# P-N Compounds: From the Single Tetrahedral Cation to Framework Structures

### Alfred Schmidpeter

Institut für Anorganische Chemie, Universität München, D-80333 München, Germany

Stefan Horstmann and Wolfgang Schnick

Laboratorium für Anorganische Chemie, Universität Bayreuth, D-95440 Bayreuth, Germany

he element combination PN is isoelectronic to SiO (Fig. 1). How much practical impact is connected to this statement? Like the hydrolysis of SiCl<sub>4</sub>, the ammonolysis of PCl<sub>5</sub> is accompanied by a condensation. The complexity of this reaction already was realized when it was first investigated:

"Thatsache ist, wenn Chlorophosphor mit Ammoniak zusammenkommt, so entsteht positiv Salmiak in grosser Menge. Seine Bildung setzt nothwendig die Bildung von Amiden voraus; allein die Zusammensetzung der Chlorphosphore ist so, dass sich kein einfaches Amid bilden kann" [1]. Justin Liebig wrote this in a letter [2] dated November 12, 1832 to Friedrich Wöhler.

The condensation (Fig. 2) [3] leads to cyclic oligomers and linear polymers (phosphazenes) and ends with a product of the empirical composition HPN<sub>2</sub>. It was described [4] and named phospham as early as 1846. It is isoelectronic with silicon dioxide and in fact resembles the latter in its high chemical stability, but only now the structural analogy of the two has been proven [5].

By using excess liquid ammonia for the ammonolysis, the condensation can be suppressed and only the product of substitution, the tetraaminophosphoniumchloride, is obtained (Equation 1) [6, 7].

$$PCl_5 + 8NH_3 \longrightarrow [P(NH_2)_4]Cl + 4NH_4Cl$$
(1)

The pure product is obtained by reacting the byproduct, ammonium chloride, with diethylamine and removing the formed diethylamine hydrochloride.

$$NH_4Cl + (C_2H_5)_2NH \longrightarrow NH_3 + (C_2H_5)_2NH_2Cl$$
 (2)

An alternative preparation starts from phosphoro/ thionic triamide  $SP(NH_2)_3$  and thus avoids any risk of condensation. A two step sequence leads to tetraaminophosphonium iodide (Equation 3) [8, 9].

$$SP(NH_2)_3 \xrightarrow{CH_3I} CH_3SP[(NH_2)_3]I \xrightarrow{+3NH_3} [P(NH_2)_4]I \qquad (3)$$

#### Volume 2, Number 4, Main Group Chemistry News



9

According to the X-ray structure determination, both salts contain the tetraaminophospnonium ion. In the cation, phosphorus and nitrogen form a markedly distorted tetrahedron, with a P–N distance of 160.7(2) pm being the shortest P–NH<sub>2</sub> bond ever reported.

In the iodide, a CsCl analogous coordination of cations and anions is found (Fig. 3) [10]. Contrary to this, in  $[P(NH_2)_4]Cl$ , a mutual coordination number of 7 is realized, resembling a TII-analogous structure (Fig. 4). An essential feature for the arrangement of the cations in both structures is the formation of N-H....X hydrogen bonds.

The reaction of the tetraaminophosphonium ion with phosphorus pentachloride gives access to doubly branched phosphazenes (Equation 4) [6].

$$[P(NH_2)_4]^+ + 4PCl_5 \longrightarrow [P(NPCl_3)_4]^+ + 8HCl$$
(4)

By the influence of bases, the tetraaminophosphonium salts condense to triaminophosphazo-triaminophosphonium salts (Equation 5) [6].

$$2[P(NH_2)_4]^+ \longrightarrow [(NH_2)_3PNP(NH_2)_3]^+ + NH_4^+$$
 (5)

Thermal condensation of  $[P(PNH_2)_4]X$ -salts leads to phosphorus-nitride-imides with different hydrogen content, such as  $HPN_2$  or  $HP_4N_7$  [10]. These compounds are also obtained by heterogenous ammonolysis reactions (Equations 6 and 7) of pure and crystalline  $P_3N_5$  [11].

$$P_3N_5 + NH_3 \xrightarrow{580^{\circ} \text{C}; 14\text{d}} 3\text{HPN}_2$$
 (6)

$$4P_3N_5 + NH_4Cl \xrightarrow{820^{\circ} C; 14d} 3HP_4N_7 + HCl$$
 (7)

Both compounds are built up by three-dimensional framework structures of corner sharing  $PN_4$ -tetrahe-dra [11].

The structure of HPN<sub>2</sub> [5], which is isoelectronic to SiO<sub>2</sub>, corresponds to the  $\beta$ -cristobalite type (Fig. 5), the high temperature modification of SiO<sub>2</sub>.

The structure of  $HP_4N_7$  can be regarded as a shear variant of the  $HPN_2$  structure, which results by eliminating one  $NH_3$  from four formula units of

HPN<sub>2</sub>. The valences of the P–N framework are saturated by nitrogen which are bonded to three phosphorus atoms according to the formula  ${}_{2}^{J}[P_{4}^{[4]}N_{5}^{[2]}N_{2}^{[3]}]$ .

The hydrogen-free phosphorus(V) nitride  $P_3N_5$  is obtained in a pure and microcrystalline form by reacting (PNCl<sub>2</sub>)<sub>3</sub> with ammonium chloride, according to Equation 8 [11].

$$^{760^{\circ}}C; 2d$$
  
(PNCl<sub>2</sub>)<sub>3</sub> + 2NH<sub>4</sub>Cl  $\longrightarrow$  P<sub>3</sub>N<sub>5</sub> + 8HCl (8)

The reaction is carried out in sealed glass ampules and the size of the batch is limited by the pressure caused by formation of hydrogen chloride. The decomposition of tetraaminophosphoniumchloride (Equation 9) [7] is without these limits.

$$3[P(NH_2)_4]Cl \xrightarrow{1.300^{\circ} \text{ C}; 10^{-3} \text{ bar}}{P_3N_5 + 3NH_4Cl + 4NH_3}$$
 (9)  
2.750° C; 1 bar

#### Volume 2, Number 4, Main Group Chemistry News



According to the formula  $2[P_3[^{4}]N_3[^{2}]N_2[^{3}]]$ , the solid contains two types of nitrogen atoms, with 3/5 bonded to two phosphorus atoms and 2/5 bonded to three atoms. The structure is dominated by a stacking disorder, as demonstrated by HRTEM investigations [11].

By reaction of  $P_3N_5$  with Li<sub>3</sub>N ternary phosphorus, nitrides with P–N anions are accessible.

In the quasi-binary system Li<sub>3</sub>N/P<sub>3</sub>N<sub>5</sub>, LiPN<sub>2</sub> is the compound with the highest P content. It has a three-dimensional framework structure  ${}^{3}$ [PN<sub>4/2</sub>-] which is isotypic to HPN<sub>2</sub> or  $\beta$ -cristobalite [12]. In Li<sub>12</sub>P<sub>3</sub>N<sub>9</sub>, the anion [P<sub>3</sub>N<sub>9</sub>]<sup>12</sup>- (Fig. 6) corresponds to the cyclotrisilicate anion [Si<sub>3</sub>O<sub>9</sub>]<sup>6</sup>- [13]. In Li<sub>7</sub>PN<sub>4</sub>, isolated [PN<sub>4</sub>]<sup>7</sup>-tetrahedra isoelectronic to ortho-silicate anions are found (Fig. 7) [14]. A compound containing the anion [H<sub>4</sub>PN<sub>4</sub>]<sup>3</sup>- isoelectronic to H<sub>4</sub>SiO<sub>4</sub> is obtained from the reaction of P<sub>3</sub>N<sub>5</sub> and CsNH<sub>2</sub> [15].

Li<sub>5</sub>P<sub>2</sub>N<sub>5</sub> contains no  ${}^{2}_{2}$ [P<sub>2</sub>N<sub>5</sub><sup>5-</sup>] layers, but isolated [P<sub>4</sub>N<sub>10</sub>]<sup>10-</sup> anions have been found (Fig. 8) [16]. A compound containing the anion [H<sub>6</sub>P<sub>4</sub>N<sub>10</sub>]<sup>4-</sup> has been obtained from the reaction of P<sub>3</sub>N<sub>5</sub> and NaNH<sub>2</sub> [17]. These anions are isosteric to molecular phosphorus pentoxide P<sub>4</sub>O<sub>10</sub> or to silicic esters Si<sub>4</sub>O<sub>6</sub> (OR)<sub>4</sub> with bulky substituents R. An analogue to layer-silicates has not been found yet.

An arrangement analogous to chain-silicates is realized in the calcium phosphorus nitride  $Ca_2PN_3$  (Fig. 9) [18]. The synthesis is analogous to that of the Li-salts by reacting the basic metal nitride  $Ca_3N_2$  with the acidic non-metal nitride  $P_3N_5$  (Equation 10).



Main Group Chemistry News, Volume 2, Number 4

$$2Ca_3N_2 + P_3N_5 \xrightarrow{800^{\circ}C; 14d} 3Ca_2PN_3$$
 (10)

Because most of the ternary phosphorus nitrides contain structural analogues to the silicates, it seemed to be a promising task to search for P–N frameworks with zeolite-like structures. The synthesis of a P–N zeolite succeeded by treating  $P_3N_5$  and volatile metal halide with ammonia at 640° C (Equation 11) [19].

$$4P_{3}N_{5} + 4NH_{3} + 5ZnCl_{2} \xrightarrow{640^{\circ}C} Zn_{5}H_{4}[P_{12}N_{24}]Cl_{2} + 8HCl$$
(11)

In a subsequent reaction with additional zinc chloride, a complete exchange of the hydrogen is possible (Equation 12).

$$Zn_{5}H_{4}[P_{12}N_{24}]Cl_{2} + 2ZnC_{12} \xrightarrow{700^{\circ}C; 3d} Zn_{7}[P_{12}N_{24}]Cl_{2} + 4HCl$$
(12)

The cubic compound is isostructural to sodalite, Na<sub>8</sub>[Al<sub>6</sub>Si<sub>6</sub>O<sub>24</sub>]Cl<sub>2</sub>. The alumosilicate framework is replaced by a nitrido phosphate framework (Fig. 10). In the center of the  $\beta$ -cage, a Cl<sup>-</sup> ion is found which is tetrahedrally surrounded by metal cations Zn<sup>2+</sup>.

A more elegant method for preparation of P-N sodalites is the direct reaction of metal dihalides with phosphorus nitride iminde (Equation 13) [11].

$$5MX_2 + 12HPN_2 \xrightarrow{700^{\circ} C; 2d} M_5H_4[P_{12}N_{24}]X_2 + 8HX$$
(13)

A large number of compounds has been realized in this manner containing, for example,  $Mg^{2+}$ ,  $Zn^{2+}$ ,  $Co^{2+}$ ,  $Ni^{2+}$ ,  $Cu^{2+}$  or  $Pb^{2+}$  as cations and F<sup>-</sup>, Cl<sup>-</sup>, Br<sup>-</sup> or I<sup>-</sup> as anions.

A striking feature of several P–N sodalites is their intense color. The cobalt and nickel containing

compounds are blue, the iron containing brown and Cr and Ti containing materials are green.

A P-N sodalite without a central halide ion is accessible by reaction of zinc nitride with phosphorus nitride (Equation 14) [20].

$$2Zn_3N_2 + 4P_3N_5 \xrightarrow{750^{\circ}C; 7d} Zn_6[P_{12}N_{24}]$$
(14)

The P-N framework in this compound is the same as in  $Zn_7[P_{12}N_{24}]Cl_2$ , but the zinc atoms are disordered. Indications have been found that  $Zn_6[P_{12}N_{24}]$  might be useful as a hydrogen storage material.

As shown in this overview, several examples for the structural analogy between Si-O and P-N compounds do exist. Typical silicate building blocks and the corresponding P–N isosteres show different formal charges, as  $SiO_4^{4-}/PN_4^{7-}$ ,  $Si_3O_9^{6-}/P_3N_9^{12-}$  or  $SiO_2/PN_2^{-}$ , but in ternary and higher compounds, the P–N substructures correspond to the respective silicate structures.



Using this structural analogy, it should also be possible to obtain phosphorus nitrides analogous to nanoporous zeolites or layered silicates which might be materials with promising technical relevance.  $\clubsuit$ 

## References and notes

- From W. Lewicki, "Wöhler and Liebig—Briefe von 1829–1873," J. Cromm Verlag, Göttingen, p. 63 (1982).
- "When chlorophosphorus and ammonia are brought together, much ammonium chloride is formed. This necessitates the formation of amides; the composition of chlorophosphorus is such however, that no simple amide can form."
- 3. A. Schmidpeter et al., Z. Naturforsch., B24, 799 (1969) and literature cited there.
- M.C. Gerhardt, Ann. Chim. Phys., 18, 188 (1846); C.R. Acad. Sci., 22, 858 (1846).
- 5. W. Schnick and J. Lücke, Z. Anorg. Allg. Chem., 610, 21 (1992).
- A. Schmidpeter and C. Weingard, Angew. Chem., 81, 573 (1969); Angew. Chem. Int. Ed. Engl., 8, 615 (1969).
- S. Horstmann and W. Schnick, unpublished results.
  A. Schmidpeter and C. Weingand, Angew. Chem., 80, 234 (1968);
- Angew. Chem. Int. Ed. Engl., 7, 210 (1968). 9. W. Schnick et al., Angew. Chem., 106, 818 (1994); Angew. Chem.
- Int. Ed. Engl., 33, 785 (1994). 10. S. Horstmann and W. Schnick, Z. Naturforsch., (in press).
- S. Frotstindin and W. Schnick, Z. Valutjorsch, (http://ssh.)
  W. Schnick, Angew. Chem., 105, 846 (1993); Angew. Chem. Int. Ed. Engl., 32, 806 (1993).
- 12. W. Schnick and J. Lücke, Z. Anorg. Allg. Chem., 588, 19 (1990).
- 13. U. Berger and W. Schnick, unpublished results.
- 14. W. Schnick and J. Lücke, J. Solid State Chem., 87, 101 (1990).
- 15. H. Jacobs and F. Golinski, Z. Anorg. Allg. Chem., 620, 531 (1994).
- W. Schnick and U. Berger, Angew. Chem., 103, 857 (1991); Angew. Chem. Int. Ed. Engl., 30, 830 (1991).
- 17. H. Jacobs et al., Z. Anorg. Allg. Chem., 620, 1213 (1994).
- W. Schnick and V. Schultz-Coulon, Angew. Chem., 105, 308 (1993); Angew. Chem. Int. Ed. Engl., 32, 280 (1993).
- W. Schnick and J. Lücke, Angew. Chem., 104, 208 (1992); Angew. Chem. Int. Ed. Engl., 31, 213 (1992).
- 20. F. Wester and W. Schnick, unpublished results.



Main Group Chemistry News, Volume 2, Number 4

13