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Introduction

In Kirby and Paris [5] it was shown that a certain combinatorial statement
(concerning finite trees) is independent of Peano Arithmetic. Here we present a
not too complicated extension of this statement and prove its independence from
the much stronger theory (IT-CA) + BI. This is done by refining the methods
which we have developed in [2, Ch. IV, §1-§4].

Using the terminology of Kirby and Paris our result can be described as
follows. A hydra is a finite labeled tree A which has the following properties:

(i) the root of A has label +,

(ii) any other node of A is labeled by some ordinal v < w,

(iii) all nodes immediately above the root of A have label 0 (zero).

If Hercules chops off a head (i.e. top node) o of a given hydra A, the hydra will
choose an arbitrary number n € N and transform itself into a new hydra A(o, n)
as follows. Let 7 denote that node of A which is immediately below o, and let A~
denote that part of A which remains after o has been chopped off. The definition
of A(o, n) depends on the label of o:

Case 1: label (0)=0. If 7 is the root of A, we set A(o, n):=A". Otherwise
A(o, n) results from A~ by sprouting » replicas of A; from the node immediately
below 1. Here A7 denotes the subtree of A~ determined by 7.

A; "
______ 700 XA
\/}# . \/w
A

A(g,n)

Case 2: label (0) =u + 1. Let € be the first node below o with label v <u. Let
B be that tree which results from the subtree A, by changing the label of € to u
and the label of o to 0. A(o, n) is obtained from A by replacing o by B. In this
case A(o, n) does not depend on n.
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Case 3: label (0) = w. A(o, n) is obtained from A simply by changing the label
of 0: w is replaced by n + 1.

Notation. If o is the rightmost head of A (as in the pictures above) we write A(n)
instead of A(o, n). In the following we consider only the operation A — A(n). By
@ we denote the hydra which consists only of one node, namely its root.

The main results of the present paper are:
Theorem 1. By always chopping off the rightmost head, Hercules is able to kill
every hydra in a finite number of steps, i.e., for each hydra A and any sequence

(n:))ien Of natural numbers there exists k € N such that A(ng)(n,) - - - (n;) = .

Theorem Il. For every fixed hydra A the statement V(n;);n3k
A(no)(n,) - - - (n) = @ is provable in (IT;-CA) + BI.

Theorem III. Let

©

n nodes with label w

©

Then the IT3-sentence ¥n 3k A"(1)(2) - - - (k) = @ is not provable in (IT:-CA) +
BIL
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In Section 1 we prove Theorem I. In Section 2 we prove Theorem II. Section 3
contains some technical lemmata which will be used in Section 4 for the proof of
Theorem III. In the appendix we characterize the proof-theoretic ordinals of the
theories ID, (v < w) for v-times iterated inductive definitions by means of the
term structure (7, -[-]).

1. Infinitary wellfounded trees and collapsing functions

In this section we introduce certain sets 7, (v < ) of infinitary wellfounded
trees together with a system of socalled collapsing functions 2,:9,— 9,
(v<w). These functions are then used to associate with every hydra A an
element ||A|| of T, in such a way that, for each n e N, ||A(n)] is an immediate
subtree of ||A]|. This yields Theorem I.

Definition of the tree classes I, (v <w)

Suppose that 7, for u <v is already defined. Then we define J, to be the least
set which contains 0 (the empty set) and is closed under the following rule:

(9,) If a:I—J, is a function with I € {{0}, N}U{J,:u<v}, then o€ 7.

According to the inductive definition of 7, we have the following principle of
transfinite induction over J,,:

Va € 7, (Vx e domain(a) P(a(x))— ¥(a))— Va e T, ¥(a).
Proposition. u<v> 9, 9,.

Notations. (a,)rer:={(x, a,):x €l}, i.e., (a,).; denotes the function « with
domain / and a(x)=a, for all x e I.

v i=(@)rer0y:={(0, @)}  (the successor of a).

In the following «, B, y denote elements of F,.

Definition of +: 9, X T,—> T,
We define a + B by transfinite induction on f§:
(i) a+0:=aq,
(ii) a+ (ﬁx)xe1:= (a + ﬂx)xel'
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Proposition. (a) o + (8™) =(a + B)".
) (@+B)+y=a+(B+7).
() a,peT,>a+pe,.

Definition. o -0:=0, a-(n+1):=a-n+a.

Definition of %,:J,— T,

9,(«) is defined by transfinite induction on « € J, simultaneously for all
v<wo.

(@1) 90(0) = 0+; @n+1(0) = (Z)zeﬁr,,’ 9{0(0) = (9n+1(0))neN-
(@2) @v ((ax)xel):z
(Dy(@o) - (n + 1)pen, ifI={0},
(D.(a ))xer, fI1€e{N}U{T, :u<wv},
(2,(a,)pen With z2:= D (ay+), =T, withv<u<wo.
Remark. If domain(a) € {J,:v <u <w}, then 9,(a) is a constant function with
domain N.
Definition of ||A||

For every finite labeled tree A (with labels <w) we define ||A| e T, by
induction on the length (i.e. number of nodes) of A:

1@l :=2.(0),
A‘{%‘/A" =, (|l + - - + lAdlD.

Ag-:: A
If A= ‘g/ * is a hydra, we set [|A]|:=||Ao|| + - - - + [|A«||. For @ € 7, with

domain(a) = {0} we set a(n):= a(0).

1.1. Theorem. For every hydra A¥® and all neN the following holds:
Al € o and |l = {lA]| (n).

Proof. Easy exercise.

From 1.1 we obtain Theorem I by transfinite induction over 7.

2. The term structure (T, -[-])

In this section we prove Theorem II. To this purpose we introduce the
following set T of terms, where D,, . . ., D, is a sequence of formal symbols.
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Inductive definition of the set T

(T1) O€eT.
(T2) If ae T and v < w, then D,a € T; we call D,a a principal term.
(T3) If ay, ..., a; € T are principal terms and k=1, then (ay, ..., a,)eT.

For each term a € T we define its value @ € 7, by
0:=0, D,a:=9,(a), (@g, - - ., a):=dp+- - +ay.

This interpretation of terms as infinitary wellfounded trees will not be used in the
proof of Theorem II. It serves only as a motivation for the following definitions of
a +b, T,, dom(a) and a|z].

The letters a, b, ¢, z now always denote elements of T.

For principal terms aq, . . ., 4, and k € {—1, 0} we set
0, ifk=-1,
(ao,.-.,ak):_——{a()) k=0-

Definition ofa+banda-neT
a+0:=0+a:=aq,
(agy - - ., ax)+(bo, ..., bn):=(ap,...,0ax bo,...,bn) (k, m=0),
a-0:=0, a-(n+1):=a-n+a.

Proposition. (a +b)+c=a+(b+c).
Definition of T, forv< o
T,:={0}U {(Dya,...,D,a):k=0,a0,...,a,€T, uy, ..., u<uv}
Remark. e T, & - €T,=T.
Abbreviation. 1:= Dy0.
Convention. We identify N with the subset {0,1,1+1,1+1+1,...} of T,.
Now we define, for every a € T, a subset dom(a) of T and a function z — a[z]

from dom(a) into 7. This will be done in such a way that Z € domain(a) and
a[z] = a(2), for all z € dom(a).

Definition of dom(a) and a[z] for a € T, z € dom(a)

([ 1.0) dom(0):=.
([ 1-1) dom(1):={0}; 1[0]:=0.
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( 1.2) dom(D,,,0):=T,; (D,,,0)[z]:=z.
( }-3) dom(D,0):=N; (D,0)[n]:= D, 0.
([ }-4) Leta = D,b with b #0:
(i) dom(d) = {0} :dom(a) =N, a[n]:=(D,b[0]) - (n +1).

(ii) dom(b) = T, with v <u < w:dom(a):=N, a[n]:=D,b[D,b[1]].

(iii) dom(b) € {N} U {T,,:u <v}:dom(a):=dom(b), a[z]:= D,b|z].
([ 1.5 a=(aq, ..., a)(k=1):dom(a):=dom(a,),

alz]:=(ay, . . ., ay_1) +a.[z]

Definition. 0[n]:=0, a[n]:=a0] for a € T with dom(a) = {0}.

Proposition. (a) a #0& dom(a) # 0.

(b) dom(a) = {0} & a =a[0] + 1.

(c) 0#aeT,>dom(a) € {{0}, N} U{T,:u<v}, and a[z]eT, for all z €
dom(a).

Now we are going to compare terms and hydras. It will turn out that the term
structure (T, +[-]) is isomorphic to the structure (¥, -(-)), where ¥ denotes the
set of all hydras.

In fact (%, -(-)) is nothing else than a geometric representation of (T, -[-]).
(%, -(-)) has been defined just in such a way that it becomes isomorphic to

(sz '[D
Definition of |A|

Ag::: Ay
IfA= o\(\éy (k= —1) is a hydra or any finite labeled tree with labels <w

we define |A| to be that term a € T which implicitely is given by the definition of
|A|| in Section 1, namely:

_[De(Ad, . .-, Ak, ifE<w,
Al: {(lel, oo lAd),  ifE=+.

2.1. Theorem. (a) The operation A+ |A| yields a 1-1 correspondence between
the set of all hydras and the set T;.

(b) |A(n)| =|A|[n], for each hydra A and all n e N.

Proof. (a) Obvious.
(b) Definition (for ¢, z € T, ¢ #0)

z, if c=D,0,
c[*/z):=4 D,b[*/z], if c = D,b with b #0,
(cos - - - s k1) ar[*/z], ifc=(co,--.,Ck), k=1

Now the reader can easily verify the following propositions and then also part
(b) of the theorem.
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Proposition 1. If z is a principal term, then c[*/z] results from c by replacing the
rightmost subterm D,0 of c by z.

Proposition 2. If z € T,, = dom(a), then a[z] = a[*/z].

Proposition 3. If dom(a) € {{0}, N}, then one of the following cases holds:
(i) a=(ag, - .., ar-1, 1) and a[n]) = (a,, . . . , ay_,).
(i) a=c[*/D,(ay, . . ., ax—1, 1)] and a[n] = c[*/D,(aq, - . . , ax_,) - (n + 1)].
(iii) a = c[*/D,0] and a[n] = c[*/D,+,0].
(iv) a =c[*/D,b], dom(b) =T, v <u and a[n} = c[*/D,b[D,b[1]]].

Let W, denote the least subset of 7; which contains 0 and is closed under the
following rule:

aeTy, and VneN(a[nleWy) > aeW,.

Since every a € T; corresponds to an infinitary wellfounded tree a € J, with
a(n)=a[n] (for all neN), it follows that Wo=T, and consequently Vae
TV (n)ien 3k a[ng)[n,] - - - [n:] =0.

Now we want to give a proof of “a € W, which, for every fixed term a € T,
can be formalized in ID,, the formal theory of w-times iterated inductive
definitions. There we have to use methods which do not depend on the
nonconstructive tree classes J,,. In fact, we will establish a more general result:

2.2. Theorem. Let 0<v=w. If a € T contains no symbol D, with v<v, then
“a e Wy is provable in ID,,.

Since ID,, is contained in (IT3-CA)+ BI and since (IT;-CA)+ BI proves
“a € Wo— Y(n;);en Ak afng] - - - [n] =07, we obtain from 2.2:

2.3. Theorem. (IT1-CA) + BIFVY(n,);en 3k a[ng] - - - [ax] =0, for each a € T,

This theorem together with 2.1 yields Theorem II.
In the following let v < w be fixed. We use u, v to denote numbers <v.

Iterated inductive definition of sets W, (v <v)

(W1) 0e W,.
(W2) aeT,, dom(a) € {{0}, N}, Vn (a[n]e W,)>aeW,.
(W3) aeT,, dom(a) =T, withu <v, Vze W, (a[z] e W,)>aeW,.

Proposition. u <v<vo>W,cW,cT,

Abbreviations. Let X range over subsets of T which are definable in the language
of ID,.
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1. By A, (X, a) we denote the following statement:
a =0 v [dom(a) € {{0}, N} A Vn (a[n] € X)]
v 3u <v[dom(a) = T, A Vz € W, (a[z] € X).

2. A,(X):={xeT:A,(X, x)}.

3. X@:={yeT:a+yeX}.

4. X:={yeT:Vx(xeX—>x+D,yeX)}
5. Wr:={xeT:Vu<v(D,x e W,)}.

By the definition of W, for all v <v we have:
(A1) A,(W,) =W,
(A2) A, (X)cX>W, cX.

2.4. Lemma. (a) A,(X)cXandae X=>A,(X?9)cX? (vsv).
(b) a,beW,>a+beW, (v<v).

Proof. (a) Suppose A,(X)c X, ae X, A,(X“, b). We have to prove a + b € X:

1. b=0: Thena+b=aeX.

2. dom(b) € {{0}, N} and Vn (b[n]e X®): Then we have dom(a+b)=
dom(b) and (a +b)[n]=a+b[n]eX, for all neN. It follows that a+b e
A,(X)eX.

3. dom(b) = T, with u <wv: similar to 2.

(b) From (a) together with (A1), (A2) we obtain, for v<v, ae W,—» W, c
W® ie.,aeW,>(beW,—>a+beW,).

2.5. Lemma. A, (X)cX>A,(X)cX

Proof. Assumptions: A,(X)c X, A,(X, b), ae X.
We have to prove a + D,b € X. First we prove: (1) Vu <v (a + D,,,0 € X).
We have dom(a + D,,,0)=T, and (a + D,,,0)[z] =a +z. By 2.4 we obtain
A (X)) c X@. Since A,(X?) c A,(X®), it follows by (A2) that W, c X?, i.e.,
Vz e W,(a + z € X). Hence A,(X, a + D, ,0) and therefore a + D,,,0 € X, since
A (X)eX.

Proof of a + D,b € X:

1. b=0and v=0: Thena+ D,b =a + 1; and a + 1 € X follows from A,(X) c
XnrnaelX.

2. b=0and v=u + 1: In this case we are done by (1).

3. b=0and v= w: Then dom(a + D,b) =N and (a + D,b)[n]=a + D, 0. By
(1) we obtain A,(X, a + D,b). Hence a + D,b € X.

4. b=by+ 1 with by e X: Then we have Vx € X (x + D, b, € X). Using this and
the assumption a € X we obtain Vn e N (a + (D,by) - (n + 1) € X) by complete
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induction. Since dom(a + D,b)=N and (a+ D,b)[n]=a+ (D,by) - (n+1) it
follows that a + D,b € A, (X) c X.

5. dom(b)=N and Vn (b[n]e X): Then we have dom(a+ D,b)=N and
(a + D,b)[n] =a+ D,b[n] € X, for all n e N. Hence a + D,b € A, (X).

6. dom(b)=T,, u <v and Vz € W, (b[z] € X): similar to 5.

2.6. Lemma. A, (W*)cW*.

Proof. Suppose b € A, (W*) and v <v. We have to show D,b € W,.

1. b =0 and v =0: From 0 € W, we get D0 =1 € W, by (W2).

2.b=0 and v=u+1: Then dom(D,b)=T,, (D,b)[z]=z and W, cW,.
Hence D,b € W, by (W3).

3. b=by+1 and byeW*: Then we have dom(D,b)=N, (D,b)[n]=
(D,bo) - (n+1) and D,boe W,. Using 2.4(b) we obtain Vn (D,b)[n]e W, by
induction on n. Hence D,b € W,,.

4. dom(b)=T,, u<vand b[z] e W* for all z e W,:

4.1. u <v: Then we have dom(D,b) = T, and (D,b)[z] = D,b[z] € W, for all
zeW,ie.,D,beW,.

4.2. vsu<v: Then we have dom(D,b) =N and (D,b)[n]= D,b[z] with
z:=D,b[1]. Obviously 1€ W, and therefore b{1] e W*. It follows that z e W,.
From this we obtain b[z]e€ W* and then D,b[z]eW,, i.e., Vn (D,b)[n] e W,.
HenceD, b e W,.

5. dom(b) =N and b[n] e W* for all n € N: similar to 4.1.

2.7. Lemma. If ae T contains no symbol D, with v>v, then A, (X)c X—
aeX.

Proof. By induction on the length of a: suppose A,(X) c X.
1. a=0:Inthiscase a e A, (X) c X.
2. a=(ay,...,aq)k=1): Let c:=(ay, ..., ax_,). Then we have:
(1) ceX— A, (X9) c X (by 2.4(a)).
(2) c € X (by induction hypothesis).
(3) A, (X9) c X©—a, € X© (by induction hypothesis).
From this we geta =c +a, € X.

3. a=D,b: From A,(X)c X we get 0eX and A4,(X)c X by 2.5. By L.H.
(induction hypothesis) we have A,(X) c X— b € X. By definition of X we have
beX—(0eX— D,beX). Hence D,b e X.

4. a=D,b with v <v: By LH. we have A,(W*)c W*— b € W*. Using 2.6 we
obtain b e W*. Hence a=D,beW,. From A, (X)c X we get A,(X)c X and
then W, c X.

2.8. Lemma. If a € T, contains no symbol D, with v > v, then a € W,
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Proof. Let a#0. Then a=Dyay+---+ Dya, with a,,...,a, €T, and by
Lemmata 2.6, 2.7 we have aq, . .., a, € W*. Hence Dya,, . .., Dya, € W,. From
this we obtain a € W, by 2.4(b).

By formalizing in ID, the definition of W, (v <v) and the proofs of 2.4-2.8 we
obtain Theorem 2.2.

3. The relations <<; and the functions H,:N— N

In Section 4 we will use terms a € T instead of ordinals to measure the lengths
of infinitary derivations. In this context we need certain relations <<; on T which
we introduce now. We also introduce a hierarchy (H,),.r, of number-theoretic
functions which is closely related to the so called Hardy hierarchy. The relation
<, restricted to T is just the step-down relation of Schmidt [6]; cf. also Ketonen
and Solovay [4] where similar relations are studied.

As before the letters a, b, ¢, d, e, z will always denote elements of 7. As
mentioned in Section 2 every ae T can be considered as a notation for a
wellfounded tree @ € 7, in such a way that Z € domain(a) and a(z) =;1[7] holds
for all z e dom(a). Consequently we have the following principle of transfinite
induction over T

Va e T [Vz e dom(a) W(a[z])— W(a)] > Va e T ¥(a).

Definition of ¢ <, a by transfinite inductionona e T

cKra © a#0 and Vzed(a)(cLealz])
where
d,(a) :={{k}, if dom(a) € {{0}, N}
{D.e:0#e€T}, ifdom(a)=T,
and
c&a & cK,a or c=a.

3.1. Lemma. (a) c <, aand a<<; b>c<K;b.
(b) cib>a+c<Ka+b.
(c) b#¥0>a<k,a+b.

Proof by transfinite induction on b.

3.2. Lemma. (a) n<k+1=>(D,a) -n <, D,(a +1).
(b) c Ky a> D,c < D,a.

Proof. (a) By 3.1(c) we have (D,a) - n &, (D,a) - (k +1)=D,(a + 1)[k]. Hence
(D,a) - n <, D,(a + 1), since d,(D,(a + 1)) = {k}.
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(b) Transfinite induction on a: Suppose @ # 0 and Vz e di(a)(c &y a[z]).

1. a=ay+ 1: By LH. and 3.2(a) we have D,c &, D,a, < D,a.

2. dom(a)e {(N}U{T,:u<v}: Then di(D,a)=di(a) and Vzedi(a)
((D,a)[z] = D,afz]). By LH. we have Vzed,(a)(D,c <, D,a[z]). Hence
D,c < D,a.

3. dom(a) = T, with v <u: Then d,(D,a) = {k} and (D,a)[k]= D,a[z] with
z:=D,a[1] e di(a). By L.H. we have D,c &, D,a[z]. Hence D,c <, D,a.

3.3. Lemma. dom(a) =N>a[n] &, a[n +1).

Proof. By induction on the length of a:

1. a=D,0: Then we have a[n+1]=D,,,0 and therefore d,(a[n+1])=
{D,,,e:0#e€T}, a[n+1][z]=2z Using 3.1(c) and 3.2(b) we obtain Vze
di(a[n + 1])(D,+10 <, z). Hence a[n] <, a[n + 1].

2. For a=b + c or a = D,b with dom(b) = N the assertion follows immediately
from I.H. and 3.1(b), 3.2(b).

3. For a = D,b with dom(b) € {T,,:v <u} we have a[n] =a[n + 1].

4. For a=D,(bo+1) we have a[n]=(D,bo)(n+1) <K (D,bo)(n+2)=
a[n + 1] by 3.1(c).

34. Lemma. (a) aybandk=sm=>a<,b.
(b) dom(a)=N and n <k=>a[n] K, a.

Proof. (a) Transfinite induction on b: Suppose b # 0 and Vz € d;(b)(a &, b[z]).
For dom(b) = {0} or dom(b) =T, the assertion follows immediately from I.H.
Otherwise the I.H. and 3.3 y1eld a &, b[k] &, b[m]. Hence a <, b.

(b) By 3.3 we get a[n] &, a[k]. Hence a[n] <, a.

3.5. Lemma. (a) a#0=>1%,4
(b) Dya+1<«, D,(a+1).
(¢) D1 D,+10 and Dyl <, D,,0.
(d) a#00orv#0>k +1<, D,a and for k#0, D,a+k +1<; D,(a +1).

Proof. (a) For a ¢ {0, 1} we have Vz e dy(a)(a[z] #0). From this the assertion
follows by transfinite induction on a.

(b) We have D,a +1< D,a+ D,a=D,(a+1)[1].

(c) By 3.5(a) and 3.2(b) we have D,1 &, z = (D,,,0)[z] for all z € dy(D,,0).
Hence D,1 < D,+10. Especially Dyl <<¢ D,0 = (D,,0)[0] and thus D,1 <<, D,,0.

(d) We have k + 1= (Dpl)[k] and therefore k +1 <, Dy1. By (c) it follows
that k + 1 <, D,0 for all v+#0. If a #0, then we have k + 1 <, D,1 &, D,a by
(a) and 3.2(b). Using k +1 <, D,a we get D,a+k +1 <K, (D,a) 2K, D,(a+
1).
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Definition of H,:N—>N forae T,

Hy(n):=n,
H,(n):=H,,(n +1), ifa+0.

3.6. Lemma. Leta, b, ce T,
(a) Hy(n)=min{k >n:a[n]n+1}---[k—-1]=0}, if a#0.
(b) Ha+b = Ha °Hb
(c) Hy(n)<H,(n+1).
(d) ¢ KLra=>H/(n)<H,n), foralln=k.

2roof. (a) Let m:=min{k >n:a[n][n+1]: - - [k — 1] =0}. Then we have

Ha(n) = Ha[,,](n + 1) == Ha[,,]...[m-ll(m) = HO(M) =m.

(b) Let b#0 and m:=Hy(n). Then (a+b)[n]---Im—-1]=a+
(b[n]---[m~-1]) =a +0=a and thus H,,,(n) = H,(m) = H,(H,(n)).

(c) and (d) are proved simultaneously by transfinite induction on a: Let a #0.

(c) By 3.3 we have a[n] &, a[n + 1], and therefore by I.H.

Ha(n) = Ha[,,](n + 1) = H,,[,,+1](n + 1) < Ha[,,+1](n + 2) = H,,(n + 1)
(d) Suppose ¢ & a[k] and n =k: By 3.3 we get ¢ £, a[n] and then by .H.
1.(n) < Hypny(n) < Hypmy(n + 1) = H,(n).
Definition.
D% :=D,a, D7™*lg.=D,DTa, c™:=D,D™0.

7. Lemma. (a) (D7a) - n<<,Da+1), forns<k+1.
(b) (D70) - n K, D70, forn<k +1.

Proof. (a) From 3.1(c) and 3.2(b) we obtain D}'a <<, D} (a + 1). For k#0 we
proceed by induction on m:
1. m=0: (Dya)-n=(D,a) -n<<;D,(a+1)=D7J(a+1)by3.2.
2. m #0: Using 3.2(a), 3.5(a) and the I.H. we obtain
(D7a)-n=D,(D7 'a) - n < D,(D7 a +1)
and
D7 la+1%,(D7 ta) - 2, D™ Ya + 1).

From this the assertion follows by 3.2(b).
(b) (D70) - n <, D71 &, DD, 0= D710 by 3.7(a), 3.5(a), 3.2(b).

3.8. Lemma. (a) m=1and n=1> H.(4n + 6) < H.mu(n).
(b) n=m+1=> H»(n) <H_.(1).
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Proof. (a) Let a:=DJ0. Obviously Hi(rn)=i+n and therefore Hp,(n)=
H,,.(n+1)=2n+2. By 3.6(b) we obtain Hp,(4n +6)=Hp,.pu+pa(n). By
3.5(d) we have 2 <« a (since m # 0) and thus

Doa + (Dpl) - 2 <<y Dya + Dy2 < Dya + Doa <<, Dy(a + 1)
and a +1 & a +a=(D70) -2 <<, D7*'0. From this together with 3.2(b) we get
Dya + (Dyl) - 2 <<, DoD7*'0=c7*". Hence Hp,(4n + 6) <H_mu(n) for n=1.

(b) By 3.7(b) and 3.2(b) we have ¢} <, c;*'. Hence n<H.(0) and n +1<

H, (1) by 3.6(c, d). For n=m + 1 we have

¢l 4 ¢l = (DpD210) - 2 &, Do(D 10+ 1)

&, Do(D270 + D10) &, D,D?0 = ¢,

and thus

Hn(n) < H-(n) < Hp-y(Hep-1(1)) = Hep140-1(1) < Hey (1)

4. The infinitary system 1D

In this section we prove the following theorem:

4.0. Theorem. If a IIj-sentence Vx 3y ¢(x,y) (p€ZX?) is provable in 1D,
(v=<w), then there exists p € N such that Vn = p 3k < Hp, pno(1) @(n, k).

Corollary. ID, | Vn 3k (D,D™0)[1][2] - - - [k] =0.

Proof. Suppose ID, +Vn 3k (D,D70)[1]---[k]=0. Then also ID,FVn 3k
(DeD30)[1]- - - [k —1]=0 and therefore by 4.0 there exists peN such
that Vn=p 3k <Hpp(l) (DeD30)[1)---[k—1}=0. Hence min{ke
N:(DoD%0)[1] - - - [k — 1] =0} < Hp pro(1), which is a contradiction to 3.6(a).

From this corollary together with 2.1 and the fact that ID, proves the same
arithmetic sentences as (IT:-CA) + BI we obtain Theorem III, i.e.,

(IT-CA) + BI§ Vn 3k A"(1) - - - (k) = D.

Theorem 4.0 is obtained by embedding ID, into an infinitary proof system ID3,
which allows cut elimination.

Preliminaries. Let L denote the first-order language consisting of the following
symbols:
(i) the logical constants 7, A, v, V, 3,
(ii) number variables (indicated by x, y),
(iii) a constant 0 (zero) and a unary function symbol ' (successor),
(iv) constants for primitive recursive predicates (among them the symbol < for
the arithmetic ‘less’ relation).
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By s, t, ty, . . . we denote arbitrary L-terms. The constant terms 0, 0, 0", . ..
are called numerals; we identify numerals and natural numbers and denote them
by i, j, k, m, n, u, v, w. A formula of the shape Rt, - - - £, or DRt, - - - t,, where R
is a n-ary predicate symbol of L, is called an arithmetic prime formula
(abbreviated by a.p.f.).

Let X be a unary and Y a binary predicate variable. A positive operator form is
a formula A(X, Y, y, x) of L(X, Y) in which only X, Y, y, x occur free and all
occurrences of X are positive. The language Ly, is obtained from L by adding a
binary predicate constant P¥ and a 3-ary predicate constant PZ for each positive
operator form .

Abbreviations
te PL:=P%:=pP%:,  t¢ P .:=—(te P},
PZ tot, :=P%stot,, A (X, x):=AX, PL, s, x).

The formal theory ID,, is an extension of Peano Arithmetic, formulated in the
language L,p, by the following axioms:

(P™.1) Vy Vx (U, (P}, x)—>x € P}).

(P™.2) Vy (Vx (,(F, x)— F(x))— Vx (x € P]'— F(x))),
for every Lip-formula F(x).

(PY) Wy Vxo Vx; (P xpx, ©x,<y Ax € PL).

The infinitary system 1D, will be formulated in the language L;p(N) which
arises from L;;, by adding a new unary predicate symbol N. This is a technical
tool which shall help us to keep control over the numerials n occurring in
-inferences A(n) +3x A(x) of ID; -derivations. Following Tait [8] we assume all
formulas to be in negation normal form, i.e., the formulas are built up from
atomic and negated atomic formulas by means of A, v, V 3 If A is a complex
formula we consider 1A as a notation for the corresponding negation normal
form.

Definition of the length |A| of a Lip(N)-formula A

. |Nt|:=|"Nt|:=0.

. |A|:=1, if Ais an a.p.f. or a formula (=)P%r.
. [PEtoty| := [mPZ a0t | :=2.

. |A A B|:=|A v B|:=max{|A|, |B|} + 1.

. VxA|:=|3x A|:=]|A| + 1.

—

[ I - NLVS I \8)

Proposition. |mA|=|A|, for each Lip(N)-formula A.

As before we use the letters u, v to denote numbers < w.
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Inductive definition of formula sets Pos, (v < 0)

1. All L(N)-formulas belong to Pos,.

2. All formulas PYz, (-)P¥ t,t, with u < v belong to Pos,.

3. All formulas P>t with u < v belong to Pos,.

4. If A and B belong to Pos,, then the formulasA A B, Av B, Vx A, 3x A
also belong to Pos,.

Remark. 1f Pt € Pos,, then also %,(PZ, t) € Pos,.

Notations

— In the following A, B, C always denote closed Ly,(N)-formulas.

- T, I'’, A denote finite sets of closed L;,(N)-formulas; we write, e.g., I', A, A
forTUAU{A}.

— A" denotes the result of restricting all quantifiers in A to N.

— teN:=Nt, t¢ N:="Nt.

— As before we use the letters a, b, ¢, d, z to denote elements of T.

Definition
cKLra & c<Ka, wherek:=max({2} U {3n:"\Nnel}).

4.1. Propesition. (a) c <Kraand I' c A= c K, a (cf. 3.4(a)).
(b) c <<FU{0¢N}a >c <ra.

Basic inference rules

(A) Ao, A1FAg A A,

(v) A+rAvB; BFAVB.
(Vm) (A(n))nel\l FVx A(x)

€)) A(n)+F3x A(x).

(N) neNtn'eN.

(P%L) PM'n+Pijn, ifj<u<o.
(PY) -P'nt+-PLjn, fj<u<o.

Every instance (A;);c;+ A of these rules is called a basic inference. If (A;);c;+HA
is a basic inference with A € Pos,, then A; € Pos, for all i € I. This property will
be used in the proof of 4.6.

The system IDg, consists of the language L,(N) and a certain derivability
relation i, I" (“I is derivable with order a € T and cutdegree m € N”’) which we
introduce below by an iterated inductive definition similar to that of the tree
classes J, in Section 1. The main feature in the definition of +3,I" is the £, ,-rule
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which we have developed in Buchholz [1], [2]. We try to give a short explanation
of this inference rule. To this purpose let us consider “+{A” as a notion of
realizability similar to modified realizability. So we read “F{A’’ as “a realizes A”.
Now suppose that I is already defined for all z € T,,. Then, according to the fact
that

f"mrA—B iff VYg°(g°mrA=>f°""(g°) mr B),

it seems reasonable to define:

) dom(a)=17, and
lizes (P¥n—B) & { “
a realizes (Pyn— B) Vz € T, (z realizes P'n = a[z] realizes B).
This motivates the following inference rule:
(£2,+1)' dom(a)=T, and
Vz € T,(F P¥n >+ B)
The next step is a straightforward modification of this rule:
(2.+1)" dom(a)=7, and
VzeT,VAePos, (HiAv PIn=>+1A v B)

}:}i—fnan—»B.

}:}I—fnan—)B.

For technical reasons we combine every application of (€,.,)" with a cut
B v P¥n, P2n— B B. This gives the final version of the Q, . ;-rule.

Inductive definition of +5, ' (a € T, m e N)

(Ax1) +5T, A, if Aisatrue a.p.f. or A=0e N or A="P% jn with u <j.
(Ax2) +4T,7A, A, ifA=neNorA=Pln

(Bas) If (A;);est A is a basic inference with A e 'and Vie I (+;, I, A;), then
AR N

(P Fe I, neN AUAY(PY,n)and Plne I'>+5PT.
(Cut) ‘& I,~Candt%T, Cand |Cl<m DT

(2,+1) dom(a)=T, and 2" T, Pn and
VzeT,VAcPos, (H A, Pin> ralzl A r)

(K) Fo rand b <ra >+ T

i

4.2. Lemma. (a) H;, F'and m<k, I c A A.
(b) H, > T.
(c) FaI, 0¢ N, I.

Proof. By transfinite induction on a using 3.1(b) and 4.1 and the fact that
(c +a)[z] = c + a[z] for all z € dom(a).
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4.3. Lemma (Inversion). Let (A;);;+ A be a basic inference (A), (V7), (P%,),
(~P%). Then V%, T, A implies Vi eI (+5, T, A,).

Proof. By transfinite induction on a.

4.4. Lemma (Reduction). Suppose +2, I, °C and |C| <m, where C is a formula
of the shape A v B or 3x A(x) or P%,jn or "P¥n or a false a.p.f. Then V5, T, C
implies V2 I, T.

Proof. By transfinite induction on b:

(Ax1) If +2, I, C holds by (Ax1), then also +%"> I' by (Ax1).

(Ax2) If F, I, C holds by (Ax2), then either +%"> I"by (Ax2) or °C € I'. In the
latter case +2"° I, I follows from +2, I, -C.

(Bas) Suppose b=bo+1, AelU{C} and Viel(t2I,C,A) where
(A)ieFA is a basic inference (). Then by IL.H. we have (1) Vie
I(F5 I, T, A)).

Case 1: A € I. Then the assertion follows immediately from (1).

Case 2: A= C. Then, according to the assumption we have made on C, (¥) is
an inference (Vv), (3), (P%,) with I = {0}. By 4.3, 4.2(a) and () from 4, I, °C
we get (2) Far% I, I, —1A,. From (1), (2) and |Ao| <|C|=<m we obtain +&° I, I’
by a cut with cutformula A,.

(<) Suppose 2 I', C with by <. ¢ b. Since C is not a formula n ¢ N, it follows
that a + by <r, ra+b. By LH. we have +5% I, I'. Hence +4"* I, I' by ().

In all other cases the assertion follows immediately from I.H.

4.5. Theorem (Cutelimination). +5,,; F'and aeT,, p<w, m>0>HD I

Proof. By transfinite induction on a:

1. If 4., I holds by (Ax1) or (Ax2), then the assertion is trivial.

2. Suppose a=ap+1, AeI'and Viel (F2,, T, A;), where (A;);c;+ A is a basic
inference ($). Then by I.H. we have Viel (F2r* T, A;). By ($) we obtain
FDea0*1 I" and then Fo»* I by (<) and 3.5(a).

3. Suppose a=ao+3, Pinel and +%,, I, B with B=neN A AY(P], n).
Then by I.LH. and (<) we have F2@*D T B By (PY) we get +2e(*D*3 " and
then +2»* I' by («) and 3.5(d).

4. Suppose dom(a)=T,, +&4, I, P¥n and 22, A, T for all z € T,, AcPos,
with H A, Pin. Since ae€T,, we have u<p and thus dom(D,a)=T, and
(D,a)[z] = D,alz]. By L.H. we have F>*'T, P¥n and +F2*111A, I'for all z € T,
A <Pos, with I3 A, PXn. From this we obtain F2¢* I" by an application of (£, ,).

5. Suppose +2,, I' and ay <ra. Then by I.H. and 3.2(b) we have F2»* I and
D,ao <r D,a. Hence +2r* I

6. Suppose a=ao+1, F9,, T, °C, 2., T, C and |C| <m +1. Then by L.H.
we have +2% I, -C and F2r% T, C.
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6.1. |C|<m: In this case we obtain F2»**' I" by a cut with cutformula C.
The assertion follows by (<) and 3.5(b).

6.2. |C|=m: Since m >0, we may assume that C fulfills the condition of
4.4. Then by 4.4 we obtain F2»%* 2% I and from this F2* I' by (<) and 3.2(a).

The following theorem shows that if I c Pos, is derivable with cutdegree 1,
then one can eliminate all Q,, -inferences with u = v from the derivation of I.

4.6 Theorem (Collapsing). + I" and I = Pos, >+ I.

Proof. By transfinite induction on a:

1. Suppose dom(a)=T,, H'T, P¥n and H?'A, I for all zeT,, AcPos,
with H A, P¥n.

Case 1: u<v. Then by I.LH. we have r2<U!'T, P¥n and +PZ1 A, T for all
zeT,, AcPos, with H A, P2n. Moreover, dom(D,a)=T, and (D,a)[z]=
D,a[z]. The assertion follows by (€,.,).

Case 2: u=v. Then I'U {P¥n} c Pos, and therefore by I.H. 2=, p¥p,
Since z:=D,a[1] e T,, we get FIT. Now we apply the I.H. again and obtain
FP<lz) I But D,a[z]) = (D,a)[0] <r D,a, and therefore P** I

2. In all other cases the assertion follows immediately from the 1.H. by
3.5(b, ), 3.4(a), ().

Definition
L(N),:={A:Ais a sentence of L(N) in which N occurs only positively}.
ForI'={A,, ..., A,} < L(N), we define:

EQ(k) o {A1 v - -+ Vv A, is true in the standard model
' when N is interpreted as {i € N:3i <k}.

4.7. Lemma.

"gi1¢N,...,im¢N,F and

TE L(N)+, n ?maX{Z, 3i1’ cel, 3lm}} $ t:T(HDoa(n))-

Proof. By transfinite induction on a: Let
Iy:={i,¢N,...,i,¢ N}, k:=max{2, 3iy, ..., 3i,} <n.

1. If ¥ I, I holds by (Ax1), then the assertion is trivial.

2. If H{ Iy, I" holds by (Ax2), then the assertion follows from n < Hp, ,(n).

3. If M Iy, I is the conclusion of a basic inference #(N), then the assertion
follows immediately from the I.H. and the relation Hp(n) < Hpyp41y(n).

4. Suppose a=b+1, N(j+1)el, I, I, Nj. By L.LH. we obtain kI'U
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{Nj}(Hpp(n)). By 3.1(c), 3.2(a), 3.6(d) we have Hp,(n)<Hpy)2(n)<
H pp)3(n) < Hpy,(n) and therefore Hp,(n) + 3 < Hp,(n). Hence ET'(Hp,(n)).
5. Suppose F I, I with b < ra. Then we have Db <, Dya and therefore
Hpp(n) < Hp,(n), since n=k. Now the assertion follows immediately from the
I.H.
6. Suppose a=b+1, HI;, I, ipeN and FHig¢N, I, I Let i:=Hp,(n).
Then we have

n<n< Hl)ob(ﬁ) = H(Dob).z(n) < HDo,,(n)

6.1. i <3ig: From H I, I', ioe N we obtain by the LH. ET'U {io e N}(#)
and then FI'(77), since 3i, £ Ai. Using /i < Hp,,(n) we get the assertion.

6.2. 3io<#: From Fiy¢ N, I, I' and max{k, 3i,} <# we obtain by the I.H.
FI'(Hp(ii)) and thus FI'(Hp,(n)).

7. Suppose dom(a)=T,, MU Iy, I, P)j and H1A, I, T for all z€ T, Ac
Pos, with F A, P%j. By 4.6 we obtain v I, I, P%j with z:=D,a[1] € T,. From
this we get F{*! I, I. Now we apply the I.H. and obtain kI'(Hp,i(n)). Hence
kI'(Hp,(n)), since Dya[z] = (Doa)[0].

4.8. Theorem. If F7"°Vxe N3y e N o™ (x, y), where v<w, m#0and ¢(x, y) a
3%-formula of the language L, then there exists p €N such that Vn=p 3k <

Hp,puo(1) @(n, k).
Proof. Let a:=D™0. From the premise we obtain +{n ¢ N, 3y e N ¢™(n, y) for
all neN. Then by 4.7 we get F3y e N ¢”(n, y) (Hp,(7)) for all neN and all
i =max{2, 3n}. Hence Vn 3k < Hp, ,(3n +2) @(n, k). By 3.8 we have Hp,,(3n +
2)<HD0D:',0(1) foralln=m+2.

In the remaining part of this section we show that ID, (v<w) can be
embedded into ID7, and finally we prove Theorem 4.0. Let v < w be fixed.

Abbreviations

k:=D**%,
a-—,b © 3ay,...,a,(a0=ara,=baVi<n(a;+1%,a;,)).
- —— - ——
49. Lemma. (a) k<<; k+1, (b) k——ck+1.
Proof. (a) follows from 3.7(b).
(b) By 3.5(d) and 3. 7(b)\wg have 3,k and k -3 «, k+1. Hence k+3<«%,
k-2, k-2+3«,k-3«%,k+1 and consequently k-—, k- 2—>3k+1

4.10. Lemma. 54, A where k:=|A|
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Proof. By induction on |A|:

1. If A is atomic, then Hs A4, A by (Ax1) or (Ax2).

2. A=AoAA;: Then k=m+1 with m'—max{lel |A,]}. By L.LH., 4.9(a)
and (<) we get +5'T1A4,, A, for i=0, 1, and then FmFlo4, v A, Ao A A, by
(v), (A), 4.9(b).

3. A=Vx B(x): This case is treated as 2.

4.11. Lemma. H*2'F(0), °Vx € N (F(x)— F(x')), n¢ N, F(n), where k:=
|F|.

Proof. Let G:=Vx e N (F(x)— F(x')). By induction on n we show:
) H6*2*F (0), =G, F(n).
From (1) we obtain Hs*>'—F(0), 1G, F(n), n ¢ N, since

k +3n <, k + D,l.

Proof of (1). For n =0 the assertion holds by 4.10.
Induction step: Suppose Hi***-F(0),7G, F(n). By 4.10 we have
Hs*3=F(n'), F(n'). Hence H**"*1-F(0), 1G, F(n) A—F(n'), F(n'). By (Ax1)
and n applications of (N) we get H*¥*1 5 ¢ N, and then by (A) F<*3"*2F(0),
-G, neN A (F(n) A0F(n")), F(n'). Now we apply (3) and obtain H*>" —1F(0),
-G, F(n'), since °G =3x (x e N A (F(x) AF(x"))).

The following lemma will be used to show that the induction scheme
Vx € N (UAX(F, x)— F(x))— Vx € N (P¥x — F(x)) is derivable in ID,.

4.12. Lemma.

aeT,, AcPos,, A, Pin fia

=|F|, G=Vx e N (A}(F, x)— F(x))} > 747G Fn).
Proof. Informal description: Let IT be a derivation of A, Pin. In IT we replace
every occurrence of PJ, which is linked to the endformula PJn, by F(-), Let IT'
denote the result of this transformation. IT’' may contain certain inferences of the
kind j € N A A(F, j)+ F(j), and therefore IT' may fail to be an ID-derivation.
From IT' we obtain an ID-derivation of A, 7G, F(n) as follows: First we adjoin

G to each I' in IT', and then we replace every inference -G, I,jeN A
AN(F, j)FG, T, F(j) by the following inferences

G, I,jeN A ?If,v(F, )] aF (), F(j) (A)
~G.Lj eN A MENATFG)FQ) (5
=G, L F()
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In order to get a rigorous proof of the lemma we have to prove a more general
proposition.

Definition. For A € Pos, let A* denote the result of replacing all occurrences of
PYin Aby F(*). {Ay, ..., A} :={A}, ..., AL).

Propasition. LUl cPos,, ae T, k=|F|, H I, > L, =G, r*.

Proof. By transfinite induction on a:

1. If I, T holds by (Ax1) or (Ax2), then also F<** I, =G, I'* by (Ax1),
(Ax2), since “Py does not occur in I U T.

2. Suppose that a =a,+ 1 and (A;);c;+A is a basic inference with Ae [LUT
and Viel (F{°I,, I, A;). Then Viel (A; € Pos,) and therefore we can apply the
IH.to I, T, A,

2.1. Aely; By 1LH. we get Viel(H**[;, =G, T'*, A;) and from this
I-’f *4 Iy, G, I'* by the respective basic inference.

22. AeI': Then A*eI* and (A});;FA* is a basic inference. By I.H. we
have Vi e [ (Fi** I, G, I'*, AY). Hence F<** I, ~G, I'*.

3. Suppose that dom(a)=T,, MM I, I, P%j and HEA, I, T for all z €T,
A cPos, with FH A, Pﬁj. Since ae T,, we have w <u and therefore by I.H.
perall o =G, T'*, PSj and VA I, =G, T'* for all zeT,, AcPos, with
F A, PDj. Now by an application of (,,.,) we get the assertion.

4. Suppose a =ao+3, Pijeland Iy, I, j e N A AN(PY, j). Then F(j) e I'*
and therefore H<I'* —F(j) by 4.10. By I.H. and 4.3 we have F*®[;, I'*,
—G,jeN and H* [, I'* G, AN(F, j). Now we obtain F<*%*2 [ I'* -G,
j€N A (UY(F, j) A—F(j)) and then by (3) H** I, I'*, °G.

5. In all other cases the assertion follows immediately from I.H.

4.13. Lemma. +<+2+°—yx e N (UAY(F, x)— F(x)), “PZn, F(n), with k:=|F|.

Proof. Let b:=k + D,,,0 and G:=Vx € N (UY(F, x)— F(x)). Then dom(b) =T,
and b[z] =k + z. Therefore by 4.12 we have F¥1 A, -G, =Pln, F(n) for all
zeT, AcPos, with F A, PXn. By (Ax2) we also have 2 =G, —=P¥n, F(n),
P%n. Now we apply the Q,.-rule and obtain % °G, =Pyn, F(n).

Remark. The theory ID, with v < w is the same as ID, except that the axioms
(P¥.2) are replaced by
(P%.2)., Vx (U, (F, x)— F(x))— Vx (P¥x— F(x)),

for each L,p-formula F(x) and each u <.

4.14. Theorem. If the sentence A is provable in ID, (v<w), then there exists
k € N such that F2%° A",
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Proposition 1. For every mathematical axiom A(vl, .-« Uy) of ID, there exists
keN such that F{A(iy, ..., i,)" for all iy, ...,i,€N. (v, v, ... denote
variables of the language L.)

Proof. We assume m =1.

1. A(v)=B(0, v) AVx (B(x, v)— B(x', v))— Vx B(x, v).

Let F(x):=B(x,i)", G:=VxeN (F(x)— F(x')) and k:=|F(x)|. By 4.11,
3.5(c), 4.9(a) we have +;2-F(0), °G, n ¢ N, F(n) for all n e N. Since k - 2——,
k +2, we obtain H<*2 A()".

2. For any other axiom of PA the assertion is trivial.

3. A(w)=Vx (A (B(-, v), x)= B(x, v))= Vx (P2x—> B(x, v)), u<v< w.

Let F(x):= B(x,i)", G:=VxeN (UN(F,x)—>F(x)), k:=|F(x). Then
A@) =G v Vx (x ¢ Nv (OPlx v F(x))) and by 4.13 +;*P«+® G, =P%n, F(n),
for all n € N. Since D,,,0 &, D,0 <, k and k - 2-—, k + 2, we get H¥Z A(i)V.

A{v)=Vy (Vx (A, (B(-, y, v), x)> B(x, y, v))—> Vx (P}x— B(x, y, v)) and
v=w.

Let  FE,(x):=B(x, u, i)V, G,:=Vx e N (UAY(F,, x)— E,(x)), k:=|F,(x)|.
Then AG)=Vy(y¢Nv (G, vVx(x ¢ Nv (OPjx v E(x))))) and by 4.13
He+Dus0 =G, P2n, F,(n), for all u,neN. Since £+ D, .0 = (k + D,0)[u] <.
k + D,0, we obtain by (<) F*P=%y ¢ N, 7G,, —'P¥n, E,(n). From this we get
by (v), (V°), (K) I-mA(z)N since & + D0 <<y - 2o k ¥2.

5. A=VyVx (%,(P}, x)— P}lx).

Let k:=|AN(PY, x)| By (Ax2) we have Fin¢ N, neN. By 4.10 we have
He—AN(PL, n), AN(PL, n). Hence Hs2n ¢ N, ~AN(PY, n), neN AAY(PE, n).
Now we apply (P}) and get b6>*> n ¢ N, ~U}(PY, n), P”n Some applications of
(v), (V%) and () yield Fe¥3 AN since k-2 +3 <&, k-3, k+1-—1, k +3.

6. A=Vy VxoVx, (P xox; ©xo<y A Phx,): Left to the reader.

Proposition 2. By PL1 we denote Tait’s calculus for first-order predicate logic in
the language Ly (cf. [8]). If I'(vy, . . ., v,,) is derivable in PL1, then there exists
k €N such that +§i, ¢ N, ... ,i,¢N, ['(iy,...,i0,)" foralliy, ..., i,eN.

Proof. By induction on the derivation of I': Let m = 1.

1. =L,V {4, A}: cf. 4.10.

2. If I' is the conclusion of a (A)- or (v )-inference, then the assertion follows
immediately from the I.H.

3. I'(v)=Iyv), Vx A(v, x) and PL1+I'(v), A(v, x) with x 5 v: By I.H. there
exists k such that H5i ¢ N, n ¢ N, (i), A(i, n)" for all i, n € N. Then by (v)and
(V™) we get HeFTi ¢ N, rGy™.

4. I'(v)= 1}‘,(v) 3x A(v, x) and PLll-F(v),A(v t):

4.1. t=y‘--' (y #v) or t-—0-—' By L.H. there exists K=k, such that
FHsi¢ N,0¢N, F(z)"’ A(i, ko)™ for all i eN From this we get by 4.2(c) Fi ¢ N,
)", A(, ko)™. Since k = ko, we have H ko N. Hence by (A) FE+1i ¢ N, T'G)Y,
ko€ N A A(i, ko). An application of (3) yields +§*'i ¢ N, I'(})™.
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4.2. t=v%’: By LH. there exists k=>k, such that +ii¢N, I()Y,
A(i, i%°)Y for all ieN. Since k=ko, we have +5i¢ N, i%” €N for all ieN.
Hence H*'i¢N, I'(i)V, i""' €N AA(,i"')Y. Now we apply (3) and get
H+1i¢ N, TN

Proof of 4.14. Suppose ID,FA (A closed). Then PL1F(A;A---AA)), A
where every A, is the universal closure of an axiom of ID,. By Propositions 1 and
2 there exists m such that F (4; A --- A A,)Y and FJ' (A, A - - - A A,)Y, AV, By
a cut with cut formula (A;A---AA,)" we obtain now H A" with k:=
max{|(4; A - -+ AA)Y|, m} + 1.

Conclusion. By combining the Theorems 4.14, 4.5, 4.8 we obtain Theorem 4.0
which was stated at the beginning of this section.

Appendix: The proof-theoretic ordinal of ID,

Definitions. 1. By transfinite induction on a we define an ordinal rk(a) for every
ae Ty

rk(a) :=sup{rk(a[n]) + 1:n € dom(a)}.

2. By transfinite induction on « € On we define the sets I§ and I5* for every
positive operator form U:

Ig:={n e N:Uy(I5%, n) is true in the standard model},

I*:= U Ij.

E<a

3. For n € Uqcon I§ We set |n|y:=min{a:n e IE)}.
4. |ID,|:=sup{|n|y:ID, + P¥n}. |ID,| is called the proof-theoretic ordinal of
ID,.

We will prove the following result:
lID,| = sup{rk(D,D%0):keN} (v=w).

Definition. Let ' ={A,, ..., A,} = Posy:

A, v ---v A, istrue in the standard model when

I & { )
PY, P%,, N are interpreted by I5°, 8, N resp.

Al. Lemma. H T, I'cPosy, ae Ty, tk(a) < a>ET.

Proof. By transfinite induction on a:

1. If +{ I" holds by (Ax1), then E*I for every a.

2. Suppose that +{ I" holds by (Ax2). Then, since I' c Posy, we have I'=I;,
n ¢ N, n € N and thus £* T for every a.
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3. If H{ I' is the conclusion of a basic inference (#), then (#) is an inference
(A), (v), (V7), () or (N), and the assertion follows immediately from the I.H.

4. Suppose H2T, ne N AUAY(PY, n) with a=b+1 and I'=A, P§n. Then
B:=1k(b)<a. By LLH. we get “bP A or nelz? or Uy(I5?, n)” and from this
“t*Aornely®’, ie., t*I.

5. If H{ I' is the conclusion of a cut, then the cut formula is of the kind n € N,
and the assertion follows immediately from the I.H.

6. If 2 I" with b < a, then rk(b) <1k(a) < « and thus F* I by I.H.

From a € T; it follows that { I" cannot be the conclusion of an application of
the Q,.,-rule.

A.2. Lemma. |ID,|=<sup{rk(D,D%0):k e N}.

Proof. Suppose ID, I P¥n. Then by 4.14, 4.5, 4.6 we obtain +2°%° P¥n, for some
k eN. By A.1 this yields n € I5* with a :=1k(D,D*0). Hence |n|y < rk(D,D*0).

A.3. Lemma. Sup{rk(D,D*0):k eN}<|ID,|.

Proof. Here we make use of Theorem 2.2 which claims that “a € W, is provable
in ID,, for every a € T, which contains no symbol D, with v > v. From this we
get, forallkeN,

(1) ID, + P¥'D,D%0!

where a+> la! is any reasonable Godel numbering of the terms in 7, and % is a
positive operator form which on the basis of this G6del numbering formalizes the
inductive definition of the sets W, (v <v) in Section 2. Then we also have

(2) |'a'|lx=1k(a), forallae Ts.
The assertion follows immediately from (1) and (2).
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