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Abstract

The analysis of multivariate dynamical models can sometimes be consid-

erably simplified by the assumption that one or several variables move

infinitely fast to their equilibrium values. The method is known as the

’moving equilibrium method’. Various dynamical theories that build

on equilibrated markets presuppose the validity of this method. The

Moving Equilibrium Theorem states that such an analytic procedure leads

to correct conclusions if the movement of the fast variables is indeed

sufficiently fast. The purpose of this paper is to present a simple direct

proof of the theorem for the linear case.
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1 Introduction

The analysis of multivariate dynamical models can sometimes be considerably

simplified by the assumption that one or several variables move infinitely fast

to their equilibrium values. The method is known as the ’moving equilibrium

method’ (Lotka 1957, Ch. 2; Samuelson, 1947, 321-323). In a less formal way

it is underlying Marshall’s (1920) distinction between long and short periods

and temporary equilibria. It may even be said, and will be outlined later, that

partial equilibrium economics rests on the premise that the moving equilibrium

method delivers appropriate results.

However, Eckalbar (1985) has presented a set of examples that led him to

conclude that the method is in general not valid and that “simplified systems

behave like true systems only in highly unlikely cases” (p. 3). This would indeed

be unfortunate, since it would cast important parts of partial equilibrium theory

in doubt; but fortunately this view is much too pessimistic. The purpose of this

paper is to present a new proof of the “Moving Equilibrium Theorem” which

asserts that the moving equilibrium method is indeed a useful tool for analyzing

dynamical systems in a simplified way. Some further observations and com-

ments are added with the intention of indicating the relevance of the theorem

for economic analysis.

2 The moving equilibrium method

Consider a differential equation system in two vectors of variables x and y :

ẋ = f (x, y), ẏ = g (x, y) (1)

where x is the “fast” and y the “slow” variable. Assume that the fast system,

f , is stable and that for any given and fixed y , the fast vector x tends to its

equilibrium:

x = X (y), wi th f (X (y), y) = 0. (2)

If y changes over time, then x = X (y(t)) gives the corresponding moving

equilibrium of x. In analyzing the movement of the slow variable, the fast

variable x can be approximated by its equilibrium value X in the equation

describing the movement of the slow variable y . This gives rise to the following

equations:

Ẏ = g (X (Y ),Y ), X = X (Y ) (3)
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which describe the movement of the variables X and Y that approximate x and

y . System (3) is thus the moving equilibrium approximation of the system (1).

Since system (3) may be easier to analyze than system (1), the question arises:

Under what circumstances does the moving equilibrium method lead to correct

conclusions? The following section presents a theorem asserting the validity of

the method in the linear (or local) case.

3 The Moving Equilibrium Theorem

Consider the following linear dynamical system

ẋ =α
(

A · x +B · y
)

(4)

ẏ =C ·x +D ·y (5)

where x ∈ R
m is the vector of “fast” state variables, y ∈ R

n is the vector of

“slow”state variables and α > 0 is the speed of the fast variable. The dynamic

behavior of the system is fully characterized by the following Jacobian

J (α) =

(

αA αB

C D

)

(6)

The idea of the moving equilibrium method is to approximate the system

(4), (5) for large α by another system that assumes that the fast variables x have

reached their equilibrium. Intuitively, this makes sense if the matrix A describing

the behavior of the fast variables x for any given state of slow variables y is stable

(i.e. has only eigenvalues with negative real parts) and the speed α is sufficiently

fast.

We assume therefore that A is stable and hence non-singular. Given the

non-singularity of A, the equilibrium of the fast variables is given by

X =−A−1B y. (7)

If this is inserted into (5), then another differential equation for the slow variables

y is obtained. This is, however, only an approximation, and we denote the

approximation for y obtained in this way by Y :

Ẏ =

(

D −C A−1B
)

Y . (8)

The following theorem states that the stability of the fast system (4) for given

y and stability of the reduced system (8) imply stability of the true system (4),

(5) if α is sufficiently large.
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Moving Equilibrium Theorem (Schlicht 1978, 1985, 39-45). If A and
(

D −C A−1B
)

are stable and α is sufficiently large, then J (α) is stable.

Proof.

(1) Non-singularity of J (α). Since A is non-singular, J (α) can be written as a

product of two non-singular matrices:

J (α) =

(

I 0

C (αA)−1 I

)(

αA αB

0 D −C (αA)−1
αB

)

. (9)

Hence J (α) is non-singular for any α.

(2) Classification of eigenvalues. Denote the spectrum of J (α) by

Λ (α) = (λ1 (α) ,λ2 (α) , ... ,λN (α)) , wi th N = m +n. (10)

The eigenvalues λi (α) are continuous functions of α. Consider the spectrum for

α→∞. Assume, without loss of generality, that the first k eigenvalues remain

bounded for α→∞ and the remaining N −k are unbounded, with k ≥ 0 and

k ≤ N .

(3) Bounded eigenvalues. Consider any eigenvalue λi (α) that remains

bounded for α→∞, i.e. i ≤ k. It satisfies the characteristic equation

det(J (α)−λi (α) I ) = det

(

αA−λi (α) I αB

C D −λi (α) I

)

= 0 (11)

for all α. Consider the matrix

(αA−λi (α) I ) . (12)

For large α and bounded λi (α), this matrix will be non-singular, and we can use

a decomposition similar to (9) to write the characteristic equation (11) as

det(αA−λi (α) I )det
(

D −C (αA−λi (α) I )−1
αB −λi (α) I

)

= 0. (13)

This implies

det

(

D −C

(

A−

λi (α)

α
I

)

−1

B −λi (α) I

)

= 0. (14)

As
λi (α)
α

tends to zero for α → ∞, λi (α) must tend to an eigenvalue of
(

D −C A−1B
)

. This matrix has been assumed to be stable. Thus, λi (α) must

have a negative real part for sufficiently large α.
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(4) Unbounded eigenvalues. Consider now an eigenvalue λi (α) that grows

in size in an unbounded way for α→∞, i.e. i > k. For large α, λi (α) will be large

and (D −λi (α) I ) will be non-singular. The characteristic equation of (6) is now

equivalent to

det(D −λi (α) I )det

(

A−λ
−1
i (α)B

(

λ
−1
i (α)D − I

)1
C −

1

α
λ
−1
i (α) I

)

= 0, (15)

with

λ
−1
i (α) =

Re(λi (α))− i · Im(λi (α))

(Re(λi (α)))2
+ (Im(λi (α)))2

(16)

For λi (α) and α large, λ−1
i

(α)D tends to zero and the term −

(

λ
−1
i

(α)D − I
)

approaches the identity matrix. Hence
(

A−λ
−1
i

(α)B
(

λ
−1
i

(α)D − I
)

−1
C

)

is dom-

inated by A and 1
α
λ
−1
i (α) must approach an eigenvalue of A. In particular, the

expression
1

α
Re(λi (α)) (17)

must approach the real part of an eigenvalue of A. Since A has been assumed

stable, this must be negative, and Re(λi (α))» must be negative as well. Q.E.D.

4 On the Informal Use of the Moving Equilibrium Method in

Economics

The Moving Equilibrium Theorem is useful in offering a convenient analytical

shortcut, and it is invoked, in this sense, quite frequently in less formal discus-

sions.The following statement by Lindbeck (1976, 137) illustrates this:

One conceivable simplification of such macro analysis is to exploit the dif-

ferent speeds of adjustment between markets, which may make it possible

to operate with recursive relations between various blocks in the macro

model. For instance, based on the assumption that the market for financial

assets clears rapidly, whereas the market for commodity flows (including

imports and exports) clear slowly, a partial equilibrium ’asset block’ may

be used to determine exchange rates (or the balance of payments) at every

point of time, whereas the current account is asserted to be affected by the

exchange rate ’later on’.

The general view of dynamic processes underlying the moving equilibrium

method is well expressed by Samuelson (1947, 330-331) as follows:
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I, myself, find it convenient to visualize economic processes of quite dif-

ferent speed, some very slow compared to others. Within each long run,

there is a shorter run, and within each shorter run there is still a shorter

run, and so forth in infinite regression. For analytical problems it is often

convenient to treat slow processes as data and concentrate upon processes

of interest. For example, in a short run study of the level of investment,

income, and employment, it is often convenient to assume that the stock

of capital is perfectly or sensibly fixed.1

In a similar vein, Hicks (1939, 122-123) implicitly invokes the Moving Equilib-

rium Theorem when writing:

Even if we decide to admit some small variability of output into our shortest

period, nevertheless that shortest period (which I shall call a Week, to

distinguish it from Marshall’s Day) still needs to be clearly defined. I shall

define a week as that period of time during which variations in price can be

neglected. For theoretical purposes this means that prices will be supposed

to change, not continuously, but in short intervals. The calendar length

of the week is of course quite arbitrary; by taking it to be very short, our

theoretical scheme can be fitted as closely as we like to that ceaseless

oscillation which is as characteristic of prices in certain markets ....

A convenient way of visualizing this assumption of constant prices during

the week is to suppose that there is only one day in the week (say Monday)

when markets are open and contracts can be made. Contracts can, indeed,

be carried out during the week (goods can be delivered, and so on); but

no new contracts can be made until Monday week. Monday’s prices will

therefore rule during the week .... Now it is not hard to see that prices will

remain constant during the week, when markets are not open, and then

there is therefore no opportunity for prices to change. But we need also to

try and bring ourselves to suppose that price-changes are negligible during

market hours on the Monday, when the market is open and dealers have to

fix market prices by higgling and bargaining, trial and error. This implies

that the market (indeed all markets) proceeds quickly and smoothly to a

position of temporary equilibrium -- in Marshall’s sense.

Even modern formal treatments invoke the Moving Equilibrium Theorem with-

out bothering to ask for a proof. Arrow and Hahn (1971, 49) write, for instance:

1 It may be of interest to note that Samuelson’s analytical treatment of the moving equilibrium

method differs from what is suggested in this quotation. He views the method as a method of

successive approximation involving the sequential determination of higher-order derivatives;

see Samuelson (1947). The present treatment is inspired by Lotka (1957, Ch. 2).
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It is evidently both useful and legitimate to distinguish between an econ-

omy in which there is a full complement of futures markets ... and one

that is not so fortunate. The equilibrium in the former economy might be

called a ’full’ or ’long-term’ equilibrium, while the latter may be analyzed

by means of a sequence of short-run equilibria.

Allen (1967, 79), in his discussion of economic dynamics, describes the method

of equilibrium dynamics as follows: 2

The simplest equilibrium dynamic system arises when the demand and

supply schedules shift over time in some specified way: D = D (P, t ) and

S = S (P, t ). An equilibrium path of P̄ is obtained by solving

D (P, t ) = S (P, t ).

All this is presented as a matter of course, but it involves a logical problem.

If price changes are governed by excess supply, then the assumption of sup-

ply equalling demand rules out any price changes. This has been stressed by

Samuelson (1947, 323) who writes:

Paradoxically, on the assumption that the price is not changing, we derive

a moving equilibrium path for the price!

The Moving Equilibrium Theorem states that this paradox is not to be seen as

invalidating the moving equilibrium method.

5 The Moving Equilibrium Method and Partial Analysis

Partial analysis concentrates on a set of selected variables (like prices and quan-

tities in a single market) while taking all other influences as fixed, and ignoring

all possible repercussions through the economic system. The following example

illustrates the relationship between partial analysis and the moving equilibrium

method.

Consider a system of differential equations with two state vectors, x and y , of

“fast” variables, and one state vector z of “slow” variables. Let us assume that the

2 In order to integrate the following example into the present framework, I interpret the time

variable t as entering through intermediate variables, say z = z(t ), with D = D (P, t ) standing for

D = D (P, z (t )), and so forth. The discussion of non-autonomous systems has been sidestepped

here. It poses no problem in the linear case, however, since non-autonomous systems can be

reduced to autonomous systems by considering the deviations of the state vector from some

particular solution to the system as a new vector of variables.
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two sets of fast variables do not interact directly but only through their impact

on the slow state variable. The vectors x and y may, for example, describe the

states of two unrelated markets that interact only through global variables z like

income, or exchange rates:

ẋ = f (x, z) , ẏ = g
(

y, z
)

, ż = h
(

x, y, z
)

. (18)

The system can be analyzed by using the moving equilibrium method.

The moving equilibria X (z) and Y (z)) can be determined and plugged into

the equation describing the movement of the slow variable. This yields Ż =

h (X (Z ) ,Y (Z ) , Z ). If x and y are indeed sufficiently fast and damped, then the

stability conclusions reached in this way will be correct. If this were not the case,

then the dynamic analysis of the partial systems f or g would be of doubtful

validity, as there would be no reason to suppose that the results carry over to the

full system.

This point may even be strengthened by pointing out that any given system

may be conceived as embedded in a still larger system, and all conclusions we

may reach refer, as a matter of principle, to partial systems. It is thus important

to have reasons for believing that the conclusions reached in partial models

remain valid in a more comprehensive setting.

6 Generalizing the Moving Equilibrium Method

The proof of the Moving Equilibrium Theorem has used the fact that any eigen-

value λi (α) of J (α) approaches either an eigenvalue of
(

D −C A−1B
)

or has the

property that
λi (α)
α

approaches an eigenvalue of A. Since there are exactly m +n

eigenvalues to J , m eigenvalues to A and n eigenvalues to
(

D −C A−1B
)

, the

eigenvalues of the fast system (4) and of the reduced system (8) taken together

characterize the spectrum of the true system in the limit, and k equals m. In this

sense, the moving equilibrium method is not confined to stable systems, but is

applicable in the more general sense of yielding correct dynamic conclusions.

Furthermore, the method may be viewed as an aggregation procedure in that

it reduces dimensionality: the full system (4), (5) operates in m +n dimensions,

but the reduced system (8) operates only in n dimensions. This thought may

be generalized to yield a fully-fledged aggregation method in the linear case

(Schlicht, 1990, 1992).
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There also exists a non-linear version of the Moving Equilibrium Theorem,

but this relies on the existence of certain Ljapunov functions which restrict its

scope (Schlicht, 1985, 39-44).
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