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THEORETICAL DESCRIPTION OF THE CUSP ELECTRONS
EJECTED IN ASYMMETRIC HEAVY-ION COLLISIONS

D.H.JdakubaBa-Amundsen

Physik-Department, Technische Universitdt Miinchen, 8046 Garching
and GSI Darmstadt, Germany

Abstract

Starting from the Faddeev equations a series expansion for the transition ampli-
tude for electron emission is given, which serves as a basis for the discussion of
approximations used in the literature and their range of validity for a given colli-
sion system and momentum of the ejected electron. Both target and projectile electron
emission will be considered. Emphasis is laid on the asymmetry of the forward peak
and its variation with system parameters, such as collision velocity and charge ratio

ZP/ZT‘ The theoretical results will be confirmed by a comparison with experimental
data.

1.Introduction

Electron spectroscopy has received a great deal of attention lately, since the
production of electrons by fast ion impact is of principal interest in many branches
of physics. In particular, the so-called cusp electrons which are emitted with
nearly zero velocity relative to the projectile, i.e. appear in the target frame in
forward direction with a momentum that equals the collision velocity v have been
focused in a variety of experimental and theoretical investigations (see i.e. Meck-
bach and Burgdérfer, proceedings of this conference). The spectral distribution of
the cusp electrons provides a sensitive test for the applicability of first-order
theories, and I will show in the following that these theories are invalid not only
for electrons initially bound to the target, but also for electron loss from the
projectile in asymmetric collision systems, even at very high impact velocity.

2.Faddeev Theory

The basic formalism for electron emission is most easily described in the three-
particle picture, where the effect of all electrons of the projectile-target system
except the active one is incorporated into the potentials. Let <r? be the initial
electronic bound state (with A denoting either target T or projectile P), Va the
interaction field between the electron and A, and VB the electronic perturbation in
the initial channel. In the semiclassical theory the transition amplitude is given
by (in atomic units)



o
ag. = - gdt<y;|VB]Y?> (2.1)

where 1(% is the exact solution to the electronic two-center problem with the boun-
dary condition of a free electron in the final state. For fast collisions, which I
shall concentrate on, the internuciear motion can be described by a classical
straight-1ine path, thus neglecting the internuclear potential.

According to Faddeev1, Y’; can be written as a sum of wavefunctions which are
determined by a set of two coupled equations

9:> = (Yo e> + lYi> + |Y2> (2.2)

ly:2 GV |Wo,¢> * GV |Y2 2
Y22 = 6Va [Woe> * SaVa|¥iY

where H/o f is an electronic plane wave, and GA B is a Green's function defined by
A,B (13/3t +4/2 - VA,B - 15) with €—»0. In order to avoid convergence prob-
Tems from the long-range Coulomb fields it is assumed here and in the following that
VA’ V, are screened Coulomb potentials, with the well-defined 1imit of screening —»
0 taken in the final T matrices. From (2.2), series expans1ons for qu can be
derived. Using the definition of an eigenstate to nucleus A, ﬁlf = (1 + GAVA kyo £
the series can be written in three different ways

lv;>

(1 + GgVg + GV + GgVpGaVp + GaVpGVg + oot ) l‘i’o,f> (2.3a)

A'A’B'B
i B

= (1 +GyVp + GgVpbaVa + o ) |y > (2.3b)
= (1 + 6V + GpVpGgVp + «- ) |y> (2.3c)

where the form (2.3a) is a symmetric expansion allowing for both a projectile or
target electronic final state.

For practical purposes, these series have to be truncated, such that it is no
longer irrelevant, which of them is used. It is thus crucial to determine from the
momentum k and the directiona) of the ejected electron relative to the parent nucle-
us, as well as from the charge ratio ZA/ZB’ whether VA or VB will be the dominating
potential, in order to truncate the appropriate series. An estimate for the poten-
tial acting on the electron a time T after the collision can be found by using the

Coulomb formula ,
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Restricting the discussion to the cusp electrons, one has to use (2.3c) for k—» 0
if Zy5> Zg (because Vy s dominant), and (2.3b) for k—pv andar—»0 if 2z5> I,
(as Vg is dominant), but in the cases k=30, Z, << Z; as well as k—»v, T —0,

Iy 4 Zy, the symmetric series (2.3a) should be preferred.

3.Approximations for the Calculation of the Forward Peak: Target Ionisation

Let me first consider the case where bare projectiles are impinging on the target
atom, such that only target electrons are contributing to the forward peak. Solid
state effects, as for example capture into high-lying bound projectile states which
are eventually participating in the convoy electron productionz, will not be discuss-
ed here. In this case, A is identified with the target T, B with the projectile P.

a) First-order Bcrn Approximation

The first Born approximation for target ionisation is obtained by retaining the
first term in the series (2.3c), such that the transition matrix element reads

B = <yl vyl > (3.1)

Pioneer experiments on the forward peak in collisions of H" on He by Rudd and cowor-
kers3 have clearly demonstrated that (3.1) strongly underestimates the number of
electrons ejected with beam velocity near 0°.

b) First-order Faddeev Approximation

From the estimate (2.4) it is obvious that in this case the projectile field must
not be neglected in the expansion of ql;. Using the symmetric series (2.3a) and re-
taining the first three terms 1 + GPVP + GTVT’ i.e.

M = CWELVlYD> « Ky Lulyi> -y clulyi> G

Macek4 could explain the enhanced intensity of the cusp electrons. It originates
from the normalisation of the prOJect11e eigenstate qlf, and d1verges 1ike F
ZﬂZP/lkf - vl as the momentum kf of the electron approaches V, unless the f1n1te
detector resolution is taken into account. However, a careful analysis of the peak
shape5 reveals an enhanced intensity of electrons with kf < v as compared to those
with kf > v, a feature which can not be reproduced by the symmetric factor F0 con-
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tained in (3.2).

c) Second-order Born Approximation

Incidentally, the insufficiency of a €
first-order theory for the description of R
charge transfer to the continuum (CTC) ke oo
which is the basic process leading to the f-v

cusp electrons, is not surprising. It is
known from bound-state charge transfer &R “\\e
that the Brinkman-Kramers theory provides 1_

<t
0

the wrong high-velocity 1imit which has
only recently been verified experimental-
1y6, and also gives a wrong relative Fig.1 Momenta of the ejected electron
occupation probability of the final in the projectile or target frame
subshells. Therefore, Dettmann7, Shake-
shaft8 and coworkers have applied the second Born approximation, which consists in

retaining the fields up to first order in the series (2.3b):

2.8.
MED = Cp 1V s ul > (3.3)

where G0 is the free propagator. The asymmetry property of the cusp electrons is
readily displayed by writing the doubly differential cross section in terms of a
partial wave expansion

ds ~ 7_1___._ Z a; Py(cos®) (3.4)

dE A, [ke - VI

where E = kf/2 P] a Legendre polynomial and © the e]ectron emission angle in the
BrOJect1le frame with respect to V. It has been shown that the assumption of conti-
nuity of the capture amplitude across the ionisation threshold leads to finite ay
(including odd values of 1) in the limit kf—sv This is satisfied for the second
8, 10, whereas ay (1> 0) vanishes in the first-order theory. For zero
emission ang]edz:in the target frame, electrons with kf> v are emitted at @ = 0,
such that P] = 1, while electrons with kf < v appear in the backward direction

B8 =7, where Py = (-1)], resulting in a discontinuity of the cross section at kg = v.
The increased intensity at ©®= 0 may be explained by the fact that these electrons
are ejected in the same direction as the target motion (when viewed from the pro-

Born theory

jectile frame).

Another distinction between the Brinkman-Kramers and the second Born approxima-
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tion is found for the position Epeak of the forward peak as a function of emission

angle O‘f. From (3.4) it can be vem’ﬁed10 that the first-order theory shows a quadra-
tic dependence ona’} for small angles, while the second Born theory displays a linear
decrease of Epeak with O'f. The Tatter dependence is clearly verified by experiment in

He** on Ar (refs. 10,11) and H' on He conisions12.

d) Impulse Approximation (IA)

If the projectile is much heavier than the target, a first-order treatment of the
potential VP in the T matrix is not sufficient. Instead, a consistent first-order
expansion of (y]; in the weak target field V; leads with the help of (2.3b) to

lye> = (v iy v GoVpsvp) lye >
ME = R v s Gvy) Lyl > (3.5)

. _ P T -
wherePuse hasTbeen made.of th? relations Gy = G + GPVPGo and <Yfl Vpl\fi> =
< \yf l VTl\yi > . An insertion of a complete set of plane waves "l’o,‘d behind the
operator (1 + GPVP) in (3.5) allows for the description of the CTC process in terms
of ejection of a target electron into an intermediate projectile state with mcmentum

g + V, with a subsequent scattering by the target field into the final state L}'?.

3 IA

4 /dEdRy o4
Epeak () tal fdb V8, Ne™ —s He
4 Epeak (0) ZP_' He
.99
.98 4
SFL
.86 L 1 1 !
0 .4 .8 42 16 ‘ £ (keV)
5 s 4.5 3
Fig.2 Ratio of peak energy to v2/2 as Fig.3 Cross section ratio between im-
a function of,e? for collisions pulse approxirpation and firgt |
of Ar18+(v=18.1 a.u.) and Ne !0+ Born thzory t1me§ F0=ZrZP/l f-vl
(v=17.62 a.u.) with He at&=0" and 1.7° for 155 MeV

Ne10+ on He
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0ff-shell effects for CTC are expected to be sma]l13 and neglected in the following.

As the impulse approximation reduces to the second Born theory for asymptotic
collision velocities, it is expected to show similar features characteristic for a
higher-order theory. Fig.2 displays the linear dependence of E

peak ON é# for small
angles in collisions of Ar18+ 10+

and Ne with He at nearly equal impact velocities. In
order to make the discontinuity of the differential cross section at if = V visible,
Fig.3 shows the ratio d's™®/(F d%'®:) which is finite at £, = v?/2. At nonzero

angles the discontinuity is replaced by a rather steep fall-off of the ratio when Ef

is increased.

In order to study the dependence of the discontinuity on the projectile charge and
collision velocity, let me define the ratio

4%/ dE dR_(KE. ,=0)
. . £ ¥ (kg oWt (3.6)
d%e /dE AR (K} ,9:=0)

where the electron momenta ki and k? are chosen such that o = Zp/]ke - v] s
equal (and » 1, but finite for numerical reasons) for both, with k‘f £ v and kf>> V.
As the electron 1is in a final projectile state, the field strength ZP is taken as

8r ¢ +

9 T T T T T T s H'— He
S
i : |
M=30) Zp—= He { }

U Ne 7 6

5r-
5 |- Ar ]

I
1
F
T
—

[
1

2 ///
1 | | ] | | 1 A
1 ZP/v

04 08 12 7y 16 . " " . . ,
Fig.4 Discontinuity S at O'f=0 and =30 Fig.5 Discontinuity T at Jx0 as a
as a function of inverse velo- function of ZP/v in H'—He col-
city for collisions of C6+, Ne10+ lisions. Shown are results for
and Ar18+ with He the IA (—) and the asymptotic

second Born theory (---). Data
are from Dah]12



reference parameter also with respect to the velocity v. Fig.4 shows S in the IA for
C6+, Ne10+ and Ar18+ impinging on a He target. For large collision velocities, v ZP’
a peaking approximation revea]s13 that in the limit of kf——a V, d)%——yo the matrix
element in (3.5) becomes proportional to a confluent hypergeometric function, the ar-
gument of which is x = 161’ZP/3v for kf 3 Vv and x = 0 for kf_é" v. Thus the
discontinuity vanishes (S —» 1) for Zp/v-—é 0. At fixed ZP/v which may also be con-
sidered as parameter of the initial perturbing field, S increases when ZP/ZT becomes

smaller, i.e. when the relative influence of the target becomes stronger.

In the case of H+-—§ He collisions, the systematics of the discontinuity has re-
cent]y been 1’nvest1’gated experimenta]]y 2. In Fig.5 the related quantity 3 -

f 0 f) % (k¢ )/[‘k'fc F 17) d% (k f,O)] is shown, where (T(}f -2 - (.I:F -l -
21077 eV. However, the data are taken at relatively low v where the IA is no longer
valid. Nevertheless, the trend shown in Fig.4 is in good agreement with the experi-
ment. That the theory extrapolated to H projectiles lies above the data results from
the average over the angular acceptance in the experiment, which reduces the discon-
tinuity (cf. Fig.3). For comparison, the second Born results are also shown for H+—-)
He at n7'f = 0, applying the high-velocity formula from ref.8. It is seen that even at
rather high velocity, this formula breaks down, whereas at the highest velocity in-
vestigated, agreement is found with the IA within the numerical accuracy of the
latter.

The discontinuity S reveals itself as a decisive parameter for the shape of the
forward peak. Considering only partial waves with 1 £ 1 in the expansion (3.4), the
differential cross section may be approximated by

2%XZ
_c&_ = o P [(S+1 - S-1)c059] (3.7)
dE (4R Ikg
COSA} -
lkf -V l

which has the property that atn?} =0, d26 k ,0)/d e‘(k7 ,0) = S, while dzo‘ is conti-
nuous for‘n’} # 0. In order to compare with exper1menta1 peak shapes, (3.7) has to be
integrated over the angular acceptance «?0, giving a simple analytic formula, and over
the energy resolution AEf. The constant a in (3.7) accounts for the absolute vah1‘8+
which hitherto has not been determined experimentally. In the case of 155 MeV Ne
colliding with He (:3‘ 1.4°, Qb = 2.2%) the peak shape is compared with experimen-
tal data'® in Fig.6. The dashed line is the formila (3.7) with S from Fig.4, and
gives a reasonable fit to the peak shape. The agreement between the IA and (3.7) in
the tails might be improved by introducing the energy dependence of the first Born

theory into the constant a, as suggested from Fig.3. For the collision system 08)'_;
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2
(da;cd& >*’n‘( 10+ (dgddd,ﬂ, 2 o, E
£ Ne ™ —» He e P
{10 b/ keV-sr) - 8+
0" — He
6 FARE
P\
L 7" \*
/..". v
{ \
‘f B //~ 3
’ 4 (‘
r e Ve,
-~ - \.'
2 F \\
\\
B o L
J 1 :..I
15. %4 16.3% 16. 84 17.3%
kfm.u)
Fig.6 Differential cross section for Fig.7 Differential cross section for
cu?8+e1ectron emission in cusp electron emission in 081_9
Ne '~ '—» He collisions at v=17.62 He collisions at v=16.64 a.u. The
a.u. Full line, IA, dashed line, dashed line is the formula (3.7),

(3.7) normalised at the p?ik' the data are from Berry et a114
Data are from Berry et al (arbitrary units)

He (33 = 1.49, AE; = 1.4%) the formula (3.7) with S = 3.49 also compares well with
the experimental data14. Note that apart from the normalisation of the peak height

there are no free parameters in this theory.

4 .Projectile Ionisation

When the projectile is not fully stripped, electron loss will in general provide
the dominant contribution to the forward peak at high collision velocities. Then in
the formulas (2.1) - (2.3), A has to be identified with the projectile P, B with the
target T.

a) First-order Born Approximation

The first Born approximation for projectile ionisation, which is obtained from
the first term in the series (2.3c), yielding

1.8, p p
M= <ye L vlys > (4.1)

has been frequently apph‘ed15’16 for the description of the forward peak in systems

with ZP 2z ZT and large v. In a similar way as for target ionisation, the differen-
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. . - - . .
tial cross section near kf = v can be decomposed into partial waves

2n
d%s ~ % E a; P(- cos8) (4.2)
dE AR, [ke -Vl 3

where in the first Born theory, 1 can only take even va]ues”’18 such that the cross

section does not exhibit a discontinuity when & is switched from 0° to 180°. Experi-
ments show19 that the electron loss peak is much more symmetric than the correspon-
ding CTC peak which would support the applicability of the first Born theory; however,
the dependence of the peak width on velocity in collisions of e.g. Si with Ne and

0 with Ar show deviations19 from first Born predictions, and a detailed study20 of

the angular distribution for H —5 He collisions in the cusp region indicates that

more partial waves than present in (4.2) should contribute.

b) Second-order Faddeev Approximation

For asymmetric systems with ZP 24 ZT a treatment of the target field VT in first
order is not sufficient, as long as the collision velocity is not very much greater
than ZT‘ As in the cusp region both potentials will be important, the symmetric
series (2.3a) for ?@ should be used. The second-order Faddeev approximation includ-
es all terms explicitly written in (2.3a),
such that the transition matrix element 2r, p

4 G
becomes o dE 4 H—> Ne
41 | (10°b/ keV-sr)
2.FA _ T P
M = YRl ) vl > )
p P
s Cyel e ven vilyy > gl

- &yi bl > - YR vlyE > sf

Ly el vl Wy (8.3) i

1 1 n

. 4.6
12 43 L * e (kev)

where the last three terms correct for
double counting and are nothing but the
first-order Faddeev approximation. The Fig.8 Cross section divided by F0 for
first term, M1, describes the charge e]ectrop gmission in 2.5 MeV H—
transfer to the target continuum and Ne collisions at£7%=0. Only the
influences the tails of the forward second term in (4.3) is included
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peak , whereas the second term, M s accounts for the progect11e ionisation via an
intermediate target continuum state and is dominant for k At&T = 0, the ma-
trix element corresponding to this second term21 exh1b1ts a phase proportiona] to
chose which gives rise to a discontinuity as kf traverses v. Unfortunately, this
phase depends also on integration variables which cannot be fixed by a simple

peaking approximation. In Fig.8 the discontinuity of the cross section calculated
only from M2 is clearly visible. In contrast to the target ionisation, the high-

energy side is enhanced, because the electrons which are ejected with ® = 0 move in

the same direction as the projectile
of the peak will be influenced by M1

Again, one may define the ratio S

from which they originate. Note that the wings
which is not included in the calculation.

according to (3.6) as a measure for the discon-

tinuity. Fig.9 shows S as a function of ZP/v for H on C, Ne and Ar targets. While the
first Born theory always gives a ratio close to 1, the deviation from unity in the
Faddeev approximation is the larger, the heavier the target atom and the lower the
collision velocity, indicating the importance of the target field. In Fig.10 the ab-
solute values of the differential cross section at kf Z, v and &k = 0 are compared
to the first Born results. Considerable deviations are found even for a C target,

and the Born theory becomes only valid at v » ZT‘

In conclusion, it has been shown for asymmetric collision systems, using the im-
pulse approximation for target jonisation and the second Faddeev approximation for
electron loss that the forward peak displays a discontinuity for zero emission angle

7 ds /e 48, (K;,0)

d’c‘ >/dE;dSl (k7,0)
osf- H—2Z; . Hoz,
- _ ol \
c
o7r o of \
i b 4L Ne
Ne A
0.5 Ar A "
03 I 1 ] 1 1 ] o -2 4 6 .8 1. 12 14
0.4 08 OxZp/v 12 10 Zp/v

Fig.9 Discontinuity S at af=0 and =10

as function of inverse velocity
for H colliding with C, Ne and Ar

Fig.10 Cross section ratio between the
Faddeev and the Born approxima-
tion for H colliding with C, Ne
and Ar at J‘f=0 and 9 =10
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at kf = v irrespective whether the electrons originate from the target or the projec-
tile. The magnitude of this discontinuity can be closely related to the experimental
peak shapes which provide strong evidence for the necessity of a higher-order theory.
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