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Abstract

The Random Forest (RF) algorithm for regression and classification
has considerably gained popularity since its introduction in 2001. Mean-
while, it has grown to a standard classification approach competing with
logistic regression in many innovation-friendly scientific fields. In this con-
text, we present a large scale benchmarking experiment based on 260 real
datasets comparing the prediction performance of the original version of
RF with default parameters and LR as binary classification tools. Most
importantly, the design of our benchmark experiment is inspired from clin-
ical trial methodology, thus avoiding common pitfalls and major sources
of biases.

RF performed better than LR according to the considered accuracy
measured in approximately 69% of the datasets. The mean difference
between RF and LR was 0.032 (95%-CI=[0.025, 0.042]) for the accuracy,
0.043 (95%-CI=[0.032, 0.056]) for the Area Under the Curve, and −0.028
(95%-CI=[−0.036,−0.022]) for the Brier score, all measures thus suggest-
ing a significantly better performance of RF. As a side-result of our bench-
marking experiment, we observed that the results were highly dependent
on the inclusion criteria used to select the example datasets, thus empha-
sizing the importance of clear statements regarding this dataset selection
process. We also stress that neutral studies similar to ours, based on a
high number of datasets and carefully designed, will be necessary in the
future to evaluate further variants, implementations or parameters of ran-
dom forests which may yield improved accuracy compared to the original
version with default values.
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1 Introduction

In the context of low-dimensional data (i.e. when the number of covariates is
small compared to the sample size), logistic regression is considered a standard
approach for binary classification. This is especially true in scientific fields such
as medicine or psycho-social sciences where the focus is not only on predic-
tion but also on explanation; see Shmueli [1] for a discussion of this distinction.
Since its invention 16 years ago, the random forest (RF) prediction algorithm [2],
which focuses on prediction rather than explanation, has strongly gained pop-
ularity and is increasingly becoming a common “standard tool” also used by
scientists without any strong background in statistics or machine learning. Our
experience as authors, reviewers and readers is that random forest can now be
used routinely in many scientific fields without particular justification and with-
out the audience strongly questioning this choice. While its use was in the early
years limited to innovation-friendly scientists interested (or experts) in machine
learning, random forests are now well-known in various non-computational com-
munities.

In this context, we believe that the performance of RF should be systemati-
cally investigated in a large-scale benchmarking experiment and compared to the
current standard: logistic regression (LR). We make the—admittedly somewhat
controversial—choice to consider the standard version of RF only with default
parameters — as implemented in the widely used R package randomForest [3]
version 4.6-12 — and logistic regression only as the standard approach which is
very often used for low dimensional binary classification.

The rationale behind this simplifying choice is that, to become a “standard
method” that users with different (possibly non-computational) backgrounds
select by default, a method should be simple to use and not require any complex
human intervention (such as parameter tuning) demanding particular expertise.
Our experience from statistical consulting is that applied research practitioners
tend to apply methods in their simplest form for different reasons including lack
of time, lack of expertise and the (critical) requirement of many applied journals
to keep data analysis as simple as possible. Currently, the simplest approach
consists of running RF with default parameter values, since no unified and easy-
to-use tuning approach has yet established itself. It is not the goal of this paper
to discuss how to improve RF’s performance by appropriate tuning strategies
and which level of expertise is ideally required to use RF. We simply acknowledge
that the standard variant with default values is widely used and conjecture
that things will probably not dramatically change in the short term. That is
why we made the choice to consider RF with default values as implemented in
the very widely used package randomForest—while admitting that, if time and
competence are available, more sophisticated strategies may often be preferable.

Comparison studies published in literature often include a large number of
methods but a relatively small number of datasets [4], yielding an ill-posed prob-
lem as far as statistical interpretation of benchmarking results are concerned.
In the present paper we take an opposite approach: we focus on only two meth-
ods for the reasons outlined above but design our benchmarking experiments

2



in such a way that it yields solid evidence. A particular strength of our study
is that we as authors are equally familiar with both methods. Moreover, we
are “neutral” in the sense that we have no personal priori preference for one
of the methods: ALB published a number of papers on RF, but also papers on
regression-based approaches [5, 6] and papers pointing to critical problems of
RF [7, 8, 9]. Neutrality and equal expertise would be much more difficult if not
impossible to ensure if several variants of RF (including tuning strategies) and
logistic regression were included in the study. Further discussions of the concept
of authors’ neutrality can be found elsewhere [4, 10].

Most importantly, the design of our benchmark experiment is inspired by
the methodology of clinical trials that has been developed with huge efforts for
several decades. We follow the line taken in our recent paper [10] and carefully
define the design of our benchmark experiments including, beyond issues related
to neutrality outlined above, considerations on sample size (i.e. number of
datasets included in the experiment) and strict inclusion criteria for datasets.
Moreover, as an analogon to subgroup analyses and the search for biomarkers
of treatment effect in clinical trials, we also investigate the dependence of our
conclusions on datasets’ characteristics.

As an important by-product of our study, we provide empirical insights into
the importance of inclusion criteria for datasets in benchmarking experiments
and general but critical discussions on design issues and scientific practice in
this context. The goal of our paper is thus two-fold. Firstly we aim to present
solid evidence on the performance of standard logistic regression and random
forests with default values. Secondly, we demonstrate the design of a benchmark
experiment inspired from clinical trial methodology.

The rest of this paper is structured as follows. After a short overview of LR
and RF, the associated VIM, partial dependance plots [11], the cross-validation
procedure and performance measures used to evaluate the methods (Section 2),
we present our benchmarking approach in Section 3, including the criteria for
dataset selection. Results are presented in Section 4.

2 Background

This section gives a short overview of the (existing) methods involved in our
benchmarking experiments: logistic regression (LR), random forest (RF) in-
cluding variable important measures, partial dependence plots, and performance
evaluation by cross-validation using different performance measures.

2.1 Logistic regression (LR)

Let Y denote the binary response variable of interest and X1, . . . , Xp the random
variables considered as explaining variables, termed features in this paper. The
logistic regression model links the conditional probability P (Y = 1|X1, ..., Xp)

3



to X1, . . . , Xp through

P (Y = 1|X1, ..., Xp) =
exp(β0 + β1X1 + · · ·+ βpXp)

1 + exp(β0 + β1X1 + · · ·+ βpXp)
, (1)

where β0, β1, . . . , βp are regression coefficients, which are estimated by maximum-
likelihood from the considered dataset. The probability that Y = 1 for a new
instance is then estimated by replacing the β’s by their estimated counterparts
and the X’s by their realizations for the considered new instance in Eq. (1).
The new instance is then assigned to class Y = 1 if P (Y = 1) > c, where c is
a fixed threshold, and to class Y = 0 otherwise. The commonly used threshold
c = 0.5, which is also used in our study, yields a so-called Bayes classifier.

2.2 Random forest (RF)

2.2.1 Brief overview

The random forest (RF) is an “ensemble learning” technique consisting of the ag-
gregation of a large number of decision trees, resulting in a reduction of variance
compared to the single decision trees. In this paper we consider Leo Breiman’s
original version of RF [2], while acknowledging that other variants exist, for ex-
ample RF based on conditional inference trees [12] which address the problem
of variable selection bias [13] and perform better in some cases, or extremely
randomized trees [14].

In the original version of RF [2], each tree of the RF is built based on a
bootstrap sample drawn randomly from the original dataset using the CART
method and the Decrease Gini Impuritiy (DGI) as the splitting criterion [2].
When building each tree, at each split, only a given number mtry of randomly
selected features are considered as candidates for splitting. RF is usually con-
sidered a black-box algorithm, as gaining insight on a RF prediction rule is
hard due to the large number of trees. One of the most common approaches to
extract from the random forest interpretable information on the contribution
of different variables consists in the computation of the so-called variable im-
portance measures outlined in Section 2.2.3. In this study we use the package
randomForest [3] (version 4.6-12) with default values, see the next paragraph
for more details on tuning parameters.

2.2.2 Hyperparameters

This section presents the most important parameters for RF and their common
default values as implemented in the R package randomForest [3] and consid-
ered in our study. Note, however, that alternative choices may yield better
performance [15, 16] and that parameter tuning for RF has to be further ad-
dressed in future research. The parameter ntree denotes the number of trees
in the forest, which should be in principle as large as possible so that each
candidate feature has enough opportunities to be selected. The default value
is ntree=500 in the package randomForest. The parameter mtry denotes the
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number of features randomly selected as candidate features at each split. A
low value increases the chance of selection of features with small effects, which
may contribute to improved prediction performance in cases where they would
otherwise be masked by features with large effects. A high value of mtry re-
duces the risk of having only non-informative candidate features. In the package
randomForest, the default value is

√
p for classification with p the number of

features of the dataset. The parameter nodesize represents the minimum size
of terminal nodes. Setting this number larger causes smaller trees to grow. The
default value is 1 for classification. The parameter replace refers to the resam-
pling scheme used to randomly draw from the original dataset different samples
on which the trees are grown. The default is replace=TRUE, yielding bootstrap
samples, as opposed to replace=FALSE yielding subsamples.

2.2.3 Variable importance measures

As a byproduct of random forests, the built-in variable importance measures
(VIM) rank the variables (i.e. the features) with respect to their relevance for
prediction [2]. The so-called Gini VIM has shown to be strongly biased [13].
The second common VIM, called permutation-based VIM, is directly based on
the accuracy of RF: it is computed as the mean difference (over the ntree

trees) between the OOB errors before and after randomly permuting the values
of the considered variable. The underlying idea is that the permutation of
an important feature is expected to decrease accuracy more strongly than the
permutation of an unimportant variable.

VIMs are not sufficient in capturing the patterns of dependency between
features and response. They only reflect—in the form of a single number—the
strength of this dependency. Partial dependence plots can be used to address
this shortcoming. They can essentially be applied to any prediction method
but are particularly useful for black-box methods which (in contrast to, say,
generalized linear models) do not yield any interpretable patterns.

2.3 Partial dependence plots

Partial dependence plots (PDPs) offer insight of any black box machine learn-
ing model, visualizing how each feature influences the prediction while averaging
with respect to all the other features. The PDP method was first developed for
gradient boosting [11]. Let F denote the function associated with the classifica-
tion rule: for classification, F (X1, . . . , Xp) ∈ [0, 1] is the predicted probability
of the observation belonging to class 1. Let j be the index of the chosen feature
Xj and Xj its complement, such that Xj = {X1, ..., Xj−1, Xj+1, ..., Xp}. The
partial dependance of F on feature Xj is the expectation

FXj
= EXj

F (Xj , Xj) (2)
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which can be estimated from the data using the empirical distribution

p̂Xj
(x) =

1

N

N∑

i=1

F (xi,1, ...xi,j−1, x, xi,j+1, ..., xi,p), (3)

where xi,1, . . . , xi,p stand for the observed values of X1, . . . , Xp for the ith obser-
vation. As an illustration, we display in Figure 1 the partial dependence plots
obtained by logistic regression and random forest for three simulated datasets
representing classification problems, each including n = 1000 independent ob-
servations. For each dataset the variable Y is simulated according to the formula
log(P (Y = 1)/P (Y = 0)) = β0 + β1X1 + β2X2 + β3X1X2 + β4X

2
1 . The first

dataset (top) represents the linear scenario (β1 6= 0, β2 6= 0, β3 = β4 = 0), the
second dataset (middle) an interaction (β1 6= 0, β2 6= 0, β3 6= 0, β4 = 0) and
the third (bottom) a case of non-linearity (β1 = β2 = β3 = 0, β4 6= 0). For all
three datasets the random vector (X1, X2)> follows distribution N2(0, I), with
I representing the identity matrix. The data points are represented in the left
column, while the PDPs are displayed in the right column for RF, logistic regres-
sion as well as the true logistic regression model (i.e. with the true coefficient
values instead of fitted values). We see that RF captures the dependance and
non-linearity structures in cases 2 and 3, while logistic regression, as expected,
is not able to.

2.4 Performance assessment

2.4.1 Cross-validation

In a k-fold cross-validation (CV), the original dataset is randomly partitioned
into k subsets of approximately equal sizes. At each of the k CV iterations,
one of the folds is chosen as the test set, while the k − 1 others are used for
training. The considered performance metric is computed based on the test set.
After the k iterations, the performances are finally averaged over the iterations.
In our study, we perform 10 repetitions of stratified 5-fold CV, as commonly
recommended [17]. In the stratified version of the CV, the folds are chosen such
that the class frequencies are approximately the same in all folds. The stratified
version is chosen mainly to avoid problems with strongly imbalanced datasets
occurring when all observations of a rare class are included in the same fold.
By “10 repetitions”, we mean that the whole CV procedure is repeated for 10
random partitions into k folds with the aim to provide more stable estimates.

In our study, this procedure is applied to different performance metrics out-
lined in the next subsection, for LR and RF successively and for M real datasets
successively. For each performance metric, the results are stored in form of an
M × 2 matrix.

2.4.2 Performance measures

Given a classifier and a test dataset of size ntest, let p̂i, i = 1, . . . , n denote the
estimated probability of the ith observation (i = 1, . . . , ntest) to belong to class
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Figure 1: Exemple of partial dependence plots
Plot of the PDP for the three simulated datasets. Each line is related to a
dataset. On the left, visualization of the dataset. On the right, the partial
dependance for the variable X1. First dataset: β0 = 1, β1 = 5, β2 = −2 (linear),
second dataset: β0 = 1, β1 = 1, β2 = −1, β3 = 3 (interaction), third dataset
β0 = −2, β4 = 5 (non-linear).

Y = 1, while the true class membership of observation i is simply denoted as yi.
Following the Bayes rule implicitly adopted in LR and RF, the predicted class
ŷi is simply defined as ŷi = 1 if p̂i > 0.5 and 0 otherwise.
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The accuracy, or proportion of correct predictions is estimated as

Acc =
1

ntest

ntest∑

i=1

I(yi = ŷi),

where I(.) denotes the indicator function (I(A) = 1 if A holds, I(A) = 0 oth-
erwise). The Area Under Curve (auc), or probability that the classifier ranks
a randomly chosen observation with Y = 1 higher than a randomly chosen
observation with Y = 0 is estimated as

auc =
1

n0,testn1,test

∑

i:yi=1

∑

j:yj=0

I(p̂i > p̂j),

where n0,test and n1,test are the numbers of observations in the test set with
yi = 0 and yi = 1, respectively. The Brier Score, measuring the deviation
between true class and predicted probability, is estimated as

Brier =
1

ntest

ntest∑

i=1

(p̂i − yi)2.

In addition to these three measures of prediction performance, we also consider
the training computation time as an additional criterion.

3 Benchmarking approach

3.1 The OpenML database

So far we have stated that the benchmarking experiment uses a collection of M
real datasets without further specifications. In practice, one often uses already
formatted datasets from public databases. Some of these databases offer a user-
friendly interface and good documentation which facilitate to some extent the
preliminary steps of the benchmarking experiment (search for datasets, data
download, preprocessing). One of the most well-known database is the UCI
repository [18]. Specific scientific areas may have their own databases, such as
ArrayExpress for molecular data from high-throughput experiments [19]. More
recently, the OpenML database [20] has been initiated as an exchange plat-
form allowing machine learning scientists to share their data and results. This
database includes as many as 19625 datasets as of October 2016, a non-negligible
proportion of which are relevant as example datasets for benchmarking classifi-
cation methods.

3.2 Inclusion criteria

When using a huge database of datasets, it becomes obvious that one has to
define criteria for inclusion in the benchmarking experiment. Inclusion criteria
in this context does not have any long tradition in computational science. The
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criteria used by researchers—including ourselves before the present study—to
select datasets are most often completely non-transparent. It is often the fact
that they select a number of datasets which were found to somehow fit the scope
of the investigated methods, but without clear definition of this scope.

We conjecture that, from published studies, datasets are occasionally re-
moved from the experiment a posteriori because the results do not meet the
expectations/hopes of the researchers. While the vast majority of researchers
certainly do not cheat consciously, such practices may substantially introduce
bias to the conclusion of a benchmarking experiment; see previous literature [21]
for theoretical and empirical investigation of this problem. Therefore, “fishing
for datasets” after completion of the benchmark experiment should be prohib-
ited, see Rule 4 of the “ten simple rules for reducing over-optimistic report-
ing” [22].

Independent of the problem of fishing for significance, it is important that
the criteria for inclusion in the benchmarking experiment are clearly stated as
recently discussed [10]. In our study, we consider simple datasets’ characteristics
presented in Table 3.2. Based on these datasets’ characteristics, we define sev-
eral sets of inclusion criteria and investigate the impact of these choices on the
results of the benchmarking experiment. In the same vein, one can also analyse
the results of benchmarking experiments for different subsets of datasets succes-
sively, following the principle of subgroup analyses performed in clinical trials.
For example, one could analyse the results for “large” datasets (n > 1000) and
“small datasets” (n ≤ 1000) separately.

Meta-Feature Description
n number of observations
p number of features
p
n dimensionality
d number of features of the associated design matrix for LR
d
n dimensionality of the design matrix
pnumeric number of numeric features
pcategorical number of categorical features
pnumeric,rate proportion of numeric features
Cmax percentage of observation of the majority class
time duration for the run a 5-fold CV with a default Random Forest

Table 1: Considered meta-features.

3.3 Meta-learning

Taking another perspective on the problem of benchmarking results being de-
pendent on dataset’s characteristics, we also consider modelling the difference
between the methods’ performances (considered as response variable) based on
the datasets’ characteristics (considered as features). Such a modelling approach
can be seen as a simple form of meta-learning—a well-known task in machine
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learning [23]. A similar approach using linear mixed models has been recently
applied to the selection of an appropriate classification method in the context of
high-dimensional gene expression data analysis [24]. Considering the potentially
complex dependency patterns between response and features, we use RF as a
prediction tool for this purpose.

3.4 Power calculation

Considering the M × 2 matrix, collecting the performance measures for the
two investigated methods (LR and RF) on the M considered datasets, one
can perform a test for paired samples to compare the performances of the two
methods [25]. We refer to the previously published statistical framework [25]
for a precise mathematical definition of the tested null-hypothesis in the case
of the t-test for paired samples. In this framework, the datasets play the role
of the i.i.d. observations used for the t-test. Sample size calculations for the
t-test for paired samples can give an indication of the rough number of datasets
required to detect a given difference δ in performances considered as relevant for
a given significance level (e.g., α = 0.05) and a given power (e.g., 1− β = 0.8).
For large numbers and a two-sided test, the required number of datasets can be
approximated as

Mreq ≈
(z1−α/2 + z1−β)2σ2

δ2
(4)

where zq is the q-quantile of the normal distribution and σ2 is the variance of
the difference between the two methods’ performances over the datasets, which
may be roughly estimated through a pilot study or previous literature.

For example, the required number of datasets to detect a difference in per-
formances of δ = 0.05 with α = 0.05 and 1−β = 0.8 is Mreq = 32 if we assume a
variance of σ2 = 0.01 and Mreq = 8 for σ2 = 0.0025. It increases to Mreq = 197
and Mreq = 50, respectively, for differences of δ = 0.02.

3.5 Availability of Data and Materials

Several R packages are used to implement the benchmarking study: mlr (ver-
sion 2.10) for higher abstraction and a simpler way to conduct benchmark stud-
ies [26], OpenML (version 1.2) for loading the datasets [27], and batchtools

(version 0.9.2) for parallel computing [28]. Note that the LR and RF learners
called via mlr are wrappers on the functions glm and randomForest, respec-
tively.

The datasets supporting the conclusions of this article are freely available in
OpenML as described in 3.1.

Emphasis is placed on the reproducibility of our results. Firstly, the code im-
plementing all our analyses is fully available from GitHub [29]. For visualization-
only purposes, the benchmarking results are available from this link, so that
our graphics can be quickly generated by mouse-click. However, the code to re-
compute these results, i.e. to conduct the benchmarking study, is also available
from GitHub. Secondly, since we use a specific version of R and our results may

10



thus be difficult to reproduce in the future due to software updates, we also
provide a docker image [30]. Docker automates the deployment of applications
inside a so called “Docker container” [31]. We use it to create an R environ-
ment with all the packages we need in their correct version. Note that docker
is not necessary here (since all our codes are available from GitHub), but very
practical for a reproducible environment and thus for reproducible research in
the long term.

4 Results

In our study we consider a set of M datasets (see Section 4.1 for more details)
and compute for each of them the performance of random forest and logistic
regression according to the three performance metrics outlined in Section 2.4.

4.1 Included datasets

From approximately 20000 datasets currently available from OpenML [20], we
select those featuring binary classification problems. Further, we remove the
datasets that include missing values, the obviously simulated datasets as well
as duplicated datasets. We also remove datasets with more features than ob-
servations (p > n), and datasets that require too much computation time, i.e.
datasets such that n ·p > 3 ·106 as they correspond exactly to the datasets such
that one iteration of the 5-CV repeated 10 times takes more than 100s. This
finally leaves us with a total of 278 datasets. Of these 278 datasets, 15 produced
NAs for LR, and 3 did so for both LR and RF (more details on this problem
are given in the next section), which finally leaves us with 260 datasets for our
analysis.

4.2 Missing values due to errors

In Section 4.1 we stated that among the 278 datasets which we used for the
benchmark, 18 produced an NA and were discarded for this reason (see also the
flow-chart in Figure 2). We now give more details on these NAs in Table 4.2.
Both LR and RF fail in the presence of categorical features with too many
categories. More precisely, RF fails when more than 53 categories are detected
in at least one of the features, while LR fails when levels undetected during
the training phase occur in the test data. We could admittedly have prevented
these errors through basic preprocessing of the data such as the removal of the
features that induced errors. However, the decision was taken to just remove
the datasets resulting in NAs because we did not want to address preprocessing
steps, which would be a topic on their own and cannot be adequately treated
along the way for such a high number of datasets. Note that in doing this
kind of “complete case” analysis, we ignore an inconvenience of LR—that failed
more often than its competitor RF. As an alternative strategy to handle NAs,
we could also have decided to replace them by the worst possible performance
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achievable on the considered dataset (in the case of more than 2 compared
methods, it is also possible to replace NAs by the performance achieved on this
dataset by the worst algorithm [32]). To conclude, in our benchmark study LR
is inferior to RF on average (see Section 4.3) in terms of accuracy even if it is
indirectly advantaged by our strategy to handle NAs.

Dataset’s ID RF fails LR fails
3 N Y
461 N Y
463 N Y
465 Y Y
796 N Y
825 Y Y
865 N Y
891 N Y
938 N Y
941 N Y
942 N Y
953 N Y
1006 N Y
1012 N Y
1116 Y Y
1167 N Y
1470 N Y
1506 N Y

Table 2: Benchmark Errors for Random Forest and Logistic Regression.

4.3 Main results

Overall performances are presented in a synthesized form in Table 4.3 for all
three measures in form of average performances along with standard devia-
tions and confidence intervals computed using the adjusted bootstrap percentile
(BCa) method [33]. The boxplots of performances of Random Forest (RF) and
Logistic Regression (LR) for the three considered performance measures are
depicted in Figure 3, which also includes the boxplot of the difference in per-
formances (bottom row). It can be seen from Figure 3 that RF performs better
in most of the cases (69.2 % of our datasets for acc, 73.8 % for auc and 71.2 %
for brier). Furthermore, when LR outperforms RF the difference is minimal. It
can also be noted that the differences in performance tend to be larger for auc
than for acc and brier.
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Figure 2: Selection criteria for datasets
Flowchart representing the criteria for selection of the datasets.

4.4 Explaining differences: datasets’ characteristics

4.4.1 Principle

While it is obvious to any computational scientist that the performance of meth-
ods may depend on some datasets’ characteristics, this issue is not easy to inves-
tigate in real data settings because i) it requires a large number of datasets—a
condition that is often not fulfilled in practice; ii) this problem is enhanced
by the correlations between characteristics. In our benchmarking experiment,
however, we consider such a huge number of datasets that an investigation of
the relationship between methods’ performances and datasets’ characteristic
becomes possible to some extent.

As a preliminary, let us illustrate this idea using only one (large) dataset,
the OpenML dataset with ID = 1496 including n0 = 7400 observations and
p0 = 20 features. A total of N = 50 sub-datasets are extracted from this dataset
by randomly picking a number n′ < n0 of observations or a number p′ < p0
of features. Thereby we choose n′ such that n′

n0
successively takes the values

n′

n0

′
= 0.20, 0.34, 0.48, 0.62, 0.76, 0.90 and p′ such that p′

p0
successively takes the

values p′

p0
= 0.20, 0.32, 0.44, 0.56, 0.68, 0.80. Figure 4 displays the boxplots of

the accuracy of RF and LR for varying p′ (top-left) and varying n′ (top-right).
Each boxplot represents N = 50 data points.

It can be seen from Figure 4 that the accuracy increases with p′ for both LR
and RF. This reflects the fact that relevant features may be missing from the
considered random subsets p′ features. Thus, accuracy increases as more and
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Figure 3: Main results of the benchmark experiment
Boxplots of the performance for the three considered measures on the 260 consid-
ered datasets. Top: boxplot of the performance of LR (dark) and RF (white) for
each performance measure. Bottom: boxplot of the difference of performances
∆perf = perfRF − perfLR.

more features are included. Interestingly, it can also be seen that the increase of
accuracy with p′ is more pronounced for RF than for LR in the small p′ range,
and vice-versa in the large p′ range. As a result, the difference in accuracy
between RF and LR first increases with p′ and then (slightly) decreases, as can
be seen from the bottom-left part of Figure 4. The increase in the small p′ range
reflects the commonly formulated assumption that RF performs particularly
well for data with a large number of features, while the decrease in the large p′

range is more difficult to explain. In contrast, as n increases the difference in
performances between RF and LR increases slightly but monotonously, while—
as expected—its variance decreases; see the bottom-right part of Figure 4.

4.4.2 Subgroup analyses

To further explore this issue over all 260 investigated datasets, we computed
Spearman’s correlation coefficient between the difference in accuracy between
random forest and logistic regression (∆acc) and various datasets’ characteris-
tics. The results of Spearman’s correlation test are shown in Table 4.4.2. These
analyses again point to the importance of the number p of features (and related
characteristics), while the dataset size n and the percentage Cmax of observa-
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Accuracy µ σ BCa confidence interval
Logistic regression 0.820 0.139 [0.803, 0.837]
Random forest 0.852 0.136 [0.834, 0.869]
Difference 0.032 0.071 [0.024, 0.042]
auc
Logistic regression 0.824 0.152 [0.806, 0.842]
Random forest 0.867 0.151 [0.847, 0.883]
Difference 0.043 0.094 [0.032, 0.055]
Brier Score
Logistic regression 0.131 0.093 [0.120, 0.142]
Random forest 0.103 0.081 [0.093, 0.113]
Difference -0.028 0.055 [-0.036, -0.022]

Table 3: Performances of LR and RF (top: accuracy, middle: AUC, bottom:
Brier score): mean performance values µ, standard deviation σ and confidence
intervals for the mean (estimated via the bootstrap BCa method [33]) on the
260 datasets.

tions in the majority class are not significantly correlated with ∆acc.
To investigate these dependencies more deeply, we examine the performances

of RF and LR within subgroups of datasets defined based on datasets’ charac-
teristics (called meta-features from now on), following the principle of subgroup
analyses well-known in clinical research. As some of the meta-features displayed
in Table 4.4.2 are mutually (highly) correlated, we cluster them using a hier-
archical clustering algorithm (data not shown). From the resulting dendogram
we decide to select the meta-features p, n, p

n , Cmax, while other meta-features
are considered redundant and ignored in further analyses.

Spearman’s ρ Spearman’s ρ p-value
n 0.0819 1.88 · 10−1

p 0.323 9.68 · 10−8
p
n 0.102 1.02 · 10−1

d 0.267 1.26 · 10−5
d
n 0.112 7.20 · 10−2

pnumeric 0.239 1.01 · 10−4

pcategorical -0.071 2.56 · 10−1

pnumeric,rate 0.227 2.20 · 10−4

Cmax 0.017 7.79 · 10−1

Table 4: Correlation between ∆acc and dataset’s features.

Figure 5 displays the boxplots of the differences in accuracy for different
subgroups based on the four selected meta-features p, n, p

n and Cmax. For each
of the four meta-features, subgroups are defined based on different cut-off values,
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Figure 4: Influence of n and p: subsampling experiment based on dataset
ID=1496
Top: Boxplot of the performance (acc) of RF and LR for N = 50 sub-datasets
extracted from the OpenML dataset with ID=1496 by randomly picking n′ ≤ n
observations and p′ < p features. Bottom: Boxplot of the differences in perfor-
mances ∆acc = AccRF − AccLR between RF and LR. p′ ∈ {4, 6, 8, 11, 13, 16}.
n′ ∈ {1480, 2515, 3552, 4587, 5624, 6660}. Performance is evaluated through 5-
fold-cross-validation repeated 2 times.

denoted as t, successively. The histograms of the four meta-features for the 240
datasets are depicted in the bottom row of the figure, where the considered
cutoff values are materialized as vertical lines. Similar pictures are obtained
for the two alternative performance measures auc and brier; See supplementary
file 1.

It can be observed from Figure 5 that RF tends to yield better results than
LR for a low n, and that the difference decreases with increasing n. In contrast,
RF performs comparatively poorly for datasets with p < 5, but better than
LR for datasets with p > 5. This is due to low performances of RF on a
high proportion of the datasets with p < 5. For p

n , the difference between
RF and LR is negligeable in low dimension ( pn < 0.01), but increases with the
dimension. The contrast is particularly striking between the subgroups p

n < 0.1
(yielding a small ∆acc) and p

n > 0.1 (yielding a high ∆acc), again confirming
the hypothesis that the superiority of RF over LR is more pronounced in high
dimensional settings.
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Figure 5: Subgroup analyses
Top: for each one of the four selected meta-features, boxplots of ∆acc for dif-
ferent threshold as criteria for dataset’s selection. On the bottom we represent
the distribution of our meta-features (log scale) to locate the chosen threshold.
Note that outliers are not shown here for a more convenient visualization. For
a corresponding figure including the outliers as well as the results for auc and
brier, see supplementary file 1.

4.4.3 Meta-learning

The previous section showed that benchmarking results in subgroups may be
considerably different from that of the entire datasets collection. Going one step
further, one can extend the analysis of meta-features towards meta-learning to
gain insight on their influence. More precisely, taking the datasets as obser-
vations we build a regression RF that predicts the difference in performance
between RF and LR based on the four meta-features considered in the previous
subsection (p, n, p

n and Cmax). Figure 6 depicts partial dependence plots for
visualization of the influence of each meta-feature. Again, we notice a depen-
dency on p and p

n as outlined in Section 4.4.2 and the comparatively bad results
of RF when compared to LR for datasets with small p. The importance of Cmax
and n is less noticeable.

Although these results should be considered with caution, since they are
possibly highly dependent on the particular distribution of the meta-features
over the 240 datasets, we conclude from Section 4.4 that meta-features substan-
tially affect ∆acc. This points out the importance of a clear inclusion criteria
definition for datasets in a benchmark experiment and of the consideration of
the meta-features’ distributions.
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Figure 6: Meta-learning results
Plot of the partial dependence for the 4 considered meta-features : log(n),
log(p), log(

p
n ), Cmax. The log scale was chosen for 3 of the 4 features to obtain

more uniform distribution (see Figure 5 where the distribution is plotted in log
scale). For each plot, the black line denotes the median of the individual partial
dependances, and the lower and upper curves of the grey regions represent
respectively the 25%- und 75%-quantiles. Estimated mse is 0.00426 via a 5-CV
repeated 4 times.

4.5 Explaining differences: partial dependence plots

In the previous section we investigated the impact of datasets’ characteristics
on the results of benchmarking and modeled the difference between methods’
performance based on these characteristics, termed “meta-features”. In this
section, we take a different approach for the explanation of differences. We use
partial dependence plots as a technique to assess the dependency pattern be-
tween response and features underlying the prediction rule. More precisely, the
aim of these additional analyses is to assess whether differences in performances
(between LR and RF) are related to differences in partial dependence plots.
After getting a global picture for all datasets included in our study, we inspect
three interesting “extreme cases” more closely. In a nutshell, we observe no
strong correlation between the difference in performances and the difference in
partial dependences over the 260 considered datasets. More details are given in
supplementary file 2.

5 Discussion

5.1 Summary

We presented a large-scale benchmark experiment for comparing the perfor-
mance of logistic regression and random forest in binary classification settings.
The overall results on our 240 datasets collection showed better for random for-
est (70% of the cases) than logistic regression (30%). On the whole, our results
support the increasing use of RF with default parameter values as a standard
method—which of course neither means that it performs better on all datasets
nor that other parameter values/variants than the default are useless!
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We devoted particular attention to the inclusion criteria applied when se-
lecting datasets for our study. We investigated how the conclusions of our
benchmark experiment change when varying the applied inclusion criteria. Our
analyses reveal a noticeable influence of the number of features p and the ratio
p
n . The superiority of RF tends to be more pronounced for increasing p and p

n .
More generally, our study outlines the importance of inclusion criteria and the
necessity to include a large number of datasets in benchmark studies as outlined
in previous literature [10, 22, 25].

5.2 Limitations

Firstly, as previously discussed [10], results of benchmarking experiments should
be considered as conditional on the set of included datasets. As demonstrated
by our analyses on the influence of inclusion criteria for datasets, different sets of
datasets yield different results. While the set of datasets considered in our study
has the major advantages of being large and including datasets from various
scientific fields, it is not strictly speaking representative of a “population of
datasets”, hence essentially yielding conditional conclusions.

Secondly, other aspects of classification methods are important but have not
been considered in our study, for example issues related to the transportability
of the constructed prediction rules. By transportability, we mean the possibility
for interested researchers to apply a prediction rule presented in the literature to
their own data [8, 9]. With respect to transportability, LR is clearly superior to
RF, since it is sufficient to know the fitted values of the regression coefficient in
application to a LR-based prediction rule. LR also has the major advantage that
it yields interpretable prediction rules: it does not only aim at predicting but
also at explaining effect, an important distinction that is extensively discussed
elsewhere [1] and related to the “two cultures” of statistical modelling described
by Leo Breiman [34]. These important aspects are not taken into account in
our study, which deliberately focuses on prediction accuracy.

Thirdly, our study was intentionally restricted to RF with default values.
The superiority of RF may be more pronounced if used together with an ap-
propriate tuning strategy. Moreover, the version of RF considered in our study
has been shown to be (sometimes strongly) biased in variable selection [13].
More precisely, variables of certain types (e.g., categorical variables with a large
number of categories) are systematically preferred by the algorithm for inclu-
sion in the trees irrespectively of their relevance for prediction. Variants of RF
addressing this issue [12] may perform better, at least in some cases.

5.3 Outlook

In this paper, we fully ignore the problem of parameter tuning by simply set-
ting the parameters to their default values as implemented in the widely used
package randomForest. The rationale for this choice was to provide evidence
for default values and thereby the analysis strategy most researchers currently
apply in practice. The development of reliable and practical parameter tuning
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strategies, however, is crucial and more attention should be devoted in the fu-
ture. Parameter tuning may substantially improve the performance of RF in
some cases [16, 35]. Particular attention should be given to the development of
user-friendly tools, considering that one of the main reasons for using default
values is probably the ease-of-use—an important aspect in the hectic academic
context.

Any tuning strategy claimed to be a good candidate in becoming a “standard
strategy” should ideally be subjected to a large-scale benchmarking experiment
inspired from the study presented in this paper. By presenting the results
on the average superiority with default values over LR, we by no means want
to definitively establish these default values. Instead, our study is intended
as a fundamental first step towards well-designed studies providing solid well-
delimited evidence on the performance.

Before further studies are performed on tuning strategies, we insist that,
whenever performed in applications of RF, parameter tuning should ideally
always be reported clearly including all technical details either in the main or
in its supplementary materials. Furthermore, the uncertainty regarding the
“best tuning strategy” should in no circumstances be exploited for conscious or
subconscious “fishing for significance”.

6 Conclusion

Our systematic large-scale comparison study based on 260 real datasets shows
the average good prediction performance of random forest (compared to logis-
tic regression) even with the standard implementation and default parameters,
which is in some respects suboptimal. This study should in our view be seen
both as (i) an illustration of the application of principles borrowed from clini-
cal trial methodology to benchmarking in computational sciences—an approach
that could be more widely adopted in this field and (ii) a motivation to pur-
sue research on random forests not only including possibly better variants and
parameter choices but also strategies to improve their transportability.

List of abbreviations

Acc: accuracy
auc: area under the curve
Brier: Brier score
CV: cross-validation
LR: logistic Regression
PDP: partial dependence plot
RF: random forest
VIM: variable importance measure
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