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PROVABLY COMPUTABLE FUNCTIONS AND THE FAST GROWING HIERARCHY

Wilfried Buchholz and Stan Wainer
(Miinchen) (Leeds)

ABSTRACT. Our aim here is to give as direct a proof as seems possible of
I. The functions provably computable in formal Peano Arithmetic are
Just those which appear in the Fast Growing Hierarchy below level €
andalso to illustrate its use by deducing the following well-known
independence result of Kirby-Paris [1982].
11. The statement "every Goodstein sequence terminates' is true but not

provable in Peano Arithmetie.

§0. The history of I goes back to Kreisel [1952] who showed that the funct-
ions provably computable in Peano Arithmetic can all be defined by recursions
over certain natural well orderings of order-types < € Later,
Schwichtenberg [[1971] and the second author [1970,72 building on work with Ldb]
independently generalised earlier hierarchy results of Grzegorczyk [1953, giv-
ing the primitive recursive functions below level w] and Robbin [1965, giving
the "multiply recursive" functions below level ww] to show that Kreisel's
"ordinal recursive" functions could be characterised by means of the Fast Grow-
ing Hierarchy below Eo' thus completing 1I. These results have since been
reworked and further extended by many others and in various ways, but for
reference we mention especially Schwichtenberg [1977] and Rose [1984]. The
proof of I set out here is due to the first author and is a simple base-case
of his much more general [1984]. His crucial idea is that by careful use of

direct ordinal assignments one can avoid completely any mention of "codes" for

infinite proof-trees.

© 1987 American Mathematical Society
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179



180 WILFRIED BUCHHOLZ and STAN WAINER

An immediate corollary of I is that the fast growing function occuring
at level Eo is not itself provably computable. It is the strong combinatorial
connections between this function and the Finite Ramsey Theorem (see Ketonen-
Solovay [1981]) and the Goodstein Theorem (see Cichon [1983] and also Abrusci, etal
[1984]) which then give direct access to the independence results of Paris-
Harrington [1977] and Kirby-Paris [1982]. It must be noted however, that
their original proofs were by quite different model-theoretic methods. The

proof of II given here is that of Cichon [1983].

§1. THE FAST GROWING HIERARCHY

By "a fast growing" hierarchy we simply mean a transfinitely extended
version of the Grzegarczyk hierarchy i.e. a transfinite sequence of number-
theoretic functions Fu defined recursively by iteration at successor levels
and diagonalisation over suitable fixed fundamental sequences at limit levels.
The Fa's thus form a backbone which we flesh out by collecting, at each level
o, the class C(Fa) of all functions computable within time or space bounded
by some fixed iterate Fz = Fa ° Fa ° ... ©° Fa' Of course the hierarchy

obtained will depend upon the initial function Fo and more importantly, upon

the choice of fundamental sequences at limit ordinals. We are concerned

) . w . . .
with the ordinals below eo =w and for these there is an obvious choice

of fundamental sequences. First note that every ordinal a < Eo can be

represented in a unique Cantor normal form

Bk Bk-l Bl 6o
a = W + w + ... W + w
h > 2 2 ... 02 2 .
where « Bk Bk-l Bl Bo
If Bo = 0 then ¢ 1is a successor. Otherwise o 1is a limit and we can
assign to it a fundamental sequence a < ap < a, < .... with supremum o as
follows
Y :
w (n+l) if B =y + 1
B Bra1 it ©
o = w o +w + ...t w +
n (B

w °N if B, is a limit.
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Thus for exam-'e, w 1is assigned the fundamental sequence 1 < 2 < 3 < ...

W 2
and W is assigned the fundamental sequence w < w < w3 < ... etc.

The version of the Fast Growing Hierarchy we shall choose is the following:

F (n) = n+ 1
[}
n+l
Far (™ = Fo(n)
Fa(n) = Fan(n) if o is a limit.

It is closely related to the so-calle: Hardy Hierarchy (see Wainer [1972]):

Ho(n) = n
= )
Ha+l(n) Ha(n+ 1) .
H (n) = H (n) if o is a limit
o [+
n
Bk Bo B +1
for if a=w + ...+ W as above and Yy < w ° then
H = H ©°H
oY a Y

Ketonen-Solovay [19811 noted an immediate combinatorial property of the Ha's
call an interval [n,m] = {n,n+l,...,m-1,m} O-large if it is non-empty, i.e.
n £m; o+ l-large if there are at least two k € [n,m] such that [k,m] is

a-large; and A-large (where X is a limit) if [n,m] is An—large. Then

Ha(n) least m such that [n,m] is a-large

F,(n) least m such that [n,m] is ma—large.

The crucial properties of the H- and F-hierarchies are that each Ha (hence

(FB) for B < a.

each Fa) is strictly increasing and majorises every HB
These properties are easily proved using
DEFINITION 1 For each fixed k write B8 <k o if there is a descending

sequence of ordinals

where for each i, v, = Yi—l if Yi is a successor, and


file:///-large
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- . . imit.
Y, (Yi) if Y, isa limi

(This is just the relation a-;+ 8 of Ketonen-Solovay) .
LEMMA 1 For each limit ordinal X < eo, if m < n then Am + 1 <n A
Hence if B < X there is a k such that 8 “n A for all n 2 k.

THEOREM 1  For each o < €

(i) Ha is strictly increasing,

(ii) if B < o then H

X (n) < Ha(n) for every n > k,

8

(iii) if B < o then H, (n) < Ha(n) for every n > some k,

8
(iv) the same properties hold for the Fu's.

PROOF (i) and (ii) are proved simultaneously by a straightforward
induction on ¢, using the first part of Lemma 1. (iii) then follows by

the second part of Lemma 1 and (iv) follows from the fact that Fa = H

and if B < o ob < o ?
k ' k

DEFINITION 2 The elementary functions are those which can be explicitly

a

defined from the zero, successor, subtraction, projection and addition
functions using bounded sums and products. If an arbitrary but fixed
function £ 1is thrown in as an additional initial function then the resulting
class of functions "elementary-in-f" is denoted E(f).

It is well-known that if £ has at least exponential growth and is
computable within time or space bounded by some fixed iterate of itself then
E(f) coincides with the complexity class C(f) defined earlier. Since
Zn < Fz(n) ; 3n we can therefore conclude this section by stating
THEOREM 2 If 0<B<acx eo then

(1) C(Fa) = E(Fu)'
(ii) Fu € C(Fa)’

(iii) Fa Egjorises every function in C(F.).

B

§2. PEANO ARITHMETIC
We formalise arithmetic in a manner suitable for proof-theoretic analysis.
Thus we shall derive finite sets T = {Al,...,Ak} of formulas A built up

using the logical symbols A, v, ¥V , 3 from elementary prime formulas
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£ (tl, eee ,tn) = tn+l or £ (tl' e ,tn) # tn+1 representing the graphs of

elementary functions f£. The terms ti are built up from variables x,y,...

and the constant O using only the successor function symbol S, so each term
is either SS...Sx or a numeral SS...SO. The negation A of a formula

A is defined by: -r(f(tl,...,tn) =t ) is f(tl,...,tn) # tn

n+l +1’

FE(E et ) #F £ ) ds £(E,..t) =t ., 7(AAB) is  sA V 7B,

1 n+l

7VxB(x) is dx 7Bx) etcetera. Henceforth T will denote an arbitrary
set {Al,...,Ak}. The intended meaning of T is the disjunction Alv"'vAk
and we write T, A for T u{A} etcetera.

The axioms of Peano Arithmetic (PA) are of three kinds:

1) Logical Axioms: T, zA, A for every formula A.

2) Elementary Axioms: all substitution instances of

(=) T, x =x T, x #y,¥y =x r'x#y, v#2z, x=2
(s) ', sSx # 0 ', Sx # Sy,x =y I, x # y, Sx = Sy
(£) I', "defining equations for each elementary function f£".
For example in the case of addition we have axioms
(+) Iyx +0=x
I'x+y#z, x+ Sy = Sz
T'hx#x', v#y'' 2#2',x +y #z ,x"'"+y'=2z2'

r'x+y#z, x+y#z', z=2".

3)  Induction Axioms: T, 7A(0), JAx(A(x)A 7A(Sx)), YxA(x) for every A.

The logical rules of inference are of five kinds:

N r r By I"Al V) I"Ai i=0o0r1l.
T, (Aol\ Al) T, (AOV Al)
', 3a(x) . T', a(t)
oY) TN ¥ not free in T. (&) T A AxA R

' ,7Aa T,Aa

(Cut) T .

The theorems of PA are those I derivable from axioms by the rules.

DEFINITION 3 A number-theoretic function F is said to be provably comput-
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able in PA if there are two elementary functions V and T such that

(i) for all arguments n S s

1" k

F(nl,...,n ) = V(least m such that T(nl,...,n

Kk ,m) = 0)

k
(ii) Vxl...kaay(T(xl...xk,y) = 0) 1is a theorem of PA.
REMARK Condition (i) is no real restriction since every computable function
can be expressed in this way. However, condition (ii) demands essentially
that there is a program for computing F whose "total correctness" can be

expressed and verified in PA.

THEOREM 3  Every function appearing in the Fast Growing Hierarchy below level

€ is provably computable in PA.

PROOF We argue very informally, merely indicating the points at which the
essential principles built into PA are used.

First notice that the elementary axioms serve to prove the totality of all
elementary definitions and so if we can prove the totality of F we can also
prove the totality of every function elementary in F. It therefore suffices
to show that each of the Hardy functions Ho: (a< eo) and therefore each Fa'
is provably computable in PA.

Using say prime factor decomposition, one can code each ordinal o < eo
as a number 3! so that the decisions whether o is a successor, a is a
limit, or o < B are all given by elementary functions of the codes for «a

r
ro:‘ ; N> a: becomes

and B. Furthermore if o is a limit the function
elementary. Thus one can express in the language of PA the principle of
transfinite induction below a given ordinal B < Co : TI(B,A) 1is just the

disjunction of
72a(0), 7Va< B(a(a) +A(a+l)), 7Vo< B(Lim{a) A VxA(ax) >a(m)), Va< B8 a(o).

Now TI(w,A) follows immediately from the induction axiom 3) of PA. Suppose
we assume Vy(TI(y,A) -> TI(y+ma,A)) and TI(y,A). Then again by the induct-
. . Q : o+1 ;

ion axiom we get Vx TI(y+w x,A). But from this follows TI(Yy+w ,A) since

§ <y + w°‘+l+ 3x(6<y+wax) . Thus we have proved

Yy (TI(y,a) » T (v+oa)) » VY(TI(v,A) > 71 (v+e™,a)) .
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a
a
We can also prove Lim{a) A WXTI(y+w *,A) » TI(Y+w ,A) since

[+
§ <y + 0” A Lim(q) > Jx(s<y+w X). Therefore using transfinite induction on
, o
o < B we can deduce Va < 8 Vy(TI(y,A) > TI(y+w ,A)) and hence
\/y(TI(y,A) > TI(Y+wB,A)). In other words, for a suitable formula B

depending on A
T1(8,8) > Wy (rr(y,m) > TI(r+e’,a))

is a theorem of Pa. By repeated use of this, starting with TI(w,A), we see
that for every a < eo and every formula A, TI(®,A) is a theorem. (This
result goes back to Gentzen and was since refined and developed by Schiitte,
Feferman and others).

Finally we can return to the functions Ha' There is an elementary

function L such that

L(a,n,k,0)

L[}
—

L(a,n,k, 2+1) O if a=0 and n <k < 2.

L(B,n+l,k,%) if o= 8+ 1.

L(ctn,n,k,l) if o is a limit.

=1 otherwise.

"IL(a,n,k,2) = O" expresses the fact that it takes & steps to verify that
(n,x] 1is o-large. Now let W,V,U be elementary pairing functions so that
viw(k,2) =k and U(W(k,2)) = £, and define T(a,n,m) = L(a,n,V(m),U(m)).
Then for each a < eo

(i) Ha(n) = V(least m such that T(o,n,m) = 0O)
and (ii) Vx3dy(T(o,x,y) = 0) is provable in PA by transfinite induction up

to O. Hence Theorem 3.

§3. BOUNDING THE PROVABLY COMPUTABLE FUNCTIONS
In this section we prove the converse of Theorem 3. The strategy is to
first embed PA in an infinitary system of arithmetic which replaces the

induction axioms and the V-rule by the so-called w-rule:
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(w) FIA(O) PIA(l) FIA(2) .o PlA(n) .....
T, Vxa(x)

Then by well-known proof-theoretic methods, all but the most trivial applicat-
ions of the Cut-rule can be eliminated and from the resulting "simplified"
proofs we can read off bounds on existential theorems. The cut-elimination
method stems from Gentzen, then Schiitte,Tait, Takeuti, Feferman, Prawitz and
many other since. The proof here is due to Buchholz and is based on the
treatment by Tait [1968]. See also Schwichtenberg [1977]. The essential new
ingredient is a careful assignment of ordinals which not only measure the

"lengths" of w-proofs but also give direct estimates of number-theoretic bounds

for existential theorems.
The basic idea underlying cut - elimination is very simple. Consider an
w=- proof of I of the following form where the cut- formula A is either

d xB(x) or B VB, so 7A is either Vx 7B(x) or 7B A 7B, .

r, -yBi all i r,B some n
(w or A) (A or v) n

T',7na r, a

(Cut)

Then this proof can be replaced by (reduced to)

l",-an : F,Bn

r

(Cut) /

where the cut- formula Bn is now a "subformula" of the original a.
Repetition of this idea should hopefully yield a proof of T in which all the
cut - formulas are prime! For the technicalities see Lemma 4 below.

Now the language of the infinitary system of arithmetic we are about to
define is that of PA but with one new relation "x € N" added. Its intended
meaning is that x is a non-negative integer. However we can now restrict
attention to closed formulas only (i.e. ones without any free variables), since
the free variable x in the premise of the V¥ -rule is now replaced by infin-

itely many premises TI,A(n), n=0, 1, 2, ... in the w-rule.
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Thus the only terms are numerals n = SS...S0 and the closed elementary prime
formulas (cepf) are just atomic relations stating that the value of a given

elementary function on given arguments n cean is - or is not - equal to a

17
given number m. Every cepf is therefore either true or false.
DEFINITION 4 The relation ‘____a 'y meaning T is derivable in the infini-

tary system with ordinal bound o < Eo' is defined inductively according to

the rules:-

(Axioms) [——9 ', A if A is any true cepf or "O € N".

——I’,n&N,neN n any numeral.

o ,__ail

(N if |—— T, n e N then I, Sn € N.

) if 2T, A (i=0or 1) then potl o (A v aA).

iy if 21, A, (1=0 and 1) then L (8 AR
@ if —2 7T, a(n) (some n) then X', Jxam).

@ if 2T, a(m (every n) then 21 T, Wxax).
cut) if 2T, va and 2T, A then M=o,
(Accumulation) if |—q T and if «o <k B where

k = max {2} U {3n : "n ¢ N" is in T} then }_B r.
Notice that if |— T and T cT' then |— I'', for if a< B and

k < k' then ¢ <k' B by a straightforward induction on B using Lemma 1.

DEFINITION 5 For each formula A of PA let AN be the result of
relativising all quantifiers in A to N, 1i.e. replace Ax(...) by
Ax(xeNa...) and replace Vx(...) by Vx(xéNv ...). If

N N N
P={A,...,n} let T ={Al,...,A;<}.

k
EMBEDDING LEMMA 2 If T 4is a theorem of PA, containing free variables

ceerX then there is an ordinal o = wf for some integer £ such that
xl’ e . = e /=T Lor some lnteger ’ o ==

for all n_,...,n ,
—_— 1 b

I_g nl* N,...,nr¢ N, I"N(nl,...,nr)

N
where T (nl,...,nr) is the result o_f substituting ni at all free occurrences

N
of x, in T .
2L i =
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PROOF by induction over the generation of theorems in PA.

(i) For the logical axioms it will clearly be sufficient to show that for
every closed formula A in the language augmented with "N", }——a 2A,A for
some g. We do this by induction on the "length" of A. If A is a closed
elementary prime formula or "n ¢ N" then I——° —<A,A because it's an axiom.
Now suppose, for example that B 1is the formula ExA(x) where, for each
numeral n,l——a‘rA(n) ,A(n). Then by the 3-w - and Accumulation rules we get
&l 7a(n), dx a(x), ﬁZ Vx 7 A(x), ax A(x) and hence Iiw -7 B,B.
The other forms of B can be treated similarly to obtain I-—wl 7A,A for
each closed A where £ is its "length".

(ii) The result follows immediately when I is an elementary axiom because,
on substitution of numerals for the free variables, we obtain a true cepf.

(iii) Now consider an induction axiom
T, 780 , Ax@m A 7ax) , Vxam.

Deleting mention of [ and any variables other than x which may occur free,
it is sufficient to show l—-—iﬂn -7 AN (0), 3 x(xe NA AN(x) A 7AN(Sx)) .

Vx(x¢ NVAN(x)), where o = w({®+1l), ¢ again denoting the length of AN(x) .
This follows by Accumulation from

23 7 a%0), Axxenaa ) a 7aV(sx0), VxxéNva (x)) which follows,

by the v and w- rules, from *____a ‘7AN(0), ax(xe NA AN(x) A 7AN(Sx)),

n/é N, AN(n) which in turn follows by Accumulation from I-——w—g'jam -7AN (0),

_:_‘ Xx(xe N A‘AN(X) A 'rAN(Sx)), n * N, AN(n) because wf+ 3n <k wl+w=a if

k 2 3n. For this last line we actually prove
+ N N N N
| w 3“-,A (0), Ax(xeNAR (x) A7A (Sx)), A (n)

by induction on n (remember that we can always add n & N and any other

"side" formulas throughout a derivation without increasing the ordinal bound).
wf N N .

Now for n =0 we have |—— <A (0), A (0) by part (i) above. Assume

|-—B 7AN(O) : C, AN(n) where C is the formula Hx(xe NAAN(x) A -7AN(5x))

and R = wl+ 3n. Then l——g 7AN(O) , C, AN(n), AN(Sn) and by part (i)



PROVABLY COMPUTABLE FUNCTIONS 189

i___B -1AN(O), C,vAN(Sn), AN(Sn), so by the A - rule, l——Bil '7AN(O), C,

AN(n) A '1AN(Sn) ’ AN(Sn) . By n applications of the N- rule, starting with

+ -
!—B—l n -rAN(O), C, O¢ N, AN(Sn) we also obtain }——‘Sjl -7AN(O), Cc,

ne N, AN(Sn) and therefore l———e-+2 -7AN(0) , C, n € NA AN(n) AT AN(Sn) ’

N . . . B+3 N

A (Sn). One further application of the J - rule then gives |—" 2 (0),
N N N

dx(xeNARA (x) ATA (Sx)), B (Sn). Hence the result.

(iv) Now suppose T, VxaA(x) is derived from T , A(x) in PA using the
Y - rule. Then again deleting mention of any free variables occuring in T ,
we can assume inductively that there is an ordinal o = w.% for some ¢,

}_aj-2 ™ , néNV AN(n) for

. N N
such that |~—a n & N, T , A (n) and hence
. N N
every n. Therefore }___01+w r, Vx(xé N VA (x)) by w- rule followed by
Accumulation, since a + 3 <k o+ w if k 2 2.
(v) Suppose T , A xA(x) is derived from T , A(t) in PA using the
A - rule, where t is some term. The only possible forms of term t are
. m m . m
either a numeral m = S O or S x for some variable x, where S denotes
m iterations of the successor symbol. It may be that t is of the form
Smx and x also occurs free in T. In this case (again neglecting any
other free variables in T , A) we have, by the induction hypothesis, an
. o] N N m
ordinal o = w.f such that for every n b— n éN , ' (n) , A (S n).
Choosing 8 = a + w.m we then have I——B n # N , I‘N(n) B AN(n+m) and also
I—B n 4: N , I‘N(n), n+meN by alternate applications of the N- rule and
Accumulation, starting from |-—u n * N , I‘N(n) , n € N. Then by the A- rule,
lv—£+l nénN, I’N(n), n+meNA AN(n+m) and by the 4 - rule, };&:2 nénN,

N - N .
I'(n) , 3x(xe N A A (x)), so by Accumulation, |——im

né¢N, ™ n),

;} x(Xxe N A AN(x)) for every n, as required. If t is S'x where x does
not occur free in T we can safely replace x by O throughout the probf of
', A thereby reducing to the case where t is Smo. This is then dealt
with in a similar way to the above but with n = O.

(vi) The remaining cases, corresponding to applications of the A , Vv or

Cut-rules, follow immediately from the induction hypothesis, using Accumulation

to "match up" the ordinal bounds on premises of A , Cut.
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This completes the proof.
REMARK The reason for this somewhat tiresome Embedding of PA into the
infinitary system, is that the Cut- rule - which is the only rule whose conclu-
sion fails to determine its premises - cannot be eliminated from PA. It can
however be eliminated almost entirely from the infinitary system, as is shown
in the following. The point is that from '"eut- free" proofs one can read off
numerical bounds. The price one pays for cut- elimination is an iterated
exponential increase in the length of the proof. Since € is the first
ordinal closed under exponentiation ¢ +— wa we therefore catch a élimpse of
the significance of €5 in proof-theoretic studies of PA.

The remaining results of this section concern the infinitary system of
Definition 4 and finally provide the converse to Theorem 3.

INVERSION LEMMA 3

(1) If l—“r,AoAAl then |—-—9‘r,AO and l~—°‘r,Al.

(1i) If —27T ,VxA(x) then —2T ,A(n) for every n.
s : . e o
PROOF by straightforward inductions over the definition of F——— r , A.
DEFINITION 5 wWrite "M% T with cut-rank < r" if for every application
A, A A,A o
of the Cut- rule A which occurs in the derivation F— T , the
"cut - formula" A has "length" < r. Here "length" is defined by

length (A) = 0 if A is a prime formula, = length (B) + 1 if A is T xB

or \/xB,

max(leﬁgth(Bo), 1ength(Bl)) + 1 if A is Bo \% Bl or B0 A Bl.
REMARK We shall only be concerned with those derivations which have a finite
bound on their cut - rank (though there are derivations which do not). Note
especially that when PA is embedded into the infinitary system by Lemma 2, the
resulting derivations all have finitely bounded cut - ranks. Note also that

Inversion does not change cut- rank.

REDUCTION LEMMA 4  Suppose |— I, r7A with cut- rank <r yhere

—~==

% % . 3

o= w + ...+ w in Cantor normal form and A 1is of either form xB (x)
or B_ VB, and of length r + 1. Then if l-——Ea I , A with cut-rank < r,

o +1
+ .
where B < w we have F—E-B r,» T with cut- rank < r.
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PROOF by transfinite induction on §.
If T,A is an axiom then T must be an axiom and hence so is Fo , T.
1f ‘_‘,3 I', A follows by Accumulation from I—(S ', A where § <k B and
k = max{2} u {3n : "n 4: N" occurs in T, A} then by the induction hypothesis,
}—EG T , T with cut-rank < r. But k < max{2} v {3n : "n ¢ N" is in T ,T}
o o
= k' because A is not of the form n & N. Therefore § <k' 8 and

o+B

a+ 8 < a+ B so }— 1"0 ,» ' by Accumulation, and still with cut-rank<r.

X’
Suppose T =T',C where C is some formula other than A and suppose
I———B r',c,A follows from premises }-——6 I",Ci, A by a rule other than
Accumulation. Then B = &8 + 1 and by the induction hypothesis,
|-—(?‘-:'-B I‘O,I" ,Ci with cut- rank < r. Therefore by applying the rule concerned
- and noting that if it's a cut then the length of each Ci must be < r by
assumption - we obtain I—Lﬂs*‘l FO,I",C, i.e. I—m"3 I‘o,[‘ with cut-rank < r.
Suppose A is of the form axB(x) and I—-—B I'yA follows from
}——5 I',B(n) by the J-rule with =6+ 1 and TI',A=T,A. Then
I-—(S I',A,B(n) and hence }iHS I‘o, ', B(n) by the induction hypothesis, with
cut - rank < r. Since I——a Fo, 7A and 7A is Vx 7B(x) we have by
Inversion I—-g Fo, 7 B(n) with cut- rank £ r and hence I—E(S Fo , ', =7 B(n)
with cut-rank < r, by Accumulation. Therefore as B(n) has length r we
can apply Cut to obtain *__<x_+6 1“0 ,T with cut-rank < r.
Finally if A is B_ v B, and |—B r,A follows from f— T', B,
with i =0 or 1, =8+ 1 and T',a=T,A, then I——é I‘,A,Bi and so

i o+é

by the induction hypothesis, | — I‘O . Ty Bi with cut- rank < r. Since
o1
|-—-ql ' ,7A and 7A is 7B A TB we then obtain |—— T ,7B., by
o o 1 o i

+
Inversion and '__a_é l"o » T ,"7Bi by Accumulation, both with cut- rank < r.

So as B has length < r we can apply Cut to obtain |;.H-§+l FO Ty i.e.
i

}—PEB I‘o, T with cut- rank < r.

CUT - ELIMINATION THEOREM 4 If [—2% ¢ with ¢

ct

-rank < r + 1 then

*

a
‘-—ﬁ I with cut-rank < r and therefore I——(-x I with cut- rank O where

a* is obtained from o by r+l-times iterated exponentiation thus :
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PROOF We only need prove that if |———°‘ ' with cut-rank < r + 1 then
I——(-" I with cut-rank < r, since the rest follows by repeated applications
of this. Proceed by induction on the definition of }_a T and note that all

cases except application of the cut- rule itself are absolutely trivial,

because in the case of Accumulation we have wB <k wa if @8 <k a, and in the
) B+1 B8
other cases we have |—°—’ r if }-l-ﬂ' T by Accumulation since
+
w6+1 <x wB 1 for any k > 1. So suppose [-—-—cl I follows from |--——B r,rA

and I-—Br,A by Cut where o =8 + 1 and A has length < r + 1.

B B
Inductively we have |——i° I+ 7A and [——u-’ T, A both with cut- rank < r,
B
so if A has length < r we obtain by Cut, }-—w—+l I' with cut- rank £ r and

o
then }——“—’ I' by Accumulation since w6+1< w8+l for any k 2 1. If A

k

has length r + 1 then the Reduction Lemma applies to give }—mB—'H‘)B I'  with
a

cut- rank < r and hence l—w T by Accumulation since m?2 <k wB+l for any

k > 1.

DEFINITION 6 By a positive Zl(N) formula is meant any formula b;Jilt up from

elementary prime formulas and "x € N" using only A, V and 3. Note that

"x ¢ N" is not allowed. A set T = {Al,...,Am} of closed positive Zl(N)

formulas is said to bg true in kK if one of the Ai's in T 1is true when N

is interpreted as the finite set {n : 3n < k}. Note that if T 1is true in

k and .k < k' then T 1is also true in k'.

BOUNDING LEMMA 5 If [ contains only closed positive I (N) formulas and

—2 n ¢ N,...,n_¢& N ,I with cut-rank O then T i in F (k) vwhere
1 x i o —

0
t
a]
o
[0}

k = max{2} u {3nl,...,3nr}.

PROOF by induction over I—-a n, ¢n,... o ¢ N, T,
If it's an axiom then [ contains either a true cepf or "O € N" or

"ni e N" for some i, so T is true in Fa(k) since Fa(k) > 3ni for each i.
The w- rule is not applicable since ' does not contain ¥ and the

cases where the A or V- rules are applied follow trivially from the
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induction hypothesis since FB(k) < FB+1(k) .

For an application of the q- rule suppose I contains AxB(x) and
|r-—8 n, ¢ N,...,nr ¢ N, T,B(m) for some numeral m where o = 8 + 1.
Then B(m) cannot be of the form "m 4: N" so by the induction hypothesis

I, B(m) 1is true in FB(k) and therefore in Fa(k) . Hence T =T, AxB(x)

is true in Fa(k)'

For the N- rule suppose I contains "Sm € N" and '_? nlé N,...
...,nr&N,I‘,meN where o = 8+1. Then T, m e N is true in Fﬁ(k) and
therefore ©' =T, Sm e€ N is true in Fa(k) as 3m < FB(k) implies
3m + 3 < Fa(k)'

Now suppose |__a nl & N,...,nr e N, T follows from

|——-6 nl¢ N,...,nr*N, r, 7A and I-—B nl& N,...,nréN,l‘,A by Cut

where B + 1 = a. Since the cut has rank O, A is either a cepf or of the
form "m ¢ N' for some numeral m. By the induction hypothesis, if A is

a cepf then both T, #A and I, A are true in FB(k) and so I is true

in FB(k) and hence in Fa(k) because one of 7A or A is false. If A

is of the form "m ¢ N" then T must be true in FB(max(k,3m)) and

''ymeN is true in FB(k)' so either T is true in FB(k) - hence also in

Fa(k) - or else 3m < FB(k) and T is true in Fe(max(k,3m)) which is

< FS(FB(k)) < E‘}:l(k) = Fa(k) and therefore again we have [ true in Fu(k)°

Finally suppose '_a nl* N,...,nr ¢ N, T comes from

|—-B n, ¢ N,...,nr ¢ N, I by Accumulation where 8 <k a. Then T is true

in FB(k) by the induction hypothesis and FB(k) < Fa(k) follows from

[ <k a by an easy induction on a. Hence T is true in Fa(k) .

THEOREM 5 Every function provably computable in PA is elementary in some

F for < and is therefore majorised b F .
o ==X a €or 1S majorised Dy o+l

PROOF Suppose f is defined from elementary V and T by
f(nl,...,nr) = V(least m such that T(nl,...,nr,m) = 0)

where \/xl...er-ﬂy(T(xl,...,xr,y) = 0) 1is a theorem of PA - note that
"T(xl""'xr'y) = 0" 1is an elementary prime formula. By the Embedding

Lemma and the Cut- Elimination Theorem there is an ordinal
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a =W < eo such that

o
l»——— V’xl(xl ¢ NV L. V/xr(xr ¢ Nv Jyyena T(X sevn0X s¥) = 0)).)
with cut- rank 0., By repeated use of the Inversion Lemma together with the

a
simple fact that if 2 I, AVB then F— T, A,B we then obtain for

all nl,...,nr,

l—‘a n1¢ N,.--,nr ¢ N, E\y(y € N A T(nl,....nr.y) = 0)

with cut-rank O and by the Bounding Lemma -ay(y e N A T(nl,...,n¥,y) = 0)
is therefore true in Fa(max(2,3nl,...,3nr)). Thus for every sequence of
arguments Nyseeesn there is an m < Fa(max(2,3nl,...,3nr)) such that
T(nl,...,nr,m) = 0. Now it is well-known that the elementary functions are

closed under bounded minimisation, so
V(least m < b such that T(nl,...,nr,m) = 0)

is an elementary function of nl,...,nr and b. Therefore substituting
Fa(max(2,3nl,...,3nr)) for b we obtain an elementary—in~Fa definition of f.

Since F majorises all functions elementary in Fa' it majorises f£.
o

+1

Theorems 3 and 5 together give the main result I.

§4, GOODSTEIN SEQUENCES

(n+1)
Lt } n+1

Fix n and consider any number a < (n+l)(n+1) . Express
a,
a in complete base n + 1 form by decomposing a = igk(ml) lmi where each
aa.
> < = +1) 1 >
ai ai+l and mi n, ai jél (n+1) mij where each aij aij+l and
M., SN, 8,. = ceeeeanssesss etcetera
1] 1)

until, after n steps, all the a, . are < n. Now replace (n+l) by W

ij...k

throughout the complete base n + 1 form of a, to obtain the Cantor normal
form representation of some ordinal @ < €o. Denote this ordinal o by

gn(a). Then gn is a finite order-preserving embedding of the numbers less
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(n+1)
Lo } n+1
than (n+l)° into the ordinals less than eo and clearly every
ordinal less than so is in the range of all but finitely-many gn's. Thus
the gn's give a direct-limit representation of Eo :
|
gn(a)
gn(a-l) = gn+l(b)
gn+l(b—l)
b
b-1
a
a~1l
6 ﬁ n+l w
For each n define =gt o so that (a) is th
gn,n+l = 9+1 ° 9 gn,n+l a) 1s the

result of replacing (n+l) by (n+2) throughout the cohplete base n + 1
form of a.
DEFINITION 7 The Goodstein sequence starting with a is the sequence of

numbers {ak} defined as follows. Choose the least number n such that

(n+1)
Lo } n+ 1

a < (n+l)’ . Set a_ = a>1l and a =g (a,) = 1.

k+1 n+k,n+k+1 ak
The sequence terminates if Elc(ak = 0).

NOTE that the statement "every Goodstein sequence terminates'’ is expressible

by a formula
Vx dy@x,y) =0
in the language of PA, where T is elementary. For a is a computable

k

function of a and k, so there is an elementary function T'(a,k,%) such
that T'(a,k,%) = O if and only if within £ steps it is possible to

compute aola 1eserd

1 k-1 and check that a # 0, a, # O,...,ak_l #0,a = O.

k

Now set T(a,y) = T'(a,V(y).,U(y)) where U,V are elementary pairing functions.
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Then T(a,y) = O if and only if V(y) is the least k such that ak = 0,

and U(y) bounds the number of steps needed to verify this.

Now with each Goodstein sequence {ak} is associated a sequence [gn+k(ak)}

of ordinals < € It is not too difficult to convince oneself that for any

(n+1)
Lt } n+1
a < (n+l)’ '

gn(a- 1) = Pn(gn(a))

where P (0) =0, P (o+l) = o and P (o) =P (¢ ) if o is a limit with
n n n n n

fundamental sequence {an}. Therefore by induction on k,

gn+k(ak) = Pn+kpn+k-l T Pn+1pn(gn(a))

and so the statement that "the Goodstein sequence starting with

is equivalent to

Am 2 n(e P ... P P (g (a) =0).

LEMMA 6 For every a < € and all n, if o # O then

= > n(P P ... P P = + 1.
Ha(n) least m 2 n( oEm-1 nel n(a) 0)

a

terminates"

PROOF by straightforward induction over the definition of the Hardy functions

Ha given in §1.

THEOREM 6 (Kirby-Paris [1982]). The statement

"every Goodstein sequence terminates"

is true but not provable in Peano Arithmetic.

PROOF (Cichon [19831]). Since Pn(a) < o when o # O it follows that the

sequence of ordinals

gn+k(ak) = Pn+k e Pn+an(gn(a))

associated with a given Goodstein sequence {a, } is decreasing and therefore

k

In+k Bk k

Suppose, for a contradiction, that the formula Vx gy(T(x,y) = 0)

that "every Goodstein sequence terminates" were a theorem of PA.

) - and hence a, - is eventually O (this was Goodstein's result).

expressing

Then the
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function
Goodstein (a) = V(least y such that T(a,y) = 0)
= least k such that a = (o]
would be provably computable in PA. But if we define He (n) = H (n)

w
w'. % n
where (eo)n = w then by the above Lemma and the comments preceeding

it

H (n) least m 2 n(P ...P P ((e))=0)+1
€ m n+l n o'n

(n+1)
L } n
least m 2> n(Pm...Pn Pn(gn((n-f-l) )) =0) +1

+1

(n+1)
. }n
n + Goodstein ((n+1)° ) + 1.

Thus if the Goodstein function were provably computable in PA so would be the

function He . This is impossible however, because He {n) = F (n)
o [} o'n-1

majorises all provably computable functions of PA.

NOTES

(1) Although we have not done so here, the techniques can be refined to pro-
duce independence results for various fragments of Peano Arithmetic,
obtained by restricting the complexity of the formula A in the Induction
Axiom. Parsons was the first to étudy the relationships between such
fragments and his (and others') work in this area is developed further and
unified in Sieg [1985].

(2) An alternative approach to our Bounding Theorem 5, based on Godel's
Dialectica Interpretation of PA and Normalisation of infinitary terms, is
set out in Rose [1984]. A streamlined version of this approach is in
handwritten notes of Buchholz: "Three contributions to the conference

on Recent Advances in Proof Theory", Oxford, April 1980.
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