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The asymptotic dependence of the second-order Born term on the collision energy E is reexam-
ined. In contrast to previous work, a relativistic free-particle propagator is used, and allowance is
made for the spectator electrons of the target by means of a screened potential. These modifications
do not change the behavior of the capture cross section like (InE)*/E.

In a recent study’? of electron capture by swift bare
ions in collisions with target atoms the second-order
Born approximation has been used to extract the high-
energy behavior of the capture cross section, as it is
known from nonrelativistic theories that the second-
order term in the Born series is asymptotically the dom-
inating one for rearrangement collisions.’ Two approxi-
mations were made in these calculations, first, a nonrela-
tivistic propagator was used in the second-order Born
term and second, the target atom was idealized by a one-
electron ion. In addition, in the work by Humphries and
Moiseiwitsch! a peaking approximation was introduced
and only the lowest-order terms in the fine-structure con-
stant were retained. Their result, an asymptotic E '
dependence of the capture cross section, differs, however,
from the logarithmic energy dependence, (InE)*/E,
which has been found without this peaking approxima-
tion.?

In the present communication we improve upon our
previous work? by replacing the nonrelativistic free-
particle propagator by a relativistic one and by adding to
the interaction between the active target electron and the
target nucleus an average field caused by the presence of
the spectator electrons. Atomic units (i=e=m =1) are
used.

In the semiclassical theory, the exact transition ampli-
tude for electron capture by a bare projectile with charge
Zp is given by

ag,=—i [di'de (o VO[T ], (1)

with ¥=¢Ty, and y, a Dirac matrix. The quantities
defined in the projectile frame of reference are denoted by
a prime, and Vp(r')=—Zp /|r'| is the electron-projectile
interaction. ¥!(r) describes the bound target electron,
and the operator T ! transforms this function into the
projectile reference frame. The coordinates »'=(ct’,r’)
and r =(ct,r) are connected by a Lorentz transformation.

The second-order Born approximation is obtained
upon expanding the exact electronic scattering state w(f’
which asymptotically develops into a projectile bound
state dzf in terms of the electron-target and electron-
projectile interactions, ¥ and Vp, respectively, and re-
taining only the first two terms*
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The electromagnetic potential of the residual target ion is
Ar=vy Vr with

Velr)=—=0/th[1+(Z— Dexp(—ulrt)],

where Z; is the nuclear target charge and, for
definiteness, an exponential screening function is used to
represent the presence of the Z,—1 spectator electrons;
the precise form of the screening function is, however,
not important in the present context. For u=0, the pure
Coulomb field V= —Z;/|r| of Ref. 2 is recovered.

The relativistic free-particle propagator Sp is most
readily given by its Fourier representation. It can be ex-
pressed in terms of the normalized Dirac plane waves

qx(r):(27r)’Zuq‘exp(iq-r——itsswt) ,
where u, is a Dirac spinor,

u,=[w+mc?) 20" [1+8,a-qc /(w+mc?)]e

S
q s
with a, , ., Dirac matrices and e, a four-dimensional unit
vector’ (these spinors obey the conventional completeness
relation, 3¢_, uqyuq‘*z 1, in contrast to the spinors as
defined in Ref. 4):

e 1 : _
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with e >0+,

[1, s=1,2
0.7 -1, s=3,4,

goc =E,=(q’c*+m?**)'? and g,=q,'7, The different
sign for s =1,2 and s =3,4 is a consequence of the relativ-
istic propagation of positive-energy states (s =1,2) for-
ward in time and negative-energy states (s =3,4) back-
ward in time in case of St and vice versa for S~ .
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The transition amplitude in the second-order Born ap-
proximation is obtained by inserting (2) into (1). In the
following, only the second-order Born term to ay;, denot-
ed by af? [which follows from inserting the second term

|
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on the right-hand side of (2) into (1)] will be considered.
As we have chosen to evaluate the transition matrix ele-
ment in the projectile reference frame, the target field 41
has to be transformed according to?

1 Zr—1

s% s(z)+p2

) (4)

where the z direction is defined by the collision velocity v and ¥ =(1—v?/c?)”!/2. In the last step, the Fourier repre-
sentation of ¥ has been used together with the transformation from r to r’ at impact parameter b.

By introducing a complete set of Dirac plane waves k(r) into (1) after T~ !, the evaluation of the transition ampli-
tude proceeds in the same way as done in Ref. 2 and will not be repeated here. We only give the final result for the

second-order Born term

Zp 4 1 + kb, 1
B2 _ : ’ 4 1 s 1, 0
apc=-—i 8, | dqdk ul'¢;(kK)le " (uS T 'ul)——
s 47r‘yvs,02:1 f d SS(Ei/y—ukz')—qoc+ie[ , 4 ¢ (q—k')?
1 Zr—1 isg; b | 4 v s
desm 5o +ss,  sg tsgtpt e > 14s(sutanrse Ta,) 1+;az e | o

where 5o, =y [ —E;/v+E;/(yv)—k,] is fixed by ener-
gy conservation, E, and E; are the energies and ¢,(p)
and ¢,(p,,p,) the Fourier transforms of the final and ini-
tial bound states, respectively. The vectors k and k’ are
related by k, =k and k,=k./y+E;v/c? [note that in
Eq. (6) of Ref. 2, (q—k)? should read (q—k’)*].

Equation (5) differs from the corresponding equation
of our previous work in the energy denominator
8,(E; /y —vk,)—quc and in the multiplicative sign factor
8, which results from the proper propagation of the elec-
tron and positron states; in the case of a nonrelativistic
propagator, 8§, —1 and g,c=—q?/2. Moreover, con-
sideration of the presence of the spectator electrons intro-
duces an additional term in the s, integrand which is
finite as 55— 0.

Let us now consider the energy dependence of the tran-
sition amplitude as E=yMpc®— o (Mp being the pro-
jectile mass). A y~!/? dependence arises from the com-
bination of the prefactor ¥ ! in (5) and from the asymp-
totic dependence of T ! like y!/2. Moreover, s,,, behaves
like ¥ ! which implies that the integral over ds,, of the
term proportional to (s3, +s3,) ! diverges asymptotical-
ly like Iny, while the integral over the second term con-
taining the screening constant u is independent of y as
v — . All other quantities in (5) remain finite in this

[
limit. Hence a/>~y ~'"’Iny, and the energy dependence
of the capture cross section o as obtained by adding the
first-order Born term (which behaves asymptotically® like
y~'?) to af* and squaring the amplitude is
o0 ~(InE)?/E for E — . This energy dependence is the
same as found in our previous work.

The omission of the two above-mentioned approxima-
tions affects, however, the magnitude of the y_l/ 2lny
term in the transition amplitude and hence its importance
for finite y. In particular, the consideration of
screening—with a contribution to a ﬁz proportional to
y 12_will strongly reduce the prefactor of the
¥ "2ny term (with 1/Z;) as compared to a pure
Coulomb target field.

If, on the other hand, allowance is made for an ulti-
mate complete screening of the target potential, the
Coulombic term in (5) proportional to s, 2 is no longer
present. In this case, the first and second-order Born
term will show the same asymptotic energy dependence,
leading to 0 ~E ~ ! for E — .
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