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We derive the exact asymptotic behavior of the second Born approximation for electron capture. The
transfer probability as a function of impact parameter and the cross section is shown to go like (InE)%E,
where E is the collision energy. This result is the same as for the impulse approximation, and is indepen-
dent of the initial- and final-state wave functions. In particular, it is also true for capture to the continuum.

An interesting aspect of the nonrelativistic treatments of
electron capture in ion-atom collisions is that at asymptoti-
cally high collision energies E the total capture cross section
(o) calculated from the second Born approximation (BA2)
behaves as o~ E~35, and dominates the first-order
Oppenheimer-Brinkman-Kramers (OBK) result! (o~ E~9).
This has been related to the fact that the BA2 contains the
Thomas double-scattering amplitude, which for capture of a
free electron is the lowest-order term compatible with
energy-momentum conservation.? However, the asymptotic
dominance of the nonrelativistic Thomas amplitude for total
cross sections is of somewhat academic interest, as opposed
to the case of differential cross sections, where it has recent-
ly been experimentally confirmed,® since it only occurs at
energies where a relativistic description is mandatory.

Now it is known*? that for a relativistic collision the Tho-
mas cross section behaves asymptotically as E£~3, and is
dominated by the corresponding OBK cross section®
(o ~ E~1'). One might thus believe that the OBK approxi-
mation gives the right result as £ — oo in this case. It has
been shown, however, that the relativistic impulse approxi-
mation (IA), which contains terms of arbitrary high order in
one of the nuclear potentials, and in particular includes
]
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BA2, leads to an asymptotic behavior’ o ~ (InE)¥E (the
derivation in Ref. 7 goes through also without making a
peaking approximation). Since it is believed that the IA is
asymptotically correct for relativistic collisions, as it is in the
nonrelativistic case,®? it becomes an intriguing question how
this asymptotic behavior arises.

In this Brief Report we show that the exact relativistic
BA2 indeed has the same asymptotic behavior as the IA,
even though this cannot be ascribed to the Thomas mecha-
nism. The discrepancies between our results and those re-
cently reported by Humphries and Moiseiwitsch!® for a
peaked BA2 can be traced back to a peaking approximation
used by these authors, as discussed below. Throughout this
Brief Report we use atomic units (#=e=m,=1), and our
conventions for the Dirac matrices o and yo are those of
Bjorken and Drell.l!

We shall, for definiteness, consider capture from the tar-
get to a bound projectile state, and shall use the semiclassi-
cal (impact-parameter) picture, although this is not essential
for our derivation. The exact scattering state ¥§~ in the
projectile rest frame (denoted throughout by a prime)
which asymptotically develops into a projectile state i £, #» isin
BA2 approximated by (¢ =y *y):
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where the free propagator Gy has been written in its spectral representation, lgs) is the sth component of a free spinor of

momentum q, and (yoV7)' =
mation matrix T is given by!!

T=[(1+y)21"[1+y8/(1+y)a.] ,

T~ Y(yoVr) T is the target Coulomb potential (charge Zr) in the projectile frame. The transfor-

with 8=v/c and y = (1— 82)~ V2, y being the collision velocity, and T~ ! is found by replacing 8 by — 3. Finally, we use the
notation (¢*]4 |¢) to denote the matrix element (¢ (¢)|4 (¢)|y(¢)) integrated over time ¢.
Using ¢ from Eq. (1), the exact transfer amplitude can be approximated as
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Here the first term, a}?", is the well-known OBK amplitude, which will not be considered further, and Vj is the projectile po-
tential (charge Zp). In order to facilitate the transformation of the initial target state ¥ to the projectile frame, we have in-
serted a complete set of free states |k,) into the expression in Eq. (2).

For the further evaluation, we write (r|k,(2)) = exp(ik-r—iwit), where u is a constant spinor. We choose the pro-
jectile velocity v as the z axis, so that the target and projectile systems are connected by the Lorentz transformations
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t=y(t'+Bz'/c), z=y(z'+vt'), and r; =1 +b, where b is the impact parameter. The last two space-time integrals in Eq.

(2) can then be carried out, yielding
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where E; is the initial electron energy, and ¢,(k) the corresponding momentum-space wave function. We now introduce the

Bethe representation for the Coulomb potential, so that

(¢;'+"/(1+Ba,)% yZr
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where E; is the energy of the final state ¢, and ¢,(k,,k,) its Fourier transform for momentum k= (k,,k;). When Egs.
(3) and (4) are inserted in Eq. (2), the integrals over wx and w, can immediately be carried out.
In order to extract the high-energy (y — oo) behavior of the BA2 amplitude aﬁz, we change variables from k to k', with

k,'='yk,-—E;'yB/c and k1=kl
nite as y — oo:

—yor+kyv=—vE+vk;+EyR’=—E;/y+vk, ,

ke=EB/c+k [y ,

One finds that the following expressions occurring in Egs. (3) and (4) remain fi-
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Doing also the so, integration, the transition amplitude reads ®
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This expression is still exact.

We can now readily extract the asymptotic y dependence
of af?. Apart from the factor y~! from the prefactor and a
factor yY2 from T~!, there is a nontrivial y dependence
arising from the sg; integration. This is because
Q (k;)/y— 0, while the rest of the integrand remains finite,
so that the integral becomes singular at so; =0 in that limit.
Since exp(isg b) and ¢, are generally nonzero in this re-
gion, they can be taken outside the integral without affect-
ing the behavior at so, =0. The remaining integral is ele-
mentary, and one finds a contribution ~ In(Q/vy) from the
lower limit (the divergence as so. — oo vanishes if the
above-mentioned factors are retained inside the integral).
Since the expressions in Egs. (5) remain finite, all other fac-
tors are seen to be independent of y as y — oo, and the to-
tal cross section, obtained by integrating |afX+ af?|? over
impact parameters behaves like
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as E— o , @)
since E~vy. This is the same functional dependence as
previously found for the IA.” Thus the BA2 contributes at
least partially to the asymptotic behavior of charge transfer.

It should be noted that in deriving Eq. (7), no explicit as-
sumptions have been made for ¢; or ¢, since the integrals
in Eq. (6) converge for arbitrary initial and final bound
states. If, on the other hand, capture to continuum (CTC)
is considered, the wave functions will introduce additional
singularities in the integrands. A detailed analysis shows
that this will not change the asymptotic energy dependence
of o, when integrated over a finite detector resolution for
the momenta of the ejected electrons, although for certain
critical momentum values the differential CTC cross section
may even increase with y. )

-
The discrepancies between the present results and those
obtained by Humphries and Moiseiwitsch!® can be traced
back to a peaking approximation employed by these authors
to facilitate the integration over momentum transfer. In the
Bethe integral (our sp, integral), they replace the denomina-
tor with the squared difference between the initial and final
internuclear momenta [their Eq. (16)], which does not
depend on the integration variables, but becomes a constant
factor in the transition amplitude, independent of vy as
y— oo. Translated to our formulation, they approximate Q
in such a manner that Q/y no longer vanishes in this limit,
so that the sg, integral only gives a constant contribution.
From their exact BA2 expression [their Eq. (15)], one can
indeed derive Eq. (7), following the same steps as above.

The. asymptotic dependence of Eq. (7) for the ultrarela-
tivistic capture cross section has also been found by
Moiseiwitsch and Stockman,!? using a modified OBK formu-
la incorporating the two-state correction of Bates.!*> Howev-
er, this correction does not include all second-order terms of
importance, as can be seen from the fact that the corre-
sponding nonrelativistic theory still predicts o ~ E =6 Thus,
the result of Moiseiwitsch and Stockman!? that the constant
in Eq. (7)—for which we derive no result—is of higher order
in the fine-structure constant « than the constant for the
1/ E term from Ref. 10, need not hold in the full BA2.

At first sight the result that o — (InE)? E appears to be
at variance with the physical picture underlying the IA,
namely, that the transfer process can be described as ioniza-
tion of the target atom, followed by capture in the form of
an overlap with a traveling projectile state.® It is known that
the ionization probability for a given impact parameter
asymptotically approaches a constant,!* while the transfor-
mation of the projectile state to the target system only can
introduce powers of y (cf. above). However, for ionization
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this result depends critically on the relation between energy
and momentum transfer, and if this relation were changed,
as it effectively is for electron capture, the ionization proba-
bility would indeed grow asymptotically as'* (Iny)2. Thus,
also at relativistic velocities the simple physical idea behind
the IA remains valid.

The physical origin of the In(E) dependence of af? (and
correspondingly for the IA) is the transverse electromagnet-
ic field of a moving charge, which has no nonrelativistic
counterpart. The instantaneous Coulomb potential alone
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(the longitudinal field) would also give a contribution like
Eq. (6), but with the term Q% y? in the denominator of the
so. integral replaced by Q2. The resulting cross section will
indeed have the same asymptotic behavior as the OBK. The
transverse field does not contribute to the OBK amplitude
due to Lorentz invariance, as one can always transform it
away by going into the projectile rest frame.
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