulated data background. However, assuming this

scenario means that it has to be predefined in which way the dropout depends on

those two variables. This is done via an assumed linear combination of the form

Xage + λ · Xincome, whereas λ is assumed to be not zero and furthermore known (cp.

Little (1994)). Determining λ in a suitable way can give good results. For λ = 0.42

for example this PMM gives a mean estimate of 1497.077 for the underlying MAR

data situation and 1493.370, if the data is MNAR. As expected this estimate is bad

for MCAR, resulting in an mean income estimate of 1239.602. However, it becomes

clear that those results strongly depend on the choice of λ, requiring priori infor-

mation, not only about which variables are responsible for the dropout, but also

about there magnitude of influence compared to the other selection variables. This

knowledge, however, is unrealistic and even in this situation, based on simulated

data, λ has been chosen by trial and error.

In real life situations, however, it is more often the case that priori information are

given concerning the connection of responder and nonresponder. Then the PMM is

suitable, as the following approach and the corresponding evaluation shows. Here,

the missing data indicator M serves as dependent variable of a logit model, where

the variables gender, education and willingness are chosen as influential covariates

91



3 Nonresponse as a Main Error Component of the Total Survey Error Approach

according to the simulation process presented in equation (5). This model then re-

sults in predictions for the individual dropout probability. In order to first estimate

the average income mean herefrom, equation (16) in the theoretical chapter of the

PMM is the basis. The average income mean of the responder is calculated and

an assumption for the connection between the mean of the responder and those of

the nonresponder, which is unknown, is made. In this case it is assumed that the

mean of the nonresponder is a function of the mean of the responder, which here

is determined by µincome|M=1 = 0.9 · µincome|M=0, meaning that here the mean of the

nonresponder is in average 90% of the income mean of the group of the responder.

This relationship is not chosen randomly, but it orientates on the true underlying

connection of the income means of the two groups. Since the true income values

are known before the dropout process was applied, the income mean of the stratum

of the nonresponder is known here in contrast to real data situations. It appeared

that in the MAR scenario, in average the income mean is 88.844% of the responder

mean and in the MNAR scenario the corresponding value is 92.354%. Thus, the re-

lationship in the model is determined by 90%, which lies in the middle. Obviously,

the performance of the PMM strongly depends on this assumption, which is why,

the application will then be also conducted for different assumptions. But first, this

approach will be applied further. With the help of the predicted individual dropout

probabilities and their corresponding converse probabilities, for each observation it

will be sampled between the mean of the responder and the assumed mean for the

nonresponder. The average over all those sampled values then resembles the corre-

sponding income mean averaged over the pattern of responder and nonresponder.

The following table (3.18) gives an overview of the results.

MCAR MAR MNAR
µincome 1492.951 1492.951 1492.951
E(µ̂income) 1444.873 1498.356 1481.817
Bias(µ̂income) -48.07786 5.40515 -11.13352
Biasrel(µ̂income) -0.03220 0.00362 -0.00746
Var(µ̂income) 142.13432 189.41969 242.76899
MSE(µ̂income) 2453.61493 218.63529 366.72420

Table 3.18: Expected value, variance, bias and MSE of mean estimation of income in
order to evaluate the performance of Maximum Likelihood Procedures
(Pattern Mixture Model)

The MCAR column will not bet interpreted further, since the assumption of this

functional dependence structure between responder mean and nonresponder mean

is not true in this scenario. Therefore, the bad results are according to expectations.
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Obviously, the assumption of identical income means between responder and non-

responder would be correct here which would lead to the good ad-hoc estimates. In

the cases of MAR and MNAR, however, the PMM performs good. The average in-

come estimates are comparable with those of the Heckman SM, whereas in the MAR

scenario the estimate is even less biased and in the MNAR scenario the average in-

come estimate deviates more from the true value. However, both average estimates

do not have a large bias and have, due to the small variances, small MSEs. Thus,

this approach is a good alternative, if information about the dropout are known.

Here, the knowledge about the influential dropout variables is used and furthermore

the knowledge about the functional dependence structure between responder and

nonresponder income mean.

In order to further evaluate the performance of the PMM, different assumptions are

made. First, the underlying logit model is changed with respect to the independent

variables, while the dependence structure between income means remain the same.

As in the Heckman SM, here only the variable willingness is chosen and the variables

willingness and family status. Second, the assumption that the nonresponder mean

accounts for 90% of the responder mean is changed to 85%, 95% or rather 50%,

while the dropout mechanism is modeled by the original logit model. The following

table summarizes the results, but it is again limited to the average estimates.

selection variables MCAR MAR MNAR
µincome 1492.951 1492.951 1492.951

willingness E(µ̂income) 1444.897 1498.325 1481.612
willingness, family status E(µ̂income) 1444.911 1481.544 1481.544
µincome|M=1 = g · µincome|M=0 MCAR MAR MNAR
g = 0.85 E(µ̂income) 1421.590 1474.268 1458.066
g = 0.95 E(µ̂income) 1468.156 1522.445 1505.569
g = 0.50 E(µ̂income) 1258.607 1305.648 1291.804

Table 3.19: Expected Value of income in order to evaluate the performance of Max-
imum Likelihood Procedures (Pattern Mixture Model with different se-
lection variables and different assumptions for the relationship between
patterns)

It can be seen that changes in the independent selection variables of the underly-

ing nonresponse model and consequently a small change in the individual dropout

probabilities do not have strong influences on mean estimation. In fact, then the

average mean estimation only changes with respect to decimal places. In contrast to

that the assumption concerning the relationship of the income mean of the different

groups, has a larger influence. As before, attention is not focused on the MCAR

scenario, since average estimates are bad for all different cases. In the scenarios of
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MAR and MNAR, however, it can be seen that if g and consequently the average

mean of nonresponder is assumed larger than it actually is, bearing relation to the

mean of the responder, it follows that the resulting income mean for all observations

is overestimated. Smaller g consequently result in an underestimation. The bias is

remarkable, even if g deviates only little from the true underlying relationship. For

the completely inappropriate value of g = 0.50 the bias is huge. This results in the

conclusion that PMMs for mean estimation only yield good estimates, in the case

of exact prior information.

Focusing next on regression coefficient estimation, one encounters difficulties with

this approach, since assumptions about the relationship between the beta coeffi-

cients of responder and nonresponder have to be made. While it is standing to

reason to make assumptions for the differences in mean, there are no reasons to

determine how regression coefficients should change for nonresponder compared to

responder. Moreover, analyzing the true underlying data structure here shows that

regression coefficients do not change in the same directions, which means that some

beta estimates are in average larger for nonresponder compared to responder, others

are equal or smaller. Consequently, this way of regression coefficients estimation is

doubtful, which is why, it is only applied for the optimal case, meaning that the

powerful selection variables are considered and furthermore the relationship of the

responder regression coefficients and nonresponder regression coefficients is modeled

due to the underlying true link. The results, presented in table (C.36) are close to

the true values, nevertheless, those results will never be reached in a real life appli-

cations, since too much prior knowledge is used. Consequently, sensitivity analysis

are necessary here and the idea of partial identification establishes. Due to the scope

of this thesis, however, the approach of partial identification is confined to theoret-

ical introduction, but not applied here. Thus, in future works this idea should be

followed up further, in order to expand the applications PMMs towards parameter

estimation other than mean estimation. For this purpose also the implementation

of the PMM in R would be desirable.
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4 Limits of Simulation and extended

Applications due to Points of Criticism

After evaluation of the impacts of the different error sources in chapter 2 and the

performances of different approaches for handling missing data in chapter 3.5, a

final summary of the results (see chapter 5) is remaining. However, many of the

outcomes of this thesis may not simply be generalized, since they strongly depend

on the underlying simulated data basis and on decisions that had been made in this

context. Therefore, this chapter shall give an overview over the limits and points of

criticism concerning the simulation and application of different missing data proce-

dures which might have led to overoptimistic results compared to real life situations.

Some of these aspects have already been mentioned in the course of the thesis, nev-

ertheless, they shall be pointed out here again and carried forward.

First of all, the similarity between the data basis and the Allbus 2014 has been

ensured as effectively as possible, nevertheless not all the relationships between the

different variables could have been considered and adopted. Consequently, a possible

point of criticism might arise, since some variables like age and professional activity

are not simulated with a certain dependency, which in reality would clearly be the

case. Another difference between the simulated data basis and the Allbus 2014 con-

cerns the variable of interest income. The simulated income values are truncated

at a maximum of 10904, whereas the income variable of the Allbus data set con-

tains very few upward outliers, exceeding this threshold. Those large income values

obviously have a strong influence on parameter estimation. Drawing for example

samples from a data set containing large outliers, then results are expected, to differ

in the cases of inclusion or exclusion of these powerful observations. In contrast to

that, in a data situation without remarkable outliers, which is the case in the under-

yling simulated data situation, error sources like sampling error or coverage error,

will not have such a remarkable impact on parameter estimation, expressed through

smaller biases and MSEs. Thus, those non-existing outliers might be a reason for

the good parameter estimations in the scenarios of present error models.

Another reason for the small biases and MSEs in the presence of constructed errors

might be the small statistical effects which are estimated in the Allbus data set and

are then also assumed for the simulated data set. Comparable small β-coefficient

for the different categories of education, for example, mean that this variable does

not have a strong influence on the logarithmized income. If then for example, in

the context of coverage error, the sample probability for high educated people is
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doubled and for others remained constant or even is reduced, the estimated out-

come parameters in this situation are not biased too much, when the logarithmized

income does not differ remarkably in the different education categories. The same

phenomenon can also be viewed in the presence of other error models. If, for exam-

ple, the dropout of the income depends amongst other variables on education, but

the income itself does not differ a lot for the different categories of education, this

dropout model will not result in parameter estimates that are strongly biased.

Furthermore, in order to match with the range of the other β-coefficients, also the

influence of the income itself on the dropout in the MNAR model (cp. equation

(6)) is chosen comparatively small with a value of βincome = 0.00005. This choice

has been justified in section 2.2, nevertheless, the determination of this fixed value

probably has a large influence on further analyses. Due to this value, the MAR

and MNAR model, all analyses of the second part of the thesis are based on, do

not differ too much from each other, since other predictors are the same in those

models and only the additional dropout-influence of the income, which, however, is

quite small, makes the difference. This similarity of the dropout-models probably is

the reason, why FIML estimation and the EM algorithm, both assuming MAR, also

performed surprisingly well in the MNAR scenario. In order to check this supposi-

tion, another MNAR model is set up that differs from the evaluated MNAR model

with respect to the chosen βincome value. While the effect has been determined by

βincome = 0.00005 in the logit model before, the influence of this variable on the

dropout is now remarkably increased by changing it to βincome = 0.0005. Since

this new determination leads to higher predicted, individual dropout-probabilities,

a larger number of missing income values ensues, which, however, prevents from

comparing the impacts of the different nonresponse models. Consequently, the es-

timated dropout-probabilities are shrunken by subtracting 0.147, respectively, as it

has already been proceeded in chapter 3.4, so that in average we receive approx-

imately the same number of missing income values. Nevertheless, in general now

different income values are missing in the presence of the different nonresponse mod-

els. Thus, the new underlying data situation differs remarkably from the MNAR

scenario before and consequently also from the MAR scenario and the performances

of certain correction methods can again be evaluated. Focus hereby is set on the

performance of the complete-case-analysis for reasons of comparison and the differ-

ent likelihood-based approaches. The performance of the EM algorithm is spared

out, since it gives point estimates nearly identical to those of FIML estimation. For

the application of the PMM the assumptions regarding the relationship between re-

sponder and nonresponder is updated and adapted due to the new underlying data
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situation, where now nonresponder are assumed to have a 1.35 times larger average

income than nonresponder. So again full information knowledge is used and the

application of the PMM confines to the ideal case of prior knowledge and no sensi-

tivity analysis is performed at this point. Of course, the results of the PMM then

have to be regarded critically, since in reality results will be nowhere near these good

performances. The following table refers to the mean income estimation, while table

(C.37) in the appendix evaluates the corresponding regression coefficient estimation.

ad-hoc FIML Heckman SM PMM
µincome 1492.951 1492.951 1492.951 1492.951
E(µ̂income) 1343.804 1372.319 1403.999 1490.412
Bias(µ̂income) -149.14719 -120.63248 -88.95165 -2.53903
Biasrel(µ̂income) -0.09990 -0.08080 -0.05958 -0.00170
Var(µ̂income) 196.14158 119.18878 1121.90554 264.12542
MSE(µ̂income) 22441.02713 14671.38374 9034.30205 270.57211

Table 4.1: Expected value, variance, bias and MSE of mean estimation of income
in order to evaluate the performance of different correction methods on
alternative MNAR model

Both tables show that this modified MNAR model obviously results in larger biases

after application of different nonresponse methods. Especially in the case of FIML

strong deviations from the true values can be recognized. This confirms the previ-

ously made supposition that the likelihoodbased methods, ignoring the nonresponse

mechanism, only performed that good in the case of MNAR, because the influence

of the income variable itself on the dropout was chosen small and consequently the

MNAR model was similar to the MAR model. In the now presented modified MNAR

model, however, we can see a clear domination of the likelihoodbased methods that

explicitly model the nonresponse mechanism.

Another explanation for the good performance of FIML and EM algorithm in the

MNAR scenario, described and evaluated in the thesis before, might be the fact

that the variables gender and education are predictors of both models, the dropout-

model (cp. equation (6)) and the regression model that is used to construct the

income variable itself (cp. equation (4)). Thus, when applying the methods FIML

and EM algorithm, which are based on the MAR assumption, we are indeed not in-

cluding the income as predictor, but other variables which partly explain the income

values. If the predictors of the dropout-model completely differ from those of the

regression model that is used to construct the income variable itself, a larger bias

of the estimated parameters is expected. However, this aspect should be checked

97



4 Limits of Simulation and extended Applications due to Points of Criticism

in another setting, since here, the modification would not be compatible with the

underlying data situation, where those two variables are indeed simulated as having

an influence on both, income and dropout.

Another point of criticism contains that in general the considered error models, ex-

plained in chapter 2.2, are very specific. Thus, conclusions like “sampling error does

not influence mean estimation” or “coverage error has a larger impact than other

error sources” are not valid. Instead, the simulation background has to be involved

in the interpretation and results have to be questioned critically. In the case of

sampling error, the impact obviously depends on the sample size which is deter-

mined to certain values in this thesis, namely n = 500, 1000, 2000, 3000. In order

to make general statements, even smaller critical sample sizes should be regarded.

Choosing for example n = 100 does not give unbiased estimates anymore, but an

average mean estimate of 1498.893. Of course, results would also change in the field

of coverage error, if sample sizes were chosen differently. For the case of n = 100 for

example, the coverage error model would result in an average income estimate of

1366.91. Concerning this error source, also the choice of sample probabilities, listed

in table (2.1) are decisive. They are determined on literature basis here, but are

nevertheless chosen quite arbitrary. Therefore, at this point two further coverage

models are viewed which differ with respect to the assigned drawing probabilities.

The first one favors low educated people, which means they now have a doubled

probability of being sampled, whereas middle educated people still have a probabil-

ity of 1
N

and the probability of high educated people is halved. So here, we have

a reversed probability distribution compared to the analyzed scenario in the thesis.

The differentiation between male and female participants, however, remains as be-

fore, so that women are still overrepresented. The second additional coverage error

model does not consider the variable gender, but differentiates only with respect

to education, whereas this marginal drawing probability remains like in table (2.1).

Again those additional models are only evaluated for mean income estimation and

results are listed in tables (4.2) and (4.3). As expected, the impacts of the coverage

error strongly depend on the chosen sampling probabilities. In the case of an over-

representation of low educated people, smaller average income values compared to

table (2.4) result for all sample sizes. If the sample probability does not depend on

gender, but the marginal sampling probabilities of the different education categories

remain as chosen before, better estimates are received, since the income difference

between men and women does not play a role anymore. Thus, not only the variables

causing the coverage error are decisive for the impacts on parameter estimation, but

also the proportion of sampling probabilities between different groups of people.
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n = 500 n = 1000 n = 2000 n = 3000
µincome 1492.951 1492.951 1492.951 1492.951
E(µ̂income) 1271.826 1289.486 1342.178 1432.835
Bias(µ̂income) -221.12528 -203.46508 -150.77285 -60.11562
Biasrel(µ̂income) -0.14811 -0.13628 -0.10099 -0.04027
Var(µ̂income) 1561.66306 553.85316 155.13169 51.95490
MSE(µ̂income) 50458.05251 41951.89194 22887.58248 3665.84267

Table 4.2: Expected value, variance, bias and MSE of mean estimation of income in
alternative coverage model with overrepresentation of low educated and
female units in order to quantify coverage error

n = 500 n = 1000 n = 2000 n = 3000
µincome 1492.951 1492.951 1492.951 1492.951
E(µ̂income) 1505.806 1500.013 1499.617 1495.699
Bias(µ̂income) 12.85476 7.06166 6.66633 2.74786
Biasrel(µ̂income) 0.00861 0.00473 0.00447 0.00184
Var(µ̂income) 1638.64462 734.88158 227.72206 50.16994
MSE(µ̂income) 1803.88947 784.74862 272.16202 57.72069

Table 4.3: Expected value, variance, bias and MSE of mean estimation of income
in alternative coverage model with overrepresentation of high educated
units in order to quantify coverage error

Also in the case of nonresponse and measurement error, there are factors determin-

ing magnitude and direction of impacts on parameter estimation. While in the error

scenarios of MCAR and RCAR the number of missing or rather rounded values is

decisive, in the case of MAR, MNAR, RAR and RNAR specific models are con-

sidered, whose meaningfulness and validity may not be tested. In the context of

measurement error for example, it is concentrated on rounding errors, whereby the

corresponding model assumed rounding exclusively to the next threshold of 10. This

kind of error model hardly biased mean estimation which suggests the assumption

that rounding to the next threshold of 10 is a too optimistic model that is out of

proportion with reality. Therefore, additional measurement error models with the

same construction background, as described in section 2.2, are viewed that in con-

trast now consider rounding to the next threshold of 100 and 1000, instead of 10.

The number of rounded values again orientates on the percentage of rounded values

in the Allbus, so that in the case of rounding to the next threshold of 100 obviously

less income values are rounded compared to the previous threshold of 10. Then in

the third rounding model only a small number of income values are rounded to the
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next threshold of 1000. More precisely, for example in the underlying MNAR sce-

nario we have in average 233.48 rounded up income values, 203.78 observations that

are rounded off and 3062.74 income values that remain as they originally have been.

Those circumstances, meaning the comparatively small number of rounded values

and the compensation due to similar numbers of up and off rounded income values,

probably cause the small deviations from the true values, as the resulting evaluation

of the mean income estimation in the following tables (4.4) and (4.5) shows. For

better comparison, finally a last rounding model is viewed that contains rounding

to the next threshold of 1000, whereas the probability for rounding is identical to

the constructed and evaluated rounding model, described in the measurement error

subsection of chapter 2.2. Consequently, the same income values are rounded, but

to the next threshold of 1000, not 10. This model deviates from the Allbus role

model, but shows impacts of larger rounding intervals, when other conditions are

hold constant. The estimation then obviously worsens, but is still tolerable, as the

outcome of mean estimation, listed in table (4.6), makes clear.

RCAR RAR RNAR
µincome 1492.951 1492.951 1492.951
E(µ̂income) 1493.370 1493.286 1493.292
Bias(µ̂income) 0.41914 0.33491 0.34061
Biasrel(µ̂income) 0.00028 0.00022 0.00023
Var(µ̂income) 0.05134 0.04228 0.04174
MSE(µ̂income) 0.22702 0.15444 0.15776

Table 4.4: Expected value, variance, bias and MSE of mean estimation of income
in alternative rounding model with threshold 100 in order to quantify
measurement error

RCAR RAR RNAR
µincome 1492.951 1492.951 1492.951
E(µ̂income) 1501.143 1495.046 1495.084
Bias(µ̂income) 8.192074 2.09501 2.13290
Biasrel(µ̂income) 0.00549 0.00140 0.00143
Var(µ̂income) 7.24193 2.29290 2.43778
MSE(µ̂income) 74.35201 6.68197 6.98705

Table 4.5: Expected value, variance, bias and MSE of mean estimation of income
in alternative rounding model with threshold 1000 in order to quantify
measurement error
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RCAR RAR RNAR
µincome 1492.951 1492.951 1492.951
E(µ̂income) 1502.467 1505.378 1505.392
Bias(µ̂income) 9.51600 12.42701 12.44089
Biasrel(µ̂income) 0.00637 0.00832 0.00833
Var(µ̂income) 6.10699 1.66200 1.72996
MSE(µ̂income) 96.66130 156.09254 156.50560

Table 4.6: Expected value, variance, bias and MSE of mean estimation of income in
rounding model with threshold 1000 and increased rounding probability
in order to quantify measurement error

As before, the results of RCAR are not directly comparable with those of RAR and

RNAR, since the number of rounded values here clearly deviates. However, small

deviations from the true income value still remain in all three scenarios, even though

now more remarkable measurement errors, in form of wider rounding intervals, are

constructed and applied compared to the rounding model evaluated in the context

of the thesis. On the one hand this indicates that the impact of rounding error

does not only depend on the choice of the rounding interval, but on other factors.

Schneeweiss et al. (2010), for example, point out the influence of the underlying

distribution of the unrounded data. Moreover, the outcomes make clear that even

those modified measurement error models with larger rounding thresholds seem to

be too overoptimistic, since in general not all responder do have the same rounding

behavior. So choosing just one rounding threshold for all units that should have a

measurement error is not realistic. Moreover, the people might also round to other

thresholds like 50, 500 or certainly will not pay attention to correct rounding rules.

Then the influence of rounding errors might probably be more noticeable, result-

ing in larger biases and MSEs. The same aspect is valid for the nonresponse error

source. Here, certain variables are chosen to have an influence on the dropout, but

in reality the situation is more complex. There is a mass of reasons to refuse an

answer in a survey. Those causes in general are not the same for all nonresponder

and moreover they are often not captured through variables which permits from

modeling the dropout process.

Consequently, there are several facts concerning this simulation approach that might

lead to overoptimistic results in situations of present survey errors, shown up through

small biases and small MSEs. In addition, it shouldn’t be forgotten that the differ-

ent error sources here are regarded separately, which clearly is not the case in real

life situations. There, all error sources of the TSE appear together which results in

even worse parameter estimation.
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But not only the results of the first part of the thesis shall be considered as overopti-

mistic, but also the performances of different missing data approaches will probably

not be this good in real life situations due to the large amount of additional infor-

mation about the dropout process that is used here in most applications. Since this

fact has already been discussed in chapter 3.3 and will also be brought up in the

final conclusions, it will not be gone into detail at this point.

102



5 Conclusion and Further Research

5 Conclusion and Further Research

Finally summarizing the findings of the thesis leads to several conclusions. First

of all, the concept of the TSE showed that survey methodology has to deal with

several different error sources affecting statistics in different ways. Obviously, it is

not possible to prevent from all those biasing effects, but the decomposition into dif-

ferent error components showed that focus should not only be set on sampling error,

which is discussed the most in survey literature. Sampling error in this application

did not bias mean estimation and hardly had an influence on regression coefficient

estimation. In contrast to that, coverage error had a remarkable impact. So did

nonresponse error in the cases of MAR and MNAR. Finally rounding error, which

has been analyzed as a special case of measurement error, yields small deviations

between the true parameter values and the corresponding estimates. With those

findings concerning the TSE on the one hand gaps in research literature can be

identified and on the other hand guidelines for users can be derived by emphasizing

the important factors that can lead to biased results. However, there is a lack in

routine measurements that could help the users to detect and deal with different

error sources especially due to the fact that different error sources are linked and

approaches for handling one error might influence the bias of other error compo-

nents. As a result of these remaining tasks in the field of TSE, until now the TSE

approach more or less remains a theoretical construct which clearly is a weakness of

the approach.

As introduced previously, one major component of the TSE approach is the nonre-

sponse error. This source of error is omnipresent, since on the one hand it arises in

nearly every survey and on the other hand unlike the other components of the TSE

it is directly visible namely through missing data. Thus, finding a way to handle

this problem is a lasting challenge for analysts, leading to the second part of the

thesis which deals exclusively with this error component and focuses on approaches

to treat missing values. The theoretical introduction and especially the application

of different missing data strategies reveals weaknesses, limitations and problems,

respectively. Most of all it showed that despite the large amount of literature con-

cerning this topic, much more research is necessary in this field, since until now

there is no gold standard method which became prevalent. Instead it showed that

for different nonresponse scenarios, other approaches performed best in terms of

smallest bias and smallest MSE.

In the case of MCAR ad-hoc approaches, based on simply ignoring the missing data,

are theoretically standing to reason and resulted in the best mean estimates com-
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pared to all other applications. For MAR and MNAR ad-hoc methods lead to biased

results, which is why other approaches should be chosen. Choosing right weights can

give better estimates and also imputing values following special schemes can result

in improved parameter estimation. Thus, for example regression imputation yields

good mean estimates especially for the MAR scenario, where no bias is received.

In contrast to that, the estimation of regression coefficients with imputed data sets

leads to dilution of statistical effects. In this regard, even multiple imputation could

not improve the outcome. All in all, the performances of imputation satisfied the

expectations only in certain cases. Maximum Likelihood Procedures ignoring the

underlying dropout process, lead to unbiased mean estimation in the case of MCAR

and MAR, but also in the MNAR scenario deviation from the true value is compar-

ative small. This confirms findings of a previous study (cp. Schafer and Graham

(2002)), stating that MAR methods might indeed also perform well in MNAR sce-

narios. A possible explanation might be the fact that dropout depends on the value

of the dependent variable itself, but other variables which partly explain the depen-

dent variable are observable. Drawing next conclusion about the resulting regression

coefficient estimates of these methods gives that they differ only little from ad-hoc

estimates. This result is equivalent to all other previously evaluated procedures. It

shows that due to missing data, the dependence structure of the variables is slacken

and consequently estimates of regression coefficients are not becoming much better

than in ad-hoc approaches, where only observed values are used. While extremely

significant or nonsignificant statistical effects remain visible, other effects are ob-

scured. So, summarizing the results on regression coefficient estimation gives the

following: With respect to the corresponding bias, ad-hoc methods for all different

regression coefficients performed in the upper midfield compared to all the other ap-

proaches. Most often weighting, FIML, Heckman SM and PMM resulted in a smaller

bias, while stochastic regression imputation has been the only imputation approach

whose biases have been comparable. All the other imputation approaches resulted

in a larger bias for the regression coefficients, independent on which nonresponse

mechanism was present. However, for a certain regression coefficient not always

the same approach performed best for the different missing mechanism scenarios.

Regarding the corresponding MSEs, this is also the case, meaning that while for a

certain regression coefficient a particular approach can result in the smallest MSE

in the case of MCAR, another approach can perform better for MAR and MNAR.

Here, no system is noticeable. However, regarding the MSE, in general ad-hoc meth-

ods, PMM and FIML result in the smallest outcomes and therefore performed best.

Yet, also the MSEs of the weighting approach and the Heckman SM usually are very
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close. In the field of imputation, stochastic regression imputation and the multiple

imputation approaches resulted in noticeably smaller MSEs than random and mean

imputation. These results showed that in the field of regression coefficient estima-

tion, all presented methods did not bring much advantages compared to the ad-hoc

approach. Therefore, future work in the field of missing data should concentrate on

parameter estimation that describe dependencies.

Last, focus of the summary is further set on modern, modelbased nonresponse meth-

ods, which are based on explicit modeling of the nonresponse process, namely Heck-

man SM and PMM. While their results of regression coefficient estimation have

already been embedded in the comparison before, focus is now set on their perfor-

mance in the field of mean estimation. Both, the Heckman SM, as well as the PMM

yield good mean estimates and their use is consequently recommended for this pur-

pose. However, their performances strongly depend on prior knowledge regarding

the dropout process which is an obvious disadvantage, since these information in

general are not given. Moreover, for an easier application, more work has to be

done with respect to the implementation of those models. Whereas there is already

a package in R that is able to fit Heckman SMs, this is not the case for PMMs.

For this reason, the application of the PMM in this thesis is limited, but further

attention should be directed to this topic in later works. Nevertheless, those two

modern approaches already have shown that there are ways, to receive good param-

eter estimates, even when data are not simply MAR. Yet, in the case of MCAR, the

application of those modelbased approaches are obviously meaningless.

However, there is no gold standard way to diagnose the underlying missing data

mechanism which is without a doubt one of the biggest problems in the field of

nonresponse error. Research has already found out several application examples,

where ignorability is or is not known to hold (cp. Schafer (1997)), but it should def-

initely be spend more effort on this topic in following works. This thesis illustrates

which group of method is suitable for a certain nonresponse mechanism, but it is

unprofitable, when the underlying dropout process is not known. Thus, in general

assumptions are made, in order to be able to use some of these methods, even though

those fundamental assumptions can neither be agreed with, nor be refused. This is

the point, where sensitivity analysis comes in and performances are evaluated, when

assumptions are not valid or made differently. In this thesis partial differentiation

as a new approach to deal with missing data is explained, but due to reasons of the

thesis’ scope, it is not applied. Consequently, in this field future work is desirable,

since it is a quite new approach and not much literature about the application is

published.

105



5 Conclusion and Further Research

So all in all, this thesis pointed out several crucial points of survey statistics by

simulating a data set that is comparable to survey data, but it also presented ap-

proaches to solve these problems, while embedding all this in a field of several open

questions and further need for research.
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A Mathematical Derivations

Reformulating definitions of the MSE:

MSE(θ̂) = E(θ̂ − θ)2

= E[(θ̂ − E(θ̂) + E(θ̂) − θ)2]

= E[(θ̂ − E(θ̂))2 + 2((θ̂ − E(θ̂))(E(θ̂) − θ)) + (E(θ̂) − θ)2]

= E[(θ̂ − E(θ̂))2] + 2E[(θ̂ − E(θ̂))(E(θ̂) − θ)] + E[(E(θ̂) − θ)2]

= E[(θ̂ − E(θ̂))2] + 2(E(θ̂) − θ)(E(θ̂) − E[θ̂]) + E[(E(θ̂) − θ)2]

= E[(θ̂ − E(θ̂))2] + 2(E(θ̂) − θ)E(θ̂ − E(θ̂)) + E[(E(θ̂) − θ)2]

= E[(θ̂ − E(θ̂))2] + E[(E(θ̂) − θ)2]

= Bias(θ̂)2 + Var(θ̂)

Variance underestimation in the presence of mean imputation:

Let Xj be the variable of interest with observations xij. xij is missing for i =

1, ..., m and observed for i = (m + 1), ..., n. The corresponding sampling variance is

calculated by

σ2 =
1

n − m − 1

n∑

i=m+1

(xij − x̄j)
2 with x̄j =

1

n − m

n∑

i=m+1

xij

Applying unconditional mean imputation for all m missing values of Xj gives xij =

x̄j for i = 1, ..., m. Then the corresponding sampling variance is calculated by

σ2 =
1

n − 1

n∑

i=1

(xij − x̄j)
2

=
1

n − 1





m∑

i=1

(xij − x̄j)
2 +

n∑

i=m+1

(xij − x̄j)
2





=
1

n − 1





m∑

i=1

(x̄j − x̄j)
2 +

n∑

i=m+1

(xij − x̄j)
2





=
1

n − 1

n∑

i=m+1

(xij − x̄j)
2

Then σ2 in the case of conditional mean imputation is underestimated by
n − m − 1

n − 1
.
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Derivation of casewise likelihood function in context of FIML estimation:

Let X be a k-dimensional random variable, being normally distributed with expected

value vector µ and covariance matrix Σ. The corresponding density function then

is given by

f(x) =
1

√

(2π)k|Σ|
exp −1

2
(x − µ)Σ−1(x − µ)T .

Taking (−2) times the logarithm of the probability density function gives

(−2) ln(f(x)) = − 2 ln




1

√

(2π)k|Σ|
exp −1

2
(x − µ)Σ−1(x − µ)T





= − 2 ln((2π)− k

2 ) − 2 ln(|Σ|)− 1
2 − 2 ln

[

exp −1

2
(x − µ)Σ−1(x − µ)T

]

=k ln(2π) + ln(|Σ|) + (x − µ)Σ−1(x − µ)T

Derivating basic formula of EM algorithm:

Let the starting point be the rearranged decomposition of the complete-data log-

likelihood:

ℓ(θ | Xobs) = ℓ(θ | X) − ln f(Xmis | Xobs, θ)

Taking expectation with respect to Xmis given Xobs and the actual parameter esti-

mate θ(t) on both sides of the equation results in

∫

ℓ(θ | Xobs) · f(Xmis | Xobs, θ(t))dXmis =
∫

ℓ(θ | X) · f(Xmis | Xobs, θ(t))dXmis

︸ ︷︷ ︸

Q(θ,θ(t))

−

−
∫

ln f(Xmis | Xobs, θ) · f(Xmis | Xobs, θ(t))dXmis

︸ ︷︷ ︸

H(θ,θ(t))

∫

ℓ(θ | Xobs) · f(Xmis | Xobs, θ(t))dXmis

︸ ︷︷ ︸

= ℓ(θ | Xobs) · ∫

f(Xmis | Xobs, θ(t))dXmis

= ℓ(θ | Xobs) · 1

= ℓ(θ | Xobs)

= Q(θ, θ(t)) − H(θ, θ(t))

114



A Mathematical Derivations

Derivating the inverse Mills Ratio:

Normal

τ µ y

Truncated

τ µ y|y > τ

Figure A.1: Normal distributed and truncated variable (graphical representation
based on Stocker (2016))

Let y ∼ N(µ, σ2), then

f(y | µ, σ) = 1
σ
θ




µ − y

σ



, P(y ≤ τ) = Θ




y − µ

σ



 and P(y > τ) = 1 − Θ




y − µ

σ





(cp. left plot of figure (A.1))

Let y | y > τ , then area under curve still has to be 1 and consequently has to be

adapted by f(y | y > τ, µ, σ) =
f(y | µ, σ)

P(y > τ)
=

1
σ
θ




y − µ

σ





1 − Θ




y − µ

σ





Taking expectations gives:

E(y | y > τ, µ, σ) = µ + σ

θ




µ − τ

σ





Θ




µ − τ

σ





︸ ︷︷ ︸

inverse Mills Ratio λ
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C Tables

age income
Min. 18.00 132.00
1st Qu. 38.00 698.80
Median 50.00 1155.00
Mean 50.15 1493.00
3rd Qu. 61.00 1934.00
Max. 89.00 10904.00

Table C.1: Summaries of metric variables in the simulated data set

n %
gender male 1746 0.499

female 1754 0.501
education 1 no graduation 81 0.023

volks-, hauptschule 992 0.283
mittlere reife 1114 0.318
fachhochschulreife 257 0.073
hochschulreife 1019 0.291
other graduation 37 0.011

professional activity full-time 1483 0.424
half-time 410 0.117
part-time 243 0.069
not employed 1364 0.390

family status married living together 1780 0.509
married living apart 78 0.022
widowed 257 0.073
divorced 317 0.091
single 1068 0.305

election intention CDU-CSU 1013 0.289
SPD 773 0.221
die gruenen 479 0.137
die linke 359 0.103
extreme right-wing 238 0.068
FDP 161 0.046
Other Party 127 0.036
would not vote 350 0.100

willingness to take part in the interview very easy 1116 0.319
rather easy 1524 0.435
rather difficult 674 0.193
very difficult 186 0.053

Table C.2: Absolute and relative frequencies of dichotomous and categorical vari-
ables in the simulated data set

1Due to the specific school system in Germany the different Graduations will not be translated
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Categories2 β Coefficients Standard Error P-Value
intercept 7.0070608 0.1076221 0.0000000000
age 0.0113721 0.0007065 0.0000000000
female −0.3783041 0.0180399 0.0000000000
no graduation 0.2712025 0.0984070 0.0058831082
volks-, hauptschule −0.2259655 0.0830450 0.0065408724
mittlere reife 0.2098522 0.0830075 0.0115117133
fachhochschulreife −0.0112989 0.0873593 0.8970973124
hochschulreife 0.0322277 0.0832688 0.6987555776
half-time −0.4575121 0.0291291 0.0000000000
part-time −0.9369052 0.0345564 0.0000000000
not employed −0.7984611 0.0194205 0.0000000000
married living together 0.0923461 0.0300279 0.0021189162
married living apart 0.3803864 0.0622169 0.0000000000
widowed −0.0087343 0.0431919 0.8397563199
single 0.1244900 0.0339140 0.0002454705
CDU-CSU −0.0250408 0.0462772 0.5884698278
SPD −0.0133277 0.0470551 0.7770122356
die gruenen 0.0870818 0.0491068 0.0762638735
die linke 0.0768770 0.0507520 0.1299242680
extreme right-wing 0.0074006 0.0540235 0.8910480181
FDP −0.1541756 0.0583351 0.0082560314
would not vote −0.1315889 0.0512836 0.0103321856

Table C.3: Regression coefficients of the independent variables in the simulated data
set

age income
Min. 18.00 37.00
1st Qu. 35.00 800.80
Median 50.00 1300.00
Mean 49.44 1545.00
3rd Qu. 62.00 2000.00
Max. 91.00 60000.00

Table C.4: Summaries of the metric variables in the Allbus 2014 data set

2reference categories: male, other graduation, full-time, divorced, Other Party
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n %
gender male 1762 0.508

female 1709 0.492
education 3 no graduation 64 0.018

volks-, hauptschule 974 0.281
mittlere reife 1144 0.330
fachhochschulreife 270 0.078
hochschulreife 975 0.281
other graduation 39 0.011

professional activity full-time 1571 0.453
half-time 350 0.101
part-time 208 0.060
not employed 1339 0.386

family status married living together 1934 0.559
married living apart 58 0.017
widowed 224 0.065
divorced 272 0.079
single 973 0.281

election intention CDU-CSU 862 0.300
SPD 663 0.230
die gruenen 386 0.134
die linke 281 0.098
extreme right-wing 190 0.066
FDP 119 0.041
Other Party 99 0.034
would not vote 278 0.097

willingness to take part in the interview very easy 1094 0.315
rather easy 1541 0.444
rather difficult 654 0.188
very difficult 182 0.052

Table C.5: Absolute and relative frequencies of dichotomous and categorical vari-
ables in the Allbus 2014 data set

n = 500 n = 1000 n = 2000 n = 3000

β0 7.0070608279 7.0070608279 7.0070608279 7.0070608279

E(β̂0) 7.0188242414 7.0020441576 7.0242113040 7.0106541436

Bias(β̂0) 0.0117634135 -0.0050166703 0.0171504762 0.0035933157

Biasrel(β̂0) 0.0016787943 -0.0007159450 0.0024475992 0.0005128135

Var(β̂0) 0.0824542464 0.0290291949 0.0095546657 0.0019973929

MSE(β̂0) 0.0825926243 0.0290543619 0.0098488046 0.0020103048

βage 0.0113720951 0.0113720951 0.0113720951 0.0113720951

E(β̂age) 0.0113665651 0.0113141737 0.0114217487 0.0113556442

Bias(β̂age) -0.0000055300 -0.0000579215 0.0000496535 -0.0000164509

Biasrel(β̂age) -0.0004862778 -0.0050932967 0.0043662621 -0.0014466016

Var(β̂age) 0.0000025652 0.0000015655 0.0000004694 0.0000000998

MSE(β̂age) 0.0000025652 0.0000015689 0.0000004719 0.0000001000

βfemale -0.3783040793 -0.3783040793 -0.3783040793 -0.3783040793

3Due to the specific school system in Germany the different Graduations will not be translated
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E(β̂female) -0.3725534172 -0.3774336202 -0.3813361226 -0.3777145687

Bias(β̂female) 0.0057506620 0.0008704590 -0.0030320434 0.0005895106

Biasrel(β̂female) 0.0152011632 0.0023009507 -0.0080148312 0.0015582983

Var(β̂female) 0.0021166700 0.0007933948 0.0002371454 0.0000416721

MSE(β̂female) 0.0021497401 0.0007941525 0.0002463387 0.0000420196

βno graduation 0.2712024535 0.2712024535 0.2712024535 0.2712024535

E(β̂no graduation) 0.2667692152 0.2482611756 0.2484705686 0.2705662344

Bias(β̂no graduation) -0.0044332383 -0.0229412778 -0.0227318849 -0.0006362191

Biasrel(β̂no graduation) -0.0163466010 -0.0845909672 -0.0838188762 -0.0023459194

Var(β̂no graduation) 0.0740871331 0.0360337091 0.0100320007 0.0019232689

MSE(β̂no graduation) 0.0741067867 0.0365600113 0.0105487393 0.0019236736

βvolks-, hauptschule -0.2259655461 -0.2259655461 -0.2259655461 -0.2259655461

E(β̂volks-, hauptschule) -0.2401763251 -0.2379387108 -0.2482590915 -0.2264865895

Bias(β̂volks-, hauptschule) -0.0142107790 -0.0119731647 -0.0222935454 -0.0005210433

Biasrel(β̂volks-, hauptschule) -0.0628891404 -0.0529866827 -0.0986590466 -0.0023058530

Var(β̂volks-, hauptschule) 0.0599933814 0.0201714650 0.0070767878 0.0012519858

MSE(β̂volks-, hauptschule) 0.0601953276 0.0203148217 0.0075737900 0.0012522573

βmittlere reife 0.2098521677 0.2098521677 0.2098521677 0.2098521677

E(β̂mittlere reife) 0.1921316063 0.1985470586 0.1912779493 0.2083843601

Bias(β̂mittlere reife) -0.0177205615 -0.0113051092 -0.0185742184 -0.0014678077

Biasrel(β̂mittlere reife) -0.0844430708 -0.0538717770 -0.0885109675 -0.0069944841

Var(β̂mittlere reife) 0.0646062556 0.0218427094 0.0073653740 0.0012599010

MSE(β̂mittlere reife) 0.0649202739 0.0219705149 0.0077103756 0.0012620555

βfachhochschulreife -0.0112989169 -0.0112989169 -0.0112989169 -0.0112989169

E(β̂fachhochschulreife) -0.0261523086 -0.0137676807 -0.0269136641 -0.0109995069

Bias(β̂fachhochschulreife) -0.0148533917 -0.0024687638 -0.0156147472 0.0002994100

Biasrel(β̂fachhochschulreife) -1.3145854479 -0.2184956145 -1.3819685012 0.0264989974

Var(β̂fachhochschulreife) 0.0691581168 0.0229086837 0.0076033194 0.0012431210

MSE(β̂fachhochschulreife) 0.0693787401 0.0229147785 0.0078471397 0.0012432106

βhochschulreife 0.0322277454 0.0322277454 0.0322277454 0.0322277454

E(β̂hochschulreife) 0.0132570382 0.0198921241 0.0155041277 0.0311086429

Bias(β̂hochschulreife) -0.0189707071 -0.0123356213 -0.0167236176 -0.0011191024

Biasrel(β̂hochschulreife) -0.5886451853 -0.3827640175 -0.5189198756 -0.0347248126

Var(β̂hochschulreife) 0.0631801248 0.0223943216 0.0074832986 0.0014152285

MSE(β̂hochschulreife) 0.0635400125 0.0225464891 0.0077629780 0.0014164809

βhalf-time -0.4575120691 -0.4575120691 -0.4575120691 -0.4575120691

E(β̂half-time) -0.4635059420 -0.4618865270 -0.4564965353 -0.4585660256

Bias(β̂half-time) -0.0059938730 -0.0043744579 0.0010155338 -0.0010539566

Biasrel(β̂half-time) -0.0131010161 -0.0095614044 0.0022196874 -0.0023036694

Var(β̂half-time) 0.0043138652 0.0021968697 0.0006481069 0.0001413350

MSE(β̂half-time) 0.0043497917 0.0022160056 0.0006491382 0.0001424458

βpart-time -0.9369052158 -0.9369052158 -0.9369052158 -0.9369052158

E(β̂part-time) -0.9217667994 -0.9351950712 -0.9330820608 -0.9346102285

Bias(β̂part-time) 0.0151384165 0.0017101446 0.0038231550 0.0022949874
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Biasrel(β̂part-time) 0.0161578954 0.0018253123 0.0040806209 0.0024495406

Var(β̂part-time) 0.0066663949 0.0026538802 0.0010475571 0.0002074612

MSE(β̂part-time) 0.0068955666 0.0026568048 0.0010621736 0.0002127282

βnot employed -0.7984611199 -0.7984611199 -0.7984611199 -0.7984611199

E(β̂not employed) -0.8015241987 -0.8011926588 -0.7965262807 -0.7975925442

Bias(β̂not employed) -0.0030630789 -0.0027315390 0.0019348392 0.0008685757

Biasrel(β̂not employed) -0.0038362279 -0.0034210043 0.0024232103 0.0010878122

Var(β̂not employed) 0.0017426613 0.0009005808 0.0002659352 0.0000702024

MSE(β̂not employed) 0.0017520438 0.0009080421 0.0002696788 0.0000709569

βmarried living together 0.0923461105 0.0923461105 0.0923461105 0.0923461105

E(β̂married living together) 0.0920676192 0.0967508619 0.0908529327 0.0921221804

Bias(β̂married living together) -0.0002784913 0.0044047514 -0.0014931778 -0.0002239301

Biasrel(β̂married living together) -0.0030157337 0.0476982879 -0.0161693630 -0.0024249001

Var(β̂married living together) 0.0054620172 0.0024183112 0.0006143188 0.0001582624

MSE(β̂married living together) 0.0054620948 0.0024377131 0.0006165484 0.0001583126

βmarried living apart 0.3803863918 0.3803863918 0.3803863918 0.3803863918

E(β̂married living apart) 0.3681931929 0.3880023402 0.3736138009 0.3857459803

Bias(β̂married living apart) -0.0121931989 0.0076159484 -0.0067725908 0.0053595885

Biasrel(β̂married living apart) -0.0320547716 0.0200216112 -0.0178045035 0.0140898534

Var(β̂married living apart) 0.0357831874 0.0114628438 0.0032180375 0.0008689526

MSE(β̂married living apart) 0.0359318615 0.0115208465 0.0032639055 0.0008976778

βwidowed -0.0087342802 -0.0087342802 -0.0087342802 -0.0087342802

E(β̂widowed) -0.0151447621 -0.0037141123 -0.0087044185 -0.0085167130

Bias(β̂widowed) -0.0064104819 0.0050201679 0.0000298617 0.0002175672

Biasrel(β̂widowed) -0.7339450746 0.5747660700 0.0034189064 0.0249095767

Var(β̂widowed) 0.0118443623 0.0047536147 0.0015703975 0.0003322459

MSE(β̂widowed) 0.0118854566 0.0047788168 0.0015703984 0.0003322932

βsingle 0.1244899786 0.1244899786 0.1244899786 0.1244899786

E(β̂single) 0.1113918121 0.1281221820 0.1221197386 0.1244998525

Bias(β̂single) -0.0130981665 0.0036322033 -0.0023702400 0.0000098739

Biasrel(β̂single) -0.1052146258 0.0291766726 -0.0190396050 0.0000793148

Var(β̂single) 0.0061412553 0.0026393525 0.0008664834 0.0002047678

MSE(β̂single) 0.0063128172 0.0026525454 0.0008721015 0.0002047679

βCDU-CSU -0.0250408465 -0.0250408465 -0.0250408465 -0.0250408465

E(β̂CDU-CSU) -0.0136398494 -0.0077270092 -0.0237686035 -0.0271556921

Bias(β̂CDU-CSU) 0.0114009971 0.0173138373 0.0012722430 -0.0021148456

Biasrel(β̂CDU-CSU) 0.4552959930 0.6914238036 0.0508067091 -0.0844558367

Var(β̂CDU-CSU) 0.0094649706 0.0045630179 0.0012392035 0.0002950376

MSE(β̂CDU-CSU) 0.0095949533 0.0048627868 0.0012408221 0.0002995102

βSPD -0.0133277196 -0.0133277196 -0.0133277196 -0.0133277196

E(β̂SPD) -0.0042791273 0.0008088493 -0.0116774568 -0.0153175330

Bias(β̂SPD) 0.0090485924 0.0141365690 0.0016502628 -0.0019898133

Biasrel(β̂SPD) 0.6789302758 1.0606892509 0.1238218442 -0.1492988600

Var(β̂SPD) 0.0116384237 0.0049884448 0.0013911627 0.0002534642
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MSE(β̂SPD) 0.0117203007 0.0051882874 0.0013938861 0.0002574235

βdie gruenen 0.0870817819 0.0870817819 0.0870817819 0.0870817819

E(β̂die gruenen) 0.0886217867 0.0992888002 0.0887527063 0.0852647617

Bias(β̂die gruenen) 0.0015400048 0.0122070183 0.0016709244 -0.0018170202

Biasrel(β̂die gruenen) 0.0176845804 0.1401787842 0.0191879908 -0.0208656760

Var(β̂die gruenen) 0.0097914855 0.0052945022 0.0017695885 0.0003070267

MSE(β̂die gruenen) 0.0097938571 0.0054435135 0.0017723805 0.0003103283

βdie linke 0.0768770122 0.0768770122 0.0768770122 0.0768770122

E(β̂die linke) 0.0854331815 0.0972642360 0.0730106325 0.0740689852

Bias(β̂die linke) 0.0085561692 0.0203872238 -0.0038663797 -0.0028080271

Biasrel(β̂die linke) 0.1112968492 0.2651927177 -0.0502930539 -0.0365262253

Var(β̂die linke) 0.0109641478 0.0064582175 0.0017362743 0.0003051704

MSE(β̂die linke) 0.0110373558 0.0068738564 0.0017512232 0.0003130554

βextreme right-wing 0.0074005875 0.0074005875 0.0074005875 0.0074005875

E(β̂extreme right-wing) 0.0104302379 0.0292413250 0.0063154100 0.0039102728

Bias(β̂extreme right-wing) 0.0030296505 0.0218407375 -0.0010851775 -0.0034903146

Biasrel(β̂extreme right-wing) 0.4093797246 2.9512167302 -0.1466339638 -0.4716267004

Var(β̂extreme right-wing) 0.0149667918 0.0065513955 0.0019074206 0.0004066915

MSE(β̂extreme right-wing) 0.0149759706 0.0070284133 0.0019085982 0.0004188738

βFDP -0.1541756102 -0.1541756102 -0.1541756102 -0.1541756102

E(β̂FDP) -0.1533585804 -0.1404249163 -0.1525769637 -0.1565240139

Bias(β̂FDP) 0.0008170298 0.0137506939 0.0015986465 -0.0023484037

Biasrel(β̂FDP) 0.0052993455 0.0891885162 0.0103689975 -0.0152320055

Var(β̂FDP) 0.0157989041 0.0077098198 0.0022374883 0.0004079139

MSE(β̂FDP) 0.0157995717 0.0078989014 0.0022400439 0.0004134289

βwould not vote -0.1315889085 -0.1315889085 -0.1315889085 -0.1315889085

E(β̂would not vote) -0.1271683464 -0.1074205165 -0.1272127137 -0.1348080681

Bias(β̂would not vote) 0.0044205621 0.0241683921 0.0043761948 -0.0032191596

Biasrel(β̂would not vote) 0.0335937287 0.1836658752 0.0332565627 -0.0244637606

Var(β̂would not vote) 0.0140566303 0.0055773995 0.0021707360 0.0003321823

MSE(β̂would not vote) 0.0140761716 0.0061615106 0.0021898871 0.0003425453

Table C.6: Expected value, variance, bias and MSE of regression coefficient esti-
mates in order to quantify sampling error
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Categories p-value p-value p-Value p-Value p-Value
(true) (n = 500) (n = 1000) (n = 2000) (n = 3000)

intercept 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000
age 0.0000000000 0.0000133476 0.0000000000 0.0000000000 0.0000000000
female 0.0000000000 0.0000000124 0.0000000000 0.0000000000 0.0000000000
fachhochschulreife 0.8970973124 0.4846414563 0.5231084013 0.5852652096 0.7722003381
hochschulreife 0.6987555776 0.4845411493 0.5212755229 0.5873354924 0.6837340211
mittlere reife 0.0115117133 0.3974786005 0.3086938672 0.1650586097 0.0307352211
no graduation 0.0058831082 0.3724683448 0.2929106762 0.1230947617 0.0186274942
volks-, hauptschule 0.0065408724 0.3653650084 0.2367214013 0.0731967852 0.0198723856
half-time 0.0000000000 0.0000012303 0.0000000000 0.0000000000 0.0000000000
part-time 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000
not employed 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000
single 0.0002454705 0.3031055156 0.1154705119 0.0240584382 0.0016810460
married living apart 0.0000000011 0.1298902272 0.0185224655 0.0003474806 0.0000001691
married living together 0.0021189162 0.3271530448 0.1734636773 0.0551254078 0.0091309923
widowed 0.8397563199 0.5181479416 0.5466028711 0.6142017013 0.7487346801
CDU-CSU 0.5884698278 0.5773698947 0.5805196546 0.5966467209 0.5962387988
die gruenen 0.0762638735 0.4502705721 0.3645146319 0.2465045381 0.1268236635
die linke 0.1299242680 0.4676528694 0.3413259703 0.3478680914 0.1979834927
FDP 0.0082560314 0.3873638288 0.2867143285 0.0923837776 0.0183194722
extreme right-wing 0.8910480181 0.5336364888 0.5688526553 0.6397568897 0.7806511905
SPD 0.7770122356 0.5627509510 0.5699940150 0.6424052852 0.7245567738
would not vote 0.0103321856 0.4310941703 0.3363123418 0.1190782728 0.0213780100

Table C.7: Comparison of p-values of regression coefficients of different samples

n = 500 n = 1000 n = 2000 n = 3000

β0 7.0070608279 7.0070608279 7.0070608279 7.0070608279

E(β̂0) 7.1154379263 7.0801986559 7.0755887289 7.0399111779

Bias(β̂0) 0.1083770984 0.0731378281 0.0685279010 0.0328503500

Biasrel(β̂0) 0.0154668414 0.0104377327 0.0097798353 0.0046881782

Var(β̂0) 0.1629392190 0.0706184277 0.0194462066 0.0032271841

MSE(β̂0) 0.1746848145 0.0759675696 0.0241422798 0.0043063296

βAge 0.0113720951 0.0113720951 0.0113720951 0.0113720951

E(β̂Age) 0.0117635838 0.0117257881 0.0117127652 0.0115600468

Bias(β̂Age) 0.0003914887 0.0003536930 0.0003406701 0.0001879516

Biasrel(β̂Age) 0.0344253832 0.0311018349 0.0299566712 0.0165274420

Var(β̂Age) 0.0000030547 0.0000013244 0.0000003802 0.0000000545

MSE(β̂Age) 0.0000032080 0.0000014495 0.0000004963 0.0000000899

βFemale -0.3783040793 -0.3783040793 -0.3783040793 -0.3783040793

E(β̂Female) -0.3909264185 -0.3878612432 -0.3841711729 -0.3809456803

Bias(β̂Female) -0.0126223392 -0.0095571639 -0.0058670936 -0.0026416010

Biasrel(β̂Female) -0.0333655910 -0.0252631796 -0.0155089357 -0.0069827453

Var(β̂Female) 0.0029370984 0.0009905647 0.0002482561 0.0000548808

MSE(β̂Female) 0.0030964218 0.0010819041 0.0002826789 0.0000618589

βNo Graduation 0.2712024535 0.2712024535 0.2712024535 0.2712024535

E(β̂No Graduation) 0.2041747407 0.2072411454 0.2239710333 0.2359776345

Bias(β̂No Graduation) -0.0670277128 -0.0639613081 -0.0472314201 -0.0352248189
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Biasrel(β̂No Graduation) -0.2471500973 -0.2358433977 -0.1741555784 -0.1298838506

Var(β̂No Graduation) 0.2130278055 0.0913305805 0.0211148732 0.0038252367

MSE(β̂No Graduation) 0.2175205198 0.0954216295 0.0233456802 0.0050660246

βVolks-, Hauptschule -0.2259655461 -0.2259655461 -0.2259655461 -0.2259655461

E(β̂Volks-, Hauptschule) -0.2711525776 -0.2604853393 -0.2647295971 -0.2529969353

Bias(β̂Volks-, Hauptschule) -0.0451870315 -0.0345197932 -0.0387640510 -0.0270313892

Biasrel(β̂Volks-, Hauptschule) -0.1999731031 -0.1527657371 -0.1715485023 -0.1196261539

Var(β̂Volks-, Hauptschule) 0.1399360740 0.0679637153 0.0143599491 0.0024680627

MSE(β̂Volks-, Hauptschule) 0.1419779418 0.0691553314 0.0158626008 0.0031987587

βMittlere Reife 0.2098521677 0.2098521677 0.2098521677 0.2098521677

E(β̂Mittlere Reife) 0.1558676143 0.1770297149 0.1708281882 0.1865496598

Bias(β̂Mittlere Reife) -0.0539845535 -0.0328224529 -0.0390239795 -0.0233025079

Biasrel(β̂Mittlere Reife) -0.2572503970 -0.1564074998 -0.1859593823 -0.1110424932

Var(β̂Mittlere Reife) 0.1299092479 0.0644033767 0.0148165139 0.0025691219

MSE(β̂Mittlere Reife) 0.1328235799 0.0654806901 0.0163393849 0.0031121287

βFachhochschulreife -0.0112989169 -0.0112989169 -0.0112989169 -0.0112989169

E(β̂Fachhochschulreife) -0.0654172855 -0.0500391696 -0.0553047500 -0.0390041912

Bias(β̂Fachhochschulreife) -0.0541183686 -0.0387402527 -0.0440058331 -0.0277052743

Biasrel(β̂Fachhochschulreife) -4.7896952532 -3.4286695897 -3.8946948242 -2.4520292174

Var(β̂Fachhochschulreife) 0.1354824235 0.0658343444 0.0143433155 0.0025044716

MSE(β̂Fachhochschulreife) 0.1384112213 0.0673351515 0.0162798288 0.0032720538

βHochschulreife 0.0322277454 0.0322277454 0.0322277454 0.0322277454

E(β̂Hochschulreife) -0.0436979950 -0.0179163771 -0.0174262311 0.0035657540

Bias(β̂Hochschulreife) -0.0759257404 -0.0501441224 -0.0496539765 -0.0286619914

Biasrel(β̂Hochschulreife) -2.3559122595 -1.5559302049 -1.5407213860 -0.8893576354

Var(β̂Hochschulreife) 0.1324042309 0.0634406269 0.0142899246 0.0025508383

MSE(β̂Hochschulreife) 0.1381689489 0.0659550599 0.0167554420 0.0033723480

βhalf-time -0.4575120691 -0.4575120691 -0.4575120691 -0.4575120691

E(β̂half-time) -0.4506389082 -0.4552266323 -0.4572321058 -0.4554729567

Bias(β̂half-time) 0.0068731608 0.0022854368 0.0002799632 0.0020391123

Biasrel(β̂half-time) 0.0150229061 0.0049953584 0.0006119254 0.0044569585

Var(β̂half-time) 0.0029624269 0.0010298490 0.0003175442 0.0000424009

MSE(β̂half-time) 0.0030096672 0.0010350722 0.0003176226 0.0000465588

βpart-time -0.9369052158 -0.9369052158 -0.9369052158 -0.9369052158

E(β̂part-time) -0.9463786577 -0.9435444489 -0.9496333357 -0.9408212044

Bias(β̂part-time) -0.0094734419 -0.0066392330 -0.0127281198 -0.0039159885

Biasrel(β̂part-time) -0.0101114197 -0.0070863444 -0.0135852802 -0.0041797062

Var(β̂part-time) 0.0058894577 0.0020289291 0.0004025726 0.0001273966

MSE(β̂part-time) 0.0059792038 0.0020730085 0.0005645777 0.0001427316

βnot employed -0.7984611199 -0.7984611199 -0.7984611199 -0.7984611199

E(β̂not employed) -0.7880753230 -0.7888406589 -0.7930340586 -0.7932251606

Bias(β̂not employed) 0.0103857969 0.0096204610 0.0054270613 0.0052359593

Biasrel(β̂not employed) 0.0130072669 0.0120487532 0.0067969012 0.0065575633

Var(β̂not employed) 0.0019497542 0.0007154160 0.0002048933 0.0000503758
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MSE(β̂not employed) 0.0020576189 0.0008079692 0.0002343462 0.0000777910

βmarried living together 0.0923461105 0.0923461105 0.0923461105 0.09234611105

E(β̂married living together) 0.0566766426 0.0579132093 0.0711183792 0.0847817048

Bias(β̂married living together) -0.0356694680 -0.0344329012 -0.0212277314 -0.0075644057

Biasrel(β̂married living together) -0.3862584766 -0.3728679101 -0.2298714179 -0.0819136366

Var(β̂married living together) 0.0046671366 0.0015574891 0.0004044986 0.0001025380

MSE(β̂married living together) 0.0059394476 0.0027431138 0.0008551152 0.0001597583

βmarried living apart 0.3803863918 0.3803863918 0.3803863918 0.3803863918

E(β̂married living apart) 0.3247103622 0.3091225094 0.3261395349 0.3668601023

Bias(β̂married living apart) -0.0556760296 -0.0712638823 -0.0542468569 -0.0135262895

Biasrel(β̂married living apart) -0.1463670384 -0.1873460352 -0.1426098779 -0.0355593412

Var(β̂married living apart) 0.0283246760 0.0108040363 0.0021455458 0.0003498134

MSE(β̂married living apart) 0.0314244963 0.0158825772 0.0050882673 0.0005327739

βwidowed -0.0087342802 -0.0087342802 -0.0087342802 -0.0087342802

E(β̂widowed) -0.0618879829 -0.0535112932 -0.0422748173 -0.0213010153

Bias(β̂widowed) -0.0531537027 -0.0447770130 -0.0335405371 -0.0125667351

Biasrel(β̂widowed) -6.0856420339 -5.1265830710 -3.8401031802 -1.4387831412

Var(β̂widowed) 0.0085802491 0.0045946576 0.0010508667 0.0001783559

MSE(β̂widowed) 0.0114055652 0.0065996384 0.0021758343 0.0003362787

βsingle 0.1244899786 0.1244899786 0.1244899786 0.1244899786

E(β̂single) 0.0924260433 0.0910865296 0.1069843653 0.1230883028

Bias(β̂single) -0.0320639354 -0.0334034490 -0.0175056134 -0.0014016758

Biasrel(β̂single) -0.2575623815 -0.2683223935 -0.1406186552 -0.0112593466

Var(β̂single) 0.0056518620 0.0019645839 0.0006703066 0.0001413639

MSE(β̂single) 0.0066799580 0.0030803743 0.0009767531 0.0001433286

βCDU-CSU -0.0250408465 -0.0250408465 -0.0250408465 -0.0250408465

E(β̂CDU-CSU) -0.0482096328 -0.0355994707 -0.0421670019 -0.0350611259

Bias(β̂CDU-CSU) -0.0231687863 -0.0105586242 -0.0171261555 -0.0100202794

Biasrel(β̂CDU-CSU) -0.9252397398 -0.4216560402 -0.6839287751 -0.4001573738

Var(β̂CDU-CSU) 0.0081771019 0.0033155843 0.0011561434 0.0003079281

MSE(β̂CDU-CSU) 0.0087138946 0.0034270689 0.0014494486 0.0004083341

βSPD -0.0133277166 -0.0133277196 -0.0133277196 -0.0133277196

E(β̂SPD) -0.0349140965 -0.0198381719 -0.0274502355 -0.0196215408

Bias(β̂SPD) -0.0215863769 -0.0065104522 -0.0141225158 -0.0062938212

Biasrel(β̂SPD) -1.6196601877 -0.4884895839 -1.0596348223 -0.4722354133

Var(β̂SPD) 0.0094781352 0.0039399756 0.0012287754 0.0003702036

MSE(β̂SPD) 0.0099441068 0.0039823616 0.0014282208 0.0004098157

βDie Gruenen 0.0870817819 0.0870817819 0.0870817819 0.0870817819

E(β̂Die Gruenen) 0.0466039401 0.0674736227 0.0619250403 0.0756031311

Bias(β̂Die Gruenen) -0.0404778418 -0.0196081592 -0.0251567416 -0.0114786508

Biasrel(β̂Die Gruenen) -0.4648256027 -0.2251694765 -0.2888863904 -0.1318146061

Var(β̂Die Gruenen) 0.0080156577 0.0040112863 0.0011584808 0.0003473714

MSE(β̂Die Gruenen) 0.0096541134 0.0043957662 0.0017913425 0.0004791308

βDie Linke 0.0768770122 0.0768770122 0.0768770122 0.0768770122
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E(β̂Die Linke) 0.0341241782 0.0526020173 0.0504614260 0.0644332085

Bias(β̂Die Linke) -0.0427528341 -0.0242749949 -0.0264155862 -0.0124438038

Biasrel(β̂Die Linke) -0.5561198701 -0.3157640260 -0.3436083872 -0.1618663813

Var(β̂Die Linke) 0.0110602866 0.0039829128 0.0014641559 0.0003888114

MSE(β̂Die Linke) 0.0128880915 0.0045721882 0.0021619391 0.0005436597

βExtreme Right-Wing 0.0074005875 0.0074005875 0.0074005875 0.0074005875

E(β̂Extreme Right-Wing) 0.0010846376 0.0128964735 -0.0066442158 -0.0103847410

Bias(β̂Extreme Right-Wing) -0.0063159498 0.0054958860 -0.0140448032 -0.0177853285

Biasrel(β̂Extreme Right-Wing) -0.8534389804 0.7426283442 -1.8977957225 -2.4032319835

Var(β̂Extreme Right-Wing) 0.0145233979 0.0058199623 0.0014233644 0.0004314324

MSE(β̂Extreme Right-Wing) 0.0145632891 0.0058501670 0.0016206209 0.0007477504

βFDP -0.1541756102 -0.1541756102 -0.1541756102 -0.1541756102

E(β̂FDP) -0.1956125463 -0.1799309386 -0.1777507777 -0.1606059822

Bias(β̂FDP) -0.0414369361 -0.0257553284 -0.0235751674 -0.0064303720

Biasrel(β̂FDP) -0.2687645344 -0.1670518986 -0.1529111343 -0.0417081013

Var(β̂FDP) 0.0163115187 0.0070842518 0.0020469777 0.0005364632

MSE(β̂FDP) 0.0180285383 0.0077475888 0.0026027662 0.0005778129

βWould not vote -0.1315889085 -0.1315889085 -0.1315889085 -0.1315889085

E(β̂Would not vote) -0.1744103120 -0.1549665057 -0.1622630339 -0.1454320909

Bias(β̂Would not vote) -0.0428214035 -0.0233775972 -0.0306741253 -0.0138431824

Biasrel(β̂Would not vote) -0.3254180305 -0.1776562889 -0.2331057054 -0.1052002218

Var(β̂Would not vote) 0.0121725903 0.0042653210 0.0015900656 0.0004180957

MSE(β̂Would not vote) 0.0140062628 0.0048118330 0.0025309676 0.0006097294

Table C.8: Expected value, variance, bias and MSE of regression coefficient esti-
mates in order to quantify coverage error
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Categories p-value p-value p-Value p-Value p-Value
(true) (n = 500) (n = 1000) (n = 2000) (n = 3000)

intercept 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000
age 0.0000000000 0.0000062293 0.0000000000 0.0000000000 0.0000000000
female 0.0000000000 0.0000001079 0.0000000000 0.0000000000 0.0000000000
fachhochschulreife 0.8970973124 0.5254398841 0.4866904587 0.5417766172 0.6430866228
hochschulreife 0.6987555776 0.5162105184 0.4914733347 0.5495164328 0.7076627534
mittlere reife 0.0115117133 0.4957747147 0.3920019472 0.3169943782 0.0974987427
no graduation 0.0058831082 0.4730777192 0.4420658532 0.2911230253 0.0814360783
volks-, hauptschule 0.0065408724 0.3930195062 0.3244654779 0.1596933291 0.0244991542
half-time 0.0000000000 0.0000004691 0.0000000000 0.0000000000 0.0000000000
part-time 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000
not employed 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000
single 0.0002454705 0.3621467593 0.2261101346 0.0381519529 0.0013772571
married living apart 0.0000000011 0.1463066881 0.0481046598 0.0004968581 0.0000001337
married living together 0.0021189162 0.4513344733 0.3719304289 0.1065161133 0.0124650985
widowed 0.8397563199 0.5042984411 0.4799692008 0.4540290796 0.6432394692
CDU-CSU 0.5884698278 0.5824024177 0.5529641618 0.4952469254 0.5079035682
die gruenen 0.0762638735 0.5567131829 0.4635259079 0.3827120727 0.1754585390
die linke 0.1299242680 0.5884244556 0.5414375475 0.4656254480 0.2667191418
FDP 0.0082560314 0.3235326917 0.1959597457 0.0475838943 0.0170843316
extreme right-wing 0.8910480181 0.5962912230 0.5925751327 0.7019790700 0.7566821879
SPD 0.7770122356 0.5747152031 0.5818393332 0.5957048115 0.6557235775
would not vote 0.0103321856 0.3126469192 0.1840822160 0.0427038986 0.0139677242

Table C.9: Comparison of p-values of regression coefficients of different samples con-
taining coverage error

MCAR MAR MNAR

β0 7.0044034272 7.0042831638 7.0008817670

E(β̂0) 7.0044034272 7.0042831638 7.0008817670

Bias(β̂0) -0.0026574007 -0.0027776641 -0.0061790609

Biasrel(β̂0) -0.0003792461 -0.0003964093 -0.0008818335

Var(β̂0) 0.0041978230 0.0050734059 0.0044389459

MSE(β̂0) 0.0042048848 0.0050811213 0.0044771267

βage 0.0113720951 0.0113720951 0.0113720951

E(β̂age) 0.0114018304 0.0113304028 0.0112812518

Bias(β̂age) 0.0000297353 -0.0000416923 -0.0000908434

Biasrel(β̂age) 0.0026147616 -0.0036661908 -0.0079882682

Var(β̂age) 0.0000001371 0.0000002409 0.0000002327

MSE(β̂age) 0.0000001380 0.0000002427 0.0000002409

βfemale -0.3783040793 -0.3783040793 -0.3783040793

E(β̂female) -0.3796061235 -0.3790319730 -0.3779256473

Bias(β̂female) -0.0013020442 -0.0007278937 0.0003784320

Biasrel(β̂female) -0.0034417928 -0.0019240969 0.0010003380

Var(β̂female) 0.0000921494 0.0001521025 0.0001761813

MSE(β̂female) 0.0000938447 0.0001526323 0.0001763245

βno graduation 0.2712024535 0.2712024535 0.2712024535

E(β̂no graduation) 0.2682868171 0.2895406671 0.2895335753
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Bias(β̂no graduation) -0.0029156364 0.0183382136 0.0183311218

Biasrel(β̂no graduation) -0.0107507743 0.0676181700 0.0675920207

Var(β̂no graduation) 0.0039703132 0.0044803749 0.0047509944

MSE(β̂no graduation) 0.0039788141 0.0048166650 0.0050870244

βvolks-, hauptschule -0.2259655461 -0.2259655461 -0.2259655461

E(β̂volks-, hauptschule) -0.2245508928 -0.2169712114 -0.2172227621

Bias(β̂volks-, hauptschule) 0.0014146533 0.0089943348 0.0087427841

Biasrel(β̂volks-, hauptschule) 0.0062604824 0.0398040097 0.0386907836

Var(β̂volks-, hauptschule) 0.0029822702 0.0033866079 0.0032989027

MSE(β̂volks-, hauptschule) 0.0029842714 0.0034675059 0.0033753390

βmittlere reife 0.2098521677 0.2098521677 0.2098521677

E(β̂mittlere reife) 0.2106275137 0.2149192017 0.2149819088

Bias(β̂mittlere reife) 0.0007753460 0.0050670340 0.0051297410

Biasrel(β̂mittlere reife) 0.0036947246 0.0241457310 0.0244445462

Var(β̂mittlere reife) 0.0030923626 0.0031790084 0.0031659124

MSE(β̂mittlere reife) 0.0030929637 0.0032046833 0.0031922267

βfachhochschulreife -0.0112989169 -0.0112989169 -0.0112989169

E(β̂Fachhochschule) -0.0087201464 -0.0048945265 -0.0020178910

Bias(β̂fachhochschulreife) 0.0025787705 0.0064043903 0.0092810259

Biasrel(β̂fachhochschulreife) 0.2282316533 0.5668145371 0.8214084594

Var(β̂Fachhochschule) 0.0033618707 0.0034005100 0.0034579845

MSE(β̂fachhochschulreife) 0.0033685208 0.0034415262 0.0035441220

βhochschulreife 0.0322277454 0.0322277454 0.0322277454

E(β̂hochschulreife) 0.0344479538 0.0378994142 0.0381753413

Bias(β̂hochschulreife) 0.0022202084 0.0056716688 0.0059475959

Biasrel(β̂hochschulreife) 0.0688912119 0.1759871435 0.1845489299

Var(β̂hochschulreife) 0.0031001066 0.0030995121 0.0029924109

MSE(β̂hochschulreife) 0.0031050359 0.0031316799 0.0030277848

βhalf-time -0.4575120691 -0.4575120691 -0.4575120691

E(β̂half-time) -0.4557659486 -0.4590397976 -0.4578473504

Bias(β̂half-time) 0.0017461204 -0.0015277285 -0.0003352814

Biasrel(β̂half-time) 0.0038165560 -0.0033392092 -0.0007328361

Var(β̂half-time) 0.0002267748 0.0002913716 0.0003131457

MSE(β̂half-time) 0.0002298237 0.0002937056 0.0003132581

βpart-time -0.9369052158 -0.9369052158 -0.9369052158

E(β̂part-time) -0.9364030091 -0.9333178892 -0.9288870329

Bias(β̂part-time) 0.0005022067 0.0035873267 0.0080181829

Biasrel(β̂part-time) 0.0005360273 0.0038289110 0.0085581581

Var(β̂part-time) 0.0003779516 0.0004074637 0.0004748919

MSE(β̂part-time) 0.0003782038 0.0004203327 0.0005391832

βnot employed -0.7984611199 -0.7984611199 -0.7984611199

E(β̂not employed) -0.7993882496 -0.8014593189 -0.7984637338

Bias(β̂not employed) -0.0009271297 -0.0029981990 -0.0000026139

Biasrel(β̂not employed) -0.0011611457 -0.0037549718 -0.0000032737
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Var(β̂not employed) 0.0000939353 0.0001488469 0.0001497775

MSE(β̂not employed) 0.0000947949 0.0001578360 0.0001497775

βmarried living together 0.0923461105 0.0923461105 0.0923461105

E(β̂married living together) 0.0936079377 0.0921728141 0.0919017457

Bias(β̂married living together) 0.0012618272 -0.0001732964 -0.0004443649

Biasrel(β̂married living together) 0.0136641076 -0.0018765968 -0.0048119499

Var(β̂married living together) 0.0002613860 0.0003101330 0.0004057326

MSE(β̂married living together) 0.0002629782 0.0003101631 0.0004059300

βmarried living apart 0.3803863918 0.3803863918 0.3803863918

E(β̂married living apart) 0.3779813415 0.3903509189 0.3895756962

Bias(β̂married living apart) -0.0024050503 0.0099645271 0.0091893044

Biasrel(β̂married living apart) -0.0063226507 0.0261958033 0.0241578159

Var(β̂married living apart) 0.0013323587 0.0013212501 0.0014968220

MSE(β̂married living apart) 0.0013381430 0.0014205419 0.0015812653

βwidowed -0.0087342802 -0.0087342802 -0.0087342802

E(β̂widowed) -0.0049415034 -0.0124670012 -0.0111401483

Bias(β̂widowed) 0.0037927768 -0.0037327210 -0.0024058681

Biasrel(β̂widowed) 0.4342403374 -0.4273644706 -0.2754512147

Var(β̂widowed) 0.0004357986 0.0008083337 0.0010387319

MSE(β̂widowed) 0.0004501837 0.0008222669 0.0010445201

βsingle 0.1244899786 0.1244899786 0.1244899786

E(β̂single) 0.1259458391 0.1299328407 0.1294214353

Bias(β̂single) 0.0014558605 0.0054428621 0.0049314567

Biasrel(β̂single) 0.0116945997 0.0437212871 0.0396132822

Var(β̂single) 0.0003002450 0.0004858308 0.0005644980

MSE(β̂single) 0.0003023645 0.0005154555 0.0005888173

βCDU-CSU -0.0250408465 -0.0250408465 -0.0250408465

E(β̂CDU-CSU) -0.0255039714 -0.0283724049 -0.0290806502

Bias(β̂CDU-CSU) -0.0004631249 -0.0033315584 -0.0040398037

Biasrel(β̂CDU-CSU) -0.0184947784 -0.1330449610 -0.1613285590

Var(β̂CDU-CSU) 0.0004779072 0.0006164845 0.0006384744

MSE(β̂CDU-CSU) 0.0004781217 0.0006275838 0.0006547944

βSPD -0.0133277196 -0.0133277196 -0.0133277196

E(β̂SPD) -0.0150842255 -0.0157617815 -0.0163736394

Bias(β̂SPD) -0.0017565059 -0.0024340619 -0.0030459197

Biasrel(β̂SPD) -0.1317934297 -0.1826315354 -0.2285402020

Var(β̂SPD) 0.0005364426 0.0006222658 0.0006232001

MSE(β̂SPD) 0.0005395279 0.0006281904 0.0006324777

βdie gruenen 0.0870817819 0.0870817819 0.0870817819

E(β̂die gruenen) 0.0877530302 0.0852070906 0.0838418153

Bias(β̂die gruenen) 0.0006712483 -0.0018746913 -0.0032399666

Biasrel(β̂die gruenen) 0.0077082518 -0.0215279388 -0.0372060207

Var(β̂die gruenen) 0.0004816770 0.0006472476 0.0007078549

MSE(β̂die gruenen) 0.0004821276 0.0006507621 0.0007183523
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βdie linke 0.0768770122 0.0768770122 0.0768770122

E(β̂die linke) 0.0743199506 0.0825931241 0.0817961542

Bias(β̂die linke) -0.0025570617 0.0057161118 0.0049191419

Biasrel(β̂die linke) -0.0332617200 0.0743539799 0.0639871633

Var(β̂die linke) 0.0006040029 0.0007439868 0.0008599807

MSE(β̂die linke) 0.0006105415 0.0007766607 0.0008841787

βextreme right-wing 0.0074005875 0.0074005875 0.0074005875

E(β̂extreme right-wing) 0.0057468268 0.0075170569 0.0076505304

Bias(β̂extreme right-wing) -0.0016537607 0.0001164694 0.0002499429

Biasrel(β̂extreme right-wing) -0.2234634311 0.0157378598 0.0337733860

Var(β̂extreme right-wing) 0.0005889750 0.0009249351 0.0011073161

MSE(β̂extreme right-wing) 0.0005917100 0.0009249487 0.0011073786

βFDP -0.1541756102 -0.1541756102 -0.1541756102

E(β̂FDP) -0.1589626479 -0.1460601385 -0.1474668797

Bias(β̂FDP) -0.0047870377 0.0081154717 0.0067087305

Biasrel(β̂FDP) -0.0310492543 0.0526378437 0.0435135657

Var(β̂FDP) 0.0008853340 0.0009259273 0.0010069921

MSE(β̂FDP) 0.0009082497 0.0009917881 0.0010519991

βwould not vote -0.1315889085 -0.1315889085 -0.1315889085

E(β̂would not vote) -0.1310548328 -0.1425775939 -0.1453572762

Bias(β̂would not vote) 0.0005340757 -0.0109886854 -0.0137683676

Biasrel(β̂would not vote) 0.0040586684 -0.0835076869 -0.1046316728

Var(β̂would not vote) 0.0006570435 0.0009800988 0.0009495598

MSE(β̂would not vote) 0.0006573288 0.0011008500 0.0011391278

Table C.10: Expected value, variance, bias and MSE of regression coefficient esti-
mates in order to quantify nonresponse error
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Categories p-value p-value p-Value p-Value
(true) (MCAR) (MAR) (MNAR)

intercept 0.0000000000 0.0000000000 0.0000000000 0.0000000000
age 0.0000000000 0.0000000000 0.0000000000 0.0000000000
female 0.0000000000 0.0000000000 0.0000000000 0.0000000000
fachhochschulreife 0.8970973124 0.6680739711 0.6628283582 0.6562783851
hochschulreife 0.6987555776 0.6423145757 0.6299941400 0.6206511203
mittlere reife 0.0115117133 0.0494781753 0.0574688244 0.0599561792
no graduation 0.0058831082 0.0348987904 0.0297719923 0.0344701548
volks-, hauptschule 0.0065408724 0.0433796888 0.0612560170 0.0584476609
half-time 0.0000000000 0.0000000000 0.0000000000 0.0000000000
part-time 0.0000000000 0.0000000000 0.0000000000 0.0000000000
not employed 0.0000000000 0.0000000000 0.0000000000 0.0000000000
single 0.0002454705 0.0025815205 0.0045112674 0.0059004752
married living apart 0.0000000011 0.0000037581 0.0000169972 0.0000208887
married living together 0.0021189162 0.0139212002 0.0201877015 0.0250424959
widowed 0.8397563199 0.7309788247 0.6571680432 0.6296633355
CDU-CSU 0.5884698278 0.6130190069 0.5709998942 0.5678385077
die gruenen 0.0762638735 0.1414358283 0.1723656108 0.1858294288
die linke 0.1299242680 0.2333765248 0.2057032345 0.2193862114
FDP 0.0082560314 0.0284163765 0.0511916966 0.0525880985
extreme right-wing 0.8910480181 0.7587440687 0.7207747567 0.6786652989
SPD 0.7770122356 0.6988377426 0.6789818085 0.6799991566
would not vote 0.0103321856 0.0375766963 0.0341556432 0.0312987438

Table C.11: Comparison of p-values of regression coefficients of data containing non-
response error

RCAR RAR RNAR

β0 7.0070608279 7.0070608279 7.0070608279

E(β̂0) 7.0084646257 7.0089288686 7.0089286062

Bias(β̂0) 0.0014037978 0.0018680408 0.0018677784

Biasrel(β̂0) 0.0002003405 0.0002665941 0.0002665566

Var(β̂0) 0.0000003189 0.0000001437 0.0000001401

MSE(β̂0) 0.0000022895 0.0000036333 0.0000036287

βage 0.0113720951 0.0113720951 0.0113720951

E(β̂age) 0.0113690764 0.0113687551 0.0113687614

Bias(β̂age) -0.0000030187 -0.0000033400 -0.0000033337

Biasrel(β̂age) -0.0002654459 -0.0002936979 -0.0002931447

Var(β̂age) 0.0000000000 0.0000000000 0.0000000000

MSE(β̂age) 0.0000000000 0.0000000000 0.0000000000

βfemale -0.3783040793 -0.3783040793 -0.3783040793

E(β̂female) -0.3782736201 -0.3783088661 -0.3783078528

Bias(β̂female) 0.0000304592 -0.0000047868 -0.0000037735

Biasrel(β̂female) 0.0000805150 -0.0000126534 -0.0000099748

Var(β̂female) 0.0000000049 0.0000000023 0.0000000022

MSE(β̂female) 0.0000000058 0.0000000023 0.0000000023

βno graduation 0.2712024535 0.2712024535 0.2712024535

E(β̂no graduation) 0.2712149936 0.2712518066 0.2712535837
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Bias(β̂no graduation) 0.0000125401 0.0000493531 0.0000511302

Biasrel(β̂no graduation) 0.0000462389 0.0001819789 0.0001885317

Var(β̂no graduation) 0.0000002459 0.0000000893 0.0000000882

MSE(β̂no graduation) 0.0000002461 0.0000000917 0.0000000908

βvolks-, hauptschule -0.2259655461 -0.2259655461 -0.2259655461

E(β̂volks-, hauptschule) -0.2259544934 -0.2260519017 -0.2260478722

Bias(β̂volks-, hauptschule) 0.0000110527 -0.0000863556 -0.0000823260

Biasrel(β̂volks-, hauptschule) 0.0000489132 -0.0003821626 -0.0003643300

Var(β̂volks-, hauptschule) 0.0000002078 0.0000001047 0.0000001036

MSE(β̂volks-, hauptschule) 0.0000002079 0.0000001121 0.0000001104

βmittlere reife 0.2098521677 0.2098521677 0.2098521677

E(β̂mittlere reife) 0.2093436728 0.2091968139 0.2091982920

Bias(β̂mittlere reife) -0.0005084949 -0.0006553539 -0.0006538757

Biasrel(β̂mittlere reife) -0.0024231101 -0.0031229311 -0.0031158873

Var(β̂mittlere reife) 0.0000002160 0.0000000896 0.0000000881

MSE(β̂mittlere reife) 0.0000004746 0.0000005191 0.0000005157

βfachhochschulreife -0.0112989169 -0.0112989169 -0.0112989169

E(β̂fachhochschulreife) -0.0116755300 -0.0117970193 -0.0117951799

Bias(β̂fachhochschulreife) -0.0003766131 -0.0004981024 -0.0004962630

Biasrel(β̂fachhochschulreife) -0.0333317893 -0.0440840809 -0.0439212871

Var(β̂fachhochschulreife) 0.0000002267 0.0000001051 0.0000001032

MSE(β̂fachhochschulreife) 0.0000003686 0.0000003532 0.0000003495

βhochschulreife 0.0322277454 0.0322277454 0.0322277454

E(β̂hochschulreife) 0.0317411205 0.0315814419 0.0315837876

Bias(β̂hochschulreife) -0.0004866248 -0.0006463035 -0.0006439577

Biasrel(β̂hochschulreife) -0.0150995619 -0.0200542573 -0.0199814704

Var(β̂hochschulreife) 0.0000002187 0.0000000930 0.0000000917

MSE(β̂hochschulreife) 0.0000004555 0.0000005107 0.0000005064

βhalf-time -0.4575120691 -0.4575120691 -0.4575120691

E(β̂half-time) -0.4573032442 -0.4572538825 -0.4572534373

Bias(β̂half-time) 0.0002088249 0.0002581865 0.0002586318

Biasrel(β̂half-time) 0.0004564358 0.0005643273 0.0005653005

Var(β̂half-time) 0.0000000083 0.0000000037 0.0000000036

MSE(β̂half-time) 0.0000000519 0.0000000703 0.0000000705

βpart-time -0.9369052158 -0.9369052158 -0.9369052158

E(β̂part-time) -0.9365331814 -0.9364403503 -0.9364395479

Bias(β̂part-time) 0.0003720345 0.0004648656 0.0004656679

Biasrel(β̂part-time) 0.0003970887 0.0004961714 0.0004970278

Var(β̂part-time) 0.0000000315 0.0000000161 0.0000000155

MSE(β̂part-time) 0.0000001699 0.0000002322 0.0000002324

βnot employed -0.7984611199 -0.7984611199 -0.7984611199

E(β̂not employed) -0.7983260179 -0.7983004907 -0.7983000381

Bias(β̂not employed) 0.0001351019 0.0001606292 0.0001610818

Biasrel(β̂not employed) 0.0001692029 0.0002011735 0.0002017403
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Var(β̂not employed) 0.0000000042 0.0000000021 0.0000000021

MSE(β̂not employed) 0.0000000225 0.0000000279 0.0000000281

βmarried living together 0.0923461105 0.0923461105 0.0923461105

E(β̂married living together) 0.0917948901 0.0916409130 0.0916400521

Bias(β̂married living together) -0.0005512205 -0.0007051975 -0.0007060584

Biasrel(β̂married living together) -0.0059690709 -0.0076364615 -0.0076457843

Var(β̂married living together) 0.0000000128 0.0000000060 0.0000000061

MSE(β̂married living together) 0.0000003167 0.0000005033 0.0000005047

βmarried living apart 0.3803863918 0.3803863918 0.3803863918

E(β̂married living apart) 0.3796755969 0.3794860530 0.3794842176

Bias(β̂married living apart) -0.0007107949 -0.0009003387 -0.0009021742

Biasrel(β̂married living apart) -0.0018686127 -0.0023669057 -0.0023717310

Var(β̂married living apart) 0.0000000311 0.0000000147 0.0000000145

MSE(β̂married living apart) 0.0000005364 0.0000008253 0.0000008284

βwidowed -0.0087342802 -0.0087342802 -0.0087342802

E(β̂widowed) -0.0091867214 -0.0093377293 -0.0093380782

Bias(β̂widowed) -0.0004524412 -0.0006034492 -0.0006037980

Biasrel(β̂widowed) -0.0518006287 -0.0690897408 -0.0691296794

Var(β̂widowed) 0.0000000320 0.0000000188 0.0000000189

MSE(β̂widowed) 0.0000002367 0.0000003829 0.0000003835

βsingle 0.1244899786 0.1244899786 0.1244899786

E(β̂single) 0.1239477407 0.1237896387 0.1237878782

Bias(β̂single) -0.0005422379 -0.0007003399 -0.0007021004

Biasrel(β̂single) -0.0043556753 -0.0056256728 -0.0056398145

Var(β̂single) 0.0000000176 0.0000000097 0.0000000097

MSE(β̂single) 0.0000003116 0.0000005002 0.0000005027

βCDU-CSU -0.0250408465 -0.0250408465 -0.0250408465

E(β̂CDU-CSU) -0.0253263800 -0.0254332576 -0.0254346528

Bias(β̂CDU-CSU) -0.0002855335 -0.0003924111 -0.0003938063

Biasrel(β̂CDU-CSU) -0.0114027107 -0.0156708415 -0.0157265563

Var(β̂CDU-CSU) 0.0000000213 0.0000000085 0.0000000085

MSE(β̂CDU-CSU) 0.0000001028 0.0000001625 0.0000001636

βSPD -0.0133277196 -0.0133277196 -0.0133277196

E(β̂SPD) -0.0134861602 -0.0135593763 -0.0135600462

Bias(β̂SPD) -0.0001584405 -0.0002316567 -0.0002323265

Biasrel(β̂SPD) -0.0118880455 -0.0173815684 -0.0174318293

Var(β̂SPD) 0.0000000237 0.0000000095 0.0000000094

MSE(β̂SPD) 0.0000000488 0.0000000632 0.0000000634

βdie gruenen 0.0870817819 0.0870817819 0.0870817819

E(β̂die gruenen) 0.0871427152 0.0871422325 0.0871410800

Bias(β̂die gruenen) 0.0000609333 0.0000604506 0.0000592981

Biasrel(β̂die gruenen) 0.0006997244 0.0006941819 0.0006809471

Var(β̂die gruenen) 0.0000000203 0.0000000143 0.0000000139

MSE(β̂die gruenen) 0.0000001028 0.0000001625 0.0000001636
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βdie linke 0.0768770122 0.0768770122 0.0768770122

E(β̂die linke) 0.0767100503 0.0766122897 0.0766110397

Bias(β̂die linke) -0.0001669620 -0.0002647225 -0.0002659726

Biasrel(β̂die linke) -0.0021718062 -0.0034434545 -0.0034597152

Var(β̂die linke) 0.0000000284 0.0000000171 0.0000000170

MSE(β̂die linke) 0.0000000563 0.0000000872 0.0000000877

βextreme right-wing 0.0074005875 0.0074005875 0.0074005875

E(β̂extreme right-wing) 0.0071263435 0.0069954801 0.0069957502

Bias(β̂extreme right-wing) -0.0002742439 -0.0004051074 -0.0004048373

Biasrel(β̂extreme right-wing) -0.0370570481 -0.0547398981 -0.0547034011

Var(β̂extreme right-wing) 0.0000000272 0.0000000186 0.0000000183

MSE(β̂extreme right-wing) 0.0000001024 0.0000001827 0.0000001822

βFDP -0.1541756102 -0.1541756102 -0.1541756102

E(β̂FDP) -0.1544285033 -0.1545585934 -0.1545585614

Bias(β̂FDP) -0.0002528930 -0.0003829831 -0.0003829512

Biasrel(β̂FDP) -0.0016402922 -0.0024840709 -0.0024838637

Var(β̂FDP) 0.0000000345 0.0000000196 0.0000000199

MSE(β̂FDP) 0.0000000985 0.0000001663 0.0000001665

βwould not vote -0.1315889085 -0.1315889085 -0.1315889085

E(β̂would not vote) -0.1317802848 -0.1319280960 -0.1319293203

Bias(β̂would not vote) -0.0001913763 -0.0003391875 -0.0003404118

Biasrel(β̂would not vote) -0.0014543495 -0.0025776298 -0.0025869339

Var(β̂would not vote) 0.0000000312 0.0000000152 0.0000000151

MSE(β̂would not vote) 0.0000000679 0.0000001302 0.0000001310

Table C.12: Expected value, variance, bias and MSE of regression coefficient esti-
mates in order to quantify measurement error
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Categories p-value p-value p-Value p-Value
(true) (RCAR) (RAR) (RNAR)

intercept 0.0000000000 0.0000000000 0.0000000000 0.0000000000
age 0.0000000000 0.0000000000 0.0000000000 0.0000000000
female 0.0000000000 0.0000000000 0.0000000000 0.0000000000
fachhochschulreife 0.8970973124 0.8936605867 0.8925557327 0.8925722817
hochschulreife 0.6987555776 0.7030149574 0.7044247131 0.7044035283
mittlere reife 0.0115117133 0.0116925703 0.0117473348 0.0117466619
no graduation 0.0058831082 0.0058681772 0.0058591353 0.0058587681
volks-, hauptschule 0.0065408724 0.0065298936 0.0065042684 0.0065051724
half-time 0.0000000000 0.0000000000 0.0000000000 0.0000000000
part-time 0.0000000000 0.0000000000 0.0000000000 0.0000000000
not employed 0.0000000000 0.0000000000 0.0000000000 0.0000000000
single 0.0002454705 0.0002602571 0.0002648488 0.0002648990
married living apart 0.0000000011 0.0000000015 0.0000000012 0.0000000012
married living together 0.0021189162 0.0022467306 0.0022843726 0.0022845720
widowed 0.8397563199 0.8315338577 0.8287999411 0.8287935089
CDU-CSU 0.5884698278 0.5841258142 0.5825241427 0.5825031425
die gruenen 0.0762638735 0.0759810973 0.0759706929 0.0759742993
die linke 0.1299242680 0.1306585777 0.1311333785 0.1311393296
FDP 0.0082560314 0.0081343814 0.0080783306 0.0080782921
extreme right-wing 0.8910480181 0.8950340999 0.8969465540 0.8969425007
SPD 0.7770122356 0.7743750082 0.7731740612 0.7731629743
would not vote 0.0103321856 0.0102019246 0.0101142810 0.0101135198

Table C.13: Comparison of p-values of regression coefficients of data containing mea-
surement error

MCAR MAR MNAR

β0 7.0070608279 7.0070608279 7.0070608279

E(β̂0) 7.0081995563 7.0019378414 7.0008817670

Bias(β̂0) 0.0011387285 -0.0051229864 -0.0061790609

Biasrel(β̂0) 0.0001625116 -0.0007311177 -0.0008818335

Var(β̂0) 0.0064756808 0.0054974618 0.0044389459

MSE(β̂0) 0.0064769775 0.0055237068 0.0044771267

βage 0.0113720951 0.0113720951 0.0113720951

E(β̂age) 0.0113709927 0.0113461843 0.0112812518

Bias(β̂age) -0.0000011025 -0.0000259108 -0.0000908433

Biasrel(β̂age) -0.0000969439 -0.0022784523 -0.0079882682

Var(β̂age) 0.0000002507 0.0000002293 0.0000002327

MSE(β̂age) 0.0000002507 0.0000002300 0.0000002409

βfemale -0.3783040793 -0.3783040793 -0.3783040793

E(β̂female) -0.3794787168 -0.3787471535 -0.3779256473

Bias(β̂female) -0.0011746375 -0.0004430742 0.0003784320

Biasrel(β̂female) -0.0031050089 -0.0011712119 0.0010003380

Var(β̂female) 0.0001151273 0.0001570960 0.0001761813

MSE(β̂female) 0.0001165071 0.0001572923 0.0001763245

βno graduation 0.2712024535 0.2712024535 0.2712024535

E(β̂no graduation) 0.2695864866 0.2897015507 0.2895335753
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Bias(β̂no graduation) -0.0016159668 0.0184990972 0.0183311218

Biasrel(β̂no graduation) -0.0059585259 0.0682113931 0.0675920207

Var(β̂no graduation) 0.0053068899 0.0046190022 0.0047509944

MSE(β̂no graduation) 0.0053095012 0.0049612188 0.0050870244

βvolks-, hauptschule -0.2259655461 -0.2259655461 -0.2259655461

E(β̂volks-, hauptschule) -0.2249441841 -0.2161513518 -0.2172227621

Bias(β̂volks-, hauptschule) 0.0010213620 0.0098141944 0.0087427841

Biasrel(β̂volks-, hauptschule) 0.0045199901 0.0434322600 0.0386907836

Var(β̂volks-, hauptschule) 0.0036265945 0.0035737851 0.0032989027

MSE(β̂volks-, hauptschule) 0.0036276377 0.0036701035 0.0033753390

βmittlere reife 0.2098521677 0.2098521677 0.2098521677

E(β̂mittlere reife) 0.2096176875 0.2146907912 0.2149819088

Bias(β̂mittlere reife) -0.0002344803 0.0048386234 0.0051297410

Biasrel(β̂mittlere reife) -0.0011173592 0.0230572955 0.0244445462

Var(β̂mittlere reife) 0.0039347857 0.0033175964 0.0031659124

MSE(β̂mittlere reife) 0.0039348407 0.0033410087 0.0031922267

βfachhochschulreife -0.0112989169 -0.0112989169 -0.0112989169

E(β̂fachhochschulreife) -0.0119741818 -0.0047312402 -0.0020178910

Bias(β̂fachhochschulreife) -0.0006752650 0.0065676766 0.0092810259

Biasrel(β̂fachhochschulreife) -0.0597636899 0.5812660373 0.8214084594

Var(β̂fachhochschulreife) 0.0039840894 0.0034939024 0.0034579845

MSE(β̂fachhochschulreife) 0.0039845454 0.0035370368 0.0035441220

βhochschulreife 0.0322277454 0.0322277454 0.0322277454

E(β̂hochschulreife) 0.0323420176 0.0376000071 0.0381753413

Bias(β̂hochschulreife) 0.0001142723 0.0053722618 0.0059475959

Biasrel(β̂hochschulreife) 0.0035457727 0.1666967922 0.1845489299

Var(β̂hochschulreife) 0.0036409305 0.0032117118 0.0029924109

MSE(β̂hochschulreife) 0.0036409435 0.0032405730 0.0030277848

βhalf-time -0.4575120691 -0.4575120691 -0.4575120691

E(β̂half-time) -0.4580362653 -0.4586041192 -0.4578473504

Bias(β̂half-time) -0.0005241962 -0.0010920502 -0.0003352814

Biasrel(β̂half-time) -0.0011457539 -0.0023869320 -0.0007328361

Var(β̂half-time) 0.0003025670 0.0003149202 0.0003131457

MSE(β̂half-time) 0.0003028418 0.0003161128 0.0003132581

βpart-time -0.9369052158 -0.9369052158 -0.9369052158

E(β̂part-time) -0.9362579212 -0.9309718946 -0.9288870329

Bias(β̂part-time) 0.0006472946 0.0059333212 0.0080181829

Biasrel(β̂part-time) 0.0006908859 0.0063328938 0.0085581581

Var(β̂part-time) 0.0006219461 0.0003691899 0.0004748919

MSE(β̂part-time) 0.0006223650 0.0004043942 0.0005391832

βnot employed -0.7984611199 -0.7984611199 -0.7984611199

E(β̂not employed) -0.7993284670 -0.8020121035 -0.7984637338

Bias(β̂not employed) -0.0008673471 -0.0035509836 -0.0000026139

Biasrel(β̂not employed) -0.0010862735 -0.0044472843 -0.0000032737
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Var(β̂not employed) 0.0001523276 0.0001651746 0.0001497775

MSE(β̂not employed) 0.0001530799 0.0001777841 0.0001497775

βmarried living together 0.0923461105 0.0923461105 0.0923461105

E(β̂married living together) 0.0895602125 0.0931500427 0.0919017457

Bias(β̂married living together) -0.0027858980 0.0008039322 -0.0004443649

Biasrel(β̂married living together) -0.0301680059 0.0087056419 -0.0048119499

Var(β̂married living together) 0.0003828379 0.0004305779 0.0004057326

MSE(β̂married living together) 0.0003905991 0.0004312242 0.0004059300

βmarried living apart 0.3803863918 0.3803863918 0.3803863918

E(β̂married living apart) 0.3708022001 0.3908839383 0.3895756962

Bias(β̂married living apart) -0.0095841917 0.0104975465 0.0091893044

Biasrel(β̂married living apart) -0.0251959373 0.0275970611 0.0241578159

Var(β̂married living apart) 0.0018670342 0.0015549275 0.0014968220

MSE(β̂married living apart) 0.0019588909 0.0016651260 0.0015812653

βwidowed -0.0087342802 -0.0087342802 -0.0087342802

E(β̂widowed) -0.0146992145 -0.0099389825 -0.0111401483

Bias(β̂widowed) -0.0059649343 -0.0012047023 -0.0024058681

Biasrel(β̂widowed) -0.6829337053 -0.1379280554 -0.2754512147

Var(β̂widowed) 0.0010062375 0.0009134068 0.0010387319

MSE(β̂widowed) 0.0010418179 0.0009148581 0.0010445201

βsingle 0.1244899786 0.1244899786 0.1244899786

E(β̂single) 0.1226603587 0.1313542041 0.1294214353

Bias(β̂single) -0.0018296199 0.0068642255 0.0049314567

Biasrel(β̂single) -0.0146969255 0.0551387793 0.0396132822

Var(β̂single) 0.0004751713 0.0006569137 0.0005644980

MSE(β̂single) 0.0004785188 0.0007040313 0.0005888173

βCDU-CSU -0.0250408465 -0.0250408465 -0.0250408465

E(β̂CDU-CSU) -0.0229227370 -0.0281686920 -0.0290806502

Bias(β̂CDU-CSU) 0.0021181095 -0.0031278455 -0.0040398037

Biasrel(β̂CDU-CSU) 0.0845861772 -0.1249097349 -0.1613285590

Var(β̂CDU-CSU) 0.0008838622 0.0006359230 0.0006384744

MSE(β̂CDU-CSU) 0.0008883486 0.0006457064 0.0006547944

βSPD -0.0133277196 -0.0133277196 -0.0133277196

E(β̂SPD) -0.0111179779 -0.0146596849 -0.0163736394

Bias(β̂SPD) 0.0022097417 -0.0013319652 -0.0030459197

Biasrel(β̂SPD) 0.1658004374 -0.0999394697 -0.2285402020

Var(β̂SPD) 0.0009382316 0.0006576627 0.0006232001

MSE(β̂SPD) 0.0009431145 0.0006594369 0.0006324777

βdie gruenen 0.0870817819 0.0870817819 0.0870817819

E(β̂die gruenen) 0.0881926195 0.0845359245 0.0838418153

Bias(β̂die gruenen) 0.0011108376 -0.0025458574 -0.0032399666

Biasrel(β̂die gruenen) 0.0127562566 -0.0292352467 -0.0372060207

Var(β̂die gruenen) 0.0008967191 0.0006976425 0.0007078549

MSE(β̂die gruenen) 0.0008979530 0.0007041239 0.0007183523
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βdie linke 0.0768770122 0.0768770122 0.0768770122

E(β̂die linke) 0.0789574135 0.0834896350 0.0817961542

Bias(β̂die linke) 0.0020804013 0.0066126228 0.0049191419

Biasrel(β̂die linke) 0.0270614225 0.0860156061 0.0639871633

Var(β̂die linke) 0.0011795031 0.0008204864 0.0008599807

MSE(β̂die linke) 0.0011838311 0.0008642132 0.0008841787

βextreme right-wing 0.0074005875 0.0074005875 0.0074005875

E(β̂extreme right-wing) 0.0061681585 0.0091739226 0.0076505304

Bias(β̂extreme right-wing) -0.0012324290 0.0017733352 0.0002499429

Biasrel(β̂extreme right-wing) -0.1665312345 0.2396208666 0.0337733860

Var(β̂extreme right-wing) 0.0013543188 0.0010179893 0.0011073161

MSE(β̂extreme right-wing) 0.0013558376 0.0010211341 0.0011073786

βFDP -0.1541756102 -0.1541756102 -0.1541756102

E(β̂FDP) -0.1498549707 -0.1454490427 -0.1474668797

Bias(β̂FDP) 0.0043206395 0.0087265675 0.0067087305

Biasrel(β̂FDP) 0.0280241439 0.0566014788 0.0435135657

Var(β̂FDP) 0.0013007362 0.0010745877 0.0010069921

MSE(β̂FDP) 0.0013194041 0.0011507407 0.0010519991

βwould not vote -0.1315889085 -0.1315889085 -0.1315889085

E(β̂would not vote) -0.1272123571 -0.1404105203 -0.1453572762

Bias(β̂would not vote) 0.0043765514 -0.0088216118 -0.0137683676

Biasrel(β̂would not vote) 0.0332592728 -0.0670391742 -0.1046316728

Var(β̂would not vote) 0.0012538397 0.0010772416 0.0009495598

MSE(β̂would not vote) 0.0012729939 0.0011550624 0.0011391278

Table C.14: Expected value, variance, bias and MSE of regression coefficient esti-
mates on income in order to evaluate the performance of ad-hoc methods
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Categories p-value p-value p-Value p-Value
(true) (MCAR) (MAR) (MNAR)

intercept 0.0000000000 0.0000000000 0.0000000000 0.0000000000
age 0.0000000000 0.0000000000 0.0000000000 0.0000000000
female 0.0000000000 0.0000000000 0.0000000000 0.0000000000
fachhochschulreife 0.8970973124 0.6445291302 0.6554488778 0.6562783851
hochschulreife 0.6987555776 0.6303954281 0.6187477014 0.6206511203
mittlere reife 0.0115117133 0.0698781808 0.0626901130 0.0599561792
no graduation 0.0058831082 0.0482099834 0.0334830984 0.0344701548
volks-, hauptschule 0.0065408724 0.0569530744 0.0638656609 0.0584476609
half-time 0.0000000000 0.0000000000 0.0000000000 0.0000000000
part-time 0.0000000000 0.0000000000 0.0000000000 0.0000000000
not employed 0.0000000000 0.0000000000 0.0000000000 0.0000000000
single 0.0002454705 0.0095848912 0.0064235815 0.0059004752
married living apart 0.0000000011 0.0000533622 0.0000258073 0.0000208887
married living together 0.0021189162 0.0296002826 0.0249147367 0.0250424959
widowed 0.8397563199 0.6275834745 0.6469005211 0.6296633355
CDU-CSU 0.5884698278 0.6251904460 0.5821696423 0.5678385077
die gruenen 0.0762638735 0.1843375322 0.1823569994 0.1858294288
die linke 0.1299242680 0.2524824519 0.2088113320 0.2193862114
FDP 0.0082560314 0.0581553261 0.0580694110 0.0525880985
extreme right-wing 0.8910480181 0.6687090111 0.6979252222 0.6786652989
SPD 0.7770122356 0.6938616739 0.6807508161 0.6799991566
would not vote 0.0103321856 0.0751394752 0.0408673281 0.0312987438

Table C.15: Comparison of p-values of regression coefficients of data after applying
Ad-Hoc-method

MCAR MAR MNAR

β0 7.0070608279 7.0070608279 7.0070608279

E(β̂0) 7.0057853420 6.9931510922 6.9915674169

Bias(β̂0) -0.0012754858 -0.0139097357 -0.0154934110

Biasrel(β̂0) -0.0001820287 -0.0019851027 -0.0022111141

Var(β̂0) 0.0065647616 0.0067587870 0.0053946008

MSE(β̂0) 0.0065663884 0.0069522677 0.0056346465

βage 0.0113720951 0.0113720951 0.0113720951

E(β̂age) 0.0113762177 0.0113572996 0.0112944010

Bias(β̂age) -0.0000041226 -0.0000147955 -0.0000776941

Biasrel(β̂age) 0.0003625195 -0.0013010398 -0.0068319958

Var(β̂age) 0.0000002576 0.0000003057 0.0000003032

MSE(β̂age) 0.0000002576 0.0000003059 0.0000003092

βfemale -0.3783040793 -0.3783040793 -0.3783040793

E(β̂female) -0.3795536141 -0.3779141134 -0.3769325825

Bias(β̂female) -0.0012495348 0.0003899658 0.0013714968

Biasrel(β̂female) -0.0033029905 0.0010308264 0.0036253821

Var(β̂female) 0.0001131290 0.0001792657 0.0002048872

MSE(β̂female) 0.0001146904 0.0001794178 0.0002067682

βno graduation 0.2712024535 0.2712024535 0.2712024535

E(β̂no graduation) 0.2709065301 0.2927205845 0.2924085169
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Bias(β̂no graduation) -0.0002959233 0.0215181310 0.0212060635

Biasrel(β̂no graduation) -0.0010911529 0.0793434230 0.0781927419

Var(β̂no graduation) 0.0047008557 0.0057206290 0.0056515917

MSE(β̂no graduation) 0.0047009433 0.0061836590 0.0061012889

βvolks-, hauptschule -0.2259655461 -0.2259655461 -0.2259655461

E(β̂volks-, hauptschule) -0.2231618974 -0.2146172012 -0.2161925306

Bias(β̂volks-, hauptschule) 0.0028036488 0.0113483449 0.0097730155

Biasrel(β̂volks-, hauptschule) 0.0124074170 0.0502215718 0.0432500249

Var(β̂volks-, hauptschule) 0.0032866132 0.0043936704 0.0042182380

MSE(β̂volks-, hauptschule) 0.0032944737 0.0045224553 0.0043137499

βmittlere reife 0.2098521677 0.2098521677 0.2098521677

E(β̂mittlere reife) 0.2115621276 0.2201239075 0.2201507355

Bias(β̂mittlere reife) 0.0017099598 0.0102717397 0.0102985677

Biasrel(β̂mittlere reife) 0.0081484019 0.0489475035 0.0490753459

Var(β̂mittlere reife) 0.0035019225 0.0042565626 0.0040364663

MSE(β̂mittlere reife) 0.0035048464 0.0043620712 0.0041425268

βfachhochschulreife -0.0112989169 -0.0112989169 -0.0112989169

E(β̂fachhochschulreife) -0.0098676490 -0.0020180259 0.0004142535

Bias(β̂fachhochschulreife) 0.0014312679 0.0092808909 0.0117131704

Biasrel(β̂fachhochschulreife) 0.1266730184 0.8213965143 1.0366631188

Var(β̂fachhochschulreife) 0.0035136676 0.0043029875 0.0042715973

MSE(β̂fachhochschulreife) 0.0035157161 0.0043891224 0.0044087957

βhochschulreife 0.0322277454 0.0322277454 0.0322277454

E(β̂hochschulreife) 0.0342294864 0.0420630800 0.0423885005

Bias(β̂hochschulreife) 0.0020017410 0.0098353346 0.0101607552

Biasrel(β̂hochschulreife) 0.0621123497 0.3051822124 0.3152797392

Var(β̂hochschulreife) 0.0032755085 0.0040755453 0.0038429074

MSE(β̂hochschulreife) 0.0032795155 0.0041722792 0.0039461484

βhalf-time -0.4575120691 -0.4575120691 -0.4575120691

E(β̂half-time) -0.4581721329 -0.4567754569 -0.4565432897

Bias(β̂half-time) -0.0006600638 0.0007366121 0.0009687794

Biasrel(β̂half-time) -0.0014427244 0.0016100387 0.0021174947

Var(β̂half-time) 0.0002954338 0.0004096300 0.0004195491

MSE(β̂half-time) 0.0002958695 0.0004101726 0.0004204876

βpart-time -0.9369052158 -0.9369052158 -0.9369052158

E(β̂part-time) -0.9366520792 -0.9311068627 -0.9295477489

Bias(β̂part-time) 0.0002531366 0.0057983531 0.0073574669

Biasrel(β̂part-time) 0.0002701838 0.0061888364 0.0078529469

Var(β̂part-time) 0.0006362979 0.0004432856 0.0005807795

MSE(β̂part-time) 0.0006363620 0.0004769065 0.0006349118

βnot employed -0.7984611199 -0.7984611199 -0.7984611199

E(β̂not employed) -0.7991471478 -0.7984506651 -0.7947150817

Bias(β̂not employed) -0.0006860279 0.0000104548 0.0037460381

Biasrel(β̂not employed) -0.0008591877 0.0000130937 0.0046915724
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Var(β̂not employed) 0.0001552199 0.0001932457 0.0001737632

MSE(β̂not employed) 0.0001556905 0.0001932458 0.0001877960

βmarried living together 0.0923461105 0.0923461105 0.0923461105

E(β̂married living together) 0.0896059009 0.0915921453 0.0907677049

Bias(β̂married living together) -0.0027402097 -0.0007539652 -0.0015784057

Biasrel(β̂married living together) -0.0296732548 -0.0081645588 -0.0170922809

Var(β̂married living together) 0.0003918660 0.0005518262 0.0004969672

MSE(β̂married living together) 0.0003993748 0.0005523947 0.0004994585

βmarried living apart 0.3803863918 0.3803863918 0.3803863918

E(β̂married living apart) 0.3709924769 0.3900583221 0.3888872968

Bias(β̂married living apart) -0.0093939149 0.0096719303 0.0085009050

Biasrel(β̂married living apart) -0.0246957176 0.0254265939 0.0223480787

Var(β̂married living apart) 0.0017798980 0.0016533198 0.0014864898

MSE(β̂married living apart) 0.0018681436 0.0017468660 0.0015587552

βwidowed -0.0087342802 -0.0087342802 -0.0087342802

E(β̂widowed) -0.0146119331 -0.0066119262 -0.0079358866

Bias(β̂widowed) -0.0058776529 0.0021223540 0.0007983936

Biasrel(β̂widowed) -0.6729407299 0.2429912849 0.0914091990

Var(β̂widowed) 0.0010452791 0.0011471575 0.0012696086

MSE(β̂widowed) 0.0010798259 0.0011516619 0.0012702460

βsingle 0.1244899786 0.1244899786 0.1244899786

E(β̂single) 0.1232113751 0.1262409271 0.1246388629

Bias(β̂single) -0.0012786036 0.0017509485 0.0001488843

Biasrel(β̂single) -0.0102707348 0.0140649752 0.0011959537

Var(β̂single) 0.0004805417 0.0008211014 0.0006738044

MSE(β̂single) 0.0004821765 0.0008241672 0.0006738265

βCDU-CSU -0.0250408465 -0.0250408465 -0.0250408465

E(β̂CDU-CSU) -0.0226876789 -0.0227008792 -0.0230829463

Bias(β̂CDU-CSU) 0.0023531676 0.0023399673 0.0019579002

Biasrel(β̂CDU-CSU) 0.0939731637 0.0934460145 0.0781882602

Var(β̂CDU-CSU) 0.0008650205 0.0008579751 0.0008452580

MSE(β̂CDU-CSU) 0.0008705579 0.0008634506 0.0008490913

βSPD -0.0133277196 -0.0133277196 -0.0133277196

E(β̂SPD) -0.0109561801 -0.0086302910 -0.0104691108

Bias(β̂SPD) 0.0023715395 0.0046974286 0.0028586088

Biasrel(β̂SPD) 0.1779403814 0.3524555417 0.2144859643

Var(β̂SPD) 0.0009452663 0.0008096609 0.0008156126

MSE(β̂SPD) 0.0009508905 0.0008317268 0.0008237843

βdie gruenen 0.0870817819 0.0870817819 0.0870817819

E(β̂die gruenen) 0.0879929205 0.0877341580 0.0876076677

Bias(β̂die gruenen) 0.0009111386 0.0006523761 0.0005258858

Biasrel(β̂die gruenen) 0.0104630219 0.0074915331 0.0060389877

Var(β̂die gruenen) 0.0009196651 0.0008182131 0.0008566458

MSE(β̂die gruenen) 0.0009204953 0.0008186387 0.0008569223
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βdie linke 0.0768770122 0.0768770122 0.0768770122

E(β̂die linke) 0.0787886738 0.0820954908 0.0806667722

Bias(β̂die linke) 0.0019116616 0.0052184786 0.0037897600

Biasrel(β̂die linke) 0.0248664914 0.0678808711 0.0492964003

Var(β̂die linke) 0.0011795057 0.0010354550 0.0011080306

MSE(β̂die linke) 0.0011831602 0.0010626875 0.0011223928

βextreme right-wing 0.0074005875 0.0074005875 0.0074005875

E(β̂extreme right-wing) 0.0052295234 0.0078583917 0.0064161182

Bias(β̂extreme right-wing) -0.0021710641 0.0004578043 -0.0009844693

Biasrel(β̂extreme right-wing) -0.2933637469 0.0618605327 -0.1330258296

Var(β̂extreme right-wing) 0.0013412333 0.0012979108 0.0014165283

MSE(β̂extreme right-wing) 0.0013459468 0.0012981204 0.0014174975

βFDP -0.1541756102 -0.1541756102 -0.1541756102

E(β̂FDP) -0.1496984451 -0.1490770849 -0.1510528343

Bias(β̂FDP) 0.0044771651 0.0050985253 0.0031227759

Biasrel(β̂FDP) 0.0290393865 0.0330695969 0.0202546688

Var(β̂FDP) 0.0012737080 0.0012618450 0.0012017686

MSE(β̂FDP) 0.0012937530 0.0012878399 0.0012115204

βwould not vote -0.1315889085 -0.1315889085 -0.1315889085

E(β̂would not vote) -0.1270221107 -0.1282189568 -0.1339405286

Bias(β̂would not vote) 0.0045667978 0.0033699518 -0.0023516200

Biasrel(β̂would not vote) 0.0347050361 0.0256096946 -0.0178709593

Var(β̂would not vote) 0.0012475757 0.0013878276 0.0011829998

MSE(β̂would not vote) 0.0012684314 0.0013991842 0.0011885299

Table C.16: Expected value, variance, bias and MSE of regression coefficient es-
timates on income in order to evaluate the performance of weighting
(weighting variables: gender, education, willingness)
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Categories p-value p-value p-Value p-Value
(true) (MCAR) (MAR) (MNAR)

intercept 0.0000000000 0.0000000000 0.0000000000 0.0000000000
age 0.0000000000 0.0000000000 0.0000000000 0.0000000000
female 0.0000000000 0.0000000000 0.0000000000 0.0000000000
fachhochschulreife 0.8970973124 0.6628130938 0.6265360772 0.6273936118
hochschulreife 0.6987555776 0.6490401106 0.5893711959 0.5893751235
mittlere reife 0.0115117133 0.0654566475 0.0653789597 0.0640529538
no graduation 0.0058831082 0.0464346358 0.0346369720 0.0358644735
volks-, hauptschule 0.0065408724 0.0562988515 0.0773878113 0.0711195063
half-time 0.0000000000 0.0000000000 0.0000000000 0.0000000000
part-time 0.0000000000 0.0000000000 0.0000000000 0.0000000000
not employed 0.0000000000 0.0000000000 0.0000000000 0.0000000000
single 0.0002454705 0.0090253643 0.0106423775 0.0099881229
married living apart 0.0000000011 0.0000339231 0.0000129958 0.0000096964
married living together 0.0021189162 0.0296786812 0.0319305361 0.0303792919
widowed 0.8397563199 0.6297938847 0.6297093380 0.5996434606
CDU-CSU 0.5884698278 0.6301511197 0.6268472622 0.6215203554
die gruenen 0.0762638735 0.1861385254 0.1806647273 0.1827968136
die linke 0.1299242680 0.2552582761 0.2338623258 0.2449733688
FDP 0.0082560314 0.0583311162 0.0583445423 0.0531175566
extreme right-wing 0.8910480181 0.6738404756 0.6797352299 0.6604988714
SPD 0.7770122356 0.6931576780 0.6896856278 0.6922530015
would not vote 0.0103321856 0.0752282818 0.0716199238 0.0532133519

Table C.17: Comparison of p-values of regression coefficients of data after applying
weighting (weighting variables: gender, education, willingness)

MCAR MAR MNAR

β0 7.0070608279 7.0070608279 7.0070608279

E(β̂0) 7.0079091604 7.0149466076 7.0507168759

Bias(β̂0) 0.0008483325 0.0078857797 0.0436560480

Biasrel(β̂0) 0.0001210682 0.0011254048 0.0062302939

Var(β̂0) 0.0176946852 0.0194463769 0.0294004475

MSE(β̂0) 0.0176954049 0.0195085624 0.0313062980

βage 0.0113720951 0.0113720951 0.0113720951

E(β̂age) 0.0079325310 0.0078346622 0.0075269152

Bias(β̂age) -0.0034395641 -0.0035374329 -0.0038451799

Biasrel(β̂age) -0.3024565013 -0.3110625521 -0.3381241450

Var(β̂age) 0.0000008141 0.0000007479 0.0000011306

MSE(β̂age) 0.0000126447 0.0000132614 0.0000159160

βfemale -0.3783040793 -0.3783040793 -0.3783040793

E(β̂female) -0.2591333668 -0.2515740557 -0.2486061153

Bias(β̂female) 0.1191707125 0.1267300236 0.1296979640

Biasrel(β̂female) 0.3150130252 0.3349951284 0.3428405115

Var(β̂female) 0.0006321753 0.0005698467 0.0005775539

MSE(β̂female) 0.0148338340 0.0166303456 0.0173991157

βno graduation 0.2712024535 0.2712024535 0.2712024535

E(β̂no graduation) 0.2041262533 0.1985733102 0.1800071633
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Bias(β̂no graduation) -0.0670762001 -0.0726291433 -0.0911952902

Biasrel(β̂no graduation) -0.2473288840 -0.2678041528 -0.3362627773

Var(β̂no graduation) 0.0131634344 0.0215871152 0.0249151620

MSE(β̂no graduation) 0.0176626510 0.0268621077 0.0332317430

βvolks-, hauptschule -0.2259655461 -0.2259655461 -0.2259655461

E(β̂volks-, hauptschule) -0.1359889283 -0.0976197920 -0.1168516529

Bias(β̂volks-, hauptschule) 0.0899766178 0.1283457541 0.1091138932

Biasrel(β̂volks-, hauptschule) 0.3981873314 0.5679881571 0.4828784526

Var(β̂volks-, hauptschule) 0.0117095715 0.0132977714 0.0164938284

MSE(β̂volks-, hauptschule) 0.0198053632 0.0297704040 0.0283996701

βmittlere reife 0.2098521677 0.2098521677 0.2098521677

E(β̂mittlere reife) 0.1611680133 0.1666653160 0.1443079182

Bias(β̂mittlere reife) -0.0486841545 -0.0431868517 -0.0655442495

Biasrel(β̂mittlere reife) -0.2319926212 -0.2057965481 -0.3123353464

Var(β̂mittlere reife) 0.0116600068 0.0131535902 0.0154196768

MSE(β̂mittlere reife) 0.0140301537 0.0150186944 0.0197157254

βfachhochschulreife -0.0112989169 -0.0112989169 -0.0112989169

E(β̂fachhochschulreife) 0.0053407359 0.0079178542 -0.0068642310

Bias(β̂fachhochschulreife) 0.0166396528 0.0192167711 0.0044346859

Biasrel(β̂fachhochschulreife) 1.4726767998 1.7007622310 0.3924877010

Var(β̂fachhochschulreife) 0.0132994359 0.0142789071 0.0160025402

MSE(β̂fachhochschulreife) 0.0135763139 0.0146481914 0.0160222067

βhochschulreife 0.0322277454 0.0322277454 0.0322277454

E(β̂hochschulreife) 0.0426735159 0.0332458088 0.0124240767

Bias(β̂hochschulreife) 0.0104457706 0.0010180634 -0.0198036686

Biasrel(β̂hochschulreife) 0.3241235291 0.0315896574 -0.6144912844

Var(β̂hochschulreife) 0.0116431803 0.0127664919 0.0156421517

MSE(β̂hochschulreife) 0.0117522944 0.0127675284 0.0160343370

βhalf-time -0.4575120691 -0.4575120691 -0.4575120691

E(β̂half-time) -0.3197371974 -0.3357684843 -0.3278696036

Bias(β̂half-time) 0.1377748717 0.1217435848 0.1296424654

Biasrel(β̂half-time) 0.3011393163 0.2660991764 0.2833640338

Var(β̂half-time) 0.0012089522 0.0013104430 0.0016315176

MSE(β̂half-time) 0.0201908675 0.0161319434 0.0184386864

βpart-time -0.9369052158 -0.9369052158 -0.9369052158

E(β̂part-time) -0.6421666437 -0.6385922985 -0.6412814155

Bias(β̂part-time) 0.2947385721 0.2983129173 0.2956238004

Biasrel(β̂part-time) 0.3145873960 0.3184024513 0.3155322389

Var(β̂part-time) 0.0029684210 0.0017916466 0.0023296296

MSE(β̂part-time) 0.0898392469 0.0907822433 0.0897230609

βnot employed -0.7984611199 -0.7984611199 -0.7984611199

E(β̂not employed) -0.5484727666 -0.5535223015 -0.5499253918

Bias(β̂not employed) 0.2499883533 0.2449388184 0.2485357280

Biasrel(β̂not employed) 0.3130876972 0.3067636136 0.3112684160
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Var(β̂not employed) 0.0006740632 0.0005606559 0.0006292088

MSE(β̂not employed) 0.0631682399 0.0605556807 0.0623992169

βmarried living together 0.0923461105 0.0923461105 0.0923461105

E(β̂married living together) 0.0614862549 0.0684973558 0.0683043797

Bias(β̂married living together) -0.0308598556 -0.0238487547 -0.0240417308

Biasrel(β̂married living together) -0.3341760195 -0.2582540249 -0.2603437297

Var(β̂married living together) 0.0014443448 0.0017124588 0.0018217687

MSE(β̂married living together) 0.0023966755 0.0022812219 0.0023997736

βmarried living apart 0.3803863918 0.3803863918 0.3803863918

E(β̂married living apart) 0.2502177982 0.2866516142 0.2732822246

Bias(β̂married living apart) -0.1301685935 -0.0937347775 -0.1071041672

Biasrel(β̂married living apart) -0.3422009734 -0.2464199023 -0.2815667687

Var(β̂married living apart) 0.0078986687 0.0060099148 0.0067889362

MSE(β̂married living apart) 0.0248425314 0.0147961233 0.0182602388

βwidowed -0.0087342802 -0.0087342802 -0.0087342802

E(β̂widowed) -0.0141979077 0.0093201879 0.0269289788

Bias(β̂widowed) -0.0054636275 0.0180544681 0.0356632590

Biasrel(β̂widowed) -0.6255383829 2.0670813981 4.0831365854

Var(β̂widowed) 0.0029692292 0.0042783261 0.0045825278

MSE(β̂widowed) 0.0029990804 0.0046042900 0.0058543959

βsingle 0.1244899786 0.1244899786 0.1244899786

E(β̂single) 0.0845893029 0.0899864555 0.0853501105

Bias(β̂single) -0.0399006757 -0.0345035231 -0.0391398681

Biasrel(β̂single) -0.3205131539 -0.2771590413 -0.3144017580

Var(β̂single) 0.0017877686 0.0024682028 0.0024892996

MSE(β̂single) 0.0033798325 0.0036586959 0.0040212289

βCDU-CSU -0.0250408465 -0.0250408465 -0.0250408465

E(β̂CDU-CSU) -0.0219175949 -0.0118842296 -0.0250669767

Bias(β̂CDU-CSU) 0.0031232515 0.0131566168 -0.0000261302

Biasrel(β̂CDU-CSU) 0.1247262766 0.5254062335 -0.0010435021

Var(β̂CDU-CSU) 0.0033253085 0.0034311031 0.0038890756

MSE(β̂CDU-CSU) 0.0033350632 0.0036041996 0.0038890763

βSPD -0.0133277196 -0.0133277196 -0.0133277196

E(β̂SPD) -0.0136609925 -0.0108006495 -0.0175932914

Bias(β̂SPD) -0.0003332728 0.0025270702 -0.0042655718

Biasrel(β̂SPD) -0.0250059897 0.1896100950 -0.3200526330

Var(β̂SPD) 0.0031839195 0.0031321851 0.0037099411

MSE(β̂SPD) 0.0031840306 0.0031385712 0.0037281362

βdie gruenen 0.0870817819 0.0870817819 0.0870817819

E(β̂die gruenen) 0.0563627654 0.0645259994 0.0558080719

Bias(β̂die gruenen) -0.0307190165 -0.0225557825 -0.0312737100

Biasrel(β̂die gruenen) -0.3527605415 -0.2590183847 -0.3591303412

Var(β̂die gruenen) 0.0035334211 0.0041609600 0.0037587510

MSE(β̂die gruenen) 0.0044770791 0.0046697234 0.0047367960
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βdie linke 0.0768770122 0.0768770122 0.0768770122

E(β̂die linke) 0.0418090430 0.0661425030 0.0573229780

Bias(β̂die linke) -0.0350679692 -0.0107345092 -0.0195540342

Biasrel(β̂die linke) -0.4561567649 -0.1396322377 -0.2543547627

Var(β̂die linke) 0.0038953183 0.0049451755 0.0047566340

MSE(β̂die linke) 0.0051250808 0.0050604052 0.0051389942

βextreme right-wing 0.0074005875 0.0074005875 0.0074005875

E(β̂extreme right-wing) -0.0004936485 -0.0029691947 -0.0124448989

Bias(β̂extreme right-wing) -0.0078942360 -0.0103697821 -0.0198454864

Biasrel(β̂extreme right-wing) -1.0667039657 -1.4012106698 -2.6816095990

Var(β̂extreme right-wing) 0.0035815393 0.0048259429 0.0050288343

MSE(β̂extreme right-wing) 0.0036438582 0.0049334753 0.0054226776

βFDP -0.1541756102 -0.1541756102 -0.1541756102

E(β̂FDP) -0.1063717987 -0.1015080148 -0.1142014888

Bias(β̂FDP) 0.0478038115 0.0526675954 0.0399741215

Biasrel(β̂FDP) 0.3100607899 0.3416078287 0.2592765574

Var(β̂FDP) 0.0056797511 0.0073388433 0.0045968928

MSE(β̂FDP) 0.0079649554 0.0101127189 0.0061948231

βwould not vote -0.1315889085 -0.1315889085 -0.1315889085

E(β̂would not vote) -0.0915003317 -0.0880047470 -0.1027010327

Bias(β̂would not vote) 0.0400885768 0.0435841616 0.0288878759

Biasrel(β̂would not vote) 0.3046501203 0.3312145532 0.2195312372

Var(β̂would not vote) 0.0045893355 0.0045644900 0.0053588812

MSE(β̂would not vote) 0.0061964295 0.0064640692 0.0061933906

Table C.18: Expected value, variance, bias and MSE of regression coefficient esti-
mates on income in order to evaluate the performance of single impu-
tation (random imputation)
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Categories p-value p-value p-Value p-Value
(true) (MCAR) (MAR) (MNAR)

intercept 0.0000000000 0.0000000000 0.0000000000 0.0000000000
age 0.0000000000 0.0000000151 0.0000000021 0.0000002102
female 0.0000000000 0.0000000000 0.0000000000 0.0000000000
fachhochschulreife 0.8970973124 0.5589734669 0.5319106327 0.5376397931
hochschulreife 0.6987555776 0.5512264683 0.5308565575 0.5023756288
mittlere reife 0.0115117133 0.2954909112 0.2945165731 0.3562208723
no graduation 0.0058831082 0.2662710266 0.2648009435 0.3228959409
volks-, hauptschule 0.0065408724 0.3315332461 0.4199307174 0.3719831710
half-time 0.0000000000 0.0000000034 0.0000000021 0.0000000007
part-time 0.0000000000 0.0000000000 0.0000000000 0.0000000000
not employed 0.0000000000 0.0000000000 0.0000000000 0.0000000000
single 0.0002454705 0.2001905706 0.2059830417 0.2110769909
married living apart 0.0000000011 0.0608715150 0.0157956356 0.0317432884
married living together 0.0021189162 0.2939261257 0.2525118834 0.2501057366
widowed 0.8397563199 0.5338076119 0.4964576419 0.4900424133
CDU-CSU 0.5884698278 0.5421398763 0.5553650681 0.4921492236
die gruenen 0.0762638735 0.4662242380 0.4177351953 0.4522021390
die linke 0.1299242680 0.5026731479 0.4112355027 0.4702838623
FDP 0.0082560314 0.3047518820 0.3420028910 0.2741642317
extreme right-wing 0.8910480181 0.5849721906 0.5673165819 0.5491120005
SPD 0.7770122356 0.5817985845 0.5730759447 0.5477687711
would not vote 0.0103321856 0.3409417395 0.3347758117 0.2828691201

Table C.19: Comparison of p-values of regression coefficients of data after applying
single imputation (random imputation)

MCAR MAR MNAR

β0 7.0070608279 7.0070608279 7.0070608279

E(β̂0) 7.0916369070 7.1001636991 7.0955100453

Bias(β̂0) 0.0845760791 0.0931028712 0.0884492175

Biasrel(β̂0) 0.0120701220 0.0132870077 0.0126228699

Var(β̂0) 0.0054594981 0.0077466948 0.0065872425

MSE(β̂0) 0.0126126112 0.0164148395 0.0144105065

βage 0.0113720951 0.0113720951 0.0113720951

E(β̂age) 0.0078482392 0.0077676642 0.0077232479

Bias(β̂age) -0.0035238559 -0.0036044309 -0.0036488472

Biasrel(β̂age) -0.3098686623 -0.3169539877 -0.3208597164

Var(β̂age) 0.0000003152 0.0000002671 0.0000002588

MSE(β̂age) 0.0000127328 0.0000132591 0.0000135729

βfemale -0.3783040793 -0.3783040793 -0.3783040793

E(β̂female) -0.2619632223 -0.2339841705 -0.2344401869

Bias(β̂female) 0.1163408570 0.1443199088 0.1438638924

Biasrel(β̂female) 0.3075326525 0.3814918122 0.3802863893

Var(β̂female) 0.0001211282 0.0003151214 0.0003088420

MSE(β̂female) 0.0136563232 0.0211433575 0.0210056615

βno graduation 0.2712024535 0.2712024535 0.2712024535

E(β̂no graduation) 0.1915116433 0.1982282710 0.1994620402
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Bias(β̂no graduation) -0.0796908102 -0.0729741825 -0.0717404133

Biasrel(β̂no graduation) -0.2938425120 -0.2690764098 -0.2645271545

Var(β̂no graduation) 0.0047131969 0.0059308767 0.0052811917

MSE(β̂no graduation) 0.0110638221 0.0112561080 0.0104278786

βvolks-, hauptschule -0.2259655461 -0.2259655461 -0.2259655461

E(β̂volks-, hauptschule) -0.1503682301 -0.0545398883 -0.0571272534

Bias(β̂volks-, hauptschule) 0.0755973160 0.1714256578 0.1688382927

Biasrel(β̂volks-, hauptschule) 0.3345524010 0.7586362644 0.7471860006

Var(β̂volks-, hauptschule) 0.0031562267 0.0062893322 0.0057083319

MSE(β̂volks-, hauptschule) 0.0088711809 0.0356760883 0.0342147009

βmittlere reife 0.2098521677 0.2098521677 0.2098521677

E(β̂mittlere reife) 0.1493249843 0.1426126369 0.1428180040

Bias(β̂mittlere reife) -0.0605271834 -0.0672395308 -0.0670341638

Biasrel(β̂mittlere reife) -0.2884277254 -0.3204138015 -0.3194351742

Var(β̂mittlere reife) 0.0031946339 0.0052511315 0.0046176226

MSE(β̂mittlere reife) 0.0068581739 0.0097722860 0.0091112018

βfachhochschulreife -0.0112989169 -0.0112989169 -0.0112989169

E(β̂fachhochschulreife) -0.0051701984 -0.0100109886 -0.0075955023

Bias(β̂fachhochschulreife) 0.0061287185 0.0012879282 0.0037034146

Biasrel(β̂fachhochschulreife) 0.5424164602 0.1139868764 0.3277672205

Var(β̂fachhochschulreife) 0.0031395911 0.0049240515 0.0045151911

MSE(β̂fachhochschulreife) 0.0031771523 0.0049257103 0.0045289063

βhochschulreife 0.0322277454 0.0322277454 0.0322277454

E(β̂hochschulreife) 0.0276762420 0.0171925909 0.0179904895

Bias(β̂hochschulreife) -0.0045515034 -0.0150351545 -0.0142372559

Biasrel(β̂hochschulreife) -0.1412293454 -0.4665282756 -0.4417701485

Var(β̂hochschulreife) 0.0030535896 0.0048005163 0.0041836912

MSE(β̂hochschulreife) 0.0030743058 0.0050265722 0.0043863906

βhalf-time -0.4575120691 -0.4575120691 -0.4575120691

E(β̂half-time) -0.3154235979 -0.3392545596 -0.3372660380

Bias(β̂half-time) 0.1420884711 0.1182575094 0.1202460311

Biasrel(β̂half-time) 0.3105677003 0.2584795406 0.2628259214

Var(β̂half-time) 0.0002075695 0.0003199617 0.0002922067

MSE(β̂half-time) 0.0203967032 0.0143048002 0.0147513147

βpart-time -0.9369052158 -0.9369052158 -0.9369052158

E(β̂part-time) -0.6438839013 -0.6443465394 -0.6457184072

Bias(β̂part-time) 0.2930213145 0.2925586765 0.2911868086

Biasrel(β̂part-time) 0.3127544917 0.3122606978 0.3107964431

Var(β̂part-time) 0.0011465790 0.0011896584 0.0011516977

MSE(β̂part-time) 0.0870080698 0.0867802376 0.0859414552

βnot employed -0.7984611199 -0.7984611199 -0.7984611199

E(β̂not employed) -0.5504355624 -0.5591140542 -0.5576560739

Bias(β̂not employed) 0.2480255575 0.2393470657 0.2408050460

Biasrel(β̂not employed) 0.3106294737 0.2997604513 0.3015864392
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Var(β̂not employed) 0.0001288135 0.0001807492 0.0001760937

MSE(β̂not employed) 0.0616454906 0.0574677671 0.0581631639

βmarried living together 0.0923461105 0.0923461105 0.0923461105

E(β̂married living together) 0.0619353427 0.0685831442 0.0670299892

Bias(β̂married living together) -0.0304107678 -0.0237629663 -0.0253161213

Biasrel(β̂married living together) -0.3293129253 -0.2573250370 -0.2741438828

Var(β̂married living together) 0.0004903544 0.0004124792 0.0003580178

MSE(β̂married living together) 0.0014151692 0.0009771578 0.0009989238

βmarried living apart 0.3803863918 0.3803863918 0.3803863918

E(β̂married living apart) 0.2563606678 0.2815109917 0.2806793047

Bias(β̂married living apart) -0.1240257239 -0.0988754000 -0.0997070871

Biasrel(β̂married living apart) -0.3260519477 -0.2599341148 -0.2621205417

Var(β̂married living apart) 0.0017439917 0.0013075731 0.0013272677

MSE(β̂married living apart) 0.0171263719 0.0110839178 0.0112687709

βwidowed -0.0087342802 -0.0087342802 -0.0087342802

E(β̂widowed) -0.0094457299 0.0224692893 0.0213696895

Bias(β̂widowed) -0.0007114497 0.0312035695 0.0301039697

Biasrel(β̂widowed) -0.0814548729 3.5725404762 3.4466457488

Var(β̂widowed) 0.0011676968 0.0009417863 0.0009171123

MSE(β̂widowed) 0.0011682030 0.0019154491 0.0018233613

βsingle 0.1244899786 0.1244899786 0.1244899786

E(β̂single) 0.0856785500 0.0872207027 0.0853986034

Bias(β̂single) -0.0388114287 -0.0372692760 -0.0390913752

Biasrel(β̂single) -0.3117634775 -0.2993757118 -0.3140122253

Var(β̂single) 0.0006845503 0.0006056384 0.0005656167

MSE(β̂single) 0.0021908773 0.0019946373 0.0020937523

βCDU-CSU -0.0250408465 -0.0250408465 -0.0250408465

E(β̂CDU-CSU) -0.0122580716 -0.0115961874 -0.0140827234

Bias(β̂CDU-CSU) 0.0127827749 0.0134446591 0.0109581230

Biasrel(β̂CDU-CSU) 0.5104769465 0.5369091298 0.4376099288

Var(β̂CDU-CSU) 0.0006006097 0.0007371277 0.0007097073

MSE(β̂CDU-CSU) 0.0007640091 0.0009178866 0.0008297878

βSPD -0.0133277196 -0.0133277196 -0.0133277196

E(β̂SPD) -0.0043832393 -0.0115167450 -0.0130923744

Bias(β̂SPD) 0.0089444804 0.0018109747 0.0002353452

Biasrel(β̂SPD) 0.6711185876 0.1358803097 0.0176583265

Var(β̂SPD) 0.0008197159 0.0007230128 0.0006687580

MSE(β̂SPD) 0.0008997196 0.0007262924 0.0006688134

βdie gruenen 0.0870817819 0.0870817819 0.0870817819

E(β̂die gruenen) 0.0654742647 0.0629766232 0.0617840610

Bias(β̂die gruenen) -0.0216075172 -0.0241051587 -0.0252977209

Biasrel(β̂die gruenen) -0.2481290202 -0.2768105812 -0.2905053196

Var(β̂die gruenen) 0.0007943764 0.0008109716 0.0008419022

MSE(β̂die gruenen) 0.0012612612 0.0013920302 0.0014818768
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βdie linke 0.0768770122 0.0768770122 0.0768770122

E(β̂die linke) 0.0562145152 0.0651355885 0.0623257607

Bias(β̂die linke) -0.0206624970 -0.0117414237 -0.0145512515

Biasrel(β̂die linke) -0.2687734142 -0.1527299693 -0.1892796182

Var(β̂die linke) 0.0010660424 0.0010415293 0.0009414680

MSE(β̂die linke) 0.0014929812 0.0011793903 0.0011532070

βextreme right-wing 0.0074005875 0.0074005875 0.0074005875

E(β̂extreme right-wing) 0.0078749123 0.0028155209 0.0004005251

Bias(β̂extreme right-wing) 0.0004743249 -0.0045850666 -0.0070000624

Biasrel(β̂extreme right-wing) 0.0640928672 -0.6195544104 -0.9458792843

Var(β̂extreme right-wing) 0.0010753537 0.0009660003 0.0009418810

MSE(β̂extreme right-wing) 0.0010755787 0.0009870231 0.0009908819

βFDP -0.1541756102 -0.1541756102 -0.1541756102

E(β̂FDP) -0.1006390216 -0.1051570072 -0.1071460863

Bias(β̂FDP) 0.0535365886 0.0490186030 0.0470295239

Biasrel(β̂FDP) 0.3472442141 0.3179400614 0.3050386756

Var(β̂FDP) 0.0012651733 0.0014500104 0.0012769865

MSE(β̂FDP) 0.0041313396 0.0038528338 0.0034887627

βwould not vote -0.1315889085 -0.1315889085 -0.1315889085

E(β̂would not vote) -0.0838594143 -0.0892299719 -0.0937393737

Bias(β̂would not vote) 0.0477294942 0.0423589367 0.0378495348

Biasrel(β̂would not vote) 0.3627166968 0.3219035490 0.2876346894

Var(β̂would not vote) 0.0013716638 0.0011243847 0.0011097192

MSE(β̂would not vote) 0.0036497684 0.0029186642 0.0025423065

Table C.20: Expected value, variance, bias and MSE of regression coefficient esti-
mates on income in order to evaluate the performance of single impu-
tation (mean imputation)
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Categories p-value p-value p-Value p-Value
(true) (MCAR) (MAR) (MNAR)

intercept 0.0000000000 0.0000000000 0.0000000000 0.0000000000
age 0.0000000000 0.0000000000 0.0000000000 0.0000000000
female 0.0000000000 0.0000000000 0.0000000000 0.0000000000
fachhochschulreife 0.8970973124 0.6161782378 0.5570837368 0.5811524383
hochschulreife 0.6987555776 0.5718562273 0.5435633583 0.5587214976
mittlere reife 0.0115117133 0.1375629590 0.1829518173 0.1701233600
no graduation 0.0058831082 0.1132670462 0.1190364275 0.1075621702
volks-, hauptschule 0.0065408724 0.1253318724 0.4754763144 0.4789033809
half-time 0.0000000000 0.0000000000 0.0000000000 0.0000000000
part-time 0.0000000000 0.0000000000 0.0000000000 0.0000000000
not employed 0.0000000000 0.0000000000 0.0000000000 0.0000000000
single 0.0002454705 0.0481189936 0.0369086329 0.0381008661
married living apart 0.0000000011 0.0006289558 0.0001738168 0.0001383354
married living together 0.0021189162 0.0946385613 0.0620802913 0.0623668348
widowed 0.8397563199 0.5657039981 0.5142883575 0.5256782552
CDU-CSU 0.5884698278 0.6449102239 0.6315266488 0.6249251443
die gruenen 0.0762638735 0.2440754312 0.2697124228 0.2802151233
die linke 0.1299242680 0.3296128605 0.2766576101 0.2895697650
FDP 0.0082560314 0.1397141571 0.1329125596 0.1199749997
extreme right-wing 0.8910480181 0.6323018550 0.6548695565 0.6599262446
SPD 0.7770122356 0.6334676974 0.6526662188 0.6559587817
would not vote 0.0103321856 0.1821107197 0.1466938452 0.1246360307

Table C.21: Comparison of p-values of regression coefficients of data after applying
single imputation (mean imputation)

MCAR MAR MNAR

β0 7.0070608279 7.0070608279 7.0070608279

E(β̂0) 6.9174937780 6.8667165945 6.8694878168

Bias(β̂0) -0.0895670499 -0.1403442334 -0.1375730111

Biasrel(β̂0) -0.0127823994 -0.0200289732 -0.0196334832

Var(β̂0) 0.0148186904 0.0127187798 0.0143960762

MSE(β̂0) 0.0228409468 0.0324152837 0.0333224096

βage 0.0113720951 0.0113720951 0.0113720951

E(β̂age) 0.0128148553 0.0136551293 0.0134839992

Bias(β̂age) 0.0014427602 0.0022830342 0.0021119041

Biasrel(β̂age) 0.1268684624 0.2007575694 0.1857093215

Var(β̂age) 0.0000004051 0.0000004267 0.0000004557

MSE(β̂age) 0.0000024866 0.0000056390 0.0000049158

βfemale -0.3783040793 -0.3783040793 -0.3783040793

E(β̂female) -0.4185481911 -0.4336206341 -0.4307167670

Bias(β̂female) -0.0402441118 -0.0553165548 -0.0524126878

Biasrel(β̂female) -0.1063803274 -0.1462224645 -0.1385464515

Var(β̂female) 0.0001812870 0.0003264131 0.0002946685

MSE(β̂female) 0.0018008755 0.0033863343 0.0030417583

βno graduation 0.2712024535 0.2712024535 0.2712024535

E(β̂no graduation) 0.3285529909 0.3688765028 0.3700097038
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Bias(β̂no graduation) 0.0573505374 0.0976740493 0.0988072503

Biasrel(β̂no graduation) 0.2114676201 0.3601517907 0.3643302228

Var(β̂no graduation) 0.0116811792 0.0119122165 0.0142889414

MSE(β̂no graduation) 0.0149702633 0.0214524364 0.0240518141

βvolks-, hauptschule -0.2259655461 -0.2259655461 -0.2259655461

E(β̂volks-, hauptschule) -0.2197814102 -0.2149688899 -0.2101629293

Bias(β̂volks-, hauptschule) 0.0061841359 0.0109966562 0.0158026169

Biasrel(β̂volks-, hauptschule) 0.0273676056 0.0486651898 0.0699337449

Var(β̂volks-, hauptschule) 0.0095650371 0.0104890529 0.0115388316

MSE(β̂volks-, hauptschule) 0.0096032806 0.0106099793 0.0117885543

βmittlere reife 0.2098521677 0.2098521677 0.2098521677

E(β̂mittlere reife) 0.2657630531 0.2688739597 0.2703469967

Bias(β̂mittlere reife) 0.0559108853 0.0590217920 0.0604948290

Biasrel(β̂mittlere reife) 0.2664298678 0.2812541448 0.2882735482

Var(β̂mittlere reife) 0.0098718323 0.0096965323 0.0118469708

MSE(β̂mittlere reife) 0.0129978594 0.0131801042 0.0155065951

βfachhochschulreife -0.0112989169 -0.0112989169 -0.0112989169

E(β̂fachhochschulreife) 0.0063823563 0.0131245830 0.0189483735

Bias(β̂fachhochschulreife) 0.0176812732 0.0244234999 0.0302472903

Biasrel(β̂fachhochschulreife) 1.5648644331 2.1615788610 2.6770079521

Var(β̂fachhochschulreife) 0.0098469136 0.0096170372 0.0119383498

MSE(β̂fachhochschulreife) 0.0101595410 0.0102135445 0.0128532483

βhochschulreife 0.0322277454 0.0322277454 0.0322277454

E(β̂hochschulreife) 0.0752421860 0.0813653972 0.0840635838

Bias(β̂hochschulreife) 0.0430144406 0.0491376518 0.0518358384

Biasrel(β̂hochschulreife) 1.3347021383 1.5247002627 1.6084227370

Var(β̂hochschulreife) 0.0095302676 0.0097461013 0.0118446625

MSE(β̂hochschulreife) 0.0113805097 0.0121606102 0.0145316166

βhalf-time -0.4575120691 -0.4575120691 -0.4575120691

E(β̂half-time) -0.4527266137 -0.4568787688 -0.4565167217

Bias(β̂half-time) 0.0047854553 0.0006333003 0.0009953473

Biasrel(β̂half-time) 0.0104597357 0.0013842264 0.0021755652

Var(β̂half-time) 0.0003959847 0.0004215359 0.0004250038

MSE(β̂half-time) 0.0004188853 0.0004219370 0.0004259945

βpart-time -0.9369052158 -0.9369052158 -0.9369052158

E(β̂part-time) -0.9456496746 -0.9504569490 -0.9482769057

Bias(β̂part-time) -0.0087444588 -0.0135517332 -0.0113716899

Biasrel(β̂part-time) -0.0093333441 -0.0144643588 -0.0121375030

Var(β̂part-time) 0.0008628088 0.0006519396 0.0006957363

MSE(β̂part-time) 0.0009392744 0.0008355891 0.0008250517

βnot employed -0.7984611199 -0.7984611199 -0.7984611199

E(β̂not employed) -0.8222905931 -0.8507521089 -0.8470741776

Bias(β̂not employed) -0.0238294733 -0.0522909890 -0.0486130577

Biasrel(β̂not employed) -0.0298442500 -0.0654897123 -0.0608834375
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Var(β̂not employed) 0.0002060908 0.0002086444 0.0001990145

MSE(β̂not employed) 0.0007739346 0.0029429920 0.0025622438

βmarried living together 0.0923461105 0.0923461105 0.0923461105

E(β̂married living together) 0.1197587361 0.1366606357 0.1341215575

Bias(β̂married living together) 0.0274126255 0.0443145252 0.0417754470

Biasrel(β̂married living together) 0.2968465633 0.4798743000 0.4523790635

Var(β̂married living together) 0.0006126933 0.0008067530 0.0008049296

MSE(β̂married living together) 0.0013641453 0.0027705302 0.0025501175

βmarried living apart 0.3803863918 0.3803863918 0.3803863918

E(β̂married living apart) 0.4147830230 0.4618571167 0.4589009891

Bias(β̂married living apart) 0.0343966312 0.0814707250 0.0785145974

Biasrel(β̂married living apart) 0.0904255041 0.2141788632 0.2064074821

Var(β̂married living apart) 0.0023670686 0.0020648256 0.0019197398

MSE(β̂married living apart) 0.0035501969 0.0087023046 0.0080842818

βwidowed -0.0087342802 -0.0087342802 -0.0087342802

E(β̂widowed) -0.0016621413 0.0054700428 0.0043346813

Bias(β̂widowed) 0.0070721389 0.0142043230 0.0130689615

Biasrel(β̂widowed) 0.8096991093 1.6262728804 1.4962837507

Var(β̂widowed) 0.0016779374 0.0019574283 0.0018997222

MSE(β̂widowed) 0.0017279526 0.0021591911 0.0020705199

βsingle 0.1244899786 0.1244899786 0.1244899786

E(β̂single) 0.1612721931 0.1911036717 0.1875867603

Bias(β̂single) 0.0367822144 0.0666136930 0.0630967816

Biasrel(β̂single) 0.2954632561 0.5350928144 0.5068422562

Var(β̂single) 0.0008392990 0.0011122343 0.0010600854

MSE(β̂single) 0.0021922303 0.0055496184 0.0050412892

βCDU-CSU -0.0250408465 -0.0250408465 -0.0250408465

E(β̂CDU-CSU) -0.0150763041 -0.0276500753 -0.0292530088

Bias(β̂CDU-CSU) 0.0099645423 -0.0026092288 -0.0042121623

Biasrel(β̂CDU-CSU) 0.3979315295 -0.1041989048 -0.1682116598

Var(β̂CDU-CSU) 0.0012484707 0.0009369331 0.0009210290

MSE(β̂CDU-CSU) 0.0013477628 0.0009437412 0.0009387713

βSPD -0.0133277196 -0.0133277196 -0.0133277196

E(β̂SPD) -0.0034397439 -0.0113950220 -0.0123505366

Bias(β̂SPD) 0.0098879758 0.0019326976 0.0009771831

Biasrel(β̂SPD) 0.7419105474 0.1450133778 0.0733196014

Var(β̂SPD) 0.0014432855 0.0010530442 0.0010033010

MSE(β̂SPD) 0.0015410575 0.0010567795 0.0010042559

βdie gruenen 0.0870817819 0.0870817819 0.0870817819

E(β̂die gruenen) 0.1061627704 0.1019690850 0.1007561729

Bias(β̂die gruenen) 0.0190809885 0.0148873031 0.0136743910

Biasrel(β̂die gruenen) 0.2191157332 0.1709577224 0.1570292966

Var(β̂die gruenen) 0.0012505375 0.0011905797 0.0011336250

MSE(β̂die gruenen) 0.0016146216 0.0014122115 0.0013206140
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βdie linke 0.0768770122 0.0768770122 0.0768770122

E(β̂die linke) 0.0993693344 0.1072459347 0.1052577625

Bias(β̂die linke) 0.0224923222 0.0303689225 0.0283807503

Biasrel(β̂die linke) 0.2925753947 0.3950325537 0.3691708282

Var(β̂die linke) 0.0017985402 0.0012517383 0.0012559278

MSE(β̂die linke) 0.0023044448 0.0021740097 0.0020613948

βextreme right-wing 0.0074005875 0.0074005875 0.0074005875

E(β̂extreme right-wing) 0.0151881461 0.0187848461 0.0162848435

Bias(β̂extreme right-wing) 0.0077875586 0.0113842587 0.0088842561

Biasrel(β̂extreme right-wing) 1.0522892450 1.5382912119 1.2004798396

Var(β̂extreme right-wing) 0.0017086314 0.0013582304 0.0014149696

MSE(β̂extreme right-wing) 0.0017692775 0.0014878318 0.0014938996

βFDP -0.1541756102 -0.1541756102 -0.1541756102

E(β̂FDP) -0.1642862562 -0.1587615575 -0.1623867071

Bias(β̂FDP) -0.0101106460 -0.0045859473 -0.0082110968

Biasrel(β̂FDP) -0.0655787643 -0.0297449594 -0.0532580791

Var(β̂FDP) 0.0023180681 0.0020388320 0.0021844570

MSE(β̂FDP) 0.0024202933 0.0020598629 0.0022518792

βwould not vote -0.1315889085 -0.1315889085 -0.1315889085

E(β̂would not vote) -0.1279730239 -0.1536533128 -0.1587981495

Bias(β̂would not vote) 0.0036158846 -0.0220644042 -0.0272092409

Biasrel(β̂would not vote) 0.0274786428 -0.1676767781 -0.2067745771

Var(β̂would not vote) 0.0016551290 0.0015962070 0.0014305641

MSE(β̂would not vote) 0.0016682036 0.0020830450 0.0021709069

Table C.22: Expected value, variance, bias and MSE of regression coefficient esti-
mates on income in order to evaluate the performance of single impu-
tation (deterministic regression imputation)
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Categories p-value p-value p-Value p-Value
(true) (MCAR) (MAR) (MNAR)

intercept 0.0000000000 0.0000000000 0.0000000000 0.0000000000
age 0.0000000000 0.0000000000 0.0000000000 0.0000000000
female 0.0000000000 0.0000000000 0.0000000000 0.0000000000
fachhochschulreife 0.8970973124 0.4226237873 0.4221740554 0.4546937984
hochschulreife 0.6987555776 0.4110095082 0.3755749819 0.3729700561
mittlere reife 0.0115117133 0.0116743841 0.0188229177 0.0188860940
no graduation 0.0058831082 0.0067637241 0.0062963946 0.0081791465
volks-, hauptschule 0.0065408724 0.0651977419 0.0837397955 0.0763236244
half-time 0.0000000000 0.0000000000 0.0000000000 0.0000000000
part-time 0.0000000000 0.0000000000 0.0000000000 0.0000000000
not employed 0.0000000000 0.0000000000 0.0000000000 0.0000000000
single 0.0002454705 0.0004187104 0.0000043959 0.0000020202
married living apart 0.0000000011 0.0000000056 0.0000000001 0.0000000001
married living together 0.0021189162 0.0006941404 0.0000844594 0.0001408856
widowed 0.8397563199 0.4738770185 0.4799905063 0.4635606240
CDU-CSU 0.5884698278 0.5353602905 0.4728381180 0.4543794018
die gruenen 0.0762638735 0.0623533347 0.0611655859 0.0622420341
die linke 0.1299242680 0.0973795749 0.0596744141 0.0637489214
FDP 0.0082560314 0.0164168074 0.0216775264 0.0210066029
extreme right-wing 0.8910480181 0.5151358984 0.5718777707 0.5688330435
SPD 0.7770122356 0.5572434153 0.5585187752 0.5780114339
would not vote 0.0103321856 0.0387381707 0.0122286226 0.0079922933

Table C.23: Comparison of p-values of regression coefficients of data after applying
single imputation (deterministic regression imputation)

MCAR MAR MNAR

β0 7.0070608279 7.0070608279 7.0070608279

E(β̂0) 6.9924669484 7.0049230861 7.0014843795

Bias(β̂0) -0.0145938795 -0.0021377418 -0.0055764484

Biasrel(β̂0) -0.0020827391 -0.0003050840 -0.0007958327

Var(β̂0) 0.0158732165 0.0139817396 0.0124702533

MSE(β̂0) 0.0160861978 0.0139863095 0.0125013501

βage 0.0113720951 0.0113720951 0.0113720951

E(β̂age) 0.0113188148 0.0113286479 0.0112105894

Bias(β̂age) -0.0000532803 -0.0000434472 -0.0001615057

Biasrel(β̂age) -0.0046851813 -0.0038205116 -0.0142019330

Var(β̂age) 0.0000005893 0.0000007770 0.0000006649

MSE(β̂age) 0.0000005922 0.0000007788 0.0000006910

βfemale -0.3783040793 -0.3783040793 -0.3783040793

E(β̂female) -0.3703613127 -0.3689728951 -0.3672654350

Bias(β̂female) 0.0079427666 0.0093311842 0.0110386443

Biasrel(β̂female) 0.0209957202 0.0246658302 0.0291792896

Var(β̂female) 0.0004188609 0.0003741238 0.0003924366

MSE(β̂female) 0.0004819484 0.0004611948 0.0005142883

βno graduation 0.2712024535 0.2712024535 0.2712024535

E(β̂no graduation) 0.2650360611 0.2759969684 0.2797034142
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Bias(β̂no graduation) -0.0061663924 0.0047945149 0.0085009607

Biasrel(β̂no graduation) -0.0227372294 0.0176787299 0.0313454418

Var(β̂no graduation) 0.0156203545 0.0098634925 0.0101005677

MSE(β̂no graduation) 0.0156583789 0.0098864799 0.0101728340

βvolks-, hauptschule -0.2259655461 -0.2259655461 -0.2259655461

E(β̂volks-, hauptschule) -0.2086815722 -0.1974003455 -0.1898886982

Bias(β̂volks-, hauptschule) 0.0172839740 0.0285652006 0.0360768479

Biasrel(β̂volks-, hauptschule) 0.0764894217 0.1264139650 0.1596564101

Var(β̂volks-, hauptschule) 0.0093085654 0.0071663851 0.0072587364

MSE(β̂volks-, hauptschule) 0.0096073012 0.0079823558 0.0085602753

βmittlere reife 0.2098521677 0.2098521677 0.2098521677

E(β̂mittlere reife) 0.2169000164 0.1995132025 0.2058591081

Bias(β̂mittlere reife) 0.0070478487 -0.0103389653 -0.0039930596

Biasrel(β̂mittlere reife) 0.0335848266 -0.0492678507 -0.0190279647

Var(β̂mittlere reife) 0.0098049371 0.0074466952 0.0077073874

MSE(β̂mittlere reife) 0.0098546093 0.0075535894 0.0077233320

βfachhochschulreife -0.0112989169 -0.0112989169 -0.0112989169

E(β̂fachhochschulreife) -0.0161393806 -0.0233642927 -0.0131602402

Bias(β̂fachhochschulreife) -0.0048404637 -0.0120653758 -0.0018613233

Biasrel(β̂fachhochschulreife) -0.4284006817 -1.0678347233 -0.1647346693

Var(β̂fachhochschulreife) 0.0102855414 0.0069456463 0.0074951694

MSE(β̂fachhochschulreife) 0.0103089715 0.0070912196 0.0074986339

βhochschulreife 0.0322277454 0.0322277454 0.0322277454

E(β̂hochschulreife) 0.0431358094 0.0252421536 0.0324632961

Bias(β̂hochschulreife) 0.0109080640 -0.0069855917 0.0002355507

Biasrel(β̂hochschulreife) 0.3384681082 -0.2167570726 0.0073089427

Var(β̂hochschulreife) 0.0098601629 0.0069235578 0.0072353435

MSE(β̂hochschulreife) 0.0099791488 0.0069723563 0.0072353990

βhalf-time -0.4575120691 -0.4575120691 -0.4575120691

E(β̂half-time) -0.4676966667 -0.4691279944 -0.4693772845

Bias(β̂half-time) -0.0101845977 -0.0116159253 -0.0118652154

Biasrel(β̂half-time) -0.0222608284 -0.0253893309 -0.0259342130

Var(β̂half-time) 0.0008828500 0.0008748458 0.0008458249

MSE(β̂half-time) 0.0009865760 0.0010097755 0.0009866082

βpart-time -0.9369052158 -0.9369052158 -0.9369052158

E(β̂part-time) -0.9110910208 -0.9025778178 -0.9002725498

Bias(β̂part-time) 0.0258141950 0.0343273980 0.0366326661

Biasrel(β̂part-time) 0.0275526217 0.0366391364 0.0390996500

Var(β̂part-time) 0.0013966292 0.0015786659 0.0018079508

MSE(β̂part-time) 0.0020630019 0.0027570362 0.0031499030

βnot employed -0.7984611199 -0.7984611199 -0.7984611199

E(β̂not employed) -0.7924577023 -0.8011304583 -0.7985572706

Bias(β̂not employed) 0.0060034175 -0.0026693384 -0.0000961507

Biasrel(β̂not employed) 0.0075187350 -0.0033431038 -0.0001204201
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Var(β̂not employed) 0.0004048379 0.0004261165 0.0004092040

MSE(β̂not employed) 0.0004408790 0.0004332419 0.0004092133

βmarried living together 0.0923461105 0.0923461105 0.0923461105

E(β̂married living together) 0.1007691812 0.1105200537 0.1086877763

Bias(β̂married living together) 0.0084230706 0.0181739432 0.0163416657

Biasrel(β̂married living together) 0.0912119696 0.1968024760 0.1769610615

Var(β̂married living together) 0.0011384559 0.0010728279 0.0010385665

MSE(β̂married living together) 0.0012094040 0.0014031201 0.0013056165

βmarried living apart 0.3803863918 0.3803863918 0.3803863918

E(β̂married living apart) 0.3743968450 0.4037653753 0.4018423171

Bias(β̂married living apart) -0.0059895468 0.0233789835 0.0214559254

Biasrel(β̂married living apart) -0.0157459545 0.0614611458 0.0564056071

Var(β̂married living apart) 0.0047300397 0.0038490158 0.0039881477

MSE(β̂married living apart) 0.0047659144 0.0043955927 0.0044485045

βwidowed -0.0087342802 -0.0087342802 -0.0087342802

E(β̂widowed) -0.0070793382 0.0084118229 0.0047610645

Bias(β̂widowed) 0.0016549420 0.0171461031 0.0134953447

Biasrel(β̂widowed) 0.1894766314 1.9630814122 1.5451009561

Var(β̂widowed) 0.0034309817 0.0028740638 0.0028599179

MSE(β̂widowed) 0.0034337205 0.0031680527 0.0030420422

βsingle 0.1244899786 0.1244899786 0.1244899786

E(β̂single) 0.1351255706 0.1460764270 0.1433908702

Bias(β̂single) 0.0106355919 0.0215864484 0.0189008916

Biasrel(β̂single) 0.0854333181 0.1733990852 0.1518266114

Var(β̂single) 0.0014463874 0.0017664979 0.0015213023

MSE(β̂single) 0.0015595032 0.0022324727 0.0018785460

βCDU-CSU -0.0250408465 -0.0250408465 -0.0250408465

E(β̂CDU-CSU) -0.0116623010 -0.0220447104 -0.0251116744

Bias(β̂CDU-CSU) 0.0133785455 0.0029961360 -0.0000708279

Biasrel(β̂CDU-CSU) 0.5342688979 0.1196499507 -0.0028284954

Var(β̂CDU-CSU) 0.0026162784 0.0017208177 0.0016823296

MSE(β̂CDU-CSU) 0.0027952639 0.0017297946 0.0016823346

βSPD -0.0133277196 -0.0133277196 -0.0133277196

E(β̂SPD) -0.0056884557 -0.0140624267 -0.0174610966

Bias(β̂SPD) 0.0076392639 -0.0007347071 -0.0041333769

Biasrel(β̂SPD) 0.5731861226 -0.0551262388 -0.3101338441

Var(β̂SPD) 0.0023880839 0.0019604526 0.0019357178

MSE(β̂SPD) 0.0024464422 0.0019609924 0.0019528026

βdie gruenen 0.0870817819 0.0870817819 0.0870817819

E(β̂die gruenen) 0.0949947999 0.0898268628 0.0882972790

Bias(β̂die gruenen) 0.0079130180 0.0027450809 0.0012154971

Biasrel(β̂die gruenen) 0.0908688113 0.0315230214 0.0139581101

Var(β̂die gruenen) 0.0024147683 0.0017788079 0.0017979293

MSE(β̂die gruenen) 0.0024773841 0.0017863433 0.0017994067
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βdie linke 0.0768770122 0.0768770122 0.0768770122

E(β̂die linke) 0.0923304132 0.0939683186 0.0912436215

Bias(β̂die linke) 0.0154534010 0.0170913064 0.0143666092

Biasrel(β̂die linke) 0.2010145885 0.2223201178 0.1868778300

Var(β̂die linke) 0.0032338845 0.0025796105 0.0024643090

MSE(β̂die linke) 0.0034726921 0.0028717232 0.0026707085

βextreme right-wing 0.0074005875 0.0074005875 0.0074005875

E(β̂extreme right-wing) 0.0133899445 0.0087813303 0.0051564181

Bias(β̂extreme right-wing) 0.0059893570 0.0013807428 -0.0022441694

Biasrel(β̂extreme right-wing) 0.8093083253 0.1865720536 -0.3032420549

Var(β̂extreme right-wing) 0.0030938072 0.0027880167 0.0024630031

MSE(β̂extreme right-wing) 0.0031296796 0.0027899232 0.0024680394

βFDP -0.1541756102 -0.1541756102 -0.1541756102

E(β̂FDP) -0.1334978570 -0.1277133363 -0.1305586961

Bias(β̂FDP) 0.0206777533 0.0264622739 0.0236169141

Biasrel(β̂FDP) 0.1341181865 0.1716372250 0.1531819079

Var(β̂FDP) 0.0042775195 0.0030329900 0.0029541386

MSE(β̂FDP) 0.0047050890 0.0037332420 0.0035118972

βwould not vote -0.1315889085 -0.1315889085 -0.1315889085

E(β̂would not vote) -0.1106927186 -0.1315588054 -0.1357813289

Bias(β̂would not vote) 0.0208961900 0.0000301032 -0.0041924204

Biasrel(β̂would not vote) 0.1587990221 0.0002287667 -0.0318599831

Var(β̂would not vote) 0.0030221607 0.0027353053 0.0020504382

MSE(β̂would not vote) 0.0034588115 0.0027353062 0.0020680146

Table C.24: Expected value, variance, bias and MSE of regression coefficient esti-
mates on income in order to evaluate the performance of single impu-
tation (stochastic regression imputation)
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Categories p-value p-value p-Value p-Value
(true) (MCAR) (MAR) (MNAR)

intercept 0.0000000000 0.0000000000 0.0000000000 0.0000000000
age 0.0000000000 0.0000000000 0.0000000000 0.0000000000
female 0.0000000000 0.0000000000 0.0000000000 0.0000000000
fachhochschulreife 0.8970973124 0.4920189787 0.5591207507 0.5706634684
hochschulreife 0.6987555776 0.5201901479 0.5449572572 0.5449636729
mittlere reife 0.0115117133 0.1030286977 0.1325360975 0.1149679774
no graduation 0.0058831082 0.1038775302 0.0784402486 0.0720871047
volks-, hauptschule 0.0065408724 0.1301237346 0.1285667186 0.1257073255
half-time 0.0000000000 0.0000000000 0.0000000000 0.0000000000
part-time 0.0000000000 0.0000000000 0.0000000000 0.0000000000
not employed 0.0000000000 0.0000000000 0.0000000000 0.0000000000
single 0.0002454705 0.0210063888 0.0117042983 0.0094436602
married living apart 0.0000000011 0.0003359741 0.0000988969 0.0000457599
married living together 0.0021189162 0.0436741858 0.0262694311 0.0213384083
widowed 0.8397563199 0.5076716817 0.4973691588 0.5069096466
CDU-CSU 0.5884698278 0.4942816767 0.5282857918 0.5268545533
die gruenen 0.0762638735 0.2007899367 0.2119679992 0.2128950398
die linke 0.1299242680 0.2328135646 0.2309966270 0.2394614802
FDP 0.0082560314 0.1516394072 0.1571872850 0.1392307206
extreme right-wing 0.8910480181 0.5267447909 0.5817940980 0.5892774586
SPD 0.7770122356 0.5438360966 0.5618724223 0.5582356997
would not vote 0.0103321856 0.1709116795 0.1088359625 0.0777123613

Table C.25: Comparison of p-values of regression coefficients of data after applying
single imputation (stochastic regression imputation)

MCAR MAR MNAR

β0 7.0070608279 7.0070608279 7.0070608279

E(β̂0) 7.0494776542 7.0408830685 7.0450210944

Bias(β̂0) 0.0424168263 0.0338222406 0.0379602666

Biasrel(β̂0) 0.0060534406 0.0048268798 0.0054174307

Var(β̂0) 0.0071095715 0.0126071385 0.0088393449

MSE(β̂0) 0.0089087587 0.0137510825 0.0102803267

βage 0.0113720951 0.0113720951 0.0113720951

E(β̂age) 0.0091326469 0.0092390049 0.0091646857

Bias(β̂age) -0.0022394482 -0.0021330902 -0.0022074094

Biasrel(β̂age) -0.1969248566 -0.1875723125 -0.1941075412

Var(β̂age) 0.0000007705 0.0000007909 0.0000009550

MSE(β̂age) 0.0000057856 0.0000053410 0.0000058276

βfemale -0.3783040793 -0.3783040793 -0.3783040793

E(β̂female) -0.4247887735 -0.4061528801 -0.4061373292

Bias(β̂female) -0.0464846942 -0.0278488008 -0.0278332499

Biasrel(β̂female) -0.1228765344 -0.0736148574 -0.0735737503

Var(β̂female) 0.0005218836 0.0004676553 0.0005292038

MSE(β̂female) 0.0026827104 0.0012432110 0.0013038936

βno graduation 0.2712024535 0.2712024535 0.2712024535

E(β̂no graduation) 0.1677342398 0.2042129735 0.2055898701
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Bias(β̂no graduation) -0.1034682137 -0.0669894800 -0.0656125834

Biasrel(β̂no graduation) -0.3815165106 -0.2470091222 -0.2419321159

Var(β̂no graduation) 0.0070747121 0.0099471654 0.0081157308

MSE(β̂no graduation) 0.0177803833 0.0144347558 0.0124207419

βvolks-, hauptschule -0.2259655461 -0.2259655461 -0.2259655461

E(β̂volks-, hauptschule) -0.1716589631 -0.0934276054 -0.0996740891

Bias(β̂volks-, hauptschule) 0.0543065831 0.1325379407 0.1262914570

Biasrel(β̂volks-, hauptschule) 0.2403312540 0.5865404836 0.5588969610

Var(β̂volks-, hauptschule) 0.0043512814 0.0080698468 0.0062832830

MSE(β̂volks-, hauptschule) 0.0073004864 0.0256361525 0.0222328151

βmittlere reife 0.2098521677 0.2098521677 0.2098521677

E(β̂mittlere reife) 0.1329857827 0.1634524289 0.1623932981

Bias(β̂mittlere reife) -0.0768663851 -0.0463997389 -0.0474588696

Biasrel(β̂mittlere reife) -0.3662882585 -0.2211067885 -0.2261538212

Var(β̂mittlere reife) 0.0040331967 0.0081575312 0.0058592252

MSE(β̂mittlere reife) 0.0099416379 0.0103104670 0.0081115695

βfachhochschulreife -0.0112989169 -0.0112989169 -0.0112989169

E(β̂fachhochschulreife) -0.0180976061 0.0004326025 -0.0001943028

Bias(β̂fachhochschulreife) -0.0067986892 0.0117315194 0.0111046140

Biasrel(β̂fachhochschulreife) -0.6017115851 1.0382870752 0.9828034099

Var(β̂fachhochschulreife) 0.0040748725 0.0083011426 0.0064044045

MSE(β̂fachhochschulreife) 0.0041210947 0.0084387712 0.0065277170

βhochschulreife 0.0322277454 0.0322277454 0.0322277454

E(β̂hochschulreife) 0.0049741602 0.0261944947 0.0246253683

Bias(β̂hochschulreife) -0.0272535852 -0.0060332507 -0.0076023771

Biasrel(β̂hochschulreife) -0.8456559669 -0.1872067249 -0.2358954057

Var(β̂hochschulreife) 0.0040406640 0.0077068282 0.0052007154

MSE(β̂hochschulreife) 0.0047834219 0.0077432283 0.0052585115

βhalf-time -0.4575120691 -0.4575120691 -0.4575120691

E(β̂half-time) -0.3157945608 -0.3347498916 -0.3300330091

Bias(β̂half-time) 0.1417175082 0.1227621774 0.1274790600

Biasrel(β̂half-time) 0.3097568737 0.2683255497 0.2786354035

Var(β̂half-time) 0.0006306537 0.0005848341 0.0005972894

MSE(β̂half-time) 0.0207145058 0.0156553863 0.0168482001

βpart-time -0.9369052158 -0.9369052158 -0.9369052158

E(β̂part-time) -0.6415573143 -0.6478827692 -0.6492496255

Bias(β̂part-time) 0.2953479016 0.2890224466 0.2876555903

Biasrel(β̂part-time) 0.3152377600 0.3084863247 0.3070274191

Var(β̂part-time) 0.0014864460 0.0012319582 0.0013315287

MSE(β̂part-time) 0.0887168289 0.0847659328 0.0840772673

βnot employed -0.7984611199 -0.7984611199 -0.7984611199

E(β̂not employed) -0.5498451329 -0.5616477939 -0.5566890113

Bias(β̂not employed) 0.2486159870 0.2368133260 0.2417721086

Biasrel(β̂not employed) 0.3113689330 0.2965871726 0.3027975972
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Var(β̂not employed) 0.0002539160 0.0004182574 0.0003278248

MSE(β̂not employed) 0.0620638250 0.0564988088 0.0587815773

βmarried living together 0.0923461105 0.0923461105 0.0923461105

E(β̂married living together) 0.0642833402 0.0669095609 0.0631583282

Bias(β̂married living together) -0.0280627703 -0.0254365496 -0.0291877823

Biasrel(β̂married living together) -0.3038868683 -0.2754479799 -0.3160694282

Var(β̂married living together) 0.0008624842 0.0009214818 0.0010482174

MSE(β̂married living together) 0.0016500033 0.0015684998 0.0019001440

βmarried living apart 0.3803863918 0.3803863918 0.3803863918

E(β̂married living apart) 0.2549339005 0.2762374027 0.2782826229

Bias(β̂married living apart) -0.1254524912 -0.1041489890 -0.1021037689

Biasrel(β̂married living apart) -0.3298027846 -0.2737978837 -0.2684211926

Var(β̂married living apart) 0.0039316996 0.0039979985 0.0033955234

MSE(β̂married living apart) 0.0196700271 0.0148450104 0.0138207031

βwidowed -0.0087342802 -0.0087342802 -0.0087342802

E(β̂widowed) -0.0211557442 -0.0080528667 -0.0107990250

Bias(β̂widowed) -0.0124214640 0.0006814135 -0.0020647448

Biasrel(β̂widowed) -1.4221508476 0.0780159878 -0.2363955297

Var(β̂widowed) 0.0018637022 0.0024182237 0.0022245076

MSE(β̂widowed) 0.0020179950 0.0024186881 0.0022287708

βsingle 0.1244899786 0.1244899786 0.1244899786

E(β̂single) 0.0783119073 0.0811967945 0.0782538131

Bias(β̂single) -0.0461780713 -0.0432931841 -0.0462361655

Biasrel(β̂single) -0.3709380611 -0.3477644113 -0.3714047190

Var(β̂single) 0.0010762664 0.0013103352 0.0009633723

MSE(β̂single) 0.0032086806 0.0031846350 0.0031011553

βCDU-CSU -0.0250408465 -0.0250408465 -0.0250408465

E(β̂CDU-CSU) -0.0130530538 -0.0190651568 -0.0271278137

Bias(β̂CDU-CSU) 0.0119877927 0.0059756896 -0.0020869672

Biasrel(β̂CDU-CSU) 0.4787295293 0.2386376854 -0.0833425182

Var(β̂CDU-CSU) 0.0019144041 0.0012918184 0.0011524239

MSE(β̂CDU-CSU) 0.0020581113 0.0013275273 0.0011567793

βSPD -0.0133277196 -0.0133277196 -0.0133277196

E(β̂SPD) -0.0044864923 -0.0126224498 -0.0218395277

Bias(β̂SPD) 0.0088412273 0.0007052699 -0.0085118080

Biasrel(β̂SPD) 0.6633713475 0.0529175196 -0.6386544938

Var(β̂SPD) 0.0020549853 0.0013517016 0.0013859872

MSE(β̂SPD) 0.0021331526 0.0013521990 0.0014584381

βdie gruenen 0.0870817819 0.0870817819 0.0870817819

E(β̂die gruenen) 0.0660676941 0.0583156080 0.0517312225

Bias(β̂die gruenen) -0.0210140878 -0.0287661740 -0.0353505594

Biasrel(β̂die gruenen) -0.2413143978 -0.3303351553 -0.4059466701

Var(β̂die gruenen) 0.0021848640 0.0014978830 0.0016470591

MSE(β̂die gruenen) 0.0026264558 0.0023253758 0.0028967212
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βdie linke 0.0768770122 0.0768770122 0.0768770122

E(β̂die linke) 0.0578004861 0.0562560561 0.0505793133

Bias(β̂die linke) -0.0190765261 -0.0206209561 -0.0262976989

Biasrel(β̂die linke) -0.2481434377 -0.2682330581 -0.3420749346

Var(β̂die linke) 0.0024766654 0.0017369308 0.0021951226

MSE(β̂die linke) 0.0028405793 0.0021621546 0.0028866916

βextreme right-wing 0.0074005875 0.0074005875 0.0074005875

E(β̂extreme right-wing) 0.0078413132 -0.0034247502 -0.0097730668

Bias(β̂extreme right-wing) 0.0004407257 -0.0108253377 -0.0171736542

Biasrel(β̂extreme right-wing) 0.0595527980 -1.4627673472 -2.3205798603

Var(β̂extreme right-wing) 0.0030602009 0.0018926953 0.0017081045

MSE(β̂extreme right-wing) 0.0030603951 0.0020098832 0.0020030389

βFDP -0.1541756102 -0.1541756102 -0.1541756102

E(β̂FDP) -0.1019620002 -0.1079193662 -0.1128967409

Bias(β̂FDP) 0.0522136100 0.0462562441 0.0412788693

Biasrel(β̂FDP) 0.3386632292 0.3000230970 0.2677392959

Var(β̂FDP) 0.0031629442 0.0026723944 0.0022523103

MSE(β̂FDP) 0.0058892053 0.0048120345 0.0039562553

βwould not vote -0.1315889085 -0.1315889085 -0.1315889085

E(β̂would not vote) -0.0787161741 -0.0998042047 -0.1065442648

Bias(β̂would not vote) 0.0528727344 0.0317847038 0.0250446437

Biasrel(β̂would not vote) 0.4018023634 0.2415454628 0.1903248840

Var(β̂would not vote) 0.0025935667 0.0020418090 0.0021692650

MSE(β̂would not vote) 0.0053890928 0.0030520764 0.0027964992

Table C.26: Expected value, variance, bias and MSE of regression coefficient esti-
mates on income in order to evaluate the performance of single impu-
tation (predictive mean matching imputation)
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Categories p-value p-value p-Value p-Value
(true) (MCAR) (MAR) (MNAR)

intercept 0.0000000000 0.0000000000 0.0000000000 0.0000000000
age 0.0000000000 0.0000000000 0.0000000000 0.0000000000
female 0.0000000000 0.0000000000 0.0000000000 0.0000000000
fachhochschulreife 0.8970973124 0.6400005982 0.5399199138 0.6086731009
hochschulreife 0.6987555776 0.6349616699 0.4925989037 0.5654655681
mittlere reife 0.0115117133 0.2486846538 0.2170570885 0.1824569755
no graduation 0.0058831082 0.2287891427 0.1774745246 0.1546078998
volks-, hauptschule 0.0065408724 0.1475836995 0.4055208345 0.4010211847
half-time 0.0000000000 0.0000000000 0.0000000000 0.0000000000
part-time 0.0000000000 0.0000000000 0.0000000000 0.0000000000
not employed 0.0000000000 0.0000000000 0.0000000000 0.0000000000
single 0.0002454705 0.1286878923 0.1316494789 0.1175462553
married living apart 0.0000000011 0.0071902190 0.0062479159 0.0028858066
married living together 0.0021189162 0.1667238664 0.1524504781 0.1756666698
widowed 0.8397563199 0.5123104258 0.5045034245 0.5182500918
CDU-CSU 0.5884698278 0.5567962846 0.6057837903 0.5689031509
die gruenen 0.0762638735 0.3510551149 0.3868637834 0.4046235260
die linke 0.1299242680 0.3989921776 0.4019088634 0.4196312988
FDP 0.0082560314 0.2337141191 0.2025330333 0.1659040058
extreme right-wing 0.8910480181 0.5623540037 0.6411866054 0.6509667624
SPD 0.7770122356 0.5409498943 0.6133663123 0.5924279154
would not vote 0.0103321856 0.2959809154 0.1897439868 0.1595271700

Table C.27: Comparison of p-values of regression coefficients of data after applying
single imputation (predictive mean matching imputation)

MCAR MAR MNAR

β0 7.0070608279 7.0070608279 7.0070608279

E(β̂0) 7.0304375975 7.0227453235 7.0201799753

Bias(β̂0) 0.0233767696 0.0156844956 0.0131191474

Biasrel(β̂0) 0.0033361734 0.0022383844 0.0018722754

Var(β̂0) 0.0066085489 0.0076386731 0.0064853808

MSE(β̂0) 0.0071550222 0.0078846765 0.0066574928

βage 0.0113720951 0.0113720951 0.0113720951

E(β̂age) 0.0091982955 0.0094539807 0.0093667623

Bias(β̂age) -0.0021737996 -0.0019181144 -0.0020053328

Biasrel(β̂age) -0.1911520812 -0.1686685154 -0.1763380266

Var(β̂age) 0.0000004960 0.0000004294 0.0000004959

MSE(β̂age) 0.0000052214 0.0000041086 0.0000045173

βfemale -0.3783040793 -0.3783040793 -0.3783040793

E(β̂female) -0.4223858971 -0.4069108182 -0.4049339175

Bias(β̂female) -0.0440818179 -0.0286067389 -0.0266298382

Biasrel(β̂female) -0.1165248282 -0.0756183728 -0.0703926807

Var(β̂female) 0.0003597579 0.0003495922 0.0003410396

MSE(β̂female) 0.0023029646 0.0011679377 0.0010501879

βno graduation 0.2712024535 0.2712024535 0.2712024535

E(β̂no graduation) 0.1857595460 0.1976396053 0.1986974346
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Bias(β̂no graduation) -0.0854429075 -0.0735628481 -0.0725050189

Biasrel(β̂no graduation) -0.3150521183 -0.2712469861 -0.2673464711

Var(β̂no graduation) 0.0054086424 0.0054753861 0.0047737040

MSE(β̂no graduation) 0.0127091329 0.0108868787 0.0100306818

βvolks-, hauptschule -0.2259655461 -0.2259655461 -0.2259655461

E(β̂volks-, hauptschule) -0.1513945408 -0.0907309803 -0.0934995985

Bias(β̂volks-, hauptschule) 0.0745710053 0.1352345659 0.1324659476

Biasrel(β̂volks-, hauptschule) 0.3300105108 0.5984742726 0.5862218816

Var(β̂volks-, hauptschule) 0.0036496485 0.0043421428 0.0040007527

MSE(β̂volks-, hauptschule) 0.0092104833 0.0226305306 0.0215479800

βmittlere reife 0.2098521677 0.2098521677 0.2098521677

E(β̂mittlere reife) 0.1469955552 0.1648891310 0.1636506371

Bias(β̂mittlere reife) -0.0628566126 -0.0449630368 -0.0462015307

Biasrel(β̂mittlere reife) -0.2995280595 -0.2142605303 -0.2201622750

Var(β̂mittlere reife) 0.0036630024 0.0041877563 0.0037351461

MSE(β̂mittlere reife) 0.0076139562 0.0062094310 0.0058697275

βfachhochschulreife -0.0112989169 -0.0112989169 -0.0112989169

E(β̂fachhochschulreife) -0.0059493570 0.0010892655 0.0026308631

Bias(β̂fachhochschulreife) 0.0053495598 0.0123881824 0.0139297800

Biasrel(β̂fachhochschulreife) 0.4734577563 1.0964044176 1.2328420658

Var(β̂fachhochschulreife) 0.0037095116 0.0042564512 0.0041181875

MSE(β̂fachhochschulreife) 0.0037381294 0.0044099182 0.0043122262

βhochschulreife 0.0322277454 0.0322277454 0.0322277454

E(β̂hochschulreife) 0.0245303942 0.0290398316 0.0286231517

Bias(β̂hochschulreife) -0.0076973511 -0.0031879137 -0.0036045937

Biasrel(β̂hochschulreife) -0.2388423716 -0.0989182987 -0.1118475292

Var(β̂hochschulreife) 0.0037212123 0.0039453541 0.0032355358

MSE(β̂hochschulreife) 0.0037804616 0.0039555169 0.0032485289

βhalf-time -0.4575120691 -0.4575120691 -0.4575120691

E(β̂half-time) -0.3175143890 -0.3331350775 -0.3290284637

Bias(β̂half-time) 0.1399976800 0.1243769916 0.1284836053

Biasrel(β̂half-time) 0.3059977856 0.2718551051 0.2808310731

Var(β̂half-time) 0.0003187605 0.0003371107 0.0002903866

MSE(β̂half-time) 0.0199181109 0.0158067467 0.0167984234

βpart-time -0.9369052158 -0.9369052158 -0.9369052158

E(β̂part-time) -0.6446238265 -0.6484716261 -0.6462384951

Bias(β̂part-time) 0.2922813893 0.2884335898 0.2906667208

Biasrel(β̂part-time) 0.3119647371 0.3078578120 0.3102413306

Var(β̂part-time) 0.0010485426 0.0009126054 0.0009077884

MSE(β̂part-time) 0.0864769532 0.0841065411 0.0853949310

βnot employed -0.7984611199 -0.7984611199 -0.7984611199

E(β̂not employed) -0.5503924963 -0.5634440975 -0.5586716201

Bias(β̂not employed) 0.2480686236 0.2350170224 0.2397894998

Biasrel(β̂not employed) 0.3106834101 0.2943374656 0.3003145599
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Var(β̂not employed) 0.0001525664 0.0002294034 0.0002200869

MSE(β̂not employed) 0.0616906084 0.0554624043 0.0577190912

βmarried living together 0.0923461105 0.0923461105 0.0923461105

E(β̂married living together) 0.0617954945 0.0680940216 0.0666510199

Bias(β̂married living together) -0.0305506160 -0.0242520889 -0.0256950906

Biasrel(β̂married living together) -0.3308273171 -0.2626216610 -0.2782476754

Var(β̂married living together) 0.0005368237 0.0005530569 0.0005633311

MSE(β̂married living together) 0.0014701638 0.0011412208 0.0012235688

βmarried living apart 0.3803863918 0.3803863918 0.3803863918

E(β̂married living apart) 0.2559657478 0.2753782859 0.2749596514

Bias(β̂married living apart) -0.1244206440 -0.1050081059 -0.1054267403

Biasrel(β̂married living apart) -0.3270901553 -0.2760564209 -0.2771569714

Var(β̂married living apart) 0.0024055946 0.0020984026 0.0021298894

MSE(β̂married living apart) 0.0178860912 0.0131251049 0.0132446870

βwidowed -0.0087342802 -0.0087342802 -0.0087342802

E(β̂widowed) -0.0124619103 0.0171887527 0.0138083466

Bias(β̂widowed) -0.0037276301 0.0259230329 0.0225426268

Biasrel(β̂widowed) -0.4267815984 2.9679644244 2.5809369813

Var(β̂widowed) 0.0014415766 0.0012663882 0.0014277869

MSE(β̂widowed) 0.0014554718 0.0019383918 0.0019359569

βsingle 0.1244899786 0.1244899786 0.1244899786

E(β̂single) 0.0856290608 0.0888376073 0.0867252156

Bias(β̂single) -0.0388609179 -0.0356523714 -0.0377647630

Biasrel(β̂single) -0.3121610132 -0.2863874809 -0.3033558478

Var(β̂single) 0.0007172217 0.0007666266 0.0007149538

MSE(β̂single) 0.0022273926 0.0020377182 0.0021411312

βCDU-CSU -0.0250408465 -0.0250408465 -0.0250408465

E(β̂CDU-CSU) -0.0144995422 -0.0187811008 -0.0226619711

Bias(β̂CDU-CSU) 0.0105413043 0.0062597457 0.0023788754

Biasrel(β̂CDU-CSU) 0.4209643740 0.2499813943 0.0949997997

Var(β̂CDU-CSU) 0.0009226194 0.0010736507 0.0007813625

MSE(β̂CDU-CSU) 0.0010337385 0.0011128351 0.0007870216

βSPD -0.0133277196 -0.0133277196 -0.0133277196

E(β̂SPD) -0.0067656866 -0.0151146102 -0.0167876313

Bias(β̂SPD) 0.0065620331 -0.0017868905 -0.0034599116

Biasrel(β̂SPD) 0.4923597754 -0.1340732373 -0.2596026726

Var(β̂SPD) 0.0010713243 0.0010374051 0.0007809085

MSE(β̂SPD) 0.0011143846 0.0010405981 0.0007928795

βdie gruenen 0.0870817819 0.0870817819 0.0870817819

E(β̂die gruenen) 0.0625971002 0.0566515794 0.0553477211

Bias(β̂die gruenen) -0.0244846817 -0.0304302025 -0.0317340608

Biasrel(β̂die gruenen) -0.2811688183 -0.3494439571 -0.3644167603

Var(β̂die gruenen) 0.0012776388 0.0013218623 0.0012089592

MSE(β̂die gruenen) 0.0018771384 0.0022478595 0.0022160098
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βdie linke 0.0768770122 0.0768770122 0.0768770122

E(β̂die linke) 0.0580046007 0.0568721251 0.0545660796

Bias(β̂die linke) -0.0188724116 -0.0200048872 -0.0223109327

Biasrel(β̂die linke) -0.2454883590 -0.2602193633 -0.2902159180

Var(β̂die linke) 0.0014182819 0.0013710877 0.0011999339

MSE(β̂die linke) 0.0017744498 0.0017712832 0.0016977116

βextreme right-wing 0.0074005875 0.0074005875 0.0074005875

E(β̂extreme right-wing) 0.0062185058 -0.0016995261 -0.0040513574

Bias(β̂extreme right-wing) -0.0011820816 -0.0091001135 -0.0114519449

Biasrel(β̂extreme right-wing) -0.1597280829 -1.2296474538 -1.5474372699

Var(β̂extreme right-wing) 0.0017571573 0.0014264336 0.0011825196

MSE(β̂extreme right-wing) 0.0017585546 0.0015092457 0.0013136666

βFDP -0.1541756102 -0.1541756102 -0.1541756102

E(β̂FDP) -0.1018881194 -0.1083880902 -0.1105198424

Bias(β̂FDP) 0.0522874908 0.0457875200 0.0436557678

Biasrel(β̂FDP) 0.3391424284 0.2969829011 0.2831561215

Var(β̂FDP) 0.0015734462 0.0020665268 0.0013821526

MSE(β̂FDP) 0.0043074279 0.0041630238 0.0032879786

βwould not vote -0.1315889085 -0.1315889085 -0.1315889085

E(β̂would not vote) -0.0856286759 -0.0961600628 -0.0998539300

Bias(β̂would not vote) 0.0459602326 0.0354288458 0.0317349786

Biasrel(β̂would not vote) 0.3492713262 0.2692388453 0.2411675796

Var(β̂would not vote) 0.0012186681 0.0017384579 0.0013342601

MSE(β̂would not vote) 0.0033310111 0.0029936610 0.0023413689

Table C.28: Expected value, variance, bias and MSE of regression coefficient es-
timates on income in order to evaluate the performance of multiple
imputation (multiple regression imputation)
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Categories p-value p-value p-Value p-Value
(true) (MCAR) (MAR) (MNAR)

intercept 0.0000000000 0.0000000000 0.0000000000 0.0000000000
age 0.0000000000 0.0000000000 0.0000000000 0.0000000000
female 0.0000000000 0.0000000000 0.0000000000 0.0000000000
fachhochschulreife 0.8970973124 0.5994647325 0.5801884234 0.5737944285
hochschulreife 0.6987555776 0.5783644362 0.5437774614 0.5616631821
mittlere reife 0.0115117133 0.2219338895 0.1858094533 0.1837016251
no graduation 0.0058831082 0.2027647458 0.1830303517 0.1760417760
volks-, hauptschule 0.0065408724 0.2177620097 0.4196402886 0.4078887655
half-time 0.0000000000 0.0000000000 0.0000000000 0.0000000000
part-time 0.0000000000 0.0000000000 0.0000000000 0.0000000000
not employed 0.0000000000 0.0000000000 0.0000000000 0.0000000000
single 0.0002454705 0.1019152067 0.0930320665 0.0985495813
married living apart 0.0000000011 0.0090269279 0.0058347665 0.0042860935
married living together 0.0021189162 0.1797767016 0.1354031875 0.1489965740
widowed 0.8397563199 0.5228485069 0.5183474771 0.5222649473
CDU-CSU 0.5884698278 0.5825001070 0.5624122191 0.5700192553
die gruenen 0.0762638735 0.3515163817 0.3856015698 0.3892167913
die linke 0.1299242680 0.3903278862 0.3919376004 0.4078895787
FDP 0.0082560314 0.2350742862 0.2163759545 0.1920589408
extreme right-wing 0.8910480181 0.5656204232 0.5734056150 0.5982574121
SPD 0.7770122356 0.5918735767 0.5831713991 0.5844653145
would not vote 0.0103321856 0.2552678578 0.2230892614 0.1888909768

Table C.29: Comparison of p-values of regression coefficients of data after applying
multiple imputation (multiple regression imputation)

MCAR MAR MNAR

β0 7.0070608279 7.0070608279 7.0070608279

E(β̂0) 7.0479753633 7.0527274941 7.0485608950

Bias(β̂0) 0.0409145354 0.0456666662 0.0415000671

Biasrel(β̂0) 0.0058390438 0.0065172356 0.0059226069

Var(β̂0) 0.0047759294 0.0078564731 0.0058959749

MSE(β̂0) 0.0064499286 0.0099419175 0.0076182305

βage 0.0113720951 0.0113720951 0.0113720951

E(β̂age) 0.0090959404 0.0091906686 0.0090592364

Bias(β̂age) -0.0022761547 -0.0021814265 -0.0023128587

Biasrel(β̂age) -0.2001526236 -0.1918227470 -0.2033801788

Var(β̂age) 0.0000004427 0.0000005533 0.0000006105

MSE(β̂age) 0.0000056236 0.0000053120 0.0000059598

βfemale -0.3783040793 -0.3783040793 -0.3783040793

E(β̂female) -0.4295438431 -0.4072829241 -0.4069773886

Bias(β̂female) -0.0512397638 -0.0289788448 -0.0286733093

Biasrel(β̂female) -0.1354459722 -0.0766019888 -0.0757943434

Var(β̂female) 0.0003446942 0.0004484273 0.0004291362

MSE(β̂female) 0.0029702076 0.0012882007 0.0012512949

βno graduation 0.2712024535 0.2712024535 0.2712024535

E(β̂no graduation) 0.1860053805 0.1946788602 0.1968830028
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Bias(β̂no graduation) -0.0851970730 -0.0765235933 -0.0743194507

Biasrel(β̂no graduation) -0.3141456571 -0.2821640892 -0.2740367934

Var(β̂no graduation) 0.0048848602 0.0052069161 0.0046307030

MSE(β̂no graduation) 0.0121434014 0.0110627764 0.0101540837

βvolks-, hauptschule -0.2259655461 -0.2259655461 -0.2259655461

E(β̂volks-, hauptschule) -0.1562166769 -0.1015131878 -0.1019488777

Bias(β̂volks-, hauptschule) 0.0697488692 0.1244523583 0.1240166685

Biasrel(β̂volks-, hauptschule) 0.3086703720 0.5507581154 0.5488299901

Var(β̂volks-, hauptschule) 0.0030458065 0.0046417908 0.0034915439

MSE(β̂volks-, hauptschule) 0.0079107112 0.0201301803 0.0188716780

βmittlere reife 0.2098521677 0.2098521677 0.2098521677

E(β̂mittlere reife) 0.1470232589 0.1568863576 0.1583693239

Bias(β̂mittlere reife) -0.0628289089 -0.0529658101 -0.0514828439

Biasrel(β̂mittlere reife) -0.2993960442 -0.2523958207 -0.2453291021

Var(β̂mittlere reife) 0.0030469519 0.0045953831 0.0032510927

MSE(β̂mittlere reife) 0.0069944237 0.0074007602 0.0059015760

βfachhochschulreife -0.0112989169 -0.0112989169 -0.0112989169

E(β̂fachhochschulreife) -0.0053367290 -0.0050327385 -0.0011566704

Bias(β̂fachhochschulreife) 0.0059621878 0.0062661784 0.0101422465

Biasrel(β̂fachhochschulreife) 0.5276778207 0.5545822195 0.8976299769

Var(β̂fachhochschulreife) 0.0030944070 0.0045683221 0.0032882950

MSE(β̂fachhochschulreife) 0.0031299547 0.0046075871 0.0033911602

βhochschulreife 0.0322277454 0.0322277454 0.0322277454

E(β̂hochschulreife) 0.0220616741 0.0194647636 0.0221554458

Bias(β̂hochschulreife) -0.0101660713 -0.0127629818 -0.0100722996

Biasrel(β̂hochschulreife) -0.3154446938 -0.3960246570 -0.3125350369

Var(β̂hochschulreife) 0.0029015399 0.0042336084 0.0027584192

MSE(β̂hochschulreife) 0.0030048889 0.0043965021 0.0028598704

βhalf-time -0.4575120691 -0.4575120691 -0.4575120691

E(β̂half-time) -0.3128395956 -0.3335735226 -0.3291317217

Bias(β̂half-time) 0.1446724734 0.1239385464 0.1283803474

Biasrel(β̂half-time) 0.3162156437 0.2708967803 0.2806053787

Var(β̂half-time) 0.0003603710 0.0003800793 0.0003399733

MSE(β̂half-time) 0.0212904955 0.0157408426 0.0168214869

βpart-time -0.9369052158 -0.9369052158 -0.9369052158

E(β̂part-time) -0.6442524444 -0.6483268946 -0.6469725228

Bias(β̂part-time) 0.2926527714 0.2885783213 0.2899326931

Biasrel(β̂part-time) 0.3123611295 0.3080122902 0.3094578706

Var(β̂part-time) 0.0009682370 0.0007665213 0.0008257132

MSE(β̂part-time) 0.0866138816 0.0840439688 0.0848866797

βnot employed -0.7984611199 -0.7984611199 -0.7984611199

E(β̂not employed) -0.5490472282 -0.5606969251 -0.5586710578

Bias(β̂not employed) 0.2494138917 0.2377641948 0.2397900621

Biasrel(β̂not employed) 0.3123682362 0.2977780493 0.3003152641
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Var(β̂not employed) 0.0001735267 0.0002286350 0.0001659435

MSE(β̂not employed) 0.0623808161 0.0567604473 0.0576652174

βmarried living together 0.0923461105 0.0923461105 0.0923461105

E(β̂married living together) 0.0597840001 0.0632633017 0.0621539683

Bias(β̂married living together) -0.0325621104 -0.0290828088 -0.0301921422

Biasrel(β̂married living together) -0.3526094414 -0.3149326877 -0.3269454666

Var(β̂married living together) 0.0006447246 0.0005258368 0.0004727026

MSE(β̂married living together) 0.0017050156 0.0013716466 0.0013842680

βmarried living apart 0.3803863918 0.3803863918 0.3803863918

E(β̂married living apart) 0.2593834803 0.2750007781 0.2738188757

Bias(β̂married living apart) -0.1210029115 -0.1053856137 -0.1065675161

Biasrel(β̂married living apart) -0.3181052585 -0.2770488534 -0.2801559635

Var(β̂married living apart) 0.0025382517 0.0017435499 0.0022580535

MSE(β̂married living apart) 0.0171799563 0.0128496774 0.0136146890

βwidowed -0.0087342802 -0.0087342802 -0.0087342802

E(β̂widowed) -0.0257275224 -0.0079821598 -0.0058172456

Bias(β̂widowed) -0.0169932422 0.0007521204 0.0029170346

Biasrel(β̂widowed) -1.9455801520 0.0861113197 0.3339753814

Var(β̂widowed) 0.0015187474 0.0011586957 0.0013120043

MSE(β̂widowed) 0.0018075177 0.0011592614 0.0013205134

βsingle 0.1244899786 0.1244899786 0.1244899786

E(β̂single) 0.0746969216 0.0774915551 0.0742377339

Bias(β̂single) -0.0497930570 -0.0469984235 -0.0502522447

Biasrel(β̂single) -0.3999764283 -0.3775277659 -0.4036649796

Var(β̂single) 0.0008510463 0.0006809461 0.0007014291

MSE(β̂single) 0.0033303948 0.0028897979 0.0032267172

βCDU-CSU -0.0250408465 -0.0250408465 -0.0250408465

E(β̂CDU-CSU) -0.0137988214 -0.0198680260 -0.0195260953

Bias(β̂CDU-CSU) 0.0112420250 0.0051728205 0.0055147512

Biasrel(β̂CDU-CSU) 0.4489474846 0.2065753051 0.2202302212

Var(β̂CDU-CSU) 0.0012256805 0.0007424932 0.0007644546

MSE(β̂CDU-CSU) 0.0013520636 0.0007692512 0.0007948671

βSPD -0.0133277196 -0.0133277196 -0.0133277196

E(β̂SPD) -0.0065945480 -0.0149082343 -0.0150163242

Bias(β̂SPD) 0.0067331717 -0.0015805146 -0.0016886046

Biasrel(β̂SPD) 0.5052005768 -0.1185885248 -0.1266986877

Var(β̂SPD) 0.0013812952 0.0007141519 0.0008271319

MSE(β̂SPD) 0.0014266308 0.0007166499 0.0008299833

βdie gruenen 0.0870817819 0.0870817819 0.0870817819

E(β̂die gruenen) 0.0636589292 0.0569019466 0.0581024717

Bias(β̂die gruenen) -0.0234228527 -0.0301798353 -0.0289793102

Biasrel(β̂die gruenen) -0.2689753488 -0.3465688766 -0.3327826969

Var(β̂die gruenen) 0.0013922381 0.0010271111 0.0011266517

MSE(β̂die gruenen) 0.0019408682 0.0019379336 0.0019664521
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βdie linke 0.0768770122 0.0768770122 0.0768770122

E(β̂die linke) 0.0577643376 0.0574324503 0.0568385977

Bias(β̂die linke) -0.0191126746 -0.0194445620 -0.0200384146

Biasrel(β̂die linke) -0.2486136504 -0.2529307709 -0.2606554805

Var(β̂die linke) 0.0015760195 0.0010229370 0.0012018279

MSE(β̂die linke) 0.0019413139 0.0014010280 0.0016033660

βextreme right-wing 0.0074005875 0.0074005875 0.0074005875

E(β̂extreme right-wing) 0.0044177056 -0.0009898385 -0.0007729467

Bias(β̂extreme right-wing) -0.0029828819 -0.0083904259 -0.0081735341

Biasrel(β̂extreme right-wing) -0.4030601447 -1.1337513381 -1.1044439607

Var(β̂extreme right-wing) 0.0020324780 0.0011152774 0.0012955244

MSE(β̂extreme right-wing) 0.0020413755 0.0011856766 0.0013623310

βFDP -0.1541756102 -0.1541756102 -0.1541756102

E(β̂FDP) -0.1010161432 -0.1087642301 -0.1071360934

Bias(β̂FDP) 0.0531594670 0.0454113801 0.0470395168

Biasrel(β̂FDP) 0.3447981620 0.2945432163 0.3051034904

Var(β̂FDP) 0.0018827197 0.0015760649 0.0015003281

MSE(β̂FDP) 0.0047086486 0.0036382583 0.0037130443

βwould not vote -0.1315889085 -0.1315889085 -0.1315889085

E(β̂would not vote) -0.0844763004 -0.0981149769 -0.1003528149

Bias(β̂would not vote) 0.0471126082 0.0334739317 0.0312360937

Biasrel(β̂would not vote) 0.3580287177 0.2543826226 0.2373763413

Var(β̂would not vote) 0.0015186376 0.0011469008 0.0013551405

MSE(β̂would not vote) 0.0037382354 0.0022674049 0.0023308341

Table C.30: Expected value, variance, bias and MSE of regression coefficient es-
timates on income in order to evaluate the performance of multiple
imputation (multiple predictive mean matching imputation)
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Categories p-value p-value p-Value p-Value
(true) (MCAR) (MAR) (MNAR)

intercept 0.0000000000 0.0000000000 0.0000000000 0.0000000000
age 0.0000000000 0.0000000000 0.0000000000 0.0000000000
female 0.0000000000 0.0000000000 0.0000000000 0.0000000000
fachhochschulreife 0.8970973124 0.5973631634 0.5749133070 0.5960097816
hochschulreife 0.6987555776 0.5850609355 0.5580515150 0.5813748015
mittlere reife 0.0115117133 0.2282753330 0.2056709823 0.1934122980
no graduation 0.0058831082 0.2010059764 0.1839338006 0.1777433748
volks-, hauptschule 0.0065408724 0.2000747387 0.3814970953 0.3677233650
half-time 0.0000000000 0.0000000000 0.0000000000 0.0000000000
part-time 0.0000000000 0.0000000000 0.0000000000 0.0000000000
not employed 0.0000000000 0.0000000000 0.0000000000 0.0000000000
single 0.0002454705 0.1546002110 0.1323561847 0.1478754958
married living apart 0.0000000011 0.0070647308 0.0033749580 0.0038586424
married living together 0.0021189162 0.1998793216 0.1629709411 0.1659786957
widowed 0.8397563199 0.5001510531 0.5538005062 0.5309622083
CDU-CSU 0.5884698278 0.5547134063 0.5804400734 0.5737841177
die gruenen 0.0762638735 0.3510601111 0.3905773088 0.3729623383
die linke 0.1299242680 0.3936395851 0.3899180032 0.3839137222
FDP 0.0082560314 0.2434722322 0.2006518668 0.2124844894
extreme right-wing 0.8910480181 0.5735225073 0.5991118436 0.6009447252
SPD 0.7770122356 0.5611069360 0.5990477795 0.5865844138
would not vote 0.0103321856 0.2577724352 0.1891104110 0.1916535476

Table C.31: Comparison of p-values of regression coefficients of data after applying
multiple imputation (multiple predictive mean matching imputation)

MCAR MAR MNAR

β0 7.0070608279 7.0070608279 7.0070608279

E(β̂0) 7.0082006725 7.0019379895 7.0008819677

Bias(β̂0) 0.0011398447 -0.0051228384 -0.0061788601

Biasrel(β̂0) 0.0001626709 -0.0007310966 -0.0008818048

Var(β̂0) 0.0064756822 0.0054974366 0.0044389675

MSE(β̂0) 0.0064769814 0.0055236800 0.0044771458

βage 0.0113720951 0.0113720951 0.0113720951

E(β̂age) 0.0113709996 0.0113461831 0.0112812501

Bias(β̂age) -0.0000010955 -0.0000259120 -0.0000908451

Biasrel(β̂age) -0.0000963355 -0.0022785640 -0.0079884181

Var(β̂age) 0.0000002507 0.0000002293 0.0000002327

MSE(β̂age) 0.0000002507 0.0000002300 0.0000002409

βfemale -0.3783040793 -0.3783040793 -0.3783040793

E(β̂female) -0.3794783867 -0.3787470020 -0.3779255335

Bias(β̂female) -0.0011743074 -0.0004429227 0.0003785458

Biasrel(β̂female) -0.0031041363 -0.0011708112 0.0010006389

Var(β̂female) 0.0001151285 0.0001570986 0.0001761844

MSE(β̂female) 0.0001165075 0.0001572948 0.0001763277

βno graduation 0.2712024535 0.2712024535 0.2712024535

E(β̂no graduation) 0.2695856493 0.2897015242 0.2895336148
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Bias(β̂no graduation) -0.0016168041 0.0184990707 0.0183311613

Biasrel(β̂no graduation) -0.0059616132 0.0682112955 0.0675921661

Var(β̂no graduation) 0.0053068376 0.0046189885 0.0047510328

MSE(β̂no graduation) 0.0053094516 0.0049612042 0.0050870643

βvolks-, hauptschule -0.2259655461 -0.2259655461 -0.2259655461

E(β̂volks-, hauptschule) -0.2249460156 -0.2161513885 -0.2172227195

Bias(β̂volks-, hauptschule) 0.0010195305 0.0098141576 0.0087428266

Biasrel(β̂volks-, hauptschule) 0.0045118848 0.0434320976 0.0386909720

Var(β̂volks-, hauptschule) 0.0036265675 0.0035737742 0.0032989182

MSE(β̂volks-, hauptschule) 0.0036276070 0.0036700919 0.0033753553

βmittlere reife 0.2098521677 0.2098521677 0.2098521677

E(β̂mittlere reife) 0.2096165246 0.2146906578 0.2149819032

Bias(β̂mittlere reife) -0.0002356432 0.0048384900 0.0051297355

Biasrel(β̂mittlere reife) -0.0011229007 0.0230566597 0.0244445198

Var(β̂mittlere reife) 0.0039347398 0.0033175769 0.0031659354

MSE(β̂mittlere reife) 0.0039347953 0.0033409879 0.0031922496

βfachhochschulreife -0.0112989169 -0.0112989169 -0.0112989169

E(β̂fachhochschulreife) -0.0119754636 -0.0047311822 -0.0020179014

Bias(β̂fachhochschulreife) -0.0006765467 0.0065677347 0.0092810155

Biasrel(β̂fachhochschulreife) -0.0598771283 0.5812711741 0.8214075408

Var(β̂fachhochschulreife) 0.0039841335 0.0034939148 0.0034580206

MSE(β̂fachhochschulreife) 0.0039845912 0.0035370499 0.0035441578

βhochschulreife 0.0322277454 0.0322277454 0.0322277454

E(β̂hochschulreife) 0.0323411840 0.0376000452 0.0381754814

Bias(β̂hochschulreife) 0.0001134386 0.0053722999 0.0059477361

Biasrel(β̂hochschulreife) 0.0035199047 0.1666979743 0.1845532785

Var(β̂hochschulreife) 0.0036408900 0.0032117008 0.0029924392

MSE(β̂hochschulreife) 0.0036409029 0.0032405624 0.0030278148

βhalf-time -0.4575120691 -0.4575120691 -0.4575120691

E(β̂half-time) -0.4580362468 -0.4586040284 -0.4578473190

Bias(β̂half-time) -0.0005241777 -0.0010919594 -0.0003352499

Biasrel(β̂half-time) -0.0011457135 -0.0023867335 -0.0007327674

Var(β̂half-time) 0.0003025553 0.0003149230 0.0003131423

MSE(β̂half-time) 0.0003028301 0.0003161154 0.0003132547

βpart-time -0.9369052158 -0.9369052158 -0.9369052158

E(β̂part-time) -0.9362594891 -0.9309719975 -0.9288871775

Bias(β̂part-time) 0.0006457267 0.0059332183 0.0080180383

Biasrel(β̂part-time) 0.0006892124 0.0063327839 0.0085580037

Var(β̂part-time) 0.0006219581 0.0003691974 0.0004748899

MSE(β̂part-time) 0.0006223751 0.0004044005 0.0005391788

βnot employed -0.7984611199 -0.7984611199 -0.7984611199

E(β̂not employed) -0.7993285844 -0.8020121437 -0.7984637943

Bias(β̂not employed) -0.0008674645 -0.0035510238 -0.0000026744

Biasrel(β̂not employed) -0.0010864204 -0.0044473346 -0.0000033494
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Var(β̂not employed) 0.0001523255 0.0001651738 0.0001497769

MSE(β̂not employed) 0.0001530780 0.0001777836 0.0001497769

βmarried living together 0.0923461105 0.0923461105 0.0923461105

E(β̂married living together) 0.0895600627 0.0931499853 0.0919016204

Bias(β̂married living together) -0.0027860478 0.0008038747 -0.0004444901

Biasrel(β̂married living together) -0.0301696279 0.0087050199 -0.0048133066

Var(β̂married living together) 0.0003828481 0.0004305771 0.0004057323

MSE(β̂married living together) 0.0003906102 0.0004312233 0.0004059299

βmarried living apart 0.3803863918 0.3803863918 0.3803863918

E(β̂married living apart) 0.3708024216 0.3908839923 0.3895757877

Bias(β̂married living apart) -0.0095839701 0.0104976005 0.0091893959

Biasrel(β̂married living apart) -0.0251953549 0.0275972032 0.0241580564

Var(β̂married living apart) 0.0018670211 0.0015549336 0.0014968323

MSE(β̂married living apart) 0.0019588735 0.0016651332 0.0015812773

βwidowed -0.0087342802 -0.0087342802 -0.0087342802

E(β̂widowed) -0.0146995036 -0.0099390145 -0.0111401219

Bias(β̂widowed) -0.0059652234 -0.0012047344 -0.0024058417

Biasrel(β̂widowed) -0.6829667965 -0.1379317277 -0.2754481903

Var(β̂widowed) 0.0010062054 0.0009134237 0.0010387443

MSE(β̂widowed) 0.0010417893 0.0009148751 0.0010445324

βsingle 0.1244899786 0.1244899786 0.1244899786

E(β̂single) 0.1226597222 0.1313541629 0.1294212611

Bias(β̂single) -0.0018302565 0.0068641843 0.0049312825

Biasrel(β̂single) -0.0147020385 0.0551384485 0.0396118833

Var(β̂single) 0.0004751916 0.0006569141 0.0005645000

MSE(β̂single) 0.0004785414 0.0007040311 0.0005888176

βCDU-CSU -0.0250408465 -0.0250408465 -0.0250408465

E(β̂CDU-CSU) -0.0229226850 -0.0281686923 -0.0290806615

Bias(β̂CDU-CSU) 0.0021181615 -0.0031278458 -0.0040398150

Biasrel(β̂CDU-CSU) 0.0845882528 -0.1249097458 -0.1613290108

Var(β̂CDU-CSU) 0.0008838660 0.0006359254 0.0006384745

MSE(β̂CDU-CSU) 0.0008883526 0.0006457088 0.0006547946

βSPD -0.0133277196 -0.0133277196 -0.0133277196

E(β̂SPD) -0.0111177713 -0.0146595850 -0.0163735220

Bias(β̂SPD) 0.0022099484 -0.0013318653 -0.0030458023

Biasrel(β̂SPD) 0.1658159416 -0.0999319723 -0.2285313927

Var(β̂SPD) 0.0009382327 0.0006576646 0.0006231971

MSE(β̂SPD) 0.0009431166 0.0006594385 0.0006324740

βdie gruenen 0.0870817819 0.0870817819 0.0870817819

E(β̂die gruenen) 0.0881925791 0.0845355867 0.0838415176

Bias(β̂die gruenen) 0.0011107972 -0.0025461952 -0.0032402643

Biasrel(β̂die gruenen) 0.0127557933 -0.0292391264 -0.0372094401

Var(β̂die gruenen) 0.0008967430 0.0006976514 0.0007078592

MSE(β̂die gruenen) 0.0008979769 0.0007041345 0.0007183585
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βdie linke 0.0768770122 0.0768770122 0.0768770122

E(β̂die linke) 0.0789568318 0.0834889137 0.0817953652

Bias(β̂die linke) 0.0020798196 0.0066119015 0.0049183530

Biasrel(β̂die linke) 0.0270538557 0.0860062235 0.0639769004

Var(β̂die linke) 0.0011795173 0.0008204973 0.0008599850

MSE(β̂die linke) 0.0011838430 0.0008642145 0.0008841752

βextreme right-wing 0.0074005875 0.0074005875 0.0074005875

E(β̂extreme right-wing) 0.0061701985 0.0091748804 0.0076514834

Bias(β̂extreme right-wing) -0.0012303889 0.0017742930 0.0002508959

Biasrel(β̂extreme right-wing) -0.1662555741 0.2397502880 0.0339021587

Var(β̂extreme right-wing) 0.0013543502 0.0010179899 0.0011073169

MSE(β̂extreme right-wing) 0.0013558641 0.0010211380 0.0011073799

βFDP -0.1541756102 -0.1541756102 -0.1541756102

E(β̂FDP) -0.1498552484 -0.1454489169 -0.1474668477

Bias(β̂FDP) 0.0043203618 0.0087266933 0.0067087626

Biasrel(β̂FDP) 0.0280223430 0.0566022947 0.0435137733

Var(β̂FDP) 0.0013007446 0.0010745885 0.0010069947

MSE(β̂FDP) 0.0013194101 0.0011507436 0.0010520022

βwould not vote -0.1315889085 -0.1315889085 -0.1315889085

E(β̂would not vote) -0.1272129708 -0.1404108702 -0.1453577318

Bias(β̂would not vote) 0.0043759377 -0.0088219616 -0.0137688233

Biasrel(β̂would not vote) 0.0332546093 -0.0670418330 -0.1046351353

Var(β̂would not vote) 0.0012538460 0.0010772562 0.0009495644

MSE(β̂would not vote) 0.0012729949 0.0011550832 0.0011391449

Table C.32: Expected value, variance, bias and MSE of regression coefficient esti-
mates on income in order to evaluate the performance of FIML estima-
tion in Structural Equation Model
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Categories p-value p-value p-Value p-Value
(true) (MCAR) (MAR) (MNAR)

intercept 0.0000000000 0.0000000000 0.0000000000 0.0000000000
age 0.0000000000 0.0000000000 0.0000000000 0.0000000000
female 0.0000000000 0.0000000000 0.0000000000 0.0000000000
fachhochschulreife 0.8970973124 0.6431313377 0.6540574572 0.6548852435
hochschulreife 0.6987555776 0.6290300897 0.6173246478 0.6192200303
mittlere reife 0.0115117133 0.0688016396 0.0617183768 0.0590082235
no graduation 0.0058831082 0.0473303319 0.0328208752 0.0338225382
volks-, hauptschule 0.0065408724 0.0560892931 0.0628885620 0.0574913732
half-time 0.0000000000 0.0000000000 0.0000000000 0.0000000000
part-time 0.0000000000 0.0000000000 0.0000000000 0.0000000000
not employed 0.0000000000 0.0000000000 0.0000000000 0.0000000000
single 0.0002454705 0.0093147861 0.0062200256 0.0056948058
married living apart 0.0000000011 0.0000500471 0.0000241613 0.0000195033
married living together 0.0021189162 0.0289521266 0.0243283972 0.0244443670
widowed 0.8397563199 0.6262046769 0.6455010993 0.6282393301
CDU-CSU 0.5884698278 0.6237853252 0.5805858172 0.5662050469
die gruenen 0.0762638735 0.1826297074 0.1805680202 0.1840284867
die linke 0.1299242680 0.2506685616 0.2069838301 0.2175458977
FDP 0.0082560314 0.0571466444 0.0570480192 0.0516080365
extreme right-wing 0.8910480181 0.6673976205 0.6966994215 0.6773654621
SPD 0.7770122356 0.6926824343 0.6794546011 0.6787065292
would not vote 0.0103321856 0.0740468315 0.0400409580 0.0305802699

Table C.33: Comparison of p-values of regression coefficients of data after applying
FIML estimation in Structural Equation Model

MCAR MAR MNAR

β0 7.0070608279 7.0070608279 7.0070608279

E(β̂0) 7.0494388122 7.0495207785 7.0508538892

Bias(β̂0) 0.0423779844 0.0424599506 0.0437930613

Biasrel(β̂0) 0.0060478973 0.0060595950 0.0062498475

Var(β̂0) 0.1941571854 0.0080593441 0.0061632909

MSE(β̂0) 0.1959530789 0.0098621915 0.0080811231

βage 0.0113720951 0.0113720951 0.0113720951

E(β̂age) 0.0113818574 0.0113588759 0.0112945684

Bias(β̂age) 0.0000097623 -0.0000132192 -0.0000775267

Biasrel(β̂age) 0.0008584451 -0.0011624271 -0.0068172763

Var(β̂age) 0.0000002537 0.0000002301 0.0000002337

MSE(β̂age) 0.0000002538 0.0000002302 0.0000002397

βfemale -0.3783040793 -0.3783040793 -0.3783040793

E(β̂female) -0.3795339603 -0.3694406688 -0.3687174745

Bias(β̂female) -0.0012298810 0.0088634105 0.0095866048

Biasrel(β̂female) -0.0032510381 0.0234293285 0.0253410029

Var(β̂female) 0.0005586641 0.0002927325 0.0002814348

MSE(β̂female) 0.0005601767 0.0003712926 0.0003733378

βno graduation 0.2712024535 0.2712024535 0.2712024535

E(β̂no graduation) 0.2650379093 0.2899976605 0.2911961245
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Bias(β̂no graduation) -0.0061645442 0.0187952070 0.0199936710

Biasrel(β̂no graduation) -0.0227304145 0.0693032338 0.0737223086

Var(β̂no graduation) 0.0181734056 0.0050486988 0.0050542453

MSE(β̂no graduation) 0.0182114072 0.0054019586 0.0054539921

βvolks-, hauptschule -0.2259655461 -0.2259655461 -0.2259655461

E(β̂volks-, hauptschule) -0.2388959845 -0.1867167094 -0.1857569155

Bias(β̂volks-, hauptschule) -0.0129304384 0.0392488367 0.0402086307

Biasrel(β̂volks-, hauptschule) -0.0572230529 0.1736938989 0.1779414223

Var(β̂volks-, hauptschule) 0.0097122021 0.0043970103 0.0039964727

MSE(β̂volks-, hauptschule) 0.0098793983 0.0059374815 0.0056132067

βmittlere reife 0.2098521677 0.2098521677 0.2098521677

E(β̂mittlere reife) 0.1983209491 0.2042737402 0.2051583893

Bias(β̂mittlere reife) -0.0115312186 -0.0055784276 -0.0046937785

Biasrel(β̂mittlere reife) -0.0549492472 -0.0265826540 -0.0223670716

Var(β̂mittlere reife) 0.0110834440 0.0038929472 0.0035189214

MSE(β̂mittlere reife) 0.0112164130 0.0039240661 0.0035409530

βfachhochschulreife -0.0112989169 -0.0112989169 -0.0112989169

E(β̂fachhochschulreife) -0.0199826086 -0.0106500412 -0.0075365304

Bias(β̂fachhochschulreife) -0.0086836917 0.0006488757 0.0037623865

Biasrel(β̂fachhochschulreife) -0.7685419577 0.0574281300 0.3329864721

Var(β̂fachhochschulreife) 0.0088755446 0.0038470485 0.0036276895

MSE(β̂fachhochschulreife) 0.0089509511 0.0038474696 0.0036418451

βhochschulreife 0.0322277454 0.0322277454 0.0322277454

E(β̂hochschulreife) 0.0136365233 0.0320735224 0.0330603550

Bias(β̂hochschulreife) -0.0185912220 -0.0001542230 0.0008326096

Biasrel(β̂hochschulreife) -0.5768700792 -0.0047854093 0.0258351808

Var(β̂hochschulreife) 0.0084314426 0.0035123786 0.0031410435

MSE(β̂hochschulreife) 0.0087770761 0.0035124023 0.0031417367

βhalf-time -0.4575120691 -0.4575120691 -0.4575120691

E(β̂half-time) -0.4596891038 -0.4614798642 -0.4609249636

Bias(β̂half-time) -0.0021770347 -0.0039677952 -0.0034128945

Biasrel(β̂half-time) -0.0047584203 -0.0086725476 -0.0074596819

Var(β̂half-time) 0.0003162875 0.0003243474 0.0003258443

MSE(β̂half-time) 0.0003210269 0.0003400908 0.0003374921

βpart-time -0.9369052158 -0.9369052158 -0.9369052158

E(β̂part-time) -0.9366676103 -0.9298827839 -0.9277169769

Bias(β̂part-time) 0.0002376055 0.0070224319 0.0091882389

Biasrel(β̂part-time) 0.0002536068 0.0074953493 0.0098070101

Var(β̂part-time) 0.0006292143 0.0003661642 0.0004789937

MSE(β̂part-time) 0.0006292708 0.0004154788 0.0005634175

βnot employed -0.7984611199 -0.7984611199 -0.7984611199

E(β̂not employed) -0.7997651802 -0.8023967964 -0.7988986017

Bias(β̂not employed) -0.0013040603 -0.0039356765 -0.0004374818

Biasrel(β̂not employed) -0.0016332170 -0.0049290772 -0.0005479062

182



C Tables

Var(β̂not employed) 0.0001517673 0.0001656733 0.0001512944

MSE(β̂not employed) 0.0001534679 0.0001811629 0.0001514858

βmarried living together 0.0923461105 0.0923461105 0.0923461105

E(β̂married living together) 0.0891764947 0.0927380361 0.0914321051

Bias(β̂married living together) -0.0031696158 0.0003919255 -0.0009140055

Biasrel(β̂married living together) -0.0343232197 0.0042440937 -0.0098976065

Var(β̂married living together) 0.0003819491 0.0004309455 0.0004050571

MSE(β̂married living together) 0.0003919956 0.0004310991 0.0004058925

βmarried living apart 0.3803863918 0.3803863918 0.3803863918

E(β̂married living apart) 0.3700006976 0.3919466378 0.3906627652

Bias(β̂married living apart) -0.0103856942 0.0115602460 0.0102763734

Biasrel(β̂married living apart) -0.0273030120 0.0303907980 0.0270156179

Var(β̂married living apart) 0.0018943565 0.0015591504 0.0015007033

MSE(β̂married living apart) 0.0020022191 0.0016927897 0.0016063072

βwidowed -0.0087342802 -0.0087342802 -0.0087342802

E(β̂widowed) -0.0159792338 -0.0100061489 -0.0112879080

Bias(β̂widowed) -0.0072449536 -0.0012718687 -0.0025536278

Biasrel(β̂widowed) -0.8294849039 -0.1456180355 -0.2923684286

Var(β̂widowed) 0.0010128528 0.0009158236 0.0010397592

MSE(β̂widowed) 0.0010653422 0.0009174413 0.0010462802

βsingle 0.1244899786 0.1244899786 0.1244899786

E(β̂single) 0.1223887101 0.1314968013 0.1295730806

Bias(β̂single) -0.0021012686 0.0070068227 0.0050831019

Biasrel(β̂single) -0.0168790177 0.0562842307 0.0408314145

Var(β̂single) 0.0004763235 0.0006578228 0.0005629970

MSE(β̂single) 0.0004807388 0.0007069184 0.0005888349

βCDU-CSU -0.0250408465 -0.0250408465 -0.0250408465

E(β̂CDU-CSU) -0.0226815482 -0.0269710395 -0.0278177898

Bias(β̂CDU-CSU) 0.0023592983 -0.0019301931 -0.0027769433

Biasrel(β̂CDU-CSU) 0.0942179943 -0.0770817813 -0.1108965441

Var(β̂CDU-CSU) 0.0008874832 0.0006330925 0.0006395904

MSE(β̂CDU-CSU) 0.0008930495 0.0006368181 0.0006473018

βSPD -0.0133277196 -0.0133277196 -0.0133277196

E(β̂SPD) -0.0110937646 -0.0143766652 -0.0160777473

Bias(β̂SPD) 0.0022339550 -0.0010489456 -0.0027500276

Biasrel(β̂SPD) 0.1676171962 -0.0787040532 -0.2063389445

Var(β̂SPD) 0.0009395381 0.0006547554 0.0006195972

MSE(β̂SPD) 0.0009445287 0.0006558557 0.0006271599

βdie gruenen 0.0870817819 0.0870817819 0.0870817819

E(β̂die gruenen) 0.0885562473 0.0850851670 0.0843948863

Bias(β̂die gruenen) 0.0014744654 -0.0019966149 -0.0026868956

Biasrel(β̂die gruenen) 0.0169319615 -0.0229280441 -0.0308548536

Var(β̂die gruenen) 0.0008994452 0.0006959405 0.0007036311

MSE(β̂die gruenen) 0.0009016193 0.0006999270 0.0007108505
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βdie linke 0.0768770122 0.0768770122 0.0768770122

E(β̂die linke) 0.0792275056 0.0844070548 0.0827418166

Bias(β̂die linke) 0.0023504933 0.0075300425 0.0058648044

Biasrel(β̂die linke) 0.0305747229 0.0979492091 0.0762881415

Var(β̂die linke) 0.0011784078 0.0008287520 0.0008705497

MSE(β̂die linke) 0.0011839327 0.0008854535 0.0009049457

βextreme right-wing 0.0074005875 0.0074005875 0.0074005875

E(β̂extreme right-wing) 0.0069942755 0.0101026426 0.0086002997

Bias(β̂extreme right-wing) -0.0004063120 0.0027020551 0.0011997123

Biasrel(β̂extreme right-wing) -0.0549026668 0.3651136007 0.1621104095

Var(β̂extreme right-wing) 0.0013602063 0.0010172043 0.0011107843

MSE(β̂extreme right-wing) 0.0013603714 0.0010245054 0.0011122236

βFDP -0.1541756102 -0.1541756102 -0.1541756102

E(β̂FDP) -0.1496225303 -0.1447740630 -0.1467602229

Bias(β̂FDP) 0.0045530799 0.0094015472 0.0074153873

Biasrel(β̂FDP) 0.0295317779 0.0609794714 0.0480970196

Var(β̂FDP) 0.0012923336 0.0010865925 0.0010159988

MSE(β̂FDP) 0.0013130642 0.0011749816 0.0010709867

βwould not vote -0.1315889085 -0.1315889085 -0.1315889085

E(β̂would not vote) -0.1271475983 -0.1398976436 -0.1448236034

Bias(β̂would not vote) 0.0044413102 -0.0083087351 -0.0132346948

Biasrel(β̂would not vote) 0.0337514027 -0.0631416066 -0.1005760667

Var(β̂would not vote) 0.0012493865 0.0010749996 0.0009472228

MSE(β̂would not vote) 0.0012691118 0.0011440346 0.0011223800

E(β̂inverse Mills Ratio) -0.053555283 -0.10946707 -0.11611338

Table C.34: Expected value, variance, bias and MSE of regression coefficient es-
timates on income in order to evaluate the performance of Heckman
Selection Model
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Categories p-value p-value p-Value p-Value
(true) (MCAR) (MAR) (MNAR)

intercept 0.0000000000 0.0045172246 0.0000000000 0.0000000000
age 0.0000000000 0.0000000000 0.0000000000 0.0000000000
female 0.0000000000 0.0045649891 0.0000000000 0.0000352578
fachhochschulreife 0.8970973124 0.6532193841 0.6448402038 0.6506492894
hochschulreife 0.6987555776 0.6552577803 0.6191582112 0.6202356523
mittlere reife 0.0115117133 0.2474829469 0.0940506648 0.0865741985
no graduation 0.0058831082 0.2190823041 0.0404076521 0.0401417402
volks-, hauptschule 0.0065408724 0.1622149659 0.1513897890 0.1459644911
half-time 0.0000000000 0.0000000000 0.0000000000 0.0000000000
part-time 0.0000000000 0.0000000000 0.0000000000 0.0000000000
not employed 0.0000000000 0.0000000000 0.0000000000 0.0000000000
single 0.0002454705 0.0094845585 0.0061449957 0.0055757978
married living apart 0.0000000011 0.0000550833 0.0000238799 0.0000186561
married living together 0.0021189162 0.0296743795 0.0249400632 0.0249902817
widowed 0.8397563199 0.6251807755 0.6442564422 0.6276495384
CDU-CSU 0.5884698278 0.6252349796 0.5909060181 0.5774236976
die gruenen 0.0762638735 0.1809665236 0.1780286508 0.1812774324
die linke 0.1299242680 0.2498115420 0.2027639535 0.2131372781
FDP 0.0082560314 0.0573113299 0.0587094104 0.0531167967
extreme right-wing 0.8910480181 0.6668136499 0.6932754949 0.6743930104
SPD 0.7770122356 0.6934082013 0.6820188447 0.6816754506
would not vote 0.0103321856 0.0741749792 0.0408084532 0.0311853836
inverse Mills Ratio 0.4934248428 0.4742324275 0.4560026174

Table C.35: Comparison of p-values of regression coefficients of data after applying
Heckman Selection Model

MCAR MAR MNAR

β0 7.0070608279 7.0070608279 7.0070608279

E(β̂0) 6.9353794756 6.9359497475 6.9396062838

Bias(β̂0) -0.0716813522 -0.0711110804 -0.0674545440

Biasrel(β̂0) -0.0102298744 -0.0101484891 -0.0096266531

Var(β̂0) 0.0001630726 0.0001623701 0.0002817138

MSE(β̂0) 0.0053012889 0.0052191559 0.0048318293

βage 0.0113720951 0.0113720951 0.0113720951

E(β̂age) 0.0112606772 0.0112689298 0.0112546516

Bias(β̂age) -0.0001114179 -0.0001031653 -0.0001174435

Biasrel(β̂age) -0.0097974839 -0.0090717940 -0.0103273377

Var(β̂age) 0.0000000004 0.0000000031 0.0000000164

MSE(β̂age) 0.0000000128 0.0000000137 0.0000000302

βfemale -0.3783040793 -0.3783040793 -0.3783040793

E(β̂female) -0.3745803622 -0.3734668906 -0.3761678289

Bias(β̂female) 0.0037237171 0.0048371886 0.0021362504

Biasrel(β̂female) 0.0098431852 0.0127865093 0.0056469136

Var(β̂female) 0.0000032638 0.0000055671 0.0000091463

MSE(β̂female) 0.0000171299 0.0000289655 0.0000137099

βno graduation 0.2712024535 0.2712024535 0.2712024535
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E(β̂no graduation) 0.2719901761 0.2692168259 0.2692370833

Bias(β̂no graduation) 0.0007877226 -0.0019856276 -0.0019653702

Biasrel(β̂no graduation) 0.0029045556 -0.0073215696 -0.0072468748

Var(β̂no graduation) 0.0000569120 0.0006860499 0.0006741099

MSE(β̂no graduation) 0.0000575325 0.0006899926 0.0006779726

βvolks-, hauptschule -0.2259655461 -0.2259655461 -0.2259655461

E(β̂volks-, hauptschule) -0.2216296616 -0.2225730455 -0.2253109683

Bias(β̂volks-, hauptschule) 0.0043358845 0.0033925006 0.0006545778

Biasrel(β̂volks-, hauptschule) 0.0191882550 0.0150133536 0.0028968037

Var(β̂volks-, hauptschule) 0.0000027416 0.0001621821 0.0002327469

MSE(β̂volks-, hauptschule) 0.0000215415 0.0001736912 0.0002331753

βmittlere reife 0.2098521677 0.2098521677 0.2098521677

E(β̂mittlere reife) 0.2097463802 0.2088985554 0.2103246853

Bias(β̂mittlere reife) -0.0001057875 -0.0009536124 0.0004725176

Biasrel(β̂mittlere reife) -0.0005041049 -0.0045442103 0.0022516688

Var(β̂mittlere reife) 0.0000108323 0.0000298284 0.0000143050

MSE(β̂mittlere reife) 0.0000108435 0.0000307378 0.0000145283

βfachhochschulreife -0.0112989169 -0.0112989169 -0.0112989169

E(β̂fachhochschulreife) -0.0088630453 -0.0111873933 -0.0107039252

Bias(β̂fachhochschulreife) 0.0024358716 0.0001115235 0.0005949917

Biasrel(β̂fachhochschulreife) 0.2155845241 0.0098702817 0.0526591768

Var(β̂fachhochschulreife) 0.0000197259 0.0000934677 0.0001681482

MSE(β̂fachhochschulreife) 0.0000256594 0.0000934801 0.0001685022

βhochschulreife 0.0322277454 0.0322277454 0.0322277454

E(β̂hochschulreife) 0.0341212258 0.0323089720 0.0329768221

Bias(β̂hochschulreife) 0.0018934804 0.0000812267 0.0007490768

Biasrel(β̂hochschulreife) 0.0587531153 0.0025203952 0.0232432258

Var(β̂hochschulreife) 0.0000097127 0.0000534746 0.0000515527

MSE(β̂hochschulreife) 0.0000132979 0.0000534812 0.0000521138

βhalf-time -0.4575120691 -0.4575120691 -0.4575120691

E(β̂half-time) -0.4528287017 -0.4527216017 -0.4526157309

Bias(β̂half-time) 0.0046833673 0.0047904674 0.0048963381

Biasrel(β̂half-time) 0.0102365984 0.0104706908 0.0107020960

Var(β̂half-time) 0.0000015784 0.0000045577 0.0000016636

MSE(β̂half-time) 0.0000235123 0.0000275063 0.0000256378

βpart-time -0.9369052158 -0.9369052158 -0.9369052158

E(β̂part-time) -0.9278924803 -0.9274115424 -0.9276524044

Bias(β̂part-time) 0.0090127355 0.0094936735 0.0092528114

Biasrel(β̂part-time) 0.0096196877 0.0101330138 0.0098759312

Var(β̂part-time) 0.0000042723 0.0000732580 0.0001431972

MSE(β̂part-time) 0.0000855017 0.0001633879 0.0002288117

βnot employed -0.7984611199 -0.7984611199 -0.7984611199

E(β̂not employed) -0.7906728556 -0.7906918926 -0.7903331052

Bias(β̂not employed) 0.0077882642 0.0077692273 0.0081280147
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Biasrel(β̂not employed) 0.0097540933 0.0097302512 0.0101795998

Var(β̂not employed) 0.0000029898 0.0000269951 0.0000018948

MSE(β̂not employed) 0.0000636468 0.0000873559 0.0000679594

βmarried living together 0.0923461105 0.0923461105 0.0923461105

E(β̂married living together) 0.0916191571 0.0914350659 0.0913243118

Bias(β̂married living together) -0.0007269535 -0.0009110447 -0.0010217987

Biasrel(β̂married living together) -0.0078720529 -0.0098655445 -0.0110648812

Var(β̂married living together) 0.0000191400 0.0000014118 0.0000002695

MSE(β̂married living together) 0.0000196684 0.0000022418 0.0000013135

βmarried living apart 0.3803863918 0.3803863918 0.3803863918

E(β̂married living apart) 0.3766125841 0.3755791081 0.3757808917

Bias(β̂married living apart) -0.0037738076 -0.0048072837 -0.0046055000

Biasrel(β̂married living apart) -0.0099209849 -0.0126378960 -0.0121074259

Var(β̂married living apart) 0.0001984753 0.0002893352 0.0002194420

MSE(β̂married living apart) 0.0002127169 0.0003124452 0.0002406526

βwidowed -0.0087342802 -0.0087342802 -0.0087342802

E(β̂widowed) - 0.0089948773 -0.0103507732 -0.0100399303

Bias(β̂widowed) -0.0002605971 -0.0016164930 -0.0013056501

Biasrel(β̂widowed) -0.0298361283 -0.1850745519 -0.1494857176

Var(β̂widowed) 0.0000680625 0.0000005757 0.0000021741

MSE(β̂widowed) 0.0000681304 0.0000031887 0.0000038788

βsingle 0.1244899786 0.1244899786 0.1244899786

E(β̂single) 0.1232049703 0.1228625795 0.1227410484

Bias(β̂single) -0.0012850083 -0.0016273991 -0.0017489302

Biasrel(β̂single) -0.0103221830 -0.0130725312 -0.0140487631

Var(β̂single) 0.0000068619 0.0001143245 0.0000647004

MSE(β̂single) 0.0000085131 0.0001169729 0.0000677591

βCDU-CSU -0.0250408465 -0.0250408465 -0.0250408465

E(β̂CDU-CSU) -0.0247896313 -0.0250603947 -0.0254334381

Bias(β̂CDU-CSU) 0.0002512152 -0.0000195482 -0.0003925917

Biasrel(β̂CDU-CSU) 0.0100322182 -0.0007806542 -0.0156780504

Var(β̂CDU-CSU) 0.0000096594 0.0000176945 0.0000250355

MSE(β̂CDU-CSU) 0.0000097225 0.0000176949 0.0000251896

βSPD -0.0133277196 -0.0133277196 -0.0133277196

E(β̂SPD) -0.0129489153 -0.0131990711 -0.0134861572

Bias(β̂SPD) 0.0003788043 0.0001286486 -0.0001584376

Biasrel(β̂SPD) 0.0284222899 0.0096527070 -0.0118878245

Var(β̂SPD) 0.0000082994 0.0000038249 0.0000164779

MSE(β̂SPD) 0.0000084429 0.0000038415 0.0000165030

βdie gruenen 0.0870817819 0.0870817819 0.0870817819

E(β̂die gruenen) 0.0861594196 0.0861721909 0.0858419315

Bias(β̂die gruenen) -0.0009223623 -0.0009095910 -0.0012398504

Biasrel(β̂die gruenen) -0.0105919086 -0.0104452499 -0.0142377706

Var(β̂die gruenen) 0.0000029839 0.0000135436 0.0000177944
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MSE(β̂die gruenen) 0.0000038346 0.0000143709 0.0000193316

βdie linke 0.0768770122 0.0768770122 0.0768770122

E(β̂die linke) 0.0766285053 0.0765386126 0.0759818674

Bias(β̂die linke) -0.0002485069 -0.0003383996 -0.0008951449

Biasrel(β̂die linke) -0.0032325255 -0.0044018309 -0.0116438560

Var(β̂die linke) 0.0000052878 0.0000829108 0.0000555711

MSE(β̂die linke) 0.0000053495 0.0000830253 0.0000563724

βextreme right-wing 0.0074005875 0.0074005875 0.0074005875

E(β̂extreme right-wing) 0.0074446783 0.0069021312 0.0064076423

Bias(β̂extreme right-wing) 0.0000440908 -0.0004984563 -0.0009929452

Biasrel(β̂extreme right-wing) 0.0059577427 -0.0673536127 -0.1341711303

Var(β̂extreme right-wing) 0.0000039412 0.0000105129 0.0000030220

MSE(β̂extreme right-wing) 0.0000039431 0.0000107613 0.0000040080

βFDP -0.1541756102 -0.1541756102 -0.1541756102

E(β̂FDP) -0.1521668250 -0.1524688386 -0.1527640536

Bias(β̂FDP) 0.0020087852 0.0017067716 0.0014115566

Biasrel(β̂FDP) 0.0130292021 0.0110703085 0.0091555115

Var(β̂FDP) 0.0000318057 0.0001582649 0.0001013749

MSE(β̂FDP) 0.0000358410 0.0001611779 0.0001033674

βwould not vote -0.1315889085 -0.1315889085 -0.1315889085

E(β̂would not vote) -0.1296837496 -0.1309278597 -0.1315006747

Bias(β̂would not vote) 0.0019051589 0.0006610488 0.0000882339

Biasrel(β̂would not vote) 0.0144781119 0.0050235908 0.0006705268

Var(β̂would not vote) 0.0000307147 0.0001447759 0.0003420967

MSE(β̂would not vote) 0.0000343444 0.0001452129 0.0003421045

Table C.36: Expected value of regression coefficient estimation on income in order
to evaluate the performance of Pattern Mixture Model

ad-hoc FIML Heckman SM PMM

β0 7.0070608279 7.0070608279 7.0070608279 7.0070608279

E(β̂0) 6.9918990979 6.9918994242 6.9834369706 6.9599825424

Bias(β̂0) -0.0151617300 -0.0151614034 -0.0236238572 -0.0470782855

Biasrel(β̂0) -0.0021637788 -0.0021637322 -0.0033714360 -0.0067186923

Var(β̂0) 0.0040586057 0.0040586304 0.5002207476 0.0032153760

MSE(β̂0) 0.0042884838 0.0042884985 0.5007788343 0.0054317409

βAge 0.0113720951 0.0113720951 0.0113720951 0.0113720951

E(β̂Age) 0.0104158533 0.0104158529 0.0103290286 0.0107637804

Bias(β̂Age) -0.0009562418 -0.0009562423 -0.0010430665 -0.0006083147

Biasrel(β̂Age) -0.0840866856 -0.0840867264 -0.0917215807 -0.0534918725

Var(β̂Age) 0.0000001725 0.0000001725 0.0000012543 0.0000004496

MSE(β̂Age) 0.0000010869 0.0000010869 0.0000023423 0.0000008197
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βFemale -0.3783040793 -0.3783040793 -0.3783040793 -0.3783040793

E(β̂Female) -0.3603941931 -0.3603937707 -0.3646385773 -0.3752790816

Bias(β̂Female) 0.0179098862 0.0179103086 0.0136655020 0.0030249977

Biasrel(β̂Female) 0.0473425670 0.0473436836 0.0361230627 0.0079962069

Var(β̂Female) 0.0001560970 0.0001560997 0.0025572657 0.0007523674

MSE(β̂Female) 0.0004768611 0.0004768789 0.0027440117 0.0007615181

βNo Graduation 0.2712024535 0.2712024535 0.2712024535 0.2712024535

E(β̂No Graduation) 0.2665583578 0.2665584630 0.2781516623 0.2519122283

Bias(β̂No Graduation) -0.0046440957 -0.0046439905 0.0069492089 -0.0192902252

Biasrel(β̂No Graduation) -0.0171240916 -0.0171237037 0.0256236947 -0.0711285053

Var(β̂No Graduation) 0.0047502795 0.0047502859 0.0059502660 0.0003184682

MSE(β̂No Graduation) 0.0047718471 0.0047718526 0.0059985575 0.0006905810

βVolks-, Hauptschule -0.2259655461 -0.2259655461 -0.2259655461 -0.2259655461

E(β̂Volks-, Hauptschule) -0.2178593224 -0.2178595112 -0.1758143470 -0.2476348846

Bias(β̂Volks-, Hauptschule) 0.0081062237 0.0081060349 0.0501511991 -0.0216693385

Biasrel(β̂Volks-, Hauptschule) 0.0358737155 0.0358728799 0.2219417960 -0.0958966481

Var(β̂Volks-, Hauptschule) 0.0032971926 0.0032971667 0.0041650294 0.0022517878

MSE(β̂Volks-, Hauptschule) 0.0033629035 0.0033628745 0.0066801721 0.0027213480

βMittlere Reife 0.2098521677 0.2098521677 0.2098521677 0.2098521677

E(β̂Mittlere Reife) 0.2039732445 0.2039727839 0.2035139941 0.2131636660

Bias(β̂Mittlere Reife) -0.0058789232 -0.0058793838 -0.0063381737 0.0033114983

Biasrel(β̂Mittlere Reife) -0.0280145938 -0.0280167885 -0.0302030412 0.0157801481

Var(β̂Mittlere Reife) 0.0028012188 0.0028012103 0.0035348148 0.0002776289

MSE(β̂Mittlere Reife) 0.0028357805 0.0028357774 0.0035749873 0.0002885949

βFachhochschulreife -0.0112989169 -0.0112989169 -0.0112989169 -0.0112989169

E(β̂Fachhochschulreife) 0.0124622146 0.0124619936 0.0121641972 -0.0077323281

Bias(β̂Fachhochschulreife) 0.0237611314 0.0237609104 0.0234631141 0.0035665888

Biasrel(β̂Fachhochschulreife) 2.1029565657 2.1029370048 2.0765808216 0.3156575863

Var(β̂Fachhochschulreife) 0.0035444498 0.0035444588 0.0039850419 0.0008895124

MSE(β̂Fachhochschulreife) 0.0041090411 0.0041090397 0.0045355600 0.0009022330

βHochschulreife 0.0322277454 0.0322277454 0.0322277454 0.0322277454

E(β̂Hochschulreife) 0.0332303614 0.0332302411 0.0353930436 0.0348303933

Bias(β̂Hochschulreife) 0.0010026160 0.0010024957 0.0031652982 0.0026026480

Biasrel(β̂Hochschulreife) 0.0311103379 0.0311066049 0.0982165576 0.0807579909

Var(β̂Hochschulreife) 0.0029257449 0.0029257450 0.0034905884 0.0000082209

MSE(β̂Hochschulreife) 0.0029267550 0.0029267500 0.0035006075 0.0000149947

βhalf-time -0.4575120691 -0.4575120691 -0.4575120691 -0.4575120691

E(β̂half-time) -0.4237710004 -0.4237707342 -0.4236278362 -0.4289041088

Bias(β̂half-time) 0.0337410686 0.0337413349 0.0338842329 0.0286079602

Biasrel(β̂half-time) 0.0737490242 0.0737496061 0.0740619432 0.0625294110

Var(β̂half-time) 0.0003608333 0.0003608351 0.0022109048 0.0001927363

MSE(β̂half-time) 0.0014992930 0.0014993128 0.0033590460 0.0010111517

βpart-time -0.9369052158 -0.9369052158 -0.9369052158 -0.9369052158
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E(β̂part-time) -0.8839084275 -0.8839094428 -0.8734872473 -0.9012367235

Bias(β̂part-time) 0.0529967883 0.0529957730 0.0634179685 0.0356684924

Biasrel(β̂part-time) 0.0565657949 0.0565647113 0.0676887773 0.0380705452

Var(β̂part-time) 0.0004545761 0.0004545780 0.0081682492 0.0015044339

MSE(β̂part-time) 0.0032632356 0.0032631300 0.0121900880 0.0027766753

βnot employed -0.7984611199 -0.7984611199 -0.7984611199 -0.7984611199

E(β̂not employed) -0.7481781999 -0.7481785426 -0.7413875504 -0.7612613519

Bias(β̂not employed) 0.0502829200 0.0502825773 0.0570735695 0.0371997680

Biasrel(β̂not employed) 0.0629747883 0.0629743591 0.0714794597 0.0465893292

Var(β̂not employed) 0.0001957666 0.0001957666 0.0057548007 0.0009289524

MSE(β̂not employed) 0.0027241386 0.0027241041 0.0090121931 0.0023127752

βmarried living together 0.0923461105 0.0923461105 0.0923461105 0.0923461105

E(β̂married living together) 0.0730691859 0.0730691705 0.0715470348 0.0859618026

Bias(β̂married living together) -0.0192769247 -0.0192769400 -0.0207990758 -0.0063843079

Biasrel(β̂married living together) -0.2087464708 -0.2087466368 -0.2252295808 -0.0691345625

Var(β̂married living together) 0.0004259310 0.0004259335 0.0004758751 0.0004094003

MSE(β̂married living together) 0.0007975309 0.0007975339 0.0009084767 0.0004501597

βmarried living apart 0.3803863918 0.3803863918 0.3803863918 0.3803863918

E(β̂married living apart) 0.3389024844 0.3389021418 0.3366858969 0.3573671872

Bias(β̂married living apart) -0.0414839074 -0.0414842500 -0.0437004949 -0.0230192045

Biasrel(β̂married living apart) -0.1090572857 -0.1090581863 -0.1148844854 -0.0605153208

Var(β̂married living apart) 0.0023498808 0.0023498773 0.0034733274 0.0010517536

MSE(β̂married living apart) 0.0040707955 0.0040708203 0.0053830606 0.0015816373

βwidowed -0.0087342802 -0.0087342802 -0.0087342802 -0.0087342802

E(β̂widowed) -0.0180390876 -0.0180390740 -0.0185558936 0.0077166306

Bias(β̂widowed) -0.0093048075 -0.0093047938 -0.0098216134 0.0010176496

Biasrel(β̂widowed) -1.0653204674 -1.0653189039 -1.1244903081 0.1165121310

Var(β̂widowed) 0.0011846509 0.0011846387 0.0011579968 0.0002272012

MSE(β̂widowed) 0.0012712304 0.0012712179 0.0012544609 0.0002282368

βsingle 0.1244899786 0.1244899786 0.1244899786 0.1244899786

E(β̂single) 0.1008751057 0.1008749109 0.0999261900 0.1147122833

Bias(β̂single) -0.0236148729 0.0236150677 -0.0245637886 -0.0097776953

Biasrel(β̂single) -0.1896929631 -0.1896945275 -0.1973153895 -0.0785420271

Var(β̂single) 0.0004794570 0.0004794683 0.0005752253 0.0004860593

MSE(β̂single) 0.0010371192 0.0010371397 0.0011786050 0.0005816626

βCDU-CSU -0.0250408465 -0.0250408465 -0.0250408465 -0.0250408465

E(β̂CDU-CSU) -0.0413015937 -0.0413014679 -0.0393838344 -0.0258640952

Bias(β̂CDU-CSU) -0.0162607472 -0.0162606201 -0.0143429879 -0.0008232487

Biasrel(β̂CDU-CSU) -0.6493689117 -0.6493638346 -0.5727836695 -0.0328762343

Var(β̂CDU-CSU) 0.0007178734 0.0007178844 0.0007071371 0.0004986997

MSE(β̂CDU-CSU) 0.0009822853 0.0009822922 0.0009128584 0.0004993774

βSPD -0.0133277196 -0.0133277196 -0.0133277196 -0.0133277196

E(β̂SPD) -0.0269776734 -0.0269774210 -0.0263829368 -0.0132190147

Bias(β̂SPD) -0.0136499538 -0.0136497013 -0.0130552172 0.0001087050
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Biasrel(β̂SPD) -1.0241777382 -1.0241587972 -0.9795537048 0.0081563082

Var(β̂SPD) 0.0006879219 0.0006879397 0.0006736271 0.0004019095

MSE(β̂SPD) 0.0008742432 0.0008742540 0.0008440658 0.0004019213

βDie Gruenen 0.0870817819 0.0870817819 0.0870817819 0.0870817819

E(β̂Die Gruenen) 0.0699375324 0.0699368792 0.0698348263 0.0814774337

Bias(β̂Die Gruenen) -0.0171442495 -0.0171449028 -0.0172469556 -0.0056043482

Biasrel(β̂Die Gruenen) -0.1968752725 -0.1968827736 -0.1980546938 -0.0643572985

Var(β̂Die Gruenen) 0.0008226594 0.0008226664 0.0008476972 0.0003304210

MSE(β̂Die Gruenen) 0.0011165847 0.0011166141 0.0011451547 0.0003618297

βDie Linke 0.0768770122 0.0768770122 0.0768770122 0.0768770122

E(β̂Die Linke) 0.0600895876 0.0600886500 0.0605699254 0.0709440868

Bias(β̂Die Linke) -0.0167874246 -0.0167883626 -0.0163070869 -0.0059329254

Biasrel(β̂Die Linke) -0.2183672873 -0.2183794883 -0.2121191547 -0.0771742453

Var(β̂Die Linke) 0.0010044975 0.0010045144 0.0010124707 0.0002894757

MSE(β̂Die Linke) 0.0012863151 0.0012863635 0.0012783918 0.0003246753

βExtreme Right-Wing 0.0074005875 0.0074005875 0.0074005875 0.0074005875

E(β̂Extreme Right-Wing) -0.0037889836 -0.0037863123 -0.0025346386 0.0062591849

Bias(β̂Extreme Right-Wing) -0.0111895711 -0.0111868997 -0.0099352260 -0.0011414025

Biasrel(β̂Extreme Right-Wing) -1.5119841687 -1.5116232045 -1.3424915372 -0.1542313416

Var(β̂Extreme Right-Wing) 0.0010832206 0.0010831891 0.0010464568 0.0002212753

MSE(β̂Extreme Right-Wing) 0.0012084271 0.0012083358 0.0011451655 0.0002225781

βFDP -0.1541756102 -0.1541756102 -0.1541756102 -0.1541756102

E(β̂FDP) -0.1567216987 -0.1567219824 -0.1543218537 -0.1503988556

Bias(β̂FDP) -0.0025460885 -0.0025463721 -0.0001462434 0.0037767546

Biasrel(β̂FDP) -0.0165142104 -0.0165160504 -0.0009485511 0.0244964463

Var(β̂FDP) 0.0010356435 0.0010356503 0.0012532831 0.0000503189

MSE(β̂FDP) 0.0010421261 0.0010421343 0.0012533045 0.0000645828

βWould not vote -0.1315889085 -0.1315889085 -0.1315889085 -0.1315889085

E(β̂Would not vote) -0.1567925656 -0.1567930100 -0.1549267899 -0.1267838888

Bias(β̂Would not vote) -0.0252036571 -0.0252041011 -0.0233378814 0.0048050197

Biasrel(β̂Would not vote) -0.1915332940 -0.1915366682 -0.1773544717 0.0365153854

Var(β̂Would not vote) 0.0009945485 0.0009945598 0.0012078546 0.0017879792

MSE(β̂Would not vote) 0.0016297728 0.0016298065 0.0017525113 0.0018110674

Table C.37: Expected value, variance, bias and MSE of regression coefficient es-
timates on income in order to evaluate the performance of different
correction methods on alternative MNAR model
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D Electronic Appendix

D Electronic Appendix

The electronic appendix consists of the 3 folders “Data”, “Code” and “Thesis”.

• “Data” consists of the subfolders “Allbus2014” and “SimulatedData”. The subfolder “All-

bus2014” includes the provided Allbus data set as downloaded, converted and shortened ver-

sion. The folder “SimulatedData” is further subdivided in folders that contain the simulated

data set (“Data Basis”), as well as all its modifications due to application of the different TSE

error models (“Error Models”) and the nonresponse correction methods (“Nonresponse”).

• “Code” contains the subfolders “1.Data Basis”, “2.Error Models”, “3.Nonresponse” and

“4.Other”. Each of these subfolders starts with a R file “0.Content” explaining the structure

and content of the folder before the respective R code follows in chronological ordered

subfiles. Only the subfolder “4.Other” does not have a ccertain order, since it contains

additional R code for purposes of graphical illustration and statistical testing.

• “Thesis” contains the formulated thesis in PDF format.
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