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Abstract. The ionisation of the projectile in collisions with heavy targets is described by 
means of the Faddeev expansion. The series is cut off after five terms which means an 
inclusion of higher-order interactions of the electron with both the target and the projectile 
in a symmetric way. This approximation is compared with several theories suggested in the 
literature. Numerical calculations are presented for the energy distribution of electrons 
emitted in the forward direction in the case of (H, Ne) collisions. 

1. Introduction 

It is well known that total cross sections for ionisation in fast ion-atom collisions can be 
described within a first-order perturbation theory (McDowell and Coleman 1970). 
However, the Born approximation is not in general applicable for cross sections that are 
differential in the electronic degrees of freedom. When the momentum kf of the ejected 
electron is such that the interaction with projectile (nuclear charge 2,) and target (2,) 
becomes equally important, it is no longer possible to include only the field of the parent 
nucleus to all orders. Examples are the double-differential cross section for the ejection 
of projectile electrons by heavy targets (Zl << 2,) in the backward direction, where the 
observed structure in the angular distribution (Duncan and Menendez 1979) can only 
be explained when the electron is described as a target eigenstate (Jakubassa 1980). 
Also the ‘forward peak’, caused by target electrons that are ejected with a low velocity 
with respect to the projectile (Rudd et a1 1966), can only be reproduced if an infinite 
number of interactions with the projectile are taken into account (Macek 1970). It has 
therefore been suggested that this process can be described as charge transfer to the 
continuum (Dettmann et a1 1974). Several higher-order thories have been used for this 
purpose, such as the second-order Born approximation (Dettmann et a1 1974, Miraglia 
and Ponce 1980), as well as a distorted wave Born approximation (Salin 1969, Garibotti 
and Miraglia 1980). One might also consider the impulse approximation (McDowell 
and Coleman 1970), which is well established for charge transfer into bound states 
(Briggs 1977, Jakubassa-Amundsen and Amundsen 1980) but which has not yet been 
applied to continuum charge transfer. 

The phenomenon of this narrow forward peak also appears in electron-loss spectra 
(Duncan and Menendez 1979). Up to now there exists only a first-order theory to 
describe this behaviour of the projectile electrons (Drepper and Briggs 1976, Day 
1980), and target properties have only been included by allowing for excitations of the 
target electrons (Briggs and Day 1980). 
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The aim of this paper is to develop a theory for (projectile) ionisation which is valid 
over the whole range of electron momenta kf. Clearly, this theory must allow for 
interactions with both the projectile and the target to infinite order. Thereby it is 
convenient to start from the Faddeev equations for the exact electronic wavefunction 
(Faddeev 1961) and derive a systematic expansion in the projectile and target field. This 
approach was used by Macek (1970) who, however, retained only the first-order terms. 
The idea of including the interaction with the projectile and the target to higher order in 
a symmetric way has also been suggested by Briggs (1980) for the case of electron 
capture to bound states. For ionisation, however, one has the additional problem of not 
having a definite final electronic state, such that the Faddeev approach seems more 
appropriate than the T-matrix expansion he used. Section 2 contains the derivation of 
the Faddeev approximation, and in § 3 we discuss some approximations given in the 
literature. In § 4 we calculate the energy distribution of electrons emitted in the forward 
direction in (H, Ne) collisions. We will show that even in this case a first-order theory is 
not sufficient for ionisation by heavy targets (§ 5 ) .  

2. The semiclassical Faddeev approximation (SCFA) 

Although electron loss is usually formulated within a full quantum mechanical theory 
we prefer the choice of the semiclassical approximation which is valid as long as a 
classical description of the internuclear motion can be justified. The advantage of this 
theory is the appearance of only electronic quantities in the matrix elements, although 
the translational factors arising from the transformation between the projectile and the 
target rest frame have to be included explicitly. The electronic part of the Hamiltonian 
is given by 

h2 
H = - - A +  Vp(rp)f vT(rT) (2.1) 2m 

where Vp and VT are the potentials of the electron in the field of projectile and target, 
respectively. Thereby we adapt the three-particle picture, where the effect of all the 
electrons of the projectile-target system except the active one is incorporated into the 
potentials. In the semiclassical approximation, the transition amplitude for the electron 
loss is given by (Dettmann 1971) 

.l " 0 0  

where 4: denotes the initial electronic state with energy SF, and Vi is the exact solution 
to (2.1) with the boundary condition of a free electron in the final state. Unlike the case 
of a bound final state, both potentials Vp and VT will determine the final electronic 
wavefunction which thus has a complicated structure. Therefore, we have chosen the 
prior form for up which avoids explicit knowledge of the final state. 

According to Faddeev (1961) 97 can be written as a sum of wavefunctions which are 
determined by the set of two coupled equations 
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where $o is a plane wave and 

GT,p = (ih a l a t  + h2/2m A -  VT,p - iE)- '  

is the electron Green's function in the target or projectile field, respectively. From this, 
one can derive a series expansion of 9; 

19;) = (1 + GTVT + GP Vp + GT VTGp Vp + Gp VPGTVT + GTVTGP VpGTVT 

+GPVPGTVTGPVP+. .)I$d (2.4) 
which contains the action of the projectile and target field in alternating succession. In 
order to make the series expansion meaningful we have to assume that the potentials Vp 
and VT are screened when rp or rT+ 03, which actually corresponds to a real experi- 
mental situation. The choice of a pure Coulomb field is not unproblematic in a 
higher-order theory due to the non-uniform convergence of a screened Coulomb 
function to a Coulomb wave (Okubo and Feldman 1960). However, the error intro- 
duced by using Coulomb waves in the transition amplitude seems to be small for high 
projectile velocities as has been shown by Macek and Taulbjerg (1981) in the related 
case of charge transfer to bound states. 

One should note that the series (2.4) is able to describe both a target and a projectile 
final state, respectively, as it can formally be summed in two ways: 

(2.5a) 

( 2 . 5 b )  

where use has been made of the definition of a continuum target (projectile) eigenstate 

(2.6) b T s P )  = (1 + GT,PV=,P)I$O). 

However, for a pure Coulomb field the series usually are divergent and one has 
therefore to be very careful when breaking off the expansion, thereby getting different 
answers depending on whether one takes ( 2 . 5 ~ )  or (2.5b) as a starting point. 

Due to the ambiguity of the final state it is not possible, as in the case of a (fixed) 
bound final state, to use an expansion in terms of one of the nuclear potentials, an idea 
on which the impulse approximation for charge transfer is based (Briggs 1977), and 
which leads to a theory that will be very good for highly asymmetric systems. Instead, 
we choose the expansion (2.4) which is symmetric in Vp and VT, and which, if higher 
order terms are included, will not only describe electron emission in symmetric systems 
(2, = Z2),  but also both limiting cases kj  = 0 and kj  = mu/h (U is the projectile velocity) 
even in asymmetric systems. We break the series (2.4) after five terms and call this the 
semiclassical Faddeev approximation 

19y)FA = (1+  GTVT+ GpVp+GTVTGpVp+GpVpG~V~)/$~). (2.7) 

It can be written in a more convenient way by introducing a complete set of plane 
waves / q )  with momentum q and by making use of the eigenstate definition (2.6) 

The first integral is the sum of the first three and the last term of (2.7) and is equal to the 
impulse approximation. The second integral is the corresponding expression where the 
fourth term in (2.7) is used instead of the last. The remaining functions in (2.8) only 
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correct for double counting. Unlike the case of a bound final state (Jakubassa- 
Amundsen and Amundsen 1980), the continuum wavefunctions ICI, are from the 
starting point on-shell which means that no approximation is introduced in the step 
from (2.7) to (2.8). 

The transition amplitude for electron loss is obtained by inserting (2.8) into (2.2). 
From this, the cross section differential in energy Ef and angle sZf of the emitted 
electron, as seen in the target frame, follows as an integral over impact parameter b 

d2c-r - m?/ d2b1afiI2 
dEfdsZf h (2.9) 

which has to be multiplied by the number of electrons in the initial state. 

3. Comparison of the SCFA with other theories 

As the Faddeev theory describes the exact three-body scattering problem it can be used 
as a starting point to derive the approximations introduced in the literature. Most of 
these approximations have been developed for the case of target ionisation but they are 
easily reformulated for the application to electron loss (by interchanging projectile and 
target), such that they can be extracted from the expansions given in the preceeding 
section. 

The substitution of the exact wavefunction by a projectile eigenstate (corresponding 
to the first term in the series (2.5b)) leads to the first-order Born approximation for 
ionisation. As has been shown by Drepper and Briggs (1976) in the case of a pure 
Coulomb field Vp, this theory is able to describe the forward peak at kf = mv/h which 
can be traced back to the divergence of the normalisation constant of $; when 
transformed to the target (i.e. laboratory) frame 

~ ( 7 ~ )  = e x p ( h v p ) r ( l  + ivp) = ( 2 ~ 7 p ) ~ ' ~  exp[-i(gp- vp In v p  - t ~ ) ]  

where vp = zl/lkf - mu/hl, and the abbreviation 2 = Ze2m/h2 is used. 
For backward emission angles fC?f of the electron, especially in the case of heavy 

targets, this first-order ionisation theory is not sufficient. To take the target field into 
account, 'U; has been replaced by a target eigenstate (Jakubassa 1980) which cor- 
responds to the first-order theory for charge transfer. However, in this theory the 
forward peak cannot be explained as the interaction with the projectile is neglected. It 
is interesting to note (and shown later on) that if Vp is included in the way indicated in 
the expansion (2.5a), none of the terms shows a divergence for kf = mu/h which means 
that a truncation of this series does not give the right answer in this region. 

To overcome this difficulty allowance has been made for both a target and a 
projectile final state by retaining the first term of both series ( 2 . 5 )  which means the 
inclusion of the three first-order terms in (2.4) (Macek 1970) 

for vp+ cc 
(3.1) 

1'~;)" = (1 + G ~ v = +  G~ v P h )  = W) + 143 -bo). (3.2) 

Thereby one is able to explain qualitatively the energy distribution of the electrons at all 
emission angles. However, this theory is limited in its application, as charge transfer 
cannot properly be described within a first-order theory. As in charge transfer theories 
to bound states, it is the second-order term in the Born series (corresponding to 



Semiclassical Faddeev approximation for electrovt loss 3143 

retaining (1 + GoVp)](C/T) in the series ( 2 . 5 ~ ) )  that dominates at high impact velocities 
(Dettmann et a1 1974). In order to account for the higher-order contributions, Miraglia 
and Ponce (1980) suggested the following approximation for the double-differential 
cross section 

(3.3) 

where d2cri0"/dEf d n f  is the projectile ionisation cross section (as seen in the target 
frame) in the first Born approximation. Thereby both possible electronic final states are 
combined in a single expression. This approximation is, however, justified rather by 
comparison with experiment than by a consistent derivation. 

To show this, we proceed with the evaluation of the electron-loss cross section using 
the SCFA. Corresponding to the five expansion terms in (2.8) we split the transition 
amplitude (2.2) into five contributions 

(3.4) 

and consider for the moment only the first one, corresponding to the impulse approxi- 
mation for charge transfer. Choosing the target system as reference frame, the 
projectile wavefunction is given by 

and the internuclear motion R = b +ut  is described by a straight-line path with impact 
parameter b. The transition amplitude follows as (Briggs 1977, Jakubassa-Amundsen 
and Amundsen 1980) 

a:' =$la d t l  dq exp[i(AE/h-q * u ) t ] e x p ( - i q * b ) q F T ( q + m u / h )  
Ih --CO 

J 

2 where A E  = Ef - E :  - i m v  is the energy difference and qFT(q + m u / h )  the Fourier 
transform of the target continuum state. It is convenient to introduce the Fourier 
transform of the target field, which for a screened Coulomb potential is given by 

(3.7) 

and to make the substitution 40 = q - s. Then the time integral leads to a S function, and 
the integrdion over impact parameter (2.9) is easily performed by means of the relation 

which holds because b is perpendicular to U. For a pure Coulomb target field (a  = O),  
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the contribution of a:' to the cross section is thus 

(3.9) 

From this, the Miraglia-Ponce approximation can be deduced by noting that the 
Fourier transform of the target Coulomb wave (Bethe and Salpeter 1957) 

(3.10) 

where qf = &/kf, is strongly peaked at 

k = qo + s + mu/h = kf 

(the second term becomes S(k - kf) for qf = 0 and vanishes otherwise) such that one 
may approximate (3.9) by taking everything but qfT outside the s integral at the 
peaking value. The s integral then simply yields the target wavefunction at rT = 0, and 
the remainder can be shown to lead to the first-order Born approximation for ionisation 
(qo + s = kf - mu/h is the electron momentum in the projectile frame), such that one 
arrives at (3.3). 

This approximation shows the forward divergence at kf = mu/h as the normalisation 
constant of the projectile (final) state factors out. However, the peaking approximation 
leading to (3.3) is not justified around kf = mv/h because the normalisation N ( v )  of 
Jl,,+, in (3.9) with q =gl/lqo+s/, is according to (3.1) strongly oscillating at s = -40  

and thus must be kept inside the s integral when the peaking approximation is 
performed. 

The result of a more careful evaluation of (3.9) is that it has a finite value at 
kf = mv/h and thus no forward divergence. This can be seen by making the substitution 
so = qo + s + mv/h - kf in the s integral together with the peaking approximation for the 
slowly varying functions in s. When spherical coordinates are used, the s integral then 
reduces for kf = mv/h to 

P 

dso qTT(So+kf) e x p ( h q ) r ( l  - iv)  

(3.11) 

I t  is then easy to verify that (3.11) is finite. In complete analogy it can be shown that 
none of the higher terms of the series (2.5a)-when going beyond the impulse 
approximation-shows a divergence, as any appearance of a projectile eigenstate, 
indicated by the term GpVp, is combined with an integral over momentum which 
cancels the divergence of the normalisation factor. From this it follows that a factorisa- 
tion of the type (3.3), although valid if kf is far apart from mv/h where the normalisation 

Is 1 
Ti 

x I'(l -i~l/so)[(so-2kf)-i ' f-  ( ~ ~ + 2 k ~ ) - ~ " f ] .  

= - exp($Tvf)r(l -iqf) dso ~il+~'lf exp[~&/ (2s~) ]  
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is a smooth function, cannot be considered as an appropriate theory for arbitrary 
electron momenta. 

4. The forward peak and numerical calculations 

In this section we apply the semiclassical Faddeev approximation to the ionisation of 
hydrogen by a heavy target. This means that the potential between the active electron 
and the projectile is purely Coulombic, while the target field is screened by the target 
electrons. We use the potential (3.7) with the screening constant a = 2.74me2/h (for 
Ne) which is the dominant term in a fit to a Hartree-Fock potential (Strand and Bonham 
1964). For the target functions $T one should take the corresponding eigenfunctions. 
While for lower impact energies it is important to use the exact eigenfunctions which 
allow for resonant electronic excitations in the target (Duncan and Menendez 1979, 
Jakubassa 1980) one may think of using hydrogenic wavefunctions when the impact 
velocity becomes as large as the target K-shell orbiting velocity. The influence on the 
energy distribution is small anyhow, and the difference between (3.6) and a pure 
Coulomb field affects mainly the absolute value of the cross section. Thus we use 
Coulomb waves for $T in the following which simplifies the calculation considerably. 

It remains to calculate the amplitudes a;’ -a:) and add them coherently to the first 
one. The second term in the series (2.8) leads to the transition amplitude 

a;)=-  ’ Im d t \  dq exp[(i/h)(EfP - E ;  - m v 2 + A q ~ u ) t ] e x p ( i q ~ 6 ) ~ ~ P ( q - m u / h )  
ih -m 

J 

For further evaluation we introduce q : ( s ) ,  the Fourier transform of the projectile 
bound state, which equals 23/2k:/2 (2: + s2)-’/.r for a 1s state. Then the time integral 
can be performed and leads to a S function as before. However, as 

1 2  =$m(kf-u) 2 =Ef+zmv -hkf*u  

is now the final electron energy in the projectile frame, the argument in the S function 
looks different from the one in a::’. In order to add the amplitudes coherently it is 
convenient to make a coordinate transformation from q to qo = -q + s + kf such that the 
S functions become equal. On the other hand one thereby introduces an impact 
parameter dependent phase, exp(ikf*b), which is not present in a!’. This phase 
originates from the transformation of a projectile continuum state into the target frame 
if the prescription (3.5) is used. As this phase is constant in space and time one may as 
well include exp(ikf*b) in the transformation operator for the final continuum pro- 
jectile state without affecting the property that the transformed wavefunction is a 
solution of the corresponding Schrodinger equation. Then exp(ikf 6 6 )  disappears from 
the transition probability in agreement with a full quantum mechanical description. 

The remaining amplitudes u ~ ’ - - a ~ )  are obtained in a similar way. The integration 
over impact parameter leads to 
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with 

ds 
A I  = - n 4 p T T ( q 0 + s  +mu/h)(+~,+slexp(is* ,P)I+P) I s  + C Y  

A2 = -&)‘I2 ds (pP(s)cpFP(-qO+s + kf - mu/h) 

T 

I 
(+-,,+,+~,lexp(-curTT)/rT/ exp[i(s + mu/h)rT]) 

1/2 P 
A3 = (h) pi (qo)(+Tlexp(-curT)/r=l exP[i(qo + mu/h)r~] )  

1 
A4 = (qo - kf + mu/h)’ + a 2  

A s = -  2 (PP ( 4 0 ) .  (qo- kf + mu/h)’ + CY 

(+f’/exp[i(-qo + kf - mu/h)rpIl+P) 

1 

Our aim is to study the influence of the target field on the energy distribution of the 
ejected electrons in a region where the projectile field is also important. We therefore 
choose the emission direction kf of the electrons to be parallel to u, corresponding to 
8f = 0. This also means a considerable simplification of the calculations, such that (4.2) 
can be evaluated without any further approximation. 

When hydrogenic wavefunctions are used, all matrix elements can be evaluated 
analytically (Nordsieck 1954). For a 1s initial state, one obtains (McDowell and 
Coleman 1970) 

3 / 2  ^ 5 / 2  (+~/exp(iq*rp)l+LP)= ( 2  21 / . r r ) ~ l ( k ,  q,Iq-kl) 

M l ( k ,  q,Iq - kl) 

with q1 = & / k ,  and 

(4.3a) 

(4.3b) 

with q2 = & / k .  
For further evaluation we introduce the variable q1 = -qo + kf - mu/h and make the 

substitution so = s - q1 in A1 as before, while in A2 we change variables according to 

so = s +q1- kf + mv/h 

in order to cope numerically with the divergence in the Fourier transformed Coulomb 
wave. Then A1 and A2 change into 

(4.4) 
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A2 = - dso cp!' (so - q1 + kf - mu/h)cpFP (so + kf - mU/h)M& + kfl, [so- 41 + kfl, q d  I 
and the argument of the energy conserving S function turns into 

h ( k f - m u / h ) ' / ( 2 m ) - ~ p / h + q l . u .  

Note that the final momentum of the projectile state (pFP is kf - mu/h ,  while it is kf for 
the target state cpTT. As we have chosen kf parallel to U, MI and Mz in (4.4) depend only 
on the angles 6ql, 6, (with respect to the z direction U )  and OSq( which is the angle 
between so and ql). By decomposing 

cos asq = cos as0 cos aq1 +sin as0 sin aql cos cpso 

the integrand is seen to be a function of as0, (p,, and aq1, but independent of qql. While 
the integral over 1.9~~ can be performed by means of the 6 function in (4.2), there remain 
thus four integrals to be evaluated numerically. With the use of (4.3), (4.4) and (3.10) 
the differential cross section (4.2) reduces to 

(4.5) 

In this expression we have introduced the definitions 

qmin= -ql cos aq1 = [ h 2 ( k f - m v / A ) 2 / ( 2 m ) - ~ ~ ] / ( h v ) ,  

x = cos tYs0, qf = 22/kf and qp = 21/lkf - mu/hl. We recall that (4.5) is only valid for 
kf = kp/v. For numerical reasons, it is convenient to calculate (4.5) with a small, but 
finite E. This is, however, not necessary for convergence reasons (as demonstrated in 
§ 3), and one only needs an infinitesimal E to determine the analytical behaviour when 
passing the singularities (Nordsieck 1954). But with the choice of E = +O one would 
have to extract the singularity at so = 0 by splitting the integrand and doing the critical 
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part analytically. We used E = 0.01 which implies an error of less than one per cent 
compared to the result with E = +O. Due to the screening constant a, the Q,, integral 
requires only a small step number, while the integrals over x and so have to be done with 
high precision because of several (integrable) singularities. We estimate the accuracy of 
our calculations to be about 5-10%. 

As an example, we have chosen the ionisation of hydrogen in collisions with Ne 
(Z2 = 10) at the impact velocity z1 = 10 e 2 / h  (E  = 2.5 MeV) which is equal to the Ne 
K-shell velocity. We calculated the various contributions to the double-differential 
cross section separately to study the influence of both the projectile and the target field. 
Figure 1 shows the electron spectrum calculated from equation (3.9), that is, where the 
electron is taken to be in a target final state. As shown before, the differential cross 
section is finite at the resonance k f  = mv/h and the narrow oscillations in that region can 
be traced back to the influence of the strongly oscillating normalisation constant N ( v )  
of the projectile intermediate state when 7 + CO. Oscillations of this kind usually do not 
appear in the first or second Born approximation, as the phase of the wavefunctions 
drops out of the transition probability. 

XlOE 
I 1 I I I I ' I " 

, 
I , ' I  I I , \ ,  / 

1 2  1 6  1.8 t ' &  
EiikeVi 

Figure 1. Energy distribution of projectile electrons emitted in 2.5 MeV (H, Ne) collisions 
at zero emission angle. The full curve includes only the charge transfer term A I  in (4.2) 
while the chain curve includes only A*. The broken curve is the (normalised) Compton 
profile (4.6) of the projectile. The arrow denotes the energy $mu2. 

The width of the energy distribution at zero emission angle is very similar to the 
width at larger angles 8f if the electron is captured into a target continuum state. It is 
roughly given by the momentum distribution of the initial state (Burch et a1 1973) which 
can be expressed by means of the Compton profile (Jakubassa 1980) 
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for a hydrogenic 1s state. It is shown in figure 1 for comparison (normalised to the 
maximum of the energy distribution from (3.9)). 

Also shown in figure 1 is the contribution of (4.1) to the differential cross section, 
where the electron remains in a projectile eigenstate. This term contains the first Born 
approximation, as well as the second one, because the target field is included to all 
orders in the intermediate state. As the projectile normalisation factors out, one 
obtains the well known divergence at kf = mv/A.  This leads to the narrow forward peak 
with a much smaller width than for larger emission angles (Duncan and Menendez 
1979). The energy distribution shows an asymmetry which is already present in the first 
Born approximation (Day 1980) but which is enhanced when higher-order terms are 
included. 

x108 50e 

E ' ( k e V )  

Figure 2. Energy distribution of projectile electrons emitted in 2.5 MeV (H, Ne) collisions 
at -S, = 0. The full curve denotes the complete SCFA (4.2) while the broken curve is the 
first-order contribution (including only A3-As in (4.2)). The arrow marks the energy &U'. 

Figure 2 shows the result of the full calculation (4.5) where the amplitudes (3.6) and 
(4.1) are added coherently (and double counting is corrected for). As this theory 
includes both the projectile and the target state as possible final states of the electron the 
forward cusp is retained, as well as the narrow oscillations on the wings from the 
oscillating phase of the projectile function. At electron energies slightly off the peak 
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(around 1.15 and 1.5 keV) the structure resulting from the capture into target 
continuum states survives, and the asymmetry of the energy distribution is strongly 
increased. For comparison figure 2 shows also the first-order approximation of Macek 
(1970) which is obtained from (4.2) when only the terms A3-A5 are included. There is 
some discrepancy between the two theories, especially at larger electron energies, 
which indicates the importance of including the target field to higher orders. 

One should note that the narrow oscillations on the wings of the cusp will be washed 
out in an experimental situation due to the finite angular (or energy) resolution of the 
detector, which also leads to a finite peak height. In order to compare with experiment 
one should therefore integrate over the experimental acceptance angle (or over the 
energy resolution, whatever has a larger uncertainty (Briggs and Day 1980)). However, 
the broad structures on the outer wings presumably will survive. 

5. Concluding remarks 

We have formulated a one-electron theory for electron loss in fast collisions which 
includes the higher-order contributions of the projectile and the target potential in a 
symmetric way and which should thus be valid for arbitrary energies and directions of 
the emitted electron. In order to study the influence of both the target and the projectile 
field we applied it to the ejection of electrons from hydrogen by a heavy target in the 
forward direction. When hydrogenic wavefunctions are used the cross section can be 
evaluated in this case (and also for 180" emission angle) without any further approxi- 
mation. Calculations performed for the (H, Ne) system support the idea that at low 
electron momenta with respect to the projectile frame the electrons are ejected into a 
projectile continuum state, while for larger Ikf - mv/hl the electrons will be captured 
into a target continuum state. The limit between the two regions is of the order of 
ihkf/m - v l / v  =Zl/Z2 which means that the heavier the target, the more the wings of 
the forward peak will be influenced by the target. This shows clearly that a first-order 
theory, until now applied mainly to (He, He) and (He, H) collisions, is no longer 
sufficient for asymmetric systems with Z1/Z2<< 1. It might be interesting to look 
experimentally for structures on the wings of the forward peak (at high impact velocities 
where the capture of target electrons into the projectile continuum can be neglected) as 
a function of the target atom in asymmetric collisions. 
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