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In the framework of the monopole model we study a perturbation method for inner-
shell excitation which covers the whole projectile velocity region. This is achieved by
introducing a velocity-dependent variational parameter and minimizing the time-dependent
perturbation. We apply the method to the K-excitation of nonrelativistic systems.

1. Introduction

In the theory of atomic processes such as inner-shell
excitation and ionization during heavy-ion collisions
[1] a basis set for the electronic states is chosen in a
way that the remaining interaction is small, so that
one may restrict oneself to the lowest orders of per-
turbation theory. In slow collisions the molecular basis
is used [2] where the electron is allowed to adjust
to the two-center potential at any given internuclear
separation R. However, when the projectile velocity v
is increased and becomes comparable with the orbiting
velocity v, of the electron to be excited this adiabatic
picture is no longer true. For still higher velocities
the electron tends to remain in the field of the nucleus
to which it is initially bound and one can apply the
atomic description [3].

In order to find an appropriate basis set which holds
also for the region v~uy, a variational principle is
investigated.

A well-established method in the variational approach
is to introduce parameters into the wave function and
determine them by minimizing the expectation value
of the Schrddinger operator. For static problems this
gives in most cases a good approximation to the ground
state. In the time-dependent case, however, the param-
eters have to be chosen complex if they depend on
time [4]. Thus one does thereby not find the ground
state at a fixed time, but has by means of the imaginary
part of the parameters also an admixture of excited
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states and one has to project out on some final state
in order to find the transition probability. This semi-
classical method, though yielding good results for
total cross sections [4] may fail if one is interested in
differential cross sections.

In this paper we introduce a time-independent varia-
tional parameter A into the Hamiltonian by splitting
the perturbing potential V into 1V, which we in-
corporate in H,, and (1—A}V, which will be the
reduced perturbation. An additional perturbation is
given by the operator 6/0t, which arises since V and
thus H, is time-dependent. 4 is then obtained by
minimizing the total perturbation and will be a func-
tion of the projectile velocity. Since A determines both
the initial and final state, the transition amplitude can
be calculated in the usual quantum mechanical frame-
work.

To illustrate the method which is described in Sect. 2,
we apply in Sect.3 the monopole model where the
two-center potential is replaced by a time-dependent
nuclear charge. Section 4 shows the extension to the
two-center problem, and in Sect. 5 we give a discussion
of the results.

2. Formulation of the Variational Principle
Let us consider the excitation of a K-shell electron

in the target by the projectile moving with velocity v.
Then we have in the single particle model
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H=H,()+ V() (2.1)

where H contains the interaction between the electron
and the target nucleus, and V is due to the projectile
perturbation. Expanding the electron wave function
in eigenstates of Hy and inserting it into the Schrodinger
equation one obtains for the transition amplitude into
some final state f in first order perturbation theory

ar=1/ih § di ol V—ih 33t o)

exp (i/h §d =5Vt fo)> (2.2)

where ¢; and ¢, are the eigenenergies to Hy,. The intro-
duction of the diagonal expectation values of the per-
turbation, V}; and V,,, into the energy exponent is
the so-called distortion approximation [5] which re-
duces the contribution of higher-order terms in the
perturbation series.

The low- and high-energy limit of (2.2) is well estab-
lished. If v <v,, one chooses H,=H which means that
the transition is only induced by 0/0t. This is the
molecular approach. On the other hand, if v>v,, one
takes H,=H,, where H; contains only the (time-
independent) interaction with the target, so that there
1s just the projectile field V; as perturbation.

In the intermediate velocity region, v~ v,, neither this
atomic description nor the adiabatic picture holds.
Both operators, /0t as well as the projectile per-
turbation, will equally contribute to the transition.
We therefore choose a basis which incorporates part
of the projectile interaction by splitting the Hamil-
tonian in the following way

H=H,()+(1-2) Vp 2.3)

where Hy(A)=H;+A4V,. The parameter 4 we intro-
duced here has to be velocity-dependent. Since H,
depends on A this holds also for the eigenstates ,,
and .

We determine A by requiring that the absolute value
of the transition matrix element is minimal. That
means we choose the “ratio” between the two opera-
tors such that the higher-order terms in the transition
amplitude will be reduced. As we are looking for a
time-independent A we must integrate the matrix ele-
ment over time to get the whole contribution of the
transition operators along the path. This leads to

2

d/d Tdt(g[lfol(l—i)VP—ihﬁ/ﬁtll//w} =0. (24

Since the only time-dependence of y,, results from
AV, its time derivative is proportional to A, and further
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also proportional to v. So we rediscover the limiting
cases: For large v, A must go to zero (atomic case)
while for small v, A—1 to reduce the potential per-
turbation as well (molecular case).

3. Study of 1 in the Monopole Model

In order to find the behaviour of 4 as a function of
velocity or charge ratio one can apply an analytical
model which makes the calculations very transparent
and which yields results that are very similar to the
two-center problem treated in the next section.

This model is based on the fact that for large momen-
tum transfer in inner-shell excitation, the transition is
dominated by the monopole expansion term of the
two-center potential. It can be approximated by a
one-center field with an effective charge Z that depends
on the internuclear distance R(b,t), where b is the
impact parameter. Writing Z=2Z,+ Z,(t) where Z,
is the target charge and Z,(t) the additional charge
due to the projectile field, we have

Hy(A)=—(h*2m) A—Z, e*/r— 1 Z,(t) */r
V=—~(1-1)Z,(t)e%r. 3.1

When the internuclear separation R=0, Z,(¢) is equal
to the projectile charge Z, and goes to zero at infinite R.
For our model calculations we choose

___ 4
Zl([)_1+ﬁ2(R/a2)2 (32)

where a,=a,/Z, is the K-shell radius of the target
(ap=Hh?*/me*) and B determines how fast Z, () decreases
with R. (We shall take f=1 if not indicated other-
wise.)

The eigenfunctions of H,(4) are simply hydrogenic
functions belonging to the charge Z=Z,+1Z ().
/. is obtained by means of the variational equation (2.4).
Since we are interested in a value of 1 which could
be used for excitations to any state f we take
to be the lowest excited state (2s) where the matrix
clements in (2.4) have their largest value. Actually one
could also choose a different 4 for each transition, by
introducing into (2.4) the final state one is interested in.
It turns out, however, that this leads only to small
changes in the functional dependence of /.

For similar reasons we evaluate (2.4) at zero impact
parameter in the straight line approximation. A Cou-
lomb path brings about changes which are smaller
than 109% unless v/v, 0.1 (v, /c=Z,/137) where 4 is
already very close to its limiting value 1. We obtain
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Fig. 1. Variational parameter A for K-shell excitation as a function
of the projectile velocity v in terms of the velocity v, of the target
K electron shown for different values of the interaction strength f
and charge ratio Z;/Z, in the monopole model

jo At s (L= 2) Vo— iR OJOL 11
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T
2B(v/vy)
+i8/31In(1 +/lZl/ZZ):| (3.3)
and by means of (2.4)

pvjv,=3n/162,/Z,

Va— N(HAZ2Z) 1+ QA—1) Zy2Z) (14 2,/ Z,)
' ZJZ,In(1+ 1 Z,/Z,) '

(34

Due to the scaling properties of the Hamiltonian (3.1)
A is only a function of Z,/Z,. The dependence on v
is shown in Fig. 1. The change from the molecular
behaviour to the atomic region occurs at v/v, ~ 1.
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The details of the functional dependence of 4 on v
are due to the change of . with time. We have
dir;/dt=(dZ/dt) dr;/dZ and thus two contributions,
the first expressing the slope of the interaction poten-
tial, which we represented by the parameter f. In-
creasing f§ results in a shift of the function to smaller
values of v since at a given v the electron can the less
adjust to the actual field the faster the potential
changes. This becomes important in the relativistic
case where there is an additional dependence on Z,,
so that v and f enter independently into the derivative
of the potential. The second contribution to di,/dt
originates from the shape of the wave function, i.e.
depends on the charge ratio Z,/Z,, and leads to a
slower fall-off of A(v) for more asymmetric systems,
as is shown in Fig. 1.

The nonadiabaticity of the electronic motion is taken
into account by using basis functions which differ
from the molecular functions, although one has to
keep in mind that they are determined by a static
calculation since A is time-independent. The degree
of nonadiabaticity can be displayed by means of the
ground state energy of the electron as a function of
time for fixed velocity v:

61, ()= —€¥2ay(Z,+ 2 Z, (). (3.5)

The adiabatic value (for v=0) is the less reached the
more v increases (Fig. 2) until one arrives at the con-
stant atomic energy.

The variational model introduced above reduces the
excitation process to a first order process in the region
v, since it includes changes in the wave function
and energy in the first order term. This holds, how-
ever, only as long as higher order terms would be
restricted to these effects. In case of strong coupling
and resonance effects the higher order terms are still
needed.

As an example we study the cross section for the 2s
excitation in symmetric systems by means of

Fig. 2. Ground state energy in terms of the
target ls energy E, as a function of the
internuclear separation R in terms of the
target K-shell radius a, for symmetric

systems colliding with different velocities v
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Fig. 3. Cross section for the 15— 2s excitation of symmetric systems
(Z,=Z,=1) in the monopole model as a function of the projectile
velocity v. Curve I = atomic basis (4=0), Curve 2=molecular basis
(A=1) and the dashed line corresponds to A(v)

o(v)=2n [ bdb|al? (3.6)

together with (2.2), (3.1) and (3.4). Figure 3 gives a
comparison of (3.6) with the molecular and atomic
limit. The transition between the two limits occurs
in the region of 0.5<v/v, <2. The fact that our result
differs from experiment [6] by at most a factor of 3
shows that our monopole model is quite reasonable
in spite of its drastic simplifications.

4. Extension to the Two-Center Case
Instead of (3.1) we now have

Hy()=—(¥2m)A~Z, e¥r—x|—A Z, e¥|r—R—x]|
V=—(1=2)Z, e¥|r—R—X| (4.1)

where we have chosen the origin of the electron at a
distance x from the target (x= —x,R). We approxi-
mate the eigenfunctions of H, by one-center functions
to a charge Z which is determined together with x by
minimizing the expectation value of H, with respect
to the trial function ¥, =n"Y*(Z/a,)*'* exp(—Z r/a,)
at fixed internuclear separation [7].

Following the lines of the preceding section and in-
serting
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Fig. 4. Variational parameter A as a function of » for the two-
center potential at different charge ratios Z,/Z, {upper curves).
Also shown is the electron location x, at zero internuclear distance
(lower curves)

ol VY =(h—1) Z, Z e¥/ay(4}/2/27)
-exp(—3/2 Z(1 —xo) R/ag) (1+3/2 Z(1 - xo) R/aq)

(a5l 8008 11> =(321/2/81) Z/Z (4.2)

into (2.4) we obtain A as shown in Fig. 4. Simultaneous-
ly we find Z(¢, 1) and x(t, ) for each velocity. Actually,
introducing 4 into H, results only in replacing the
projectile charge Z, by AZ, which means that Z and
x are scaled in the same way. A finite velocity (i.e.
A< 1) corresponds thus to a smaller effective projectile
charge.

In Fig, 4 we also plotted A(v) for different ratios Z,/Z,,
and the results are very similar to the monopole case
studied above. That for Z, =Z, the slope of A(v) co-
incides nearly completely with the monopole calcula-
tions means that the interaction strength in the region
of interest is well represented by (3.2) (with f=1).

The nonadiabaticity of slow collisions is also indicated
by the location x of the electron when R— 0. In the
adiabatic case x,(R=0) is given by the center of
charge. For finite v we have x, (R=0)=AZ /(A Z,+ Z,)
which is closer to the target. The velocity dependence
of this quantity is shown in Fig. 4.

5. Discussion and Concluding Remarks

Having found H,(4) for each v one can now calculate
the transition probabilities according to (2.2). Thus
we obtained a description of how to combine the
adiabatic and the high-energy limit. For symmetric
systems the atomic description is valid for velocities
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v/v, 23 [5]. The range of validity of the molecular
representation has been examined only for asymmetric
systems [§] and extends approximately up to v/v, ~0.3.
This is roughly in agreement with our calculations
(Fig. 3) if one takes into account that for asymmetric
systems the transition region is much larger (Fig. 4).
The degree of nonadiabaticity in slow collisions can
be seen by the charge Z and the electron location x at
small internuclear separation. The fact that x does not
coincide with the center of charge leads to dipole
transitions in symmetric systems which are not present
in the adiabatic description. They can for example be
measured by the asymmetry in the angular distribution
of secondary electrons emitted during slow collisions
of symmetric systems.

For the excitation of electrons in higher shells with
main quantum number n the transition between the
molecular and atomic region occurs at v/v, x1/n, i.e.
when the projectile velocity approaches the orbiting
velocity of the electron to be excited. In this case one
finds A (v} by replacing ¥, in (2.4) by the corresponding
initial state.

To summarize, by introducing a velocity-dependent
variational parameter into the unperturbed Hamil-
tonian we have found a description of how to combine
the molecular and the atomic limit by using only first
order perturbation theory. One must, however, keep
in mind that the transition amplitude can only then
be calculated by the first order formula (2.2) if there
is no strong coupling to neighbouring shells. Other-
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wise higher order terms are necessary but an expansion
in the new basis set belonging to H,(4) may have a
faster convergence than that corresponding to the
molecular or atomic limit.
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