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Abstract

Firstly, the aim of this master’s thesis is to asses the exposure-lag-response relationship of

occupational radon exposure and lung cancer mortality, based on data from the German

uranium miners cohort (wismut cohort).

Secondly, it compares the obtained results to those which Gasparrini (2014) has obtained

by investigating the data of the Colorado Plateau Uranium Miners (CPUM cohort).

In order to do so, the framework of the so-called Distributed lag non-linear models

(DLNMs) is applied and seven different hypotheses, which are derived from the results

of Gasparrini (2014), are tested or qualitatively evaluated. The whole DLNM framework

is embedded in a Cox proportional-hazards model and B-Splines are used for the smooth

estimation of the exposure-lag-response-relationship.

The first two, and most important, hypotheses are concerned with the overall form of

the exposure-response function (linear versus non-linear) as well as with determining

the latency period, until the exposure to a certain quantity of radon has a potential

impact on the risk of dying from lung cancer. As a result, it can be stated that there

seems to exist a latency period of at least two years for radon exposure. The form of

the exposure-response relationship is found to be non-linear. These findings support the

results of Gasparrini’s work, who also used a latency period of two years in his models

and reported a non-linearity in the exposure-response association.

The aim of the other five hypotheses is to check, whether the detailed characteristics of

the estimated curves from Gasparrini (2014) are reproducible with this data. Although

the exact results could not be verified in this case, the overall form and some of the main

results can be confirmed with this data.

A third goal is to check whether the results obtained within the DLNM framework are

comparable to the newly developed framework of the penalized piecewise exponential

additive models by Bender et al. (2016). Some conformity of the results within these

different frameworks is found, but some grave differences are reported as well.
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1. Introduction

Lung cancer is a certain type of cancer where carcinoma are located either directly in

the lungs or in the bronchia. In many cases it is diagnosed in an advanced stage and so

it often takes a lethal course (Pharmazeutische Zeitung Online (2016)).

Besides smoking and other risk factors, (occupational) exposure to the radioactive noble

gas radon is also considered to have an impact on the risk of dying from lung cancer.

Since it has been classified as pulmonary carcinogen (IARC (1988)) by the International

Agency for Research on Cancer, there is ongoing research on the association of radon

exposure and different types of cancer and cancer mortality.

The motivation for this thesis is to characterize the exposure-lag-response relationship

between occupational radon exposure and lung cancer mortality, i.e. to assess the effect

of different levels of exposure at different points in time after the exposure.

It thereby contributes to current research by applying a relatively novel framework to a

data set of extensive size which, up to now, has only been investigated using other ap-

proaches. This promises further insights in the above-mentioned association and allows

comparisons to related analyses of different data sets as well as to different analyses of

the same data set.

Overall, the thesis is structured as follows: In chapter 2 the data set and its origins are

described, while chapter 3 gives an overview on the theoretical background for the mod-

elling part, including a passage on the current state of research. Thereafter, chapter 4

and 5 contain the results of the statistical analysis. Eventually, the results are discussed

in chapter 6 and a conclusion is drawn in chapter 7.

Concerning the technical side of this thesis, the whole code for the estimated models as

well as all figures and tables was created with the statistical software R (R Core Team

(2016)) using the surface R-Studio (RStudio Team (2015)). The individual packages

which are used for the data analysis are cited at the respective passages in the text or

just added to the list of references if there’s no suitable passage.
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2. Data

2.1. The Wismut Company

After World War II had ended in 1945, Germany was divided into four occupation zones

controlled by the United States, the United Kingdom, France and the Soviet Union.

Soon after the establishment of these zones, soviet experts started to explore parts of

Eastern Germany in search for natural uranium deposits for their nuclear weapons pro-

gram. As a result of the successful searching, mining started in the year 1946 to a minor

degree.

In 1947, the Soviet stock company Wismut (SAG Wismut) was founded and soon be-

came one of the world’s largest producers of uranium, with a cumulative production

of 231.000 tons from 1947 until 1990. A maximum of more than 100.000 miners were

employed at the company to reach the high production output.

The first years until 1953 are also known as "The wild years" (Wismut GmbH (2016a)),

which were characterised by "poor working conditions, complete disregard for the en-

vironmental concerns of the densely populated areas, and the destructive exploitation

of resources" (Wismut GmbH (2016a)). These conditions prevailed until the mid-1950s

when the policy of the company changed in several ways. In contrast to before, the aim

wasn’t to maximize the short-term profit, but to introduce efficient methods to ensure

long-term operable mining.

In order to achieve this goal, the company intensified their scientific investigation of the

mines, which also lead to some huge improvements concerning the underground working

conditions.

But despite the above-mentioned improvements, the mean exposure of the workers to

radon (which is known to be carcinogenic), as well as to silica dust (also potentially

carcinogenic), did not change immediately after the change in mindset of the company,

as the following graphics show1:

1graphics for the mean exposure to long lived radionuclides, gamma radiation, arsenic and fine dust
are to be found in the appendix A.1
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First of all it has to be mentioned, that after the mean exposure of the miners to radon

reached its peak in 1955, there was a decline in the following four years from an average

of 38.87 wlm/year in 1955 to 5.24 wlm/year in 1959 (see figure 2.1). But it took until

the mid- or the late 1960s to decrease the exposure permanently to a value that was

below 1 wlm/year.

When looking at the mean exposure to silica dust (see figure 2.2), one observes a kind of

related development, but also with some key differences. A peak in the exposure to silica

dust was attained in 1953 with 0.57 mg/m3 per year, and, unlike the radon exposure,

there was no abrupt drop but rather a moderate decline until the mid-1960ies. During

this period the average exposure still reached relatively high values, until it permanently

dropped to a level of below 0.1 mg/m3 per year on average.

Another facet that came along with the change of the mindset, was the foundation of

a new company: The bi-national Soviet-German Company Wismut (SDAG Wismut).

In the following years a permanent staff of about 45.000 miners, which was employed

for more than three decades, emerged. This period from 1954 to 1991 is described as

"State within the GDR state", as the company enjoyed many privileges by the GDR

state (Wismut GmbH (2016b)). In contrast to the first years of the SAG Wismut, in

this period lower exposures, coming along with the improved working conditions in the

mines, prevailed.

After the German reunification in 1990, the mining was stopped permanently on De-

cember 31, 1990. In the following year, the USSR officially resigned on their shares

of the SDAG Wismut in terms of a state treaty. So from that point in time on, the

reunified Federal Republic of Germany obtained the sole ownership of the company and

as a direct consequence, it was turned into a remediation company.

Another accompaniment of this step was the new formation and the renaming to the

company’s current name: Wismut GmbH (http://www.wismut.de/en/).

Its primary aims include "reclaiming former mining sites and restoring the environment

for the benefit of man and nature" (Wismut GmbH (2016c)). Another aspect coming

along with the rehabilitation process is the partnership between the Wismut GmbH and

the regional economy, as many small and medium-sized businesses were assigned to the

company’s projects. So besides the environmental improvements that are being made,

the Wismut GmbH also tries to strengthen the local companies.

4



2.2. The Wismut Cohort

The so called wismut cohort is the world’s largest existing cohort data set of miners

who have been occupationally exposed to several carcinogens. The data set contains

information on 58.987 miners who were formerly employed at SAG Wismut or SDAG

Wismut in the years from 1946 to 1989. It is provided by the Federal Office for Radiation

Protection (BfS) in cooperation with the German Federal Ministry for the Environment,

Nature Conservation, Building and Nuclear Safety (BMUB).

An update of the data is conducted every five years, when the vital status of the former

miners is checked on a certain due date. If the vital status of a person has changed

(i.e. he has died) within this period, it’s being attempted to find out about the cause

of death via residents’ registration offices or health offices. Up to now, the previous

dates of the follow-up have been December 31, 1998 (first follow-up), December 31, 2003

(second follow-up), December 31, 2008 (third follow-up) and December 31, 2013 (forth

follow-up). This thesis is based on the data from the second follow-up from the year

20032. A detailed overview as well as a further description of the data can be found

in Kreuzer et al. (2002). Besides the research on the association between radon and

lung cancer mortality, there are further topics which are investigated using this data

set. These are amongst others the association between radon and leukemia or the joint

impact of radon combined with the other substances.

2.3. Description of the data

General Information

The present data set is of dimension 58.987 x 271, as one row contains the information

for one miner. In the first seven columns, the original data set contains an ID-variable

(column 1), as well as information on the date of birth (column 2), the end of follow-up

(column 3), the vital status at the end of follow-up (column 4), an indicator-variable

for "death by lung cancer" (column 5) and the date of the begin (column 6) and the

end (column 7) of employment of the miner at the Wismut Company. Besides these

2As the data is provided by the BfS within the limits of predefined project, the author has no influence
on the which version of follow-up is made available

5



basic variables, there’s also information of a person’s exposure (in the form of job-

exposure matrices3) to six different, potentially harmful, substances. Namely, these are

radon (columns 8 to 51), long lived radionuclides (columns 52 to 95), gamma radiation

(columns 96 to 139), arsenic (columns 140 to 183), fine dust (columns 184 to 227) and

silica dust (columns 228 to 271).

Most important is the data on the exposure to radon, which, in 1988, has been officially

classified as pulmonary carcinogen (IARC (1988)).

Furthermore silica dust is considered as an important confounder and will be included

in the modelling part as well. Several forms of silica have also been investigated by the

International Agency for Research on Cancer (IARC (1997)) and some forms of crys-

talline silica were considered as carcinogenic to humans. But despite this extensive and

detailed amount of information, there are two important issues which aren’t covered by

this data set:

- Smoking: The data set spans over a period of time, in which a majority of the

population, and especially of the miners, were considered to be heavy smokers.

But, unlike some other data sets concerning occupational radon exposure (e.g.

the CPUM cohort), the Wismut cohort doesn’t contain any information on the

smoking habits of the study population. This aspect, which is relevant insofar as

smoking is also considered to be one of the major reasons for lung cancer, may

limit the results obtained with this data to a certain extent.

- Lung cancer incidence: Another issue that can’t be investigated using the data of

the wismut cohort is the incidence of lung cancer, as it only contains information

on lung cancer as a cause of death, but not on its occurrence. So the crucial

information on the point in time, when a person actually got the diagnosis of lung

cancer, is not given in the data.

Besides this general description on the data, the following part of this chapter contains

more detailed insight in the form of descriptive statistics and quantitative information.

At the end, there will also be an explanation on how the data was transformed to be

suitable for the different types of models which were applied to it.

3for detailed information about the estimation of the job-exposure matrices see Lehmann et al. (1998)
or Lehmann (2004)

6



Characteristics

To get a brief overview of the main characteristics of the data set, this section will start

with a few tables containing information on the full cohort as well as different subgroups.

The first two tables4 incorporate data about the full cohort (2.1) and about all cases of

death (2.2).

Full cohort Cases: 58987 (100%)

Min. 1st Quartile Median 3rd Quartile Max.

Follow-up period (years) 15.33 47 60.33 70.17 103.2

Duration of Employment (years) 0.4167 4.25 10.17 21.5 45.5

Cum. Radon Exposure ( wlm
year

) 0 1.746 18.42 262.4 3224

Cum. Silica Dust Exposure (mg

m3
/year) 0 0.4036 1.761 8.524 55.98

Table 2.1.: Characteristics of the full cohort

All Deaths Cases: 20920 (35.47%)

Min. 1st Quartile Median 3rd Quartile Max.

Follow-up period (years) 17.5 56.5 65.67 73.5 103.2

Duration of Employment (years) 0.4167 6.167 12.83 24.17 44.5

Cum. Radon Exposure ( wlm
year

) 0 6.629 182.1 749.6 3224

Cum. Silica Dust Exposure (mg

m3
/year) 0 2.014 7.406 16.53 55.98

Table 2.2.: Characteristics of the cases of death

While the full cohort contains 58.987 miners, slightly more than a third of them (20.920)

have died during the follow-up period until December 31, 2003. When comparing the

distributions of the follow-up times, the miners who died, tend to have had a longer

follow-up than the full cohort. At first sight this seems a bit odd, but once one looks

at the huge fraction of the observations which are censored (64.53%), this might be the

reason for the occurrence of this unexpected difference.

Information on the duration of employment is to be found in the second row. When

again comparing both tables, the cases of death have a somewhat higher 1st and 3rd

4All tables displayed in this thesis have been created via the xtable-package (Dahl (2016)).
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quartile as well as a higher median. When looking at the distribution of the cumulative

exposure to radon (measured in wlm/year) and the cumulative exposure to silica dust

(measured in mg/m3 per year), there are striking differences in the characteristics of the

distributions. 1st and 3rd quartile and the median are much higher for the distribution

of cumulative radon exposure as well as for the distribution of cumulative silica dust

exposure. So, one can conclude that the miners who died had been exposed to a much

higher amount of radon and silica dust than the full cohort.

The following two tables show summary statistics of all cases from table 2.2 separated by

the cause of death. The cause is either classified as lung cancer or other causes, where

other causes contains all cases with unknown or known, but not lung-cancer-related,

causes of death.

Lung Cancer Cases: 3016 (5.11%)

Min. 1st Quartile Median 3rd Quartile Max.

Follow-up period (years) 27.92 57.42 64.17 70.33 91.83

Duration of Employment (years) 0.5 8.417 17.08 27.08 43.58

Cum. Radon Exposure ( wlm
year

) 0 75.65 564 1031 2990

Cum. Silica Dust Exposure (mg

m3
/year) 0 4.744 13.46 21.4 53.71

Table 2.3.: Characteristics of the lung cancer cases

Other causes Cases: 17904 (30.35%)

Min. 1st Quartile Median 3rd Quartile Max.

Follow-up period (years) 17.5 56.25 65.92 74.08 103.2

Duration of Employment (years) 0.4167 5.833 12.17 23.5 44.5

Cum. Radon Exposure ( wlm
year

) 0 4.629 138 678.3 3224

Cum. Silica Dust Exposure (mg

m3
/year) 0 1.777 6.68 15.48 55.98

Table 2.4.: Characteristics of the cases of death by other causes

When only looking at the cases of death, 14.42% of these occurred due to lung cancer,

which equals about 5.11% of the full cohort. Compared to the cases of deaths by other

cause (85.58% of the cases of death, 30.35% of the whole cohort), these cases had a much

longer duration of employment (higher 1st and 3rd quartile, higher median) as well as a
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much higher cumulative exposure to both radon and silica dust.

As far as the length of the follow-up period is concerned, there don’t really seem to be

big differences between both groups.

Data preparation

Before using the data to fit a model and even before transforming into the right form,

some adjustments had to be made in advance.

First of all, the data was checked for missing values. While there were none in the basic

variables as well as in the JEM for radon, 12848 missing values occurred in the JEM

for silica dust. To get an idea of how much of the values are NA, one should take into

consideration the dimension of a JEM of 58987 x 44, which yields 2595428 single values.

So the fraction of missing values for the exposure to silica dust is just about 0.5%.

After taking a closer look at the structure of the NAs, it became clear that all 12848 of

them were due to 292 persons in the data set who had missing values for silica dust for

all 44 years. And while they are still included in the descriptive statistics above, these

miners are from now on excluded from the further analysis of the data. A comparison

of the values of the basic variables of these 292 miners to those from the whole cohort

is to be found in the appendix A.2

A second point is that only those years, in which (a) a miner was either exposed to radon

or silica dust in the current year or (b) he had been exposed to one of the substances

in at least one of the previous 40 years, are included in the analysis. This decision was

made, as the aim of this thesis is, to specify the association between occupational radon

exposure and the risk of dying from lung cancer and so the years in which a person is

not under risk don’t matter for the estimation. As a consequence, all years before the

actual begin of employment of a miner were discarded in the analysis. The years after

employment had ended, are still kept in the data set, as the miners were still under risk

in these years due to the lagged values of the exposure.

One further issue does concern only one worker (ID = 82524), whose begin of employ-

ment is given as "November 1945", which is insofar implausible, as the company wasn’t

founded before 1946. To be consistent with previous works, this is taken as given and

the course of action in this case is as follows:

For the calculation of measures like e.g. the duration of employment this date is used.

For the estimation in the models, this worker is included from 1946 onwards, as the JEM
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starts in this year (i.e. no exposure values for the years before) and so this is technically

the first point in time where he is under risk.

Transformation

In order to estimate the different proposed models (Distributed lag non-linear models

and Penalized piece-wise exponential additive models) the original data set had to be

transformed into two different versions of the data, as both of the models have different

requirements concerning the form of the data.

The following explanations give a quick overview on how the data was transformed,

starting with the DLNMs:

The estimation of the DLNMs is executed in R via the coxph-function from the survival-

package (Therneau (2015), version 2.38, Therneau and Grambsch (2000)). But as the

exposure history of a miner changes year by year and the aim of the model is to esti-

mate the effects of certain exposure at a certain lag, the data set has to be expanded.

So instead of containing one row per miner, the expanded data set contains one row

per miner per year under risk. A second step which has to be taken is the separation

of the date frame into two separate parts due to technical issues. The expanded data

set just contains, besides the ID, information on the begin and the end of each interval

(in this case: the begin and end of each year under risk), the status indicator for the

event (death by lung cancer) and the other covariates (here: the age at first exposure

and calendar time).

The second, separate, part includes the already above-mentioned exposure history cre-

ated from the JEM. It includes for every miner for every year the current exposure as

well as the lagged exposures from the previous year and is created in R via the exphist-

function from the dlnm-package (Gasparrini (2011), version 2.2.7).

Besides some similarity concerning the expansion of the data frame to one row per miner

per year under risk, the transformation for the estimation of the PAMs was slightly dif-

ferent: The PAMs are estimated in R via the gam- (Wood (2006)) or the bam-function

(Wood et al. (2015)) from the mgcv-package (Wood (2014), version 1.8-12), which has

different requirements to the form of the data. These functions require the information

all to be in one data set. Of course, all the basic variables (ID, the interval, the status
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indicator, age at first exposure, calendar time) are included, as well as a variable speci-

fying the offset, which is practically always zero, except from (potentially) the last row

of each person.

Additionally the following matrices are included in the data set:

- Exposure Matrices ("expMatRad" for radon and "expMatSil" for silica dust):

This matrix is of dimension (years under risk) x 44 for every miner. It contains

the complete information of the person’s exposure in every row

- Interval Matrix ("intMat"):

A matrix also of dimension (years under risk) x 44 which contains in every row 44

times the interval which a person is in

- Lag Matrix ("lagMat"):

In this matrix, the a priori chosen lag structure is defined. It has the same di-

mension as the other matrices and contains zeros and ones that either exclude or

include the respective lag. So in this case, the first two rows for every miner only

consist of zeros, as no influence before lag 2 is assumed and from there on, every

row contains forty ones, as an effect of up to forty years after the initial exposure

is assumed to be possible. After that, it’s a lower triangular matrix of zeros, as

after forty years there’s no further effect assumed

Further technical and theoretical aspects of the models will be explained in detail in

chapter 3.

It will also give an overview on what has been discovered about the exposure-lag-response

relationship between occupational radon exposure and lung cancer mortality up to now.

The different findings of several authors will be divided according to which type of model

they used in their research. A special focus will be on the results obtained by Gasparrini

(2014) using DLNMs.

Additionally to this, the state of research on the exposure-lag-response-relationship of

silica dust exposure and lung cancer mortality will also be reported if it was investigated

in the respective papers.
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3. Theoretical Background of the

Modelling Framework

In this chapter, a literature review on the current state of research as well as the com-

plete theoretical background for the performed analysis in this thesis will be provided.

At first, the current state of research is summarized in section 3.1 while in the subse-

quent sections 3.2 up to 3.3.3 the theoretical knowledge needed for the modelling part

is presented.

As a starting point for the theoretical explanations, the cox proportional-hazards model,

as well as the the inference for estimation of the parameters of this model, are explained

briefly in section 3.2. This type of models is used for survival data (also called time-

to-event data), like present in this case. Survival data is the term for a special kind of

data, where the variable of interest is not some binary or metric variable, but a period

of time which is called failure time. So this model estimates the risk to have the event

of interest at a certain point in time, given a set of covariates. These covariates usually

include simple time-constant or time-varying variables.

But as in this case, we have more complex data than just simple survival data due to the

additional complexity in the covariates. So the framework has to be extended in several

ways. The additional complexity of the data comes from the detailed information on

the occupational exposure to radon and silica dust, given in the form of a job-exposure-

matrix.

This is incorporated by extending the the cox ph-model in a first step to the class of

distributed lag models in section 3.3.1 which allows the estimated effect of the exposure

on the hazard rate to vary smoothly depending on its temporal relation to the hazard

rate. This effect is estimated by a, potentially non-linear, lag-response-function.

In a second step, taken in section 3.3.2, the DLM framework is extended to distributed

lag non-linear models in which, additionally to before, the relationship between the re-

sponse (i.e. the hazard rate) and the exposure is also potentially non-linear.
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Finally, the theory needed to perform the analysis using the penalized piecewise expo-

nential additive models will be explained in section 3.3.3. Since these models are based

on the class of generalized additive mixed models (GAMMs), a different theoretical back-

ground will be needed.

3.1. Current State of Research

Up to now, there are already several studies which are concerned with the impact of

the (occupational) exposure to radon and the mortality from lung cancer, other types

of cancer or health outcomes in general. Silica dust and also smoking habits have been

considered as important possible confounders in these studies. This chapter tries to give

an overview on the current state of research and on some of the the well-established

models for the analysis. A special focus will be on the work of Gasparrini (2014) as the

modelling framework of this thesis orientates itself strongly by the framework applied in

his work.

One thing that becomes obvious when studying the different papers, is that there’s quite

a variety of different frameworks in which the relationship between radon exposure and

(lung cancer) mortality or other outcomes is investigated. The following list gives a short

and non-exhaustive overview over some of these different types of models being used in

current research, with the exemplarily summarized papers written in brackets behind:

- Distributed lag non-linear Models (Gasparrini (2014), Gasparrini et al. (2016))

- Poisson Regression Models (i.a. Grosche et al. (2006), Kreuzer et al. (2010), Walsh

et al. (2010))

- Two-stage clonal expansion (TSCE) Models (Zaballa and Eidemüller (2016))

The summaries for analysis of radon exposure in the different frameworks are presented

in form of a enumerated list for the case of Gasparrini (2014) and in form of short sum-

maries for all other above-mentioned papers. Additional information on the potentially

added confounders is given separately in each of the respective paragraphs.
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3.1.1. Distributed lag non-linear Models

Gasparrini (2014): Modeling exposure-lag-response associations with distributed

lag non-linear models

In his paper from the year 2014, Gasparrini shows three main results:

1. The exposure-response-function is not linear. In his selected model, he estimates it

to have a more or less steady increase between the exposure values of 0 wlm/year

and 50 wlm/year. At 50 wlm/year there seems to be a real break in the relationship,

as the curve flattens out after this point. Misspecifying this relationship as linear

has a severe impact on the results, as it massively influences the estimation of

the lag-response-function. He shows this, by also estimating DLMs (with a linear

exposure-response-function) and comparing them via the AIC and BIC. In case of

the DLMs, this comparison indicates the lag-response-function to be a constant

function along the lags, which is not realistic from a physiological point of view.

2. The lag-response-function is not a constant function. Gasparrini (2014) assumes

the exposure to have a latency period of two years, i.e. there’s no effect before

lag two. From this point onwards, the estimated hazard ratio increases up to its

peak at a lag of eleven years after the initial exposure. Increasing the temporal

distance to the exposure beyond this point leads to a decreasing hazard ratio. The

risk associated with occupational radon exposure eventually fades away completely

approximately 35 years after a person was exposed.

3. In a simulation study which was also performed in the paper, the performance

of the two information criteria (AIC and BIC) was evaluated with the following

findings: In general, models that were selected using the AIC were stated to have

a better performance than BIC-selected models. The term performance was mea-

sured in terms of relative bias, coverage and relative RMSE.

The AIC-selected models were subject to moderate overfitting, which sometimes

leads to the suggestion of overly complex models where simpler underlying scenar-

ios are present. BIC-Selection on the other hand, showed a tendency in the other

direction: These models showed severe underfitting, i.e. models with very simple
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exposure-lag-response-associations were selected in cases where the underlying re-

lationship was more complex. Particularly the assumption of linearity was affected

by this lack of adequacy. These findings are completely in line with the general

tendency of the BIC to select simpler models than the AIC.

Besides Radon, Gasparrini also considers Smoking habits as a confounder in his models.

The form of how it is added to the model is chosen a priori to be fairly simple and isn’t

subject to further investigation in the process of finding the optimal model. Also the re-

sults of the estimated effects for Smoking aren’t reported in this paper. The motivation

for this proceeding is reported to be the limited information on the smoking histories in

this particular data set.

Additionally, in order to control for a potential trend in lung cancer risk over time, he

added another covariate to the model which contains the calendar time centered around

the year 1970.

3.1.2. Poisson Regression Models

In contrast to the relatively new DLNM framework, Poisson regression models represent

a very well established and frequently used framework in radiation epidemiology. So the

following passage contains some more papers from a period of time over the years 2006

to 2010, in which this approach has been applied. All of these studies deal with different

versions of the wismut data.

Grosche et al. (2006): Lung cancer risk among German male uranium miners: a

cohort study, 1946-1998

This paper was the first one, to analyze a version of the wismut cohort data with respect

to lung cancer risk. As it was already published about 10 years ago, the data of the

first follow-up (until 31.12.1998) was used. The assumed latency period for the radon

exposure was five years and a linear exposure-response-relationship was presupposed.

Another difference is that, compared to the analysis in this thesis, in this paper the

accumulated radon exposure was used. The estimation of the excess relative risk due

to the exposure was stratified by ’attained age’ (< 55, 55-64, 65-74, and 75 and more
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years) as well as by ’time since exposure’ (5-14, 15-24, 25-34, and 35 and more years).

The excess relative risk was found to be the highest in the second category of ’time since

exposure’ (15-24 years) and was reported to be significantly lower in the other three

categories. For the variable ’attained age’ a moderate decline in the ERR per wlm was

reported. Overall, the ERR/wlm was estimated to be 0.21%.

Kreuzer et al. (2010): Radon and risk of death from cancer and cardiovascu-

lar diseases in the German uranium miners cohort study: follow-up 1946-2003

Kreuzer et al. investigated the same data set (wismut cohort, second follow-up until

December 31, 2003) which is analyzed in this thesis. The focus of the paper was on ex-

ploring the relationship between the occupational exposure to radon an the risk of dying

from (a) different types of cancer (lung cancer, extrapulmonary cancers and cancers of

the extrathoracic airways and trachea) and (b) cardiovascular diseases.

As a latency period for the radon exposure, five years were assumed and again the cu-

mulative exposure was added to the model linearly. Besides the exposure, ’attained

age’ and ’individual calender year’ were considered as coavariates and the five potential

confounders from the wismut cohort data set were added to the model separately.

While a significant increase in the risk in lung cancer (ERR/wlm = 0.19%) and cancer

of the extrathoracic airways and trachea (ERR/wlm = 0.062%) were reported, no (or

no significant) increase in risk for the other analyzed causes of death was found.

Walsh et al. (2010): Radon and the risk of cancer mortality-Internal Poisson

models for the German uranium miners cohort

Like Kreuzer et al. (2010), the work of Walsh et al. is also based on the second follow-up

of the wismut cohort and it also investigates the risks for more than one type of cancer.

Further similarities are the use of a cumulative measure for the radon exposure and its

linear modelling. The covariates ’age at median exposure’, ’time since median expo-

sure’, centered around their respective means, and the so-called ’radon exposure rate’

were added to the model. The exact definition of the ’exposure rate’ can be found in

the report from the National Research Council, Committee on the Biological Effects of

Ionizing Radiation (1999).
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In this paper, a also statistically significant effect of cumulative radon exposure, with

an ERR/wlm of 0.20% was reported.

3.1.3. Two-stage Clonal Expansion Models

Zaballa and Eidemüller (2016): Mechanistic study on lung cancer mortality after

radon exposure in the Wismut Cohort supports important role of clonal expan-

sion n lung carcinogenesis

A very novel approach to this cohort is represented by the TSCE model by Zaballa

and Eidemüller (2016) from the Institute of Radiation Protection in Munich. For the

research in carcinogenesis it is a standard approach, which was already being applied to

other cohort data sets (e.g. Luebeck et al. (1999), Kai et al. (1997)). Compared to the

other presented models, it is a framework which is rather based on a biological point of

view. Regarding the statistical side, the different stages of the model are modelled as

Poisson processes.

Concerning the data, an exactly alike version of the second follow-up of the wismut cohort

as in this thesis was used by excluding all workers with missing values for silica dust (as

it is an important confounder in their model) exposure and considering a person to be

at risk from their employment until the end of follow-up. The covariates ’attained age’

and ’calendar year’ are allowed to influence the baseline hazard and again, the ’exposure

rate’ is also added to the model. Another important part of the results-section is the

comparison to an ERR-model (Poisson regression model).
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3.2. The Cox proportional-hazards model

Theory

The cox ph-model was introduced by Sir David Roxbee Cox, a British statistician, in

1972. The remarks about this model in this thesis will mainly be based on the original

paper from Cox (1975) and will orientate themselves notationally at the lecture notes

from Kauermann (2014).

This whole modelling framework is mainly based on the concept of the hazard rate. The

term hazard rate λ is defined as the probability that a subject who has survived up to

a certain time point t will have an event in the next small time interval δt, divided by

the length of this aforementioned small interval:

λ(t) = lim
δt→0

P (t < T < t+ δt|T > t)

δt
(3.1)

In the cox ph-model the hazard rate is modelled dependent on the time point t and the

included covariate values xi of person i:

λ(t,xi) = λ0(t) · exp(x
T
i β) (3.2)

The so-called baseline hazard rate λ0(t) is dependent on the time point t, while the

time-independent covariate effects are incorporated by xT
i β. In the estimation process,

the baseline hazard won’t be specified as it is only viewed as a nuisance-parameter and

the main interest lies in specifying the β-parameters. Another important thing to keep

in mind is that the parameter vector does not contain an intercept.

The eponymous property of the model, the proportional hazard assumption, leads so

some kind of parallel course of two subjects’ hazard rates, where the relative risk of

subject one compared to subject two is independent of the time t:

λ(t,x1)

λ(t,x2)
=

λ0(t)

λ0(t)
·
exp(xT

1 β)

exp(xT
2 β)

= exp((x1 − x2)
Tβ) (3.3)

So in order to compute the relative risk of to individuals compared to each other one has
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to calculate the difference of their covariates and insert the result in the model equation.

Inference

The following part describes briefly how the inference in the model is performed. It is

based on both of the works from Cox (1972) and Cox (1975) and the notation is again

inspired by the lecture notes from Kauermann (2014).

Cox rejects the use of an ordinary likelihood approach in favor of the so-called partial

likelihood approach, since it is possible to skip the estimation of the nuisance parameter

λ0(t) and thus reduce the dimensionality this way. The motivation and the theoretical

derivation for this can be found in Cox (1975). In this thesis, only the direct consequences

for the cox ph-model are presented.

One more thing that has to be taken into consideration is the possible right-censoring

of the survival times, which also has an impact on the inference.

If one considers the formula given in equation 3.2, the full likelihood of the model is

given as follows:

L(λ0(t), β) =
n
∏

i=1

λ0(ti) exp(x
′

iβ)
δi exp

{

−

∫ ti

0

λ0(s) exp(x
′

iβ)

}

ds (3.4)

with ti being the observed survival time (i.e. ti = min(Ti, Ci)) and δi being the censoring

indicator (i.e. δi = I{Ti ≤ Ci}), taking a value of one if a persons survival time is

observed and zero otherwise.

This likelihood from equation 3.4 can be reduced via some algebraic transformations to

a partial likelihood of the following form:

PL(β) =
k
∏

i=1

exp(x′

(i)β)
∑

j∈R(t(i))
exp(x′

jβ)
(3.5)

with k being the number of uncensored events (k ≤ n) and R(t) being the number of

individuals under risk just prior to t. The proceeding to obtain the estimates for the

β-vector is the same as in the usual inference for the full likelihood, by maximizing it

with respect to β. But more importantly, this equation only holds under the assumption

of singularity of the individual events, i.e. there are no ties in the data.
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As this is a rather unrealistic assumption, especially for big data sets, there are methods

to adapt the partial likelihood function to this problem. Actually, the coxph-function in

R offers three possible options:

- The Efron method:

PLEfron(β) =
k
∏

i=1

exp(
∑

j∈Di
xjβ)

∏di
j=1

[

∑

k∈R(t(i))
exp(xkβ)−

di−j
di

∑

k∈Di
exp(xkβ)

] (3.6)

- The Breslow method:

PLBreslow(β) =
k
∏

i=1

exp(
∑

j∈Di
xjβ)

[

∑

j∈R(t(i))
exp(xjβ)

]di
(3.7)

- The Exact method:

PLExact(β) =
k
∏

i=1

exp(
∑

j∈Di
xjβ)

∑

Q∈Q(i)
exp(

∑

j∈Q(i)
xjβ)

(3.8)

While the Breslow method works very well for a small di (i.e. a small number of events

at the same time), the Efron method is considered as being more accurate for a large

number of ties and as good as the Breslow method for a small number. The Exact

method is computationally rather expensive and is appropriate for a small set of dis-

crete time points.

Taking these properties of the different methods into consideration, in this thesis the

Efron method will be used for tie handling. In Gasparrini (2014) the same decision

about tie handling was made.
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3.3. Models for exposure-response relationships

Flexible modelling of exposure-response relationships has been subject to research for

quite a while now. The modelling part in this thesis will be based on an approach in-

troduced by Gasparrini et al. (2010) and Gasparrini (2014).

But it was already much longer ago, when research on the topic of DLMs emerged

(Almon (1965)) in the field of econometrics. In the following years, especially in more

current research, it has been extensively used in the field of epidemiology.

While the work form Gasparrini et al. (2010) is mainly about the methodology in the

context of time series analysis, the paper from Gasparrini (2014) is particularly about

the application of the methodology in the context of modelling time to event data with

the cox ph-model. In both of the mentioned publications, the first part is about describ-

ing simple DLMs which are used for modelling linear exposure-response relationships.

Afterwards, this framework is extended to modelling non-linear exposure-response re-

lationships. The structure used here will be identically, but will mainly focus on the

modelling in the context of survival analysis. In Gasparrini et al. (2016) more elaborate

methods for modelling the smooth functions in the exposure-lag-response-relationships

in DLNMs, based on penalized splines, are presented.

But as these methods have not been officially published yet and due to the fact that

the analysis of the B-Spline based models had already made much progress when author

was able to have a look at these methods, they are not further pursued in this thesis.

But nevertheless, they definitely have to be considered in future research.

Another approach for modelling these special relationships was introduced by Bender

et al. (2016) who connect the concept of piecewise exponential models with the frame-

work of Generalized additive mixed models. By doing this, they exploit the link between

the likelihood of a piecewise exponential model and the likelihood of a generalized linear

Poisson-Model with certain constraints.

This leads to another framework which is able to model the exposure-lag-response-

association as a combination of smooth functions.
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3.3.1. Distributed lag models

Distributed lag models are used in the attempt to describe the lag-response-relationship

in the assumed presence of a linear effect. The term lag-response-relationship means

the delayed effect of an influential variable on the dependent variable. These kinds of

models are heavily used in econometrics (especially time series analysis), as well as in

social sciences and epidemiology.

Gasparrini (2014) defines a function s(x, t) which is generally applicable to several mod-

elling frameworks and regression models. With this function he describes the dependency

between the dependent variable and the influential variable by an exposure history of

the influential variable x at a certain time point t.

The algebraic notion is given as follows:

s(x, t) =

∫ L

ℓ0

xt−ℓ · w(ℓ) dℓ ≈

L
∑

ℓ=ℓ0

xt−ℓ · w(ℓ) (3.9)

In the part of the equation on the left hand side of the approximately equal sign, the

period L−ℓ0 defines the lag period over which the exposure has an effect on the outcome.

The part on the right hand side is an approximation of the integral on the left hand side

which is used due to computational purposes. This approximation is obtained through

a discretization of the lag period into equally spaced time units.

In order to define a statistical model for (3.9), Gasparrini (2014) expresses the lag-

response function w(ℓ) in matrix notation through the vector qx,t of the exposure history:

qx,t = (xt−ℓ0 , ..., xt−ℓ, ..., xt−L)
⊤ (3.10)

From this representation it is obvious that this vector is different for every time point

t. The value ℓ0 can be interpreted as the minimum lag at which an exposure affects

the outcome, while analogously L is the maximum lag. Using (3.10) one can write the

function s(x, t) in a compact matrix notation:

s(x, t;η) = q⊤

x,t Cη = w⊤

x,t η (3.11)

A transformation of the lag vector ℓ of dimension (L − ℓ0 + 1) with a vector defining

the basis functions of dimension υl yields C. Hence, this matrix has the dimension
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(L − ℓ0 + 1) × υl. So the result of (3.11), wT
x,t η, is just the vectorial representation of

the integral of x · w(ℓ) over the interval [ℓ0, L] with parameters η.

It is also mentioned in Gasparrini (2014), that the equation in (3.11) is a more general

representation than the one that was used by Gasparrini et al. (2010), because it isn’t

specifically tailored to the framework of time series analysis, but also applicable to other

situations.

Information on the estimation and the prediction in the DLM framework will be given

in section 3.3.2, as the DLMs can be seen as a special, simpler, case of the DLNMs.

3.3.2. Distributed lag non-linear models

Theory

As well as the previous section, this one will also start by giving an algebraic followed

by a matrix representation. All remarks will get slightly more complicated due to the

allowed non-linearity of the exposure-response relationship. Subsequently, this chapter

will also contain information about the estimation process and prediction in DLNMs.

The model is extended by substituting the xt−ℓ from (3.9) by an exposure-response

function f(xt−ℓ), which yields the following expression:

s(x, t) =

∫ L

l0

f(xt−ℓ) · w(ℓ) dℓ ≈
L
∑

ℓ=ℓ0

f(xt−ℓ) · w(ℓ) (3.12)

This equation is one step towards a more flexible representation since it allows non-

linearity in the exposure-response function. But one clear and strong disadvantage

is imposed by the assumption of independence of the exposure-response and the lag-

response function. This would mean, that the exposure-response-function has to have

the same form, no matter how long ago the exposure occurred. In many cases this

assumption doesn’t hold and thus limits the flexibility of the model. So a more general

and more flexible representation is given by the following algebraic formula:
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s(x, t) =

∫ L

ℓ0

f · w(xt−ℓ, ℓ) dℓ ≈

L
∑

ℓ=ℓ0

f · w(xt−ℓ, ℓ) (3.13)

Consequently, as f · w(xt−ℓ, ℓ) is a bivariate function in x and in t, it is called the

exposure-lag-response function. By using this representation, one is able to model the

exposure-response association and the lag-response association simultaneously. In Gas-

parrini (2014) this results in the so-called exposure-lag-response association and graphi-

cally in a three dimensional exposure-lag-response surface.

For being able to model this kind of relationships, one needs a special kind of tensor

products. This tensor product is parametrized through the so-called cross-basis (Arm-

strong (2006)). Gasparrini et al. (2010) give an algebraic representation of the cross

basis, but the definition used in this thesis is the revised version from Gasparrini (2014).

Additionally to the previously introduced dimension υl of the lag-basis, now the di-

mension υx for the basis representing f(x) has to be taken into consideration when

constructing the cross-basis. So in the same way as the matrix C was constructed for

the lags, now the matrix Rx,t of dimension (L− ℓ0+1)×υx is constructed for the vector

qx,t of the exposure history.

By defining

Ax,t =
(

1
⊤

υl
⊗Rx,t

)

⊙
(

C ⊗ 1
⊤

υx

)

, (3.14)

the cross-basis function can be written in the following fashion:

s(x, t;η) =
(

1
⊤

υx·υl
Ax,t

)

η = w⊤

x,t η (3.15)

It is worth to note, that the simpler class of DLMs is also incorporated by this equations

and can be created through the appropriate choice of the basis functions for Rx,t.

Despite the quite unusual and complex form of the model it can be estimated by stan-

dard regression models, as is to be shown in the next paragraph.

Inference

In Gasparrini (2014) besides the theory, inferential methods for this framework are pro-

vided as well. As the association of the model is fully parametrized by the parameters

in η, the model can be estimated by the following steps:
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1. The vector qx,t of dimension 1×(L−ℓ0+1) is extended to a matrix Q of dimension

N× (L− ℓ0+1) containing the exposure histories of all N observations of the data

2. Employing Q instead of qx,t for constructing the matrix Rx,t in (3.14) leads to

Ax,t and consequently yields a matrix W of transformed variables instead of the

vector wx,t

3. This newly obtained matrix W is now included as design matrix in the regression

model of choice (in this case: a cox ph-model) to estimate the parameters in η

4. The number of degrees of freedom (df) which will be used for evaluating the model,

is determined by the number of estimated coefficients, hence the dimension of Q

Estimation

With the estimated model parameters two possible risk measures can be calculated:

On the one hand side, exposure-specific risk contributions β̂xp
for a exposure xp at

lag lp can be predicted. On the other hand, the cumulative risk measure β̂c, given a

specific exposure history, can be calculated. If the exposure history is taken to be qxp

with a constant exposure xp over all lags and the matrices Rxp
and consequently Axp

are computed as described in (3.14), the vector β̂xp
of the risk contributions and its

covariance matrix V
(

β̂xp

)

can be estimated as follows:

β̂xp
= Axp

η̂ (3.16)

V
(

β̂xp

)

= Axp
V (η̂)A⊤

xp
(3.17)

This vector β̂xp
can be seen as a lag-response curve for a specific exposure level xp and

since it can be estimated for every exposure level from the range of x this yields, as

described in Gasparrini (2014), a "bi-dimensional representation of the association". So

consequently, the exposure-response curves β̂lp along the exposures for a specific lag can

be derived as well.
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The cumulative risk can be computed in a very similar fashion:

By substituting the constant exposure history qxp
in (3.16) and (3.17) for any arbitrarily

defined exposure history qh, lag-specific risk contributions β̂h for every single exposure

in this history are computed. These can be used to predict the cumulative risk as well

as the associated covariance:

β̂c = 1
⊤

υx·υl
β̂h (3.18)

V
(

β̂c

)

= 1
⊤

υx·υl
V
(

β̂h

)

1υx·υl (3.19)

Constraints

There are some points in which this model class has to be constrained due to identifia-

bility issues. In this part, the practical consequences are explained briefly:

- If an intercept for f(x) is included, the design matrix isn’t of full rank and hence

the parameters in η aren’t identifiable. So there won’t be an intercept included

for the exposure-response functions in any model, which also makes sense from the

biological point of view here, as an exposure of 0 wlm/year is not expected to raise

the risk of dying from lung cancer

- Further constraints can be imposed by excluding an intercept from lag-response-

curve, so that it is forced to start at a predicted risk of zero at the minimum of

the lag period (Left constraint)

- The lag-response-curve can be forced to approach a predicted risk of zero at the

maximum of the lag period (Right constraint). This can be achieved by a modifi-

cation of the B-Spline bases which is introduced in the Appendix D1 in Gasparrini

(2014)

A major advantage of all of the above-mentioned constraints is the possibility of spec-

ifying them without having to introduce any customized estimation methods for the

estimation process Gasparrini (2014).
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3.3.3. Penalized piecewise exponential additive models

The piecewise exponential approach to modelling survival data is not a novel approach

itself, but an important extension is introduced by Bender et al. (2016). They have

shown that this extension is specifically useful for data, where the subjects are exposed

to different levels of a certain covariate at different points in time by analyzing data

of critically ill patients in intensive care units with the information on their artificial

nutrition. This model class is capable of incorporating the (potentially smooth) time-

varying and cumulative effects of an exposure through advanced inference methods for

generalized additive mixed models.

All of the formulae in this section are either directly taken from Bender et al. (2016) or

are directly derived from their representations.

Theory

By partitioning the time axis into J intervals with J + 1 cut-points and assuming the

baseline hazard λ0(t) to be constant in each of the J intervals, the cox ph-model from

(3.2) can be transformed into a piecewise exponential model. The cut-points are chosen

to be at κ0 < κ1 < ... < κJ , with κ0 = 0 and κJ being the maximum of the follow-up

period. The model equation takes the following (log-linear) form for the j − th interval:

log(λi(t|xi)) = log(λj) + xT
i β (3.20)

The likelihood of the model from (3.20) has been shown to be proportional to the likeli-

hood of the following generalized linear model following a Poisson distribution (Holford

(1980), Laird and Olivier (1981)):

log(E(yij|xi)) = log(λijtij) = log(λj) + xT
i β + log(tij) (3.21)

with tij being the offsets, i.e. the time a subjects spends under risk in a certain inter-

val (tij = min(ti − κj−1, κj − κj−1)). The proportionality of the likelihoods leads to a

equivalence in the ML estimation of the model parameters which can be exploited by

choosing the cut-points with respect to the temporal structure of the exposure history.

Bender et al. (2016) extend the above-mentioned GLM framework to the GAMM frame-
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work in order to gain the ability to include effects which vary smoothly over time. They

specify the hazard rate λ for individual i at time point t as follows:

log(λi(t|xi, zi, ℓi)) = f0(t) +
P
∑

p=1

fp(x
p
i , t) + g(Zi(t), t) + bℓi (3.22)

The effects of all time-constant confounders (here: age at first exposure, calendar time)

are captured by the term
∑P

p=1 fp(x
p
i , t) while the exposure-lag-response association is

represented by g(Zi(t), t). Additionally, bℓi is a Gaussian random effect for subject i.

As the two aforementioned time-constant confounders are included linearly, this part of

the model equation simplifies to
∑p

p=1 βpx
p
i .

Analogously to section 3.3.1 a time window in which the exposure history affects the

hazard has so be defined. It is in this case denoted by T (j) and leads to the following

exposure history to affect the hazard rate at time t

Zi(t) := {zi(te) : te ∈ Te(j)} (3.23)

where te denotes the time point at which the exposure actually occurred and consequently

zi(te) the exposure history at te.

In a next step, Bender et al. (2016) specify the cumulative effects of the exposure histories

(g(Zi(t), t)) as the integral over the partial effects g(zi(te), t)

g(Zi(te), t) =

∫

te∈Te(j)

g(zi(u), t)du ≈
∑

k:te,k∈Te(j)

∆kg(zi(te,k), t) (3.24)

or approximately as the sum over the partial effects multiplied by ∆k = te,k − te,k−1.

Furthermore, they specify partial effects to be a bivariate smooth function in te and t

g(zi(te), t) = f(te, t) · wij (3.25)

with wij being an indicator function to show whether the exposure occurred inside of

the predefined time window
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wij =







zi(te) if te ∈ Te(j)

0 else
(3.26)

and f(te, t) being modelled as a tensor product spline smooth:

f(te, t) =
M
∑

m=1

K
∑

k=1

γmkBm(te)Bk(t) =
∑

m,k

γmkBmk(te, t) (3.27)

The shape of f(te, t) is thereby controlled by the spline coefficients γmk and Bmk is a

product of the marginal bases Bm and Bk.

Inference

Estimation and inferential procedures in the model class are based on stable likelihood-

based methods introduced by Wood (2011) for penalized models.

To apply these methods, the model is represented by a sum of the model deviance D(γ)

and a penalty term controlling the smoothness:

D(γ) +
∑

p

λpγ
⊤Kpγ (3.28)

The coefficient-vector γ contains all γmk and can, given the vector λ = (λ1, ..., λp),

be estimated via the P-IRLS method. Convergence is ensured by basing the whole

procedure on nested iterations.
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4. Results for the DLMs and

DLNMs

As described above, this thesis contains two different approaches to modelling the data

of the wismut cohort. The focus, however, is on analyzing the data using distributed

lag models and distributed lag non-linear models. In the process of the analysis, several

different hypotheses are disposed and tested or evaluated. Furthermore, the behavior of

the DLNMs under several restrictions (see section 3.3.2, Constraints) is investigated.

A model with a log-function as exposure-response function is also estimated and is com-

pared to the optimal model in several ways. So in this chapter, in section 4.1 the different

hypotheses are explained, as well as the strategy how they are to be checked. Section

4.2 contains information about the criteria that were used for selecting the best models.

4.1. Modelling strategy and Hypotheses

The algebraic notion of the estimated models looks as follows:

λ(t,ηx,ηz, γ, δ) = λ0(t) · exp [sx(x, t;ηx) + sz(z, t;ηz) + γ cal + δ age] (4.1)

In this model the hazard is modelled as a product of the baseline hazard λ0(t) and the

exp() of the linear predictor. Of course it can also be converted to a form, where the

log-hazard is modelled as a sum of the baseline hazard and the linear predictor:

log [λ(t,ηx,ηz, γ, δ)] = log [λ0(t)] + sx(x, t;ηx) + sz(z, t;ηz) + γ cal + δ age (4.2)

The cross-bases for radon and silica dust are represented by sx for radon and sz for silica

dust. Apart from these two cross-bases, linear terms for the calendar time cal (centered
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around the year 1970) and for the age at first exposure age are added.

DLMs

In a first step, simple distributed lag-models are applied to the data, where the exposure-

response-relationship is assumed to be linear, while for the lag-response-relationship

various approaches are applied. These approaches include a constant function for wx(ℓ),

i.e. an exposure always has the same effect no matter how long ago it occurred, a

piecewise constant function, which allows differences in constant effects over several

lags, and different kinds of B-Splines.

As for the B-Splines for the lag-response-relationship, different combinations of degrees of

the splines (one to six) and numbers of equally spaced knots (one to five) on the quantiles

of a weighted distribution5 for the lags were analyzed. B-Splines of higher degrees (four

to six) combined with a higher number of knots (three to five) were eventually considered

unfeasible, because this led to highly volatile curves with several ups and downs over

the lags as well as an upside at the end of the lag-response-curves in some cases. From a

biological point of view, this is implausible and this is why these models weren’t included

in the further analysis of DLNMs.

It is obvious from the results of the study Gasparrini (2014) that this assumption of

linearity is by far too restrictive, since the exposure-response-relationship has already

been shown to be non-linear there. Whereas if one has a look at some of the other papers

mentioned in section 3.1.2, one can see that in studies where the cumulative exposure is

used as influential variable, the relationship is predominantly assumed to be linear. So

the first hypothesis disposed to be falsified in this thesis is:

Hyp 1: "The exposure-response-relationship is of a linear form"

It is already partly answered by the literature, but will also be briefly addressed by an

AIC-comparison of the DLMs and the DLNMs. Another reason, besides testing this

hypothesis, why these simpler DLMs with a linear exposure-response relationship are

fitted and analyzed anyway is to investigate, what imposing this restriction on the model

does to the estimated lag-response-relationship.

5The weighted distribution for the lags is obtained by counting the incidence of non-zero exposure-
values for each lag and weighting them with this factor. This leads to a higher weighting for the early
lags, as every miner who (potentially) experienced exposures at high lags has to have experienced
them at early lags as well. All of the mentioned quantiles of this distribution can be found in
appendix A.3
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Another crucial decision is, at which minimum lag ℓ0 one allows the exposure to have

an effect on the risk of dying from lung cancer in the model. As there will be shown

in the further part of this chapter, this decision on the minimum lag has a huge impact

on the results. Three different possibilities are considered here: On the one hand side,

a lag of zero years is used at the very beginning. But during the process, this doesn’t

seem to be adequate at all, so a lag of two years like it was used in Gasparrini (2014), is

also considered. Since this is not the only possible minimum lag mentioned in literature,

a minimum lag of five years, like implemented by Kreuzer et al. (2010) or Walsh et al.

(2010) was taken into account as well. Additionally, it was also proposed by project

partner Dr. Christian Kaiser from the Institute of Radiation Protection in Munich.

So from this problem statement, one more hypothesis, with the aim to be falsified, is

derived:

Hyp 2: "The minimum lag for the lag-response-relationship is zero"

Going along with this hypothesis, the aim was to determine a reasonable minimum lag.

In order to do so, a lag of five years was considered as being the maximum, as no study

using a higher minimum lag was found during the literature review.

For the maximum lag L at which the risk for lung cancer is possibly affected by the

exposure, some restrictions are made. So in the following models it is theoretically just

possible for the exposure to have an effect up to the maximum lag of 40 years, despite

there is data of up to 57 years of follow-up after the beginning of employment. But one

should keep in mind that at lags about 40 years or higher, there are certain problems

concerning sparse data as not many miners had lived long enough to have experienced

an exposure this long ago. All in all, this would lead to huge confidence intervals at high

lags and also to possibly implausible courses of the estimated lag-response curves due

to the data.

Another potential problem occurs due to the highly skewed distribution of the expo-

sures, as there are many exposures very close to zero and only few very high exposures

between 300 wlm/year and the maximum of 375 wlm/year. This may lead to some

issues concerning the reliability of the estimated effects of these high exposures which

also results in large confidence intervals at high exposure values or implausible courses

of the estimated exposure-response curves.

Further hypotheses about the exact form of the exposure-lag-response relationship are

tested withing the DLNM framework.
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DLNMs

Concerning the modelling of the DLNMs a mostly similar proceeding (using the different

variations of degrees of the B-Splines and number of knots) was applied, with the dif-

ference of the simultaneously differently modelled lag-response- and exposure-response-

curves. From Gasparrini (2014), a hypothesis about the behavior of the lag-response

curve at lags of 30 years or higher was derived:

Hyp 3: "The lag-response curve will approach one eventually"

To be precise, the lag-response-curve in Gasparrini (2014) approaches one at a lag of 35

years. So it is not only to be tested whether it approaches one, but also when. This

leads to the forth hypothesis:

Hyp 4: "The lag-response curve will approach one at a lag of 35 years"

As the general form of the lag-response curve like it was estimated in Gasparrini (2014)

with an increase up to a maximum effect at a certain lag and a steady decline with no

more increases afterwards is seen to be plausible from a physiological point of view, this

form is taken as given. The fifth hypothesis is concerned with the exact lag at which

the maximum effect occurs:

Hyp 5: "The lag-response curve reaches its maximum at a lag of 11 years"

This hypothesis is also derived from Gasparrini (2014), as the lag-response curves of

the final model in this paper reach their maximum approximately 11 years after the

respective exposure occurred.

At last, an aspect concerning the exposure-response association is tested. The model

from Gasparrini (2014) had a real breaking point in these curves, before which the

increase was much more intense than afterwards. This breaking point was located at an

exposure level of about 50 wlm/year. So the sixth and seventh hypotheses are formulated

as follows:

Hyp 6: "There is a breaking point in the exposure-response association"

Hyp 7: "The break in the exposure-response curve is around 50 wlm/year"

Besides testing and evaluating these hypotheses, the aim is to get further, up to now

undiscovered, insights in the exposure-lag-response association of occupational radon

exposure and lung cancer mortality and check the overall compatibility of the results

obtained by Gasparrini (2014).
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4.2. Model selection and Diagnostics

The model selection is performed via the Akaike information criterion (AIC) and the

Bayesian information criterion (BIC), which are most commonly used for evaluating var-

ious kinds of models. These two criteria were adapted to survival analysis by Gasparrini

(2014) and are used in this thesis, given by the following expression for the AIC:

AIC = −2 · L(η̂x, η̂z, γ̂) + 2k (4.3)

And respectively for the BIC:

BIC = −2 · L(η̂x, η̂z, γ̂) + log(d) · k (4.4)

But there are some limitations of these criteria, which are already mentioned briefly in

section 3.1.1, that have to be considered when evaluating the models. This chapter will

explain the critical issues in more detail. The simulation study which was performed in

Gasparrini (2014), was based on nine different scenarios for the exposure-lag-response

relationship with 500 simulated data sets for each scenario. The number of subjects

in this simulated data sets were either 200, 400 or 800 with a proportion of censored

subjects of about 25%. Subsequently, the best-fitting model according to the AIC (or

respectively BIC) was chosen out of a set of predefined models. The performance of the

models with respect to the estimation of the overall cumulative effect was assessed using

indices of the relative bias, the relative coverage and the relative RMSE.

This provided an insight on the limitations of the two criteria:

- AIC-selected models generally have a better performance

- Higher variability in AIC-selected models vs. higher bias in BIC-selected models

- The performance of AIC-based tests is not drastically affected by the sample size

- Moderate Overfitting for the AIC selection, leading to more flexible models

- Severe Underfitting for the BIC selection, leading to the selection of simpler (often

also linear) models

Further details concerning the simulation study are to be found in the original paper

and its appendix.

34



One more criterion which was applied during the analysis, pertains to the form of the

exposure-lag-response surface. Like already briefly mentioned in chapter 4.1, there are

some constraints from the physiological point of view. Unfortunately, the are no formal

criteria or tests to check these, so that a graphical evaluation of the plotted exposure-

response and lag-response curves was applied.

The exposure-response curve is subject to the expectation only to increase up to a

certain level of exposure, where eventually a saturation is reached. This leads to the

constraint that models with an exposure-response curve which increases everlastingly,

are considered implausible and are hence discarded. Concerning the lag-response rela-

tionship, curves with wiggly courses aren’t accepted. Wiggly is in this case defined as

having more than one change in slope from positive to negative or vice versa. This is

because from a physiological position the effect reaches a maximum at some point in

time and has to decrease permanently thereafter. So if there’s another increase after the

estimated maximum in the lag-response curves of a model, this depicts a second change

in slope and thus the model is discarded (Criterion of wiggliness).

4.3. Results for the DLMs

As a first approach, two different DLMs, both including a lag period from 0 to 40

years, are considered. Each of them consists of a linear function for f(xt−ℓ) for the

radon exposure and does include the age at first exposure as well as the calendar time

(centered around the value of 1970), but not silica dust yet, as a confounder. So these

models spend 2 df on controlling for confounders.

The first model includes a constant function for wx(ℓ), while it is chosen to be piecewise

constant function with three cut-off points (at lag 10, lag 20 and lag 30) in the second

model. In the following table, these two models will be referred to as "Model 1" and

"Model 2". In a second step, silica dust is added to both of the two models, which will

result in models named "Model 1a", and "Model 2a" respectively. The function f(zt−ℓ)

for silica dust is specified as a linear threshold function, which estimates a linear effect

on the log scale on the hazard ratio, if the exposure to silica dust takes values above an

a priori chosen threshold and restrains it to an effect of zero for all values below this

threshold. In this case, as well as for all the following models including the DLNMs,

this a priori chosen threshold value is chosen to be 0.92 mg/m3 per year (Zaballa and

Eidemüller (2016)).
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The lag-response function wz(ℓ) for silica dust is defined as a piecewise constant function

with two cut-off points at equally spaced quantiles of the distribution of the lags. The

reason for this choice is the acceptable flexibility which is achieved under the condition

of not spending to much df on a complicated modelling of the exposure-lag-response

relationship of silica dust and lung cancer mortality. So the models which include silica

dust, spend a total of 5 df on controlling for confounders.

The following graphics show the lag-response-curves of radon exposures to 50, 100, 150

and 200 wlm/year at a lag of zero years for each of the four above-mentioned models:
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Figure 4.1.: Comparison of the models 1, 2, 1a and 2a

One thing that is observable in every one of the four plots in figure 4.1, is that the

courses of the curves for the models 1 and 2 (black lines) are, besides the first interval

from lag 0 to lag 10, consistently above those from the models 1a and 2a (blue lines).

While this is the case, the general forms of the curves don’t really change if the curves

of model 1 and model 1a (solid lines) and respectively the curves of model 2 and model

2a (dotted lines) are compared to each other.

Another aspect that also supports the inclusion of silica dust to the model is a comparison

of the AICs and BICs of the estimated models (see table 4.1).
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Model f(xt−ℓ) wx(ℓ) AIC BIC df Silica dust

Model 1 linear constant 58427.86 58445.87 3 No

Model 1 a linear constant 58353.14 58389.17 6 Yes

Model 2 linear piecewise constant 58404.23 58440.26 6 No

Model 2 a linear piecewise constant 58350.07 58404.11 9 Yes

Table 4.1.: Comparison of the models 1, 1a, 2 and 2a

First of all, if model 1 is compared to model 2, one observes an about 23 points lower

AIC as well as an about 5 points lower BIC for model 2, which was being expected due

to the more elaborate modelling of wx(ℓ) in model 2. Both information criteria also

indicate for both of the models that adding silica dust leads to an improvement of the

fit. The AIC (BIC) of model 1a is about 75 (57) points lower than in model 1, for model

2a the AIC (BIC) reduces by about 54 (36) points compared to model 2.

A major decision that is derived from this insight is that all further models (DLMs as

well as DLNMs) will include silica dust in the form of the already described threshold

function. Nevertheless, one should always be aware of the fact, that there will be no

further analysis on the form of the impact of silica dust, as it is just considered as

confounder and the main interest is on the effect of radon exposure.

So eventually, there are two main things to take away from this:

1. When the effect of silica dust exposure on the hazard ratio for death from lung

cancer is ignored, i.e. it is not added to the model through whatever kind of

function, this leads to a severe overestimation of the effect of radon exposure. So

it is crucial to consider silica dust as an important confounder in all of the models.

2. Despite the huge impact on the magnitude of the estimated effect of the radon

exposure, adding silica dust does not seem to change the way how radon exposure

affects the hazard ratio. This finding is justified by the observation that the forms

of the curves for wx(ℓ) do not change, when silica dust is added to the model.

In a second step, the aim was to determine a reasonable starting point for the lag-

response-function going along with introducing a more complex form. This was achieved

by combining B-Splines of degrees one to six with zero up to five knots on equally spaced

quantiles of the lag-distribution. For the B-Splines with only one knot, three different

knot positions were considered (33.3%-, 50%- and 66.6%-quantile). These B-Splines were

all estimated with a possible intercept and including lags from zero up to 40, i.e. they
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were allowed to have an effect at lag 0. This is, of course, an unrealistic assumption,

but by doing this the resulting models can be examined with respect to the point, where

wx(ℓ) crosses the x-axis. As almost all the curves have an estimated intercept smaller

than 1, the point where the curve crosses the axis can be interpreted as a hint to the time

point, from where on the exposure influences the hazard ratio. Before this time point,

the effect can be considered zero, because a protective effect of radon is not assumed at

any time. A comparison of all the 48 models can be found in table A.4 in appendix A.4.

In the last column, there is information in the minimum lag, where the estimated lag-

response curves actually show a hazard ratio > 1. In most of the models this is the case

for a lag period of three years, but there are also some models for which it happens at

a lag of two or at a lag of four. Almost none of the models show this behavior already

at the lags of zero or one. So this observation strengthens the physiological arguments

as well as the propositions by the project partners and the evidence from the literature,

that there is no immediate increase in risk after the exposure occurs.

Due to this, Hypothesis 2 can be pre-drawn and is rejected by this thesis.

In the next step, a similar procedure is applied, but now the minimum lag is chosen to

be two years as most of the models from the prior step showed a hazard ratio > 1 not

until lag 3. The same model combinations as above were estimated. The results are

displayed in table A.5 in appendix A.5.

When looking at the AICs of the different models, those with either a high degree of

the B-Spline or a high number of knots (or both) exhibit the lowest AIC. But one thing

that becomes obvious as soon as one has a look at the plotted lag-response curves, is

that all models having a B-Spline of degree three or higher aren’t acceptable. They

all violate the criterion of wiggliness postulated in section 4.2, as they show several

ups and downs in their curves. The BIC-selected models show a complete oppositional

tendency: Among the models with the lowest BIC, solely simpler models appear. So

the AIC selects the second most complex model (degree six with four knots) with 15 df ,

while the BIC proposes to choose the second simplest model (degree one with one knot)

using just 7 df . The three figures6 on the next page show the lag-response curves for

the two above mentioned models selected by the information criteria as well as for one

model which meets the criterion of wiggliness and simultaneously has the lowest AIC

among those who else do. These models will in the further part be referred to as "Model

3", "Model 4" and "Model 5"7.

6The range of the y-axis in figure 4.2 is chosen differently from all other figures on purpose, to show
all ups and downs of these overly wiggly curves. In all other plots the range will be chosen equally.

7The exposure-response curves for model 5 are displayed in A.6
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Figure 4.2.: Lag-response curves of the AIC-selected DLM (Model 3)
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Figure 4.3.: Lag-response curves of the BIC-selected DLM (Model 4)
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Figure 4.4.: Lag-response curves of the AIC-best plausible DLM (Model 5)
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The following table, which is constructed similarly to table 4.1, gives an overview on the

characteristics and the information criteria of the three models:

f(xt−ℓ) wx(ℓ) AIC BIC df Silica dust

Model 3 linear B-Spline (degree 6, 4 knots) 58333.21 58423.29 15 Yes

Model 4 linear B-Spline (degree 1, 1 knots) 58345.03 58387.06 7 Yes

Model 5 linear B-Spline (degree 2, 1 knots) 58345.58 58393.62 8 Yes

Table 4.2.: Comparison of the models 3, 4 and 5

The implausible AIC-selected model has an about 12 points lower AIC than the other

two models, whose AICs are approximately the same. Concerning the BIC, it is much

worse ranking about 36 points above the BIC-selected model and about 30 above the

AIC-best plausible model.

It is also worth having a look at the estimated effects for the covariates cal and age

which are included in each of the three models. Table 4.3 contains the estimates as

well as the exp() of the estimates, their standard errors and their p-values, according to

which both estimates are significant.

Estimate exp(Estimate) Standard error p-value

cal -0.0184 0.9817 0.0042 0.0000

age -0.0292 0.9712 0.0046 0.0000

Table 4.3.: Estimates of cal and age from model 5

The estimates for both of them have a negative sign and each of them is significant. The

estimate for cal has a magnitude of −1.83%, which indicates a decreasing trend in lung

cancer mortality risk over time. Additionally, with every more year of attained age at

the time point of the first occupational radon exposure, the lung cancer mortality risk

is estimated to decrease by about 2.88%. Theses two estimates will also be compared to

the estimates from the DLNMs with respect to their magnitude and their significance.

One more thing that will be compared is, whether the estimated exposure-lag-response-
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relationship of lung cancer mortality and radon is of a plausible form.

For Model 5 it looks as follows:
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Figure 4.5.: Lag-response and exposure-response curves for silica dust (Model 5)

The estimated lag-response relationship of the most important confounder exhibits the

highest impact between the two predefined breakpoints (lag 14.7 and lag 27.3) of the

piecewise constant function. For the exposure-response relationship, the effect is zero for

every silica dust exposure < 0.92 mg/m3 per year, followed by a linear increase with dif-

ferent slopes for every one of the three intervals of the lag-response function. Exemplary

for the three intervals (lag 2 - 14.7, lag 14.7 - 27.3, lag 27.3 - 40) the exposure-response

curves were plotted at lags of 10, 20 and 30 years, as each of the three values lies within

one of the intervals.

In order to validate a lag of two years as a minimum lag for the lag-response function

and in order to show that a lag of five years would be inadequate, the following steps

are taken:

A first model with same specifications as model 5 is estimated, with the sole difference of

the inclusion of an intercept for the lag-response function. It is subsequently compared

to model 5 and is also evaluated graphically. It will be referred to as "Model 5-1".

A second and a third model with the almost same specifications and the mere difference

in the lag chosen as starting point for the lag-response function are estimated. One uses

a lag of five years as a starting point and doesn’t include an intercept ("Model 5-2"),

whereas the other one does include an intercept ("Model 5-3"). These two models are

compared to each other in appendix A.7 in the same fashion, as Model 5 and Model 5-1

are.
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Figure 4.6 shows the lag-response curves of model 5-1 for different exposure levels:
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Figure 4.6.: Lag-response curves for different radon exposures (Model 5-1)

The overall course of these curves looks alike to that of the curves depicted in figure

4.4. But most importantly, when the estimated intercepts are looked at, they aren’t

estimated to be of great magnitude. This visual finding, as well as an comparison of the

information criteria of the two models8, indicates that a lag of two years is a reasonable

starting point for a non-intercept model.

A comparison of the intercept model and the non-intercept model with a lag of five years

as minimum lag (see appendix A.7) shows that a non-intercept would not be adequate

in this case, as the estimated intercepts are of a greater magnitude. The surmise that

radon exposure has a latency period of five years can hence be discarded.

The analysis of these models of the DLM class will not be pursued any further in this

thesis, as the assumption of linearity does not seem to be adequate. This inadequacy is

still to be shown in the further part of this chapter in section 4.4. The obtained results

from this section will also be used for a detailed comparison to the models of the DLNM

class in section 4.4.

8The AIC (BIC) of model 5-1 amounts to 58347.47 (58401.52), while the AIC (BIC) of model 5 is
58345.58 (58393.62)

42



4.4. Results for the DLNMs

For determining the optimal DLNM, considerably more model combinations had to be

evaluated than in the simple DLM case. The huge increase in possible combinations is

a result of the additional complexity due to the potentially non-linear modelling of the

exposure-response function. The overall proceeding concerning the lag-response function

is again similar to the DLM case, but with two differences: As it was already shown

that using B-Splines of higher degrees is not really useful for modelling the lag-response

association, B-Splines of degrees five and six aren’t considered in this part of the analysis

anymore. B-Splines of degree one are also discarded a priori as they would simplify the

true underlying relationship to much. Concerning the knots and their placement, again

zero to five knots on equally spaced quantiles of the distribution of the lags, with the

exceptional placement for the one-knot-case, were considered (see: appendix A.3).

For the characterization of the exposure response-function from now on, B-Splines are

considered as well. In this case, B-Splines of degree two, three and four in combination

with zero to five knots at equally spaced quantiles of the exposure-distribution9 are taken

into consideration. In the one-knot-case, again three different positions of this knot were

considered (33.3%-, 50%- and 66.6%-quantile).

Regarding the results, these are entirely different compared to the results of the DLM

analysis despite some similarities concerning tendencies in AIC-selection versus BIC-

selection. Starting with the differences, the AIC-selected models show clearly how the

exposure-response-function is to be characterized: The 20 AIC-best models all include a

B-Spline of degree two with two knots at 33.3% and the 66.6% quantiles of the exposure-

distribution for this part of the association.

Within these models, there’s more variation with regard to the specification of the lag-

response relationship, but none of the AIC-best models contains a B-Spline with more

than three knots. The two AIC-best models have to be discarded, as they violate the

criterion of wiggliness, but the third best model (which exhibits an AIC only 2.8 points

worse than the AIC-best model) satisfies the requirements concerning the wiggliness

and has an AIC of about 101 points lower than the AIC-best DLM (Model 3). This

model, which contains a cross-basis with B-Spline of degree two with two knots for the

exposure-response function and a B-Spline of degree 2 with one knot at a lag of 20 years

for the lag-response function, is selected to be the final model and will from now on be

9All relevant quantiles of the distribution of the radon exposure are to be found in table A.6 in appendix
A.8. It is the distribution of all non-zero exposure values that appear in the exposure distribution
during the period of lag 2 until lag 40.
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referred to as "Model 6".

The BIC-selected models on the other hand, show the same lack of complexity as they

already did in the analysis of the DLMs. Almost exclusively too simple models are

selected, most of which are only estimated with a B-Spline with one knot or no knots

at all. So to summarize the results of this, it can be stated that both of information

criteria exhibit the expectable strengths and weaknesses.

The following three figures show the exposure-lag-response association for the selected

model:
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Figure 4.7.: Lag-response curve of the final DLNM (Model 6)

Compared to the lag-response curves from the AIC-best plausible DLM, mainly two

things get obvious:

Firstly, the maximum of the hazard ratio is estimated to be much earlier for model 5,

with maximum at a lag of about 9 years, than for model 6 with a maximum at a lag of

about 16 years.

A second point is that the maximum as well as the decline afterwards is much more pro-

nounced in the DLNM compared to the DLM. Model 6 exhibits a rather sharp decline

after the peak and flattens out slowly at the end of the lag-period. Model 5 on the other

hand, does not show this sharp decline but a rather constant process of flattening out

over the rest of the lag-period.

Figure 4.8, which depicts the exposure-response curves from model 6, clearly shows

the presence of non-linearity in the exposure-response association of occupational radon

exposure and lung cancer mortality. This finding leads to the rejection of Hypothesis

1, as the DLNM also exhibits a better AIC than all of the DLMs.
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Figure 4.8.: Exposure-response curve of the final DLNM (Model 6)

One thing that catches the eye real quick is the break in the curves at an exposure

of around 15 to 20 wlm/year. From this point onwards, the increase is a lot smaller

until exposure-levels between 200 and 250 wlm/years are reached. Beyond this point

there’s no more increase in the hazard ratio due to a higher exposure, which can be

interpreted as some kind of saturation. Another distinctive feature is the negatively

estimated hazard ratio which some of the curves exhibit for very low exposures. This

weird behaviour occurs for lags of up to 15 years, where the estimation of the hazard

ratio for exposures < 3 wlm/year is significantly negative and for lags higher than 35

years where it is estimated significantly negative for exposures < 5 wlm/year.

The exposure-lag-response surface combines both curves to a three-dimensional surface:
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Figure 4.9.: Exposure-lag-response surface of the final DLNM (Model 6)
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The two solid lines along the surface are a lag-response curve and an exposure-response

curve, plotted exemplarily at a lag of 15 years and for an exposure of 70 wlm/year

respectively. The choice of these two values, however, is arbitrary and is in this case just

shown as an illustration.

Estimates for the two confounders cal and age are displayed in table 4.4 while the

estimated exposure-lag-response association for silica dust is to be found in figure 4.10:

Estimate exp(Estimate) Standard error p-value

cal -0.0101 0.9900 0.0044 0.0233

age -0.0231 0.9772 0.0048 0.0000

Table 4.4.: Estimates of cal and age from model 6

The estimate for cal (−1.00%) indicates a decreasing trend over time, while the estimate

for age of −2.28% indicates a decreasing lung cancer mortality risk for every more

year of attained age at first exposure. Both of them are significant on the 5%-level.

If these two estimates are compared to those from the AIC-best plausible DLM (cal:

−1.83%; age: −2.88%), they are estimated 0.83 percentage points, and 0.60 percentage

points respectively, smaller. This gives the impression that there might be a tendency

towards overestimation of other covariates’ effect if the exposure-response association is

misspecified as linear.
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Figure 4.10.: Lag-response and exposure-response curves for silica dust (Model 6)

Silica dust exposure is estimated to have the highest effect in the first interval of the
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piecewise constant function (lag 2 to 14.7) with a substantially lower estimated effect

for the other two intervals. At the second breakpoint, there’s merely a very small drop,

so from lag 14.7 to lag 40 the lag-response curves remain almost constant. This can

also be observed when looking at the exposure-response curves (which are again plotted

exemplarily for the three intervals at lags of 10, 20 and 30 years), as those curves for lag

20 and lag 30 only differ marginally. The exposure-response curve plotted at a lag of 10

years however is taking its course clearly above the two aforementioned.

The impression that other covariates’ effects are overestimated in the DLM is also sup-

ported by these figures, as the course of the lag-response curves is below the course of

those from Model 5 and the slope of the exposure-response curves is not as steep (see

again: figure 4.5). Further insights on the consequences of the misspecification are ob-

tained by comparing model 3 (AIC-best DLM) and model 5 (AIC-best plausible DLM)

to model 6 with respect to AIC, BIC and the df :

f(xt−ℓ) wx(ℓ) AIC BIC df

Model 3 linear B-Spline (6, 4 knots) 58333.21 58423.29 15

Model 5 linear B-Spline (2, 1 knot) 58345.58 58393.62 8

Model 6 B-Spline (2, 2 knots) B-Spline (2, 1 knot) 58232.44 58334.52 17

Table 4.5.: Comparison of the AIC-selected DLM and the AIC-best plausible DLM to
the AIC-selected DLNM

As already mentioned before, the AIC of model 6 is considerably lower compared to the

AIC of model 3 (about 101 points) and obviously also compared to the AIC of model 5

(about 113 points). Even the BIC shows the same selection tendency as the AIC, as it

also prefers model 6 over the two DLMs.

One more aspect worth mentioning is the similarity of model 3 and model 6 concerning

the df . The complexity of model 3 with 15 df is much closer to the complexity of model

6 with 17 df , than if model 5 (7 df) is compared to model 6 with respect to model

complexity. So in case of misspecification of f(xt−ℓ), the AIC seems to compensate this

inadequacy by selecting models with an overly complex lag-response function, so that

the overall complexity of the model is equal to the underlying, true complexity.

This is a very important point to take away from this section, as it gives a pretty good

understanding of the severe consequences of misspecification of one part of the cross-
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basis in the DLNM framework.

In a last step, in order to reassure ourselves that the minimum lag of 2 years (which was

adopted from the results of the DLMs) is still adequate, "Model 6-1" is estimated. The

only difference between model 6 and model 6-1 is the intercept included in model 6-1. A

comparison of the AICs of these two models shows the superiority of model 6 to model

6-1, as model 6-1 exhibits an AIC of 58234.52 which is about 2 points higher than the

AIC of model 6 (compare table 4.5). Besides the information criterion, the following

graphical representation of the lag-response curves of model 6-1 also indicates that it

might not be utterly necessary to include the intercept:
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Figure 4.11.: Lag-response curves for the DLNM with a minimum lag of two years in-
cluding an intercept (Model 6-1)

As the overall shape of the curves does not change compared to figure 4.7 and the inter-

cepts are estimated to be rather small, this shows the expendability of an intercept.

If one now reclaims the hypotheses concerning the DLNMs postulated in 4.1, the results

from this section lead to the following decisions about them:

Hypothesis 3 and consequently Hypothesis 4, which were both derived from the re-

sults published by Gasparrini (2014), are rejected.

In the lag-response curves shown in figure 4.7, the hazard ratio doesn’t approach a value

of one at any time inside the lag-period of two to forty years (except from the start-

ing point at a lag of two years). As Hypothesis 4 was just concerned with the exact

lag where the lag-response curves would potentially have approached one, it is of no

relevance anymore. In the further process of this chapter, an alternative model, which

imposes a right-constraint on the model like it was explained in section 3.3.2, will be
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presented, evaluated and compared to model 6.

Hypothesis 5 is concerned with the maximum of the lag-response curves, which Gas-

parrini (2014) found out to be at around 11 years after the initial exposure. This finding

could not be verified either, as the maximum of the lag-response curves is estimated to

appear at a lag of 16 years in model 6. So consequently, this hypothesis is rejected as

well.

The last two hypotheses, Hypothesis 6 and Hypothesis 7 are aimed at the form of

the exposure-response curves. The former of this two hypotheses cannot be rejected

because the exposure-response curves of model 6 shown in figure 4.8 show indeed some

kind of disruption at a certain exposure-level.

In a final step, Hypothesis 7 however is rejected after a qualitative evaluation, as

this aforementioned disruptive point in the exposure-response curves of model 6 is to

be located clearly before the exposure value of 50 wlm/year postulated by the hypothesis.

Alternative Models

Additionally to the finally selected DLNM (Model 6), two other models were considered

to be interesting and were thus investigated as well. To be precise, these additional

models include:

(a) A model with a user-defined log-function for f(xt−ℓ) ("Model 7")

(b) A model where the right-constraint, mentioned in section 3.3.2, is applied to the

B-Spline of wx(ℓ) ("Model 8")

The following table shows a comparison of the two alternative models to model 6, with

respect to the information criteria and the complexity of the models:

f(xt−ℓ) wx(ℓ) AIC BIC df

Model 7 Log-function B-Spline (2, 1 knot) 58235.82 58283.86 8

Model 8 B-Spline (2, 2 knots) RC-B-Spline (2, 1 knot) 58295.72 58349.77 9

Model 6 B-Spline (2, 2 knots) B-Spline (2, 1 knot) 58232.44 58334.52 17

Table 4.6.: Comparison of the two alternative models to the AIC-selected DLNM
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While model 7, which uses a log-function for the exposure-response function, exhibits an

AIC only slightly higher than the final model, model 8 is by far worse according to the

AIC. This supports the previous findings that the lag-response curves actually do not

approach a hazard ratio of one at the and of the lag-period and that restraining them

to do so leads to a worse fit.

What is interesting, however, is the good performance of the simplistic modelling of the

exposure-response relationship as a log-function relative to model 6. Model 8 spends

much less df than model 6 (8 vs. 17), but nevertheless comes close to its AIC value.

One thing that is problematic about this model, is that no saturation of the exposure-

response curve is reached due to the form of the log-function. But still, this is an

important option that should be kept in mind when modelling these associations.

Graphical representations of the exposure-lag-response associations of these two alter-

natively estimated models are to be found in appendix A.9.

Predictions

It is not only possible to calculate the increase in hazard ratio due to a single exposure

at a certain lag, but also to predict the cumulative hazard ratio induced by a certain

exposure history. Such predictions will be calculated exemplarily for artificially created

exposure histories in order to compare different models with respect to their predictive

quality. For four of these six exposure histories, an exposure of 20 wlm/year each year

over a period of ten years is assumed. This applies to either the last 10 years or 10 to

19 (20 to 29, 30 to 39) years ago. For the fifth exposure history, a yearly exposure to

100 wlm/years for the last 10 years is considered, while for the sixth exposure history a

yearly exposure of again 20 wlm/year over a period of the last 20 years is examined.

Cumulative hazard ratios due to these exposure histories are calculated for model 5 and

model 6 as well as for the two alternative models, model 7 and model 8. The results

of these predictions are presented in table 4.7 below. All these estimated values are to

be interpreted in comparison two an exposure history which only includes zero, i.e. the

exposure history of a person who was not exposed at all.

In a first step, when concentrating on the comparison of the predictions of model 5 and

model 6 (DLM versus DLNM), the following findings can be derived:

In general, the estimated cumulative hazard ratios are considerably higher in model 6. If

only the first four exposure histories are considered, both of the regarded models exhibit
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the highest estimated cumulative hazard ratio for an exposure of 20 wlm/year 10 to 19

years ago. For model 5, there’s a relatively modest decline if the exposure is further in

the past whereas this decline is more pronounced for model 6.

In a comparison based on the fifth history however, the estimate for model 5 is much

more proximate to the one from model 6. For the last exposure history, there’s again

a big difference between the predictions of the two models, as model 6 predicts a much

higher value for the cumulative hazard ration than model 5.

Model 5 Model 6 Model 7 Model 8

20 wlm
year (last 10 years) 1.08 (1.05-1.11) 1.25 (1.14-1.37) 1.21 (1.17-1.27) 1.33 (1.25-1.41)

20 wlm
year (10-19 years ago) 1.15 (1.12-1.18) 1.94 (1.61-2.35) 1.74 (1.59-1.91) 2.09 (1.78-2.45)

20 wlm
year (20-29 years ago) 1.12 (1.10-1.14) 1.79 (1.53-2.09) 1.55 (1.46-1.65) 1.46 (1.34-1.58)

20 wlm
year (30-39 years ago) 1.10 (1.07-1.12) 1.43 (1.19-1.71) 1.39 (1.30-1.49) 1.06 (1.05-1.07)

100 wlm
year (last 10 years) 1.47 (1.28-1.68) 1.59 (1.40-1.81) 1.53 (1.40-1.67) 1.67 (1.51-1.86)

20 wlm
year (last 20 years) 1.24 (1.18-1.31) 2.43 (1.84-3.20) 2.11 (1.85-2.42) 2.77 (2.22-3.46)

Table 4.7.: Prediction of the cumulative hazard ratios (95%-CIs in brackets) for different
predefined exposure histories in different models

If the other two models are taken into consideration and are compared to model 6,

different insights are gained:

When at first only the exposure histories, which only exhibit exposures in the current

past (i.e. the histories 1, 2, 5 and 6) model 7 predicts consistently lower cumulative

hazard ratios than model 6 while the predictions obtained from model 8 are consistently

higher. Concerning the exposure histories which possess exposures further in the past

(i.e. the histories 3 and 4), other observations are made. For these histories, model 6

predicts the highest cumulative hazard ratios of the three models. The predictions of

model 7 are in this case much more proximate to those from model 6 than the predictions

from model 8, which might be due to the right-constraint imposed on the lag-response

function in model 8.
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5. Results for the PAMs

This chapter contains the results which were obtained by modelling the data within the

framework of the piece-wise exponential additive models.

The main objective is to compare the predictive abilities of this framework to those of

the DLNM framework and to spot potential differences. In order to avoid going beyond

the scope of this whole thesis, the model will be kept relatively simplistic:

Firstly, the model equation is be specified (see equation (5.1)) and its single pieces are

explained subsequently.

Secondly, the model is to be estimated which contains, besides the occupational radon

exposure, only the age at first exposure as well as the calendar time (again centered

around the year 1970) as covariates. Silica dust exposure is not included, as the first

aim here is just to check whether the predictions of these two frameworks are compara-

ble to each other for the simple case of only one exposure-lag-response association. So

in order to compare it to the DLNM framework, another DLNM, containing the same

covariates as the PAM, is estimated in this chapter ("Model 9").

The model formula of the PAM is specified as follows:

log(λi(t|X i,xradi)) = f0(t̃) + βcalx
cal
i + βagex

age
i

+
∑

te∈Te(j)

g(xrad(te), t̃),
(5.1)

where f0(t̃) is the baseline hazard, which is estimated of the midpoints t̃ of the single

time intervals. The linear effect of the two confounders calendar time and age at first

exposure are incorporated by the terms βcalx
cal
i and βagex

age
i , while

∑

te∈Te(j)
g(xrad(te), t̃)

represents the cumulative effect of the radon exposure. This exposure-lag response asso-

ciation is estimated by a tensor product spline with the marginal bases being P-Splines

(Eilers and Marx (1996)) of degree two with second order difference penalties. The de-

gree of the splines was chosen to be two (and not the default of cubic splines) to be most
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alike to the B-Splines of second degree used in the DLNMs10.

Furthermore, the estimation of the model was performed by the bam-function (Wood

et al. (2015)) from the mgcv-package (Wood (2014), version 1.8-12). This decision was

made based on the expectedly high computational effort due to the large data set. Dur-

ing the estimation process, there were no problems with the convergence of the models.

The results are again displayed similar to the anterior chapters: Figure 5.1 shows the lag-

response curves predicted from the results of the PAM in the top panel. In the bottom

panel, the lag-response curves of model 9 are depicted for the reasons of comparison.

Subsequently, in table 5.1, the estimates of the two covariates cal and age are presented

in the same fashion as in table 4.4.
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Figure 5.1.: Lag-response curves of the PAM (top) and of model 9 (bottom)

10Altogether, four different alternatives were considered: P-Splines of degree two and three combined
with second order difference penalties and ridge penalties. A comparison of the AICs indicated the
chosen model to be slightly better than the other options.
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A comparison of the curves of the two models clearly shows some key differences.

Firstly, the PAM predicts the exposure to have an immediate, strong effect on the haz-

ard ratio, as soon as it enters the predefined time window Te(j) in which it is allowed to

affect the hazard. The time window Te(j) for the PAMs naturally chosen equally to the

lag-period of the DLNMs to last from lag 2 to lag 40.

This immediate, strong effect is expressed by a steep increase in the curves for all dif-

ferent exposure-levels, followed by a very moderate further increase up to a maximum,

which is different for the curves. The maximum of the effect on the hazard ratio tends

to be earlier, the higher the initial exposure is and consequently later the lower it is.

Thereafter, there’s a smooth decline in all of them again.

So in a rough overall description, the curves sound kind of related to those from the

DLNMs but with the key differences of the steep increase at the very beginning and the

varying location of the maximum within the different curves.

One more thing to add when comparing the curves of model 9 to those of model 6 from

figure 4.7: The curves of model 9 (where silica dust is not included as a confounder)

are (a) for all exposure-levels consistently above them of model 6 and (b) of the same

overall form like those of model 6. This confirms the findings from section 4.3, where

the inclusion of silica dust as a confounder was justified by the same observations that

were made in the simple DLMs.

Estimate exp(Estimate) Standard error p-value

cal -0.0184 0.9818 0.0043 0.0000

age 0.0795 1.0827 0.0022 0.0000

Table 5.1.: Estimates of cal and age from the PAM

The inspection of table 5.1 reveals further differences between the two frameworks. While

the estimate for the calendar time cal has at least the same sign as its estimate in model

9 has, they differ considerably concerning the magnitude. In the PAM, the effect is

estimated to be −1.82%, whereas the estimate of model 9 is only 1.21%11. Somewhat

more disturbing are the different signs of the estimates for the age at first exposure.

For the PAM a positive and very large effect of 8.27% is estimated, while for model 9 a

relatively small negative effect of −2.31% is estimated.

11The estimates from model 9 are to be found in table A.7 in appendix A.10
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6. Discussion

This chapter will mainly consist of three different topics: Firstly the differences in the

results of the two different modelling frameworks have to be addressed. Secondly, single

aspects of the DLNMs have to be discussed and thirdly advantages as well as limitations

of the data are presented.

DLNMs versus PAMs

In this work two relatively novel modelling frameworks, which are still subject to re-

search, are employed. So consequently, there are some aspects concerning the analysis,

that have to be discussed.

The first point to be addressed here, are the different stages of technical development in

which the two frameworks are currently embedded. As already mentioned before, the

estimation of the PAMs relies on the stable routines of the mgcv-package and offers thus

a variety of different splines which are implemented in the gam- and the bam-function.

The estimation of the DLNMs, however, is performed via the survival- and the dlnm-

package, which (in case of the dlnm-package) is a rather recently developed package

compared to mgcv. So the crossbasis-function from dlnm does not offer a comparable

variety of different splines (yet), as the gam-/bam-function does. But nevertheless, this is

still a current topic of research to be worked on, as can be seen in the work of Gasparrini

et al. (2016), who introduce P-Splines within the framework of DLNMs.

A second point is the difference in the estimation methods. DLNMs are estimated via

the maximization of the partial likelihood in the cox ph-model (as explained in section

3.2), while the PAMs are estimated via a REML approach. This may also be a reason

for potential differences.
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Discussion of the DLNMs

One obviously criticizable point of the DLNMs is the arbitrary choice for specification of

how to include silica dust exposure in the models. But note, that the aim of this work is

not to characterize in exposure-lag-response association of silica dust exposure and lung

cancer mortality but that of radon exposure and lung cancer mortality.

So the rationale for not digging deeper into this association and for specifying it a priori,

is not to let the models become overly complex and to concentrate on the effect of radon

exposure. This approach orientates itself by the course of action Gasparrini (2014) took,

when he also specified the cross-basis for his most important confounder (Smoking) a

priori and relatively simplistic.

Another aspect that might potentially become the target of criticism is the choice of the

minimum lag. But since formal methods and tests for the determination of the minimum

lag don’t exist, the choice is kind of tricky and may always appear somewhat arbitrary.

In order to debilitate potential criticism, different minimum lags used in literature (two

and five years) as well as a lag of zero years were taken into account. After detailed

comparisons, a minimum lag of two years seemed to be the adequate choice.

Data

Besides the technical details concerning the model, also some critical points on behalf

of the wismut data are to be discussed.

First of all, as already mentioned in section 2.3, there is no information on the smoking

status or the smoking habits of the miners in this data set. This point might depict a

severe limitation of the data compared to other uranium miner cohort data sets and the

studies based on them. But as it is not possible to get this information in some way,

other variables have to be used as confounders in models fitted to this data set.

Secondly, the estimation of the job-exposure matrices of the different substances, but

primarily that for radon exposure might have to be reviewed critically. The table below,

which is taken from Kreuzer et al. (2011), page 22, shows how the exposure measure-

ments actually were conducted:

For the whole time period from 1946-1955, which is included in this analysis and in

which some of the highest exposures are to be found, no measurements were taken at

all. All of the values of the JEM for this period were estimated retrospectively, based
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"on the yearly production of ore, its uranium content, shaft geometry, techniques of

uranium ore production and ventilation" (Kreuzer et al. (2011)). In the following years,

partial measurements (1955-1965) and eventually regular measurements of radon and its

progeny (from 1966 onwards) were conducted, but it was not until 1971 that individual

monitoring was introduced.

Figure 6.1.: Exposure measurements in the wismut cohort (Kreuzer et al. (2011))

The estimation of the JEM, as well as potential contained measurement or estimation

errors, are topics that are still a subject of current research and that’s why for this thesis,

this data is taken as given.

But despite these uncertainties and weaknesses, the data has undoubtedly many strengths.

Concerning the sample size, it’s the world’s largest existing cohort data set of uranium

miners which gives the results a huge relevance. Furthermore, there’s not only informa-

tion on a person’s cumulative exposure, but it’s split up by year and is presented in a

detailed JEM.

The third point to be mentioned here, is the vast amount of information on the exposure

to other potentially harmful substances. This allows, as it is done with silica dust in

this case, to take them into account as confounders as well.

So in order to summarize these points, one can state that a data set of this surpassing size

gives researchers a unique possibility to gain further insight in the association between

occupational (radon) exposure and lung cancer mortality.
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7. Conclusion

After taking everything into consideration, the following points concerning the postu-

lated hypothesis can be concluded:

1. Hypothesis 1 is rejected. The exposure-response relationship has been shown to be

non-linear via a model comparison of the DLMs from section 4.3 and the DLNMs

from section 4.4. The AIC of the best DLNMs is about 100 points lower than

for the best DLMs and additionally more plausible models are selected via the

information criteria in the DLNM framework.

2. Hypothesis 2 is rejected. Already in the DLM framework it was shown that the

potential effect at lag zero would be estimated to be highly negative, which can’t

be the case. The literature review in the sections 3.1.1 and 3.1.2 also showed that

none of the up to now published studies mentions such an effect. Additional to

the pure rejection, an alternative minimum lag of 2 years has emerged through the

analysis of this thesis.

3. Hypothesis 3 is rejected after a graphical evaluation of the lag-response curves.

None of the curves of the selected DLNMs showed this behaviour. It could be artifi-

cially enforced by right-constraining the models as mentioned in section 3.3.2. This

was also attempted by modifying the B-Spline basis of the lag-response function

in a way described by Gasparrini (2014), but this didn’t lead to an improvement

regarding the AIC (see table 4.6 and figure A.9).

4. Hypothesis 4 is consequently rejected as well, as it was concerned with the exact

lag where the lag-response-curve would potentially approach a hazard ratio of one.

As this isn’t the case at all for the selected model, this issue does not have to be

discussed any further.
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5. The decision about hypothesis 5 is a bit more tricky, as some of the models which

were estimated during the process of finding the AIC-best DLNM peaked at earlier

lags. There’s the impression that the location of the maximum in the lag-response

function depends strongly on the knot placement within the B-Splines. But it is

ultimately rejected as the model, which was found to be the best model among

the investigated models, has its peak at a lag of around 16 years after the initial

exposure.

6. Hypothesis 6, which states that there exists some kind of breaking point in the

exposure-response curves, can be confirmed by the results of this thesis.

7. Hypothesis 7 however is again rejected, as the graphical evaluation of the exposure-

response curves shows that the location of the breaking point is at a considerably

lower exposure level than postulated in the hypothesis.

One important thing to add at this point, is that a considerable part of the hypotheses

could not be tested in a statistical sense of applying some kind of formal test, as no

formal tests for these contexts exist. This remark applies primarily to the hypotheses

five, six and seven. It partly applies to hypothesis number two, as an intercept model

can be formally tested against a non-intercept model with the same minimum lag but it

is difficult to assess the minimum lag via some kind of test.

Concerning the comparison of the two different modelling frameworks, the following can

be stated:

The analysis of the two different models in chapter 5 reveals surprisingly big differences.

These differences do not only concern the subject of primary interest, the effect of the

occupational radon exposure, but also the estimates of the other covariates in the model.

Thus, further investigations of this topic have to be done.
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A. Appendix

A.1. Mean exposure to long lived radionuclides,

gamma radiation, arsenic and fine dust
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Figure A.1.: Mean Exposure to Long lives radionuclides in the Wismut Cohort (1946-
1989)
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Figure A.4.: Mean Exposure to Fine dust in the Wismut Cohort (1946-1989)

A.2. Characteristics of the excluded miners

The following table contains the same information as the tables 2.1 to 2.4, but for the

excluded workers due to missing values for the silica dust exposure:

Excluded cases Cases: 292 (0.5%)

Min. 1st Quartile Median 3rd Quartile Max.

Follow-up period (years) 22.17 62.23 68.67 75.27 90.5

Duration of Employment (years) 0.6667 13.19 22.83 33.94 42.83

Cum. Radon Exposure ( wlm
year

) 0 12.56 38.98 272.2 2645

Cum. Silica Dust Exposure (mg

m3
/year) NA NA NA NA NA

Table A.1.: Characteristics of the Excluded cases due to missing values for silica dust
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For reasons of comparison, the characteristics of the whole cohort from table 2.1 are

displayed once again:

Full cohort Cases: 58987 (100%)

Min. 1st Quartile Median 3rd Quartile Max.

Follow-up period (years) 15.33 47 60.33 70.17 103.2

Duration of Employment (years) 0.4167 4.25 10.17 21.5 45.5

Cum. Radon Exposure ( wlm
year

) 0 1.746 18.42 262.4 3224

Cum. Silica Dust Exposure (mg

m3
/year) 0 0.4036 1.761 8.524 55.98

There are striking differences in the length of the follow-up period, as the excluded

miners have a higher minimum and maximum as well as consistently higher location

parameters. The same observation is to be reported for the duration of employment.

The excluded cases also exhibit a higher cumulative exposure to radon with a median

which is more than twice as high as the median for the cumulative radon exposure in

the full cohort.

This observation is consistent with the longer duration of employment among the ex-

cluded miners. The distributions of the cumulative exposures to silica dust can obviously

not be compared due to the missing values in the group of the excluded miners.

A comparison of the amount of miners who died in the excluded cases and in the full

cohort is to be found in the table below.

Cases All Deaths Lung cancer Other causes

Excluded Cases 292 (100%) 163 (55.82%) 20 (6.85%) 143 (48.97%)

Full Cohort 58987 (100%) 20920 (35.47%) 3016 (5.11%) 17904 (30.35%)

Table A.2.: Comparison of the excluded cases to the full cohort

A.3. Quantiles of the weighted Lag-distribution

Quantile 16.7% 20% 25% 33.3% 40% 50% 60% 66.7% 75% 80% 83.3%

Lag 6 7 8 10 12 15 18 20 24 26 28

Table A.3.: Quantiles of the weighted Lag-distribution
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A.4. DLMs for different combinations of B-Spline

degrees and numbers of knots (Minimum Lag 0)

AIC BIC Degree Lags No. Knots Lags df Min. Lag > 1
1 58350.62 58392.65 1 0 7 lag0
2 58348.24 58396.28 1 1 8 lag1
3 58350.27 58398.31 1 1 8 lag0
4 58351.06 58399.1 1 1 8 lag0
5 58350.23 58404.27 1 2 9 lag1
6 58350.04 58410.09 1 3 10 lag3
7 58350.45 58416.51 1 4 11 lag4
8 58347.54 58419.6 1 5 12 lag4
9 58351.75 58399.79 2 0 8 lag0

10 58346.97 58401.01 2 1 9 lag4
11 58349.16 58403.21 2 1 9 lag2
12 58349.55 58403.59 2 1 9 lag1
13 58348.94 58408.99 2 2 10 lag4
14 58341.05 58407.1 2 3 11 lag4
15 58337.89 58409.95 2 4 12 lag4
16 58326.89 58404.95 2 5 13 lag3
17 58346.04 58400.09 3 0 9 lag3
18 58345.57 58405.62 3 1 10 lag4
19 58347.94 58407.99 3 1 10 lag3
20 58347.49 58407.54 3 1 10 lag2
21 58334.33 58400.39 3 2 11 lag4
22 58331.33 58403.39 3 3 12 lag3
23 58321.78 58399.85 3 4 13 lag3
24 58318.12 58402.19 3 5 14 lag3
25 58347.06 58407.11 4 0 10 lag1
26 58327.7 58393.75 4 1 11 lag3
27 58332.46 58398.52 4 1 11 lag4
28 58334.11 58400.17 4 1 11 lag4
29 58329.7 58401.76 4 2 12 lag3
30 58318.94 58397.01 4 3 13 lag3
31 58314.41 58398.48 4 4 14 lag2
32 58311.7 58401.78 4 5 15 lag2
33 58332.56 58398.62 5 0 11 lag3
34 58326.15 58398.21 5 1 12 lag3
35 58331.79 58403.85 5 1 12 lag3
36 58333.84 58405.9 5 1 12 lag3
37 58318.6 58396.67 5 2 13 lag3
38 58313.11 58397.18 5 3 14 lag2
39 58306.19 58396.26 5 4 15 lag2
40 58302.72 58398.8 5 5 16 lag2
41 58334.06 58406.12 6 0 12 lag3
42 58314.21 58392.28 6 1 13 lag3
43 58321.55 58399.61 6 1 13 lag3
44 58324.83 58402.89 6 1 13 lag3
45 58314.8 58398.87 6 2 14 lag2
46 58301.24 58391.32 6 3 15 lag2
47 58299.4 58395.48 6 4 16 lag2
48 58288.53 58390.62 6 5 17 lag2

Table A.4.: Comparison of the DLMs with zero as minimum lag
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A.5. DLMs for different combinations of B-Spline

degrees and numbers of knots (Minimum Lag 2)

AIC BIC Degree Lags No. Knots Lags df Min. Lag > 1
1 58386.36 58422.39 1 0 6 lag3
2 58345.03 58387.06 1 1 7 lag3
3 58348.25 58390.28 1 1 7 lag3
4 58354.46 58396.49 1 1 7 lag3
5 58347.03 58395.07 1 2 8 lag3
6 58347.95 58401.99 1 3 9 lag3
7 58349.7 58409.75 1 4 10 lag3
8 58350.18 58416.23 1 5 11 lag3
9 58355.88 58397.91 2 0 7 lag3

10 58345.58 58393.62 2 1 8 lag3
11 58346.32 58394.36 2 1 8 lag3
12 58346.71 58394.75 2 1 8 lag3
13 58347.52 58401.56 2 2 9 lag3
14 58346.53 58406.58 2 3 10 lag3
15 58345.53 58411.58 2 4 11 lag3
16 58343.07 58415.13 2 5 12 lag3
17 58343.84 58391.88 3 0 8 lag3
18 58345.67 58399.72 3 1 9 lag3
19 58345.82 58399.87 3 1 9 lag3
20 58345.1 58399.14 3 1 9 lag3
21 58342.82 58402.87 3 2 10 lag3
22 58341.73 58407.79 3 3 11 lag3
23 58341.56 58413.62 3 4 12 lag3
24 58343.34 58421.4 3 5 13 lag3
25 58344.5 58398.55 4 0 9 lag3
26 58340.79 58400.84 4 1 10 lag3
27 58339.56 58399.61 4 1 10 lag3
28 58338 58398.05 4 1 10 lag3
29 58339.91 58405.96 4 2 11 lag3
30 58340.37 58412.43 4 3 12 lag3
31 58342.09 58420.15 4 4 13 lag3
32 58343.42 58427.49 4 5 14 lag3
33 58337.11 58397.16 5 0 10 lag3
34 58338.96 58405.02 5 1 11 lag3
35 58338.68 58404.73 5 1 11 lag3
36 58338.32 58404.37 5 1 11 lag3
37 58339.49 58411.55 5 2 12 lag3
38 58341.05 58419.12 5 3 13 lag3
39 58342.17 58426.24 5 4 14 lag3
40 58334.16 58424.23 5 5 15 lag4
41 58338.01 58404.07 6 0 11 lag3
42 58338.85 58410.91 6 1 12 lag3
43 58338.68 58410.74 6 1 12 lag3
44 58338.26 58410.32 6 1 12 lag3
45 58340.21 58418.27 6 2 13 lag3
46 58339.8 58423.87 6 3 14 lag3
47 58333.21 58423.29 6 4 15 lag4
48 58333.98 58430.06 6 5 16 lag4

Table A.5.: Comparison of the DLMs with two as minimum lag
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A.6. Exposure-response curves of the AIC-best

plausible DLM
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Figure A.5.: The exposure-response curves for four different lags (Model 5)

A.7. Comparison of an intercept model to a

non-intercept model with a starting lag of five

years
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Figure A.6.: Lag-response curves for different radon exposures (Model 5-2)
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Figure A.7.: Lag-response curves for different radon exposures (Model 5-3)

The inappropriateness of the exclusion of an intercept in this case is clearly shown by

the two figures above and by a comparison of the AICs (BICs) of the two models:

While the AIC (BIC) of model 5-2 takes a value of 58348.42 (58396.46), the AIC (BIC)

of model 5-3 amounts to 58346.64 (58400.69). The lower AIC for model 5-3 shows that

a model with intercept is preferred, in case of 5 years being chosen as minimum lag.

This indicates that a model with a minimum lag of five years without an intercept isn’t

adequate.

A.8. Quantiles of the Exposure-distribution

Quantile 16.7% 20% 25% 33.3% 40% 50% 60% 66.7% 75% 80% 83.3%

Exposure 0.6 0.75 1 1.6 2 3.6 7.75 16.52 31.66 41 55

Table A.6.: Quantiles of the Exposure-distribution
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A.9. Alternative Models

0 10 20 30 40

0
.9

0
0
.9

5
1
.0

0
1
.0

5
1
.1

0
1
.1

5
1
.2

0
1
.2

5

H
a
za

rd
 R

a
tio

Lag (in years)

200 wlm/year
150 wlm/year
100 wlm/year
50 wlm/year
30 wlm/year

0 50 100 150 200 250 300

0
.9

0
0
.9

5
1
.0

0
1
.0

5
1
.1

0
1
.1

5
1
.2

0
1
.2

5

H
a
za

rd
 R

a
tio

Radon Exposure in  
wlm

year
 

Lag 15
Lag 20
Lag 10
Lag 30

wlm
/year

0

50

100

150

200

250

300

Lag (in
 years)

5
10

15
20

25
30

35
40

H
a
za

rd
 R

a
tio

0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.25

Figure A.8.: Exposure-lag-response relationship for Model 7
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Figure A.9.: Exposure-lag-response relationship for Model 8
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A.10. Estimates for the covariates from Model 9

Estimate exp(Estimate) Standard error p-value

cal -0.0122 0.9879 0.0044 0.0057

age -0.0233 0.9769 0.0048 0.0000

Table A.7.: Estimates of cal and age from model 9

A.11. Electronic appendix

You find a CD-Rom containing the electronic appendix attached to this study. The

electronic appendix comprises six folders called "analysis", "data set", "documentation",

"figures", "server" and "thesis".

The analysis folder contains the eight R files with the codes that were used to analyze the

data. The first R file ("01-preparation.R") contains the code that was used to prepare

the data and get it in the right form for the analysis. The code in the second R file

("02-exposure-history.R") was used to create the exposure histories for radon as well as

for silica dust. In the third R file ("03-description.R), the code which was used to create

the tables and figures in chapter 1 and in the appendices A.1 and A.2 can be found. The

fourth and fifth R file ("04-dlm-modelling.R", "05-dlnm-modelling.R") contain the codes

for the estimation and the analysis of the DLMs and the DLNMs. R file number six ("06-

pam-modelling") contains the analysis of the penalized piecewise exponential additive

models. Eventually the two R files "00-functions.R" and "99-packages.R" contain the

used functions and the used packages.

In the folder called "server" those R codes are to be found, that were used to estimate

the models for the model comparisons of the DLMs and the DLNMs ("dlm-server.R"

and "dlnm-server.R"). Additionally, it contains the R code for the estimation of the

penalized piecewise exponential additive models ("pam-server.R"). They all were run

at the server of the Institute for Statistics due to the computational effort.

The data set folder just contains the data set, the figures folder contains all figures

displayed in this thesis and in the thesis folder a PDF-version as well as the TEX-code of

the thesis can be found. All presentations that were held, as well as important e-mails

and status updates for the project partners are archived in the folder "documentation".
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