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Abstract. The momentum distribution of projectile elec-
trons ejected in collisions with light targets is calculated
within the second-order Born approximation for direct
ionisation and within the electron impact approximation
and the impulse approximation for electron capture to
the target continuum. From comparison with available
experimental data it is found that for forward emission
angles the electron is well described by a projectile eigen-
state, while at backward angles a target final state is more
appropriate. At all angles the inclusion of simultaneous
target excitation is very important.

PACS: 34.50.Fa

1. Introduction

It is now generally accepted that electron ejection from
energetic projectiles cannot to sufficient accuracy be de-
scribed by the first-order Born approximation for direct
ionisation. Even when simultaneous target excitation is
taken into consideration, this theory provides only a qual-
itative explanation of the electron loss peak which ap-
pears at electron momenta k,close to the collision velocity
v [1]. Deviations from the first Born approximation
manifest themselves in the shape of the forward peak at
zero emission angle [2, 3], where the cusp asymmetry is
a direct measure of the higher-order couplings of the
electron to the target field [4]. At larger emission angles,
the first Born approximation fails to reproduce the high
mntensity at the low-energy side of the loss peak which
has been measured for electrons detected in coincidence
with charge-changed projectiles [5-7]. This additional in-
tensity has been attributed to simultaneous target exci-
tation which results not only from the electron-electron
mteraction (the so-called ‘coherent’ projectile-target ion-
isation}, but also from the projectile nucleus-target elec-
tron interaction (‘incoherent’ projectile-target ionisation)

[6].

In this work the loss theories valid for Z,~Z, and
v > Zp (where Z, and Z are the nuclear charges of pro-
jectile and target, respectively) are revisited and extended
to account for second-order effects in both the elastic and
the inclastic contributions to the doubly differential cross
section. Here, clastic and inelastic refer to a ground-state
and excited target in the final state, respectively. Due to
the difficulty of describing the simultancous influence of
the projectile and the target field on the ejected electron,
either a projectile or a target eigenstate will be chosen.
For small relative momenta between the continuum elec-
tron and the projectile, i.e. for forward emission angles,
the influence of the target field is small, and the second-
order Born approximation for direct ionisation has been
found to provide a satisfactory description for He targets
in the cusp region [4], and at forward angles up to 50°
[8]. In the present work, the Born approximation is also
applied to backward angles using, however, a new closure
approximation for the evaluation of the inelastic contri-
bution, which particularly accounts for a proper descrip-
tion of target ionisation [9].

When the electron is ejected into the backward hem-
isphere, the target potential gains increasingly influence
on the electron. This may be accounted for by either
allowing for intermediate target eigenstates as has been
done by Hartley and Walters [10] in the framework of
the impulse approximation, or by forcing the electron
into a final target state like in the electron impact ap-
proximation (EIA) [11] which is basically the Brinkman-
Kramers theory for rearrangement. Both theories have
originally been formulated for heavy targets with Z,<Z,.,
and they do not account for the incoherent projectile-
target ionisation. The EIA which only considers the
elastic contribution to the loss cross section, has recently
also been applied to He targets [12], but the agreement
with experiment is not very satisfactory. In the present
work, the EIA is improved in two ways: first, the inelastic
contribution from the incoherent projectile-target ioni-
sation is added. This should be a good description for
backward angles where the coherent projectile-target ion-
isation is considered to be small [10]. Second, accounting
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for the fact that a proper description of rearrangement
requires a higher-order theory [13, 14], the EIA is com-
bined with the second-order term to the prior impulse
approximation (IA), and in the same framework, target
excitation by electron-electron coupling is accounted for
in addition to the incoherent contribution. Since the TA
includes intermediate projectile eigenstates, its validity is
expected to extend to smaller emission angles as com-
pared to the EIA.

The paper is composed in the following way. In Sect. 2,
the second Born approximation with the new closure ap-
proximation is shortly presented. Section 3 describes the
electron impact approximation including the incoherent
part of the target excitation. In Sect. 4, the impulse ap-
proximation is derived. Numerical details are given in
Sect. 5. The comparison of the theoretical results with
experimental data for He*, He® and H° projectiles is
performed in Sect. 6 and the conclusion is drawn in Sect. 7.
Atomic units (h=m=e=1) are used unless otherwise
indicated.

2. The second Born approximation (B2)

For the formal presentation of the theories, we restrict
ourselves to a one-electron projectile and a neutral target.
The multi-electron target states, denoted by ¢ 7, will be
described by Slater determinants of single-particle Har-
tree-Fock states. The electronic projectile states w* are
hydrogenlike, while the scattering states w7 of the elec-
tron in the field of the neutral target are solutions of an
appropriate single-particle Schrodinger equation. The
semiclassical approximation with a straight-line inter-
nuclear trajectory, R=b+ vz, with impact parameter b,
will be used.

In the initial channel, and for the Born approximation
throughout, the Hamiltonian is split in the following way

H=H,+V,

Hoi:HT+7—;’+ Vpo, :V;g+VPe+I/eT (21)

where H_,is the electronic Hamiltonian for the separated
projectile-target system, with H, the target Hamiltonian
and 7, the kinetic energy of the projectile electron. V,, is
the projectile electron-target electron interaction, ¥, and
V. - the couplings between the projectile electron and the
projectile and target nuclear fields, respectively, and V5,
is the interaction between the projectile nucleus and the
target electrons. Explicitly, for an N-electron target, the
potentials are given by

y 1 V4 Z
V,= — Ve,=—=E V=T
g:1 [*r =1, 7] ! Fp ’ 'r
il 1
-Z —_— (2.2)

V,. =
d n=1 |rnT_Rl

e

where the electronic coordinates are displayed in Fig. 1.
In the second-order Born approximation, the transition
amplitude for exciting the projectile electron from [/

Fig. 1. Coordinates and interaction potentials for the collision sys-
tem consisting of the projectile nucleus (P), the target nucleus (7)
and the electrons (e). Only one target electron is shown

(with energy el to w (with energy SP ) and the target
from ¢7 (with energy E Ntog/ (w1lh energy EJ) reads

af’=—i | dtlp[ W} |\ Vi+ VG, Vi|o wl>  (23)

where the choice of propagation in the projectile field,
G,,=(id,— H,,+ig)”", restricts the applicability of the
Born theory (2.3) to systems with Z,>Z,. Since a de-
tailed description of the theory has been given carlier [4],
it shall only be pointed out that in the second-order term
the one-electron approximation to V¥, is made,

Vet Vorm Ve=<(p /] V. §¢5T>+I/;'f

which is the more appropriate, the larger Z, and Z,.
This leads to the following formulae for the elastic
(¢/=¢) and inelastic (¢ +¢ /) part of the transition
amplitude

af = =i [ Ayl | Velw]>
—ijdt<¢iT'/’;| VoG, Vel wi>
afrin=—i [dpFwl |V, |¢ vy
—i [ W] | VoG Vet ViGo Vil Wl .

The inelastic part consists of two contributions, the first-
order term mediated by V,, (the coherent ionisation) and
the second-order term based on two successive interac-
tions between an electron of one atom and the central
field of the other (the incoherent ionisation). Hence,
the inelastic contribution to the doubly differential cross
section for the ejection of electrons with an energy
E= k} /2 into the solid angle d €2, (in the target frame of

reference) has the following structure

(2.4)

(2.5)

d2 in

_ 4k,
TEdD, " v 3': f das (4E,—an Fr (@

N

I;} (q): Z |<(pr|eiq”"TMc°h (q)

n=1

+el T M Q)] 9, ) |?

(2.6)

where {¢!} are the initially occupied Hartree Fock
target orbitals and the sum over final target states f



runs over all excited states above the Fermi level. The
total excitation energy of the system is denoted by
AE,=¢l ~el+El—~E/, and q, and q, are two elec-
tronic momenta whmh may depend on q. The matrix
elements of the coherent and incoherent ionisation are
denoted by M and M ™, respectively, and are given
in [4]. The factorisation of the incoherent contribution
into an r, .-independent matrix element M *°(q) times an
exponential r,, dependence is made possible by an ad-
ditional peaking approximation.

Two closure approximations for the simplification of
the sum over final target states will be discussed. The first
one, which is commonly used, relies on the replacement
of the target excitation energy by some average value [15]

AET=ET—E"->I"+¢f 2.7
where I7 is the ionisation potential of the target (the
K-shell binding energy in case of He) and ¢/ =« /2 with
K ,=k,~v the electron momentum in the projectile ref-
erence frame. As a consequence, completeness of the tar-
get states can be used to cvaluate the sum over f. For a
He target, the result is

F@= § F@
>N

= | M (@) °S,0 (4))+ | M™ (@) ]S, (45)
+2Re{M " (q) M™ (q)}
Fy(4,)]

where S,,(g) is the incoherent scattering form factor
which for a He target is related to the elastic form factor
F,(q) by means of S, (¢)=2—F2(q)/2 [16]. The form
factors are tabulated for most targets; equivalently, F;(g)
can be calculated from the Fourier transformed target
atomic potential [4,17].

The second way for the evaluation of the sum over f
relies on the fact that for electron loss, target excitation
to the continuum plays an important role. Hence, the
sum over f is replaced by an integral over target electron
momenta K ,, and ¢ fT represents the corresponding con-
tinuum eigenstates. Accounting for the contribution of
the bound excited target states by a renormalisation con-
stant ¢4, one has from (2.6) [9]

[ﬂ1(|q1_q2|)_%ﬂl(91) (2.8)

gt 4kf
dE.do, " b j k2di; | dqd (4E,—qv)c,
x| de. F (o (2.9)
where AE;=1"+x%/ 2, and ¢y is determined from the

requlrement that for k3 /2—+af, (2.9) should coincide
with the result from the conventional closure approxi-
mation (2.6) with (2.8). The evaluation of (2.9) does not
meet particular difficulties when either the coherent or
incoherent contribution is dropped, because then the an-
gular integral over dQ,. can be carried out analytically.
Due to the interference term between M " and M ™, this
1s, however, no longer possible in the general case. In
order to keep the theory tractable we drop the inter-
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ference term in F; (q) but retain it in ¢, such that for a
fixed average target excitation energy, the conventional
closure approximation is recovered. Since the matrix el-
ements M " (q) and M °(q) are independent of 2, this
leads to the approximation

cr | dQ, Fy(q)

| M (@)|* G rer, )+ | M™(@)]* G (e, o)

=F) [ M (@)|*S(q)+ | M™ (@)]* S (g2)

Gler.q)={deQ, 21 Ko/ 1e o>

S(@)={ x7dr,G (k7. q) (2.10)
o}

with F(q) from (2.8). If in the expression for G (x 1, q),
oI is approximated by a hydrogenlike 1s state with an
effective charge Z (Z=1.7 for He), the angular integral
in G (k ,, q) is easily carried out with the result (for N =2)
[9]
29 26 qz

L P2 +kD)

(Z?+ ¢ +x7)P—4¢° k7P

Gy, q)= g —(xptiZ)?] 7|

(2.11)

with n = Z/k .. The approximations involved in the der-
ivation of (2.10) and (2.11) are not expected to be of
serlous consequence because they affect numerator and
denominator of ch dQ, F,(q) in a similar way. The
advantage of this Haftley—Walters closure approximation
is the absence of a free parameter (the mean excitation
energy) and the excellent agreement with accurate cal-
culations for the first Born approximation (M ™ =0)[9].
It will be used in all theories discussed below.

3. The electron impact approximation (EIA)

In this approximation the ejected electron is described by
a target eigenstate. Consequently, in the final channel the
Hamiltonian is split according to

HIHOf“Ti“Kf
H,,=H,+T,+Vy,
Vee=Veed + Voot Vi (3.1)

with (V,.> =<{op[ | V..|¢ > and V, from (2.4). The exact
transition amplitude for this rearrangement process is
given by

a,=—i }0 dedgp/w/ Vit V,GViop wl> 3.2)

with G=(i0,— H+i¢)™ ' the full propagator of the sys-
tem. The second-order approximation to ay, is obtained
by dropping ¥, or ¥;in G. In the elastic contribution, the
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replacement G—G,,, is made like in the second Born ap-
proximation (2.3). Applying the one-electron approxi-
mation, i.e. setting V,,~(¥V,,> =0 in the second-order
term, one obtains

afi=—ifdei¢pw] |1+ V5,6,
X(VT+ VPe)Iq’)iTV/iP>'

The contribution from V., G,;(Vy+Ve,) has been
dropped because 1, G, V-does not lead to target ground
state- ground state scattering, while the matrix element of
V .G, V. is proportional to the overlap between v/ and
v; # and hence small for large collision velocities.

For the coherent contribution to inelastic scattering,
the same replacement G-+ G,, will be made, since this
contribution is basically 1mp0rtant for small ejection an-
gles and small momentum transfers where the projectile
field is supposed to have the dominant influence on the
electronic intermediate states. For the incoherent contri-
bution, however, which is dominant at backward emis-
sion angles, the choice G—G,,=(i0,~ H,,,+ie)" ' will
be made. This choice has two additional advantages, first,
the restriction Z,<Z, can be dropped, and second, the
further evaluation is much less involved than it would be
with the replacement G—G,;. Setting V, ~{(¥V,.> in the
incoherent term, one has

ap=—i[dedpfwf|(1+V5,G,)
X(I/;e+ V}’e+ ET)lgbiTV/iP>
_ijdt<¢fTWfT| VPeGofVT‘d)iTV/iP>

where the first integral is the coherent part and the second
integral the incoherent part. Again, the term with
Vpe G, 7 Vp, 1s dropped because of its proportionality to
the small overlap {wf|w/

(3.3)

(3.4)

a) Elastic contribution to the EIA

In the electron impact approximation only the first-order
term in (3.3) is retained. Neglecting the contribution from
the overlap {w/ |y >, one is left with the Brinkman-
Kramers formula for single electron capture

EIA, el

dg = —ifdl(wa{ Velw!>
_ _l-jdzj'dke~ikRei(A8/;+uz/2)z
><<W;(r'r)§ VT(rT)ikT> C’)ip(k"“v)

where |k7)>=(27)"%? exp(ikr;), de,,=E,—¢/ with
E,=k7/2and ¢/ the Fourier transform of /. A detailed
account of the EIA has been given earlier [11], and we
mention only the approximations involved. First, the ma-
trix element of V. is replaced by the elastic scattering

amplitude f (k, @)
| Ve k7D =&f | Ve wid >
1
TGy Sk, 6y )

(3.5)

(3.6)

where 6, ,  is the angle between k and k. This on-shell
approximation is exact for k =k, and reasonable in the
peak region of the cross section where k—k, is small.
Secondly, a peaking approximation is applied which casts
the EIA into the simple product form composed of the
cross section do,/dQ = | f| for elastic electron scatter-
ing on the target field, and the Compton profile J; which
accounts for the momentum distribution of the initial
electronic state [11]

d2 EIA, el k

- = > gk
dEfde v
k.=(Ae;+v*/2)/v

=3 ‘9/)
(3.7)

where § .= 3 (k,,v) is the emission angle of the electron.

b) Inelastic contribution to the EIA

The inelastic contribution consists of the incoherent term
of a} from (3.4). Its evaluation proceeds in the same way
that has been used for the second Born term {4]. G, is
handled by mtroducmg a complcte set of intermediate
eigenstates to H ,, wZ ¢, and the quantities related
to the projectlle rest framc Vp, and y [, are Fourier
transformed. One obtains

. | Z .
a}:;IA’m:lR—P 1dqo (AEL+Ae,+v*/2—qvye e
ds 1
- V. —_aT
Sy e A LRl

x o7 (q=s—=v<P/| Z 7o (3.8)

where AE =E/—E/ and Ae,,= E,~ ¢} . The same ma-
trix element which enters into the elastlc EIA transition
amplitude (3.5), <u/f | Vr|w/>, appears in the inelastic
EIA amplitude (in the form given by the second line of
(3.5)), and is folded with the matrix element for target
excitation. Hence, (3.5) together with (3.8) forms a con-
sistent theory.

In order to cast the inelastic contribution to the elec-
tron loss cross section into the form (2.6), a peaking
approximation is necessary like in the B2 theory. Since
for light projectiles, ¢/ is strongly peaked atq—s—v=0,
we fix the components of s perpendicular tovbys, =q,
in the target excitation matrix element and also in the
matrix element of V., assuming they are smoothly varying
quantities as compared to the remainder of the integrand.
This ‘transverse’ peaking approximation is similar to
the one used in the elastic part of the EIA. In order to
eliminate completely the dependence of the target
excitation matrix element on the integration variable s,
a full peaking is needed for this matrix element.
Since s,=AE/ /v=s, is strongly sclected by the energy
denominator, we approximate
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ay; % [ dqo (AES+ Aey+v*/2—qv)e e

N
><<(;6le ZI elqzl‘nTMlnC, EIA(q)}GBi}*‘>

1
‘AEﬁ—S vtie

><<‘//f (rT)l VTl (Qz_sz)ezT>

M e EIA(q)__ ‘Z j' ds ——

1
x<[ds, o/ (q=s—) (3.9)

with q,=q, + s,e,. For hydrogenlike states, the integral
over s, can be performed analytically. Applying the on-
shell approximation (3.6), onec obtains for an initial 1s
state

7/2 © 1
j dSZ——T——f‘
1/5 2 AES—s.v+ie
Xf(lqz—szla'gf)li(‘yz?q)

g% +5?
Ii(sy"})_ﬁ < b2 1)

a2V ) F2ptab]
24302 B2V B +a)

M inc, BIA (q)

(3.10)

o=Zi+ (s,—q,+v)

a=2(s7—q1—b3), B=(s;+q% b3y +4q7b;.

The doubly differential cross section for the inelastic
EIA contribution is obtained from integrating the ab-
solute square of (3.9) over impact paramters and sum-
ming over the final target states. The result is (2.6) with
AE,=AE;]+Ae,;+ v /2, M*"=0 and M™ given by
(3.10). Applying the Hartley-Walters closure (2.9) and
making use of the fact that neither A/ ™ A por the form
factors S,,, F,; and S depend on the azimuthal angle of
q, this integral becomes trivial and the cross section is
given by

dZ EIA, in

87zkf f X2

d
dEdQ, o

o0

x| qdgS,(g) | M (g)]?
Gmin (K T}
G(KTan)
G(rr.9)) 3.11
$(42) G-I
with G and § from (2.10) and (2.11), ¢,=(¢’sin’ 9,

T sy =T KE/ D0, Gy ) =TT +57/2
+Ae,;+v°/2)/v, and the polar angle of q defined by
Cos'gq: Drnin (K T)/q
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4. The impulse approximation (JA)

The impulse approximation is obtained by collecting all
first- and second-order terms which were defined in the
beginning of Sect. 3. From this point of view the IA should
be considered as an improvement over the EIA ; however,
the choice of propagation in the projectile field (the prior
form of the IA) restricts its application to systems with
Z+<Z, as in the case of the second-order Born approx-
imation.

a) Elastic contribution to the 1A

The elastic 1A transmon amplitude is the on-shell ap-
proximation to a; g1ven in (3.3). Insertmg a complete set
of eigenstates to H Voo |9 Txk”>, where [k7) is a
plane wave with momentum k 'in the projectile frame,
and making the approximation (1+V;,G,;)|d, k")

~|¢ ]yl > with w/ an (on-shell) projectile scattering
state, one obtains from (3.3)
gil= =i [ de [ AR/ KO Qwil | Velw!y . (4

It 1s easily seen that in this expression, the replacement
of V., + V. by V is exact. ¥, does not contribute be-
cause v/ and wi are orthogonal. Introducing the Fourier
transform V. of the effective target field, one obtains with

ko=k+v

1A, el

i
ap = § dqé (e, —v*/2—qV)

xe M (g) (4.2)

T * ~
M (q)=]/5 J koo (ko) P ky—v—)

KWy | T Ty P (rp))

For the evaluation of the k, integral, a transverse peaking
approximation is made like in the case of the EIA, relying
on the assumption that the Fourier transformed final
state, gpf, is strongly peaked at k,=k,. However, the
peaking approximation is not so well justified as for the
EIA, because (pr , being eigenfunction of a fully screened
potential, has a rather broad momentum distribution [18].
We have found it convenient to separate ¢ fT (ky) into the
plane-wave contribution, d (k,—Kk,), and a finite remain-
der, a procedure which is allowed for short-range poten-
tials ¥,.. In the remainder, both ¥, and the pm]ectlle
ionisation matrix element are taken out51de the k,, in-
tegral at a fixed value p,, . With p=p,, +k,, e, one
obtains

T 7 -
Mf‘i“‘(q)zM?“‘—%[/; | dko, Vr(@=v—q)

X Wy [TV ()

><§ dk, ~fT*(kO)
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T~
M?LE‘:]/E P —v=a)

X, - | €TV [ (rp))

where ¢/ (ko) =9/ (ky)—d(k,~ky) and MZF“ in-
serted into (4.2) is identical to the first-order Born con-
tribution to the transition amplitude (the first term in
af?* from (2.5) up to an irrelevant phase). From a de-
tailed analysis of {dk,, ¢/ (k,) [18] we have chosen
Po, =k, in the vicinity of k,,=k,_, and p,, =0 else-
where. Taken into consideration that V. and the ionisa-
tion matrix element are weakly dependent on p and in
addition functions of the second integration variable q,
the peaking approximation should not lead to serious
deficiencies. With the help of {4.3), the elastic contribu-
tion to the doubly differential loss cross section is cal-

culated from

(4.3)

dZGIA,el 8k o e )
dEfdgf:“,T/ [ qdq | de,|Mi>q)]"

2
Gmin

(4.4)

where §,,, = }Aaﬂ-vz/Z{ /v, and the polar angle is ob-
tained from cos 9, = (de,—v*/2)/(qv).

b) Inelastic contribution to the 1A

The incoherent part of & from (3.4) has already been
discussed, and it remains to evaluate the coherent term.
Since this term has the same structure as the correspond-
ing elastic term a3, the same steps are taken as before.
One obtains

pacoh = —i | dr [ dkCy [ k"D
X Wil Volbl Wiy

because V,, is the only part of V; which can induce two-
particle transitions. Fourier transforming V,, leads to

(4.5)

ap ot = L [ dqo (AEL+ Ae,,+v*/2—qv)
- .

i dk *
BT

KWy | €TV P 1)

X<¢’;{ Z efi(ko~q)rnr§¢i?">‘ (46)

This expression is again evaluated with the help of the
peaking approximation. Since the Fourier transform of
the pure Coulomb field ¥V, is strongly momentum de-
pendent, care must be taken that also with the peaking
approximation, the dky-integrand remains finite at k,=q
(each matrix element in (4.6) is proportional to ky—q
since the wavefunctions are orthogonal). Therefore, the
transverse peaking approximation k,, =k,, is made in
the projectile matrix element multiplied by |k,—q| ™"
and the full peaking approximation k, =k, in the other

terms. One obtains with p=k,, +k, e,

alf-on = —% [ dqé (AEL + Ag,,+17/2 —qv)

N
Xe~1qb<¢le Z elq”"TMwh’IA(q)ggbiT>
n=1{

1 ® 1
—a] 4, 4o p—qr

Xy, | Ty P (x,))

x[6 (ko —kp) + 1 dko, 677 (ko)

where q, =¢—k,. The term proportional to & (ky. —k,.)
coincides again with the first-order Born approximation
(the first term in af*™ from (2.5)). In order to obtain
the complete inelastic transition amplitude, the incoher-
ent part from (3.9) has to be added:

Mcoh, IA (q) —

4.7)

af>™=af; (4.8)
The doubly differential cross section d>¢™™/dE dQ is
obtained from the formulae (2.6)-(2.11) with the substi-
tution M " (q)— M °°™ ™ from (4.7), M ™ (q)— M "> F14
from (3.9), q,=q—k, q,=q, +(4E;/v)e, and AE,,
=AE+Ae,+v*/2. As g, depends explicitly on the
azimuthal angle of g, the integral over q can only be
reduced to a two-dimensional integral which has to be
carried out numerically.

1A, in + III-A’ coh
1 .

5. Numerical details

For the evaluation of the electron loss cross section in
the electron impact approximation and the impulse ap-
proximation, knowledge of the target continuum eigen-
functions, their Fourier transform and the scattering am-
plitude is required. For simplification, the target atom is
approximated by an effective one-electron potential. This
is a reasomable approximation for high-energy electron
scattering where exchange effects are of minor impor-
tance and orthogonality to the bound electronic states
need not be considered [19]. The clectronic scattering
state is represented in terms of partial waves, and the
radial part R, (k, r) of the /™" partial wave is obtained from
the Schrédinger equation

d? I{I+1)
Sy 3 -
<dr2 i r?
where k is the electronic momentum. The potential con-
sists of the static and the polarisation field [11, 19]

V(r)= V() + Voo

—2 V(r)) R(k,r)=0 (5.1)

Z;, 2 gr
Vr(r)= ‘“‘"rl Z (a6 +a,re F)
=1
2

(5.2)
or 3k
b= TsErey YTsa
ol K5k
k, k>kg



The static field V-(r) has been fitted to the target Hartree
Fock potential where a,, b,, «, and £, are the fit param-
eters [17]. In the polarization field ¥, « is the dipole
polarizability and 4 the mean target excitation energy
(for He, o = 1.38414, A=1.22 a.u.). For large electron
momenta (k=(34 )17 2), the cutoff constant d is propor-
tional to &k [19]. This will be the case for the dominant
contribution to the cross section because the collision
velocity is large and k~wv (see e.g. (3.7)). However, for
the inelastic EIA cross section, R, is also needed for small
values of &. In that case, one would have to solve a self-
consistent differential equation including exchange [20].
Since the small-k contribution is of minor importance as
discussed below, we have made a crude approximation:
R,(k,r) has also been calculated from (5.1) with (5.2),
using a constant cutoff d in V. The value k,=1.1 (for
He) has been taken from an earlier fit to accurate low-
energy phase shifts [21].

For the impulse approximation, the integral over the
transverse components of the scattering state in momen-
tum space is needed. Within the partial wave represen-
tation, this double integral can be performed analytically
[18]. Hence, only the r integral inherent in the Fourier
transformation of the scattering state has to be calculated
numerically. This can be done simultancously with the
integration of the Schrédinger equation (5.1).

The scattering amplitude is readily calculated with the
help of the phase shifts &,, which are determined from
the large-r behaviour of the radial functions R,(k, r)

Irax

f(k,H)z—}c- 21 21+ 1) P(cos 6)¢'?'sin g, (5.3)
=0

where P, is a Legendre polynomial, and the cutoff /___ is
taken sufficiently large to obtain convergence (/_,, ~16
for He). Making use of the fact that for V(r)=0, §,—0
for r— o0, accurate values of §, are obtained already at
moderate r if (5.1) is first solved with (5.2) and subse-
quently with ¥ (r)=0. &, is then equal to the difference
of the corresponding phase shifts at fixed r.

Since the evaluation of the scattering amplitude and
of the momentum-space scattering state is rather time-
consuming, these functions are calculated prior to the
evaluation of the cross sections on a grid of mesh points,
and interpolated subsequently with a spline interpolation
routine. In the case of EIA, this is made possible by
the variable transform in (3.10) s =s,—s,, such that
the argument of the scattering amplitude, ¢, —s.
=Adg,;/v+v/2—s., only depends on 5/ but not on the
target excitation energy x%/2. The singularity in the s’
integral at 7 =0 is readily handled by means of the de-
composition

j ds!

— F(s
A A e )

S ? ds! [F(s.)—F(0)] !

oo s?

Fs)=/([k.=sL|,8) L (s? + 50, 9)

in
f?F(O)

(5.4)
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with k_ defined in (3.7). Since I, rapidly decreases with
|sZ], it is obvious from (5.4) that the dominant contri-
bution to the inelastic EIA cross section comes from the
region around s; =0. At this value, the particular scat-
tering amplitude f (k_,9,) enters into the formula, which
also determines the elastic EIA cross section (3.7).

The ionisation matrix element appearing in the [A
((4.3) and (4.7)) can be calculated analytically for hy-
drogenic states (see, e.g. {4]). In addition to the square
root singularity at p=v from the normalisation constant
of the Coulomb wave w: _ ., there appear two logarithmic
singularities at k,.= £k, from the Fourier transform of
the scattering state [18]. These singularities are readily
handled by splitting the &, integral and making a loga-
rithmic variable transform (except in the region of the
maximum at k, =k, ).

6. Resnlts

The total loss cross section is calculated from the sum of
the elastic and the inelastic contribution

dza _ dzael + dzgin
dE,dQ, dEdQ, dEde,

(6.1)

within the three theories presented above, the second-
order Born approximation, the electron impact approx-
imation and the impulse approximation. Comparison is
made with the coincidence data of DuBois and Manson

tke\«r’rgr1

do
ey
8

10

30 50 100 200 500 1000
Ef( aV)

Fig. 2. Doubly differential loss cross section for 0.5 MeV/N
He* + He collisions as a function of electron energy E; at an emis-
sion angle of 30°. Shown are results from the second Born ap-
proximation with the Hartley-Walters closure (=) and the con-
ventional closure (), the first Born approximation (- ------ ), the
EIA (----)and the impulse approximation (— - —-—-— ), all with
the Hartley-Walters closure. Shown is also the elastic B2 contri-
bution (——~—7). The experimental data (o) are taken from DuBois
and Manson [5]
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Fig. 3. Doubly differential loss cross section for 0.5 MeV/N
He™ + He collisions as a function of efectron energy £, at an emis-
sion angle of 170°. The theoretical curves have the same meaning
as in Fig. 2, except for the ¢lastic EIA contribution (— — —). The
experimental data (e) are taken from Kovér et al. [12]

[5] and Heil et al. [7], and with the singles data of Kdvér
et al. [12]. Figures 2 and 3 show the energy distribution
of electrons emitted in 0.5 MeV/N He* + He collisions
at the two angles §,=30° and 170°. At forward angles,
the Born approximation gives the best description of the
data. Inclusion of the second Born term increases the
cross section in the peak region by ~40% at 9,=30°,
but by a factor of 2 at §,>90°, which is considerably
more than in the cusp region (10% [4]) at this particular
collision velocity. In order to test the accuracy of the
closure approximation for the inelastic contribution to
the cross section, the second-order Born theory has been
calculated with the Hartley-Walters closure (2.9) as well
as with the conventional closure approximation. At small
electron energies the difference is rather small, while at
energies beyond the peak, particularly at backward emis-
sion angles, there are considerable deviations between the
two approximations (up to a factor of 2). In this context
it should be recalled that the choice AE—I"+x;/2 in
the conventional closure approximation is derived from
a mere consideration of the electron-electron coupling
where it is assumed that the two electrons acquire an
equal amount of momentum [15]. With increasing mo-
mentum transfer to the projectile electron (i.e. for in-
creasing 3, or E,beyond the peak), the coherent ionisa-
tion looses importance as compared to the incoherent
(double-interaction) ionisation, such that the Hartley-
Walters closure which models the true target energy levels
beyond threshold is more reliable than the conventional
closure.

(T
A

I 4t 12l 1. A Mordd L1 L O 1 11l P ]
30 50 100 200 500 103 30 50 100 200 500 103
E¢leVv) EfeV)

Fig. 4. Ratio do™/do® of the inelastic and the elastic contribution
to the doubly differential loss cross section for 0.5 MeV/N He* + He
collisions at emission angles 30°, 90° and 150°. Shown are calcu-
lations within the second Born ( }, the EIA (— — —)and the
impulse approximation (— - — - — ). Also shown is a modified ETIA
ratio where in the inelastic part, the first-order Born term is added
coherently (X — — — X))

At backward emission angles, the electron impact ap-
proximation is superior to the Born approximation in
explaining the experimental data. This theory does not
include the coherent ionisation. In order to check possible
deficiencies of the EIA, the coherent ionisation has been
accounted for by using the IA formula (4.8) but retaining
only the §-contribution from (4.7). Although this addi-
tion of the first Born term (with a projectile final state)
is not quite consistent, it gives an estimate of the impor-
tance of the coherent ionisation as compared to the in-
coherent ionisation. It follows from Fig. 4 that for small
3, the inelastic loss cross section is enhanced as compared
to EIA (up to a factor of 2 at § ,=30°), but there is little
effect at backward angles. Hence, in the validity regime
of the EIA, the neglect of the coherent ionisation is a
reasonable approximation.

While the coherent ionisation must be taken into ac-
count at forward angles, consideration of the incoherent
projectile-target ionisation is important at all angles. If
only the elastic part of the loss cross section were ac-
counted for, the experimental data were underestimated
considerably, both by B2 at forward angles and by EIA
at backward angles (see Figs. 2, 3). As is evident from
Fig. 4 where the ratio between the inelastic and the elastic
loss cross section is plotted as a function of energy, the
inelastic contribution is particularly large on the outer
wings of the loss peak, where it may strongly exceed the
elastic part of the loss cross section. This behaviour which
is common to all theories may be explained by realising
that the momentum transfer required to eject a loosely
bound target electron is of similar magnitude (or even
smaller) than the momentum which must be absorbed by
the projectile electron. Therefore, the probability for the
occurrence of double ionisation during the collision is
very large.
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Fig. 5. Shift AE,;, of the electron loss peak maximum relative to
v*/2 in 0.5MeV /N He* + He collisions as a function of electron
emission angle 9, Shown are the results from B2 ( ), ETA
(———)and IA (—+— .~ ). The arrow denotes the initial-state
energy &/. The experimental data are from DuBois and Manson

(o, [5]) and from Kovér et al. (@, [12])

The presence of the target electrons leads not only to
a general enhancement of the loss cross section, but it
affects also the position and shape of the loss peak itself.
The gross features can be explained by the properties of
the projectile alone: from e.g. the formula (3.7) for the
elastic EIA it follows that the peak position is determined
from the requirement k. =v, ie. E_, =v"/2+&],
whereas its shape mirrors the momentum distribution of
the bound projectile electron as expressed by the Comp-
ton profile J,. The influence of the target clectrons which
manifests itself not only in the presence of the inelastic
loss cross section, but also in the angular and energy
dependence of the scattering amplitude, Ieads to a change
of the peak position and width when the emission
angle is varied. Figure5 displays the peak shift
AEg p=E,_ . —v*/2 which from the arguments above
should be close to 7. This is approximately true for the
second Born approximation but not for the EIA which
shows a steadily increasing peak shift with increasing § .
The wiggles arise from the (nonperturbative) influence of
the target atomic field and are the more pronounced, the
heavier the target [11]. Wiggles in the backward direction
may have been artificially suppressed because calcula-
tions for §,>90° have only been performed at a few
angles (120°, 150°, 170°), with a smooth interpolation in
between. From comparison with experiment, the second
Born theory is favoured for 51107, while the EIA gives
a better description at larger angles.

The influence of the target field on the peak width as
a function of angle is displayed in Fig. 6. There is again
indication that at angles up to 110°, the second-order
Born approximation is appropriate while EIA fails. At
larger angles, the two theories give rather similar results.
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Fig. 6. Full width at half maximum, Ihy,, Of the electron loss
peak from 0.5 MeV/N He* + He collisions as a function of emis-
sion angle 9, Shown are results from the second Born approxi-
mation ( -} and the electron impact approximation (—~ — —).
The arrow denotes the width of the Compton profile from (3.7).
The experimental data are taken from DuBois and Manson (o, [5])
and Kovér et al. (&, [12])

The large deviation between theory and the singles data
at backward angles may be due to experimental uncer-
tainties caused by the large background from target
ionisation when the peak maximum is shifted to small
energies. At a ‘critical’ angle of ~53°, the B2 theory
suggests a very broad electron loss peak as compared to
adjacent angles. This behaviour is related to the inelastic
part of the loss cross section which near the critical angle
peaks at much lower energies than the elastic part.

A similar behaviour, supported by experimental data
[6,7] is found for electron loss in H®+ He collisions [8],
where the critical angle is ~30° (Fig. 7). In this figure,
the dependence of the loss cross section on the projectile
species is shown by selecting H® and He® projectiles at
the same collision energy as was chosen for Het. For
the He® projectile, only EIA calculations have been per-
formed, and the following changes have been made in
the theory for He™: (i) The hydrogenic initial binding
energy is replaced by 0.91795 a.u.. (ii) For the initial
hydrogenic wavefunction w,-" an effective charge

Zp o= 1.7 15 used. (iii) VP is replaced by the Hartree-
Fock potentxal for He™ which means that in (3.9),

Z,/s* is replaced by (Z,/s) (1—16Z3/(s*+4Z2))
with Z,=2. In the step from (3.9) to (3.10) the transverse
peaking approximation (5% =¢3 ) is also made in this
factor multiplying Z,/s*. (iv) The cross section is en-
hanced by a factor of 2 due to the presence of two pro-
jectile K-shell electrons.

In contrast to the case of 30° He™ + He (Fig. 2), the
loss of the more loosely bound electrons of H® and He’
is not only reasonably well described by the second Born
theory, but also by EIA. This means that for a smaller
ratio of Z,/Z, (or Zp .4/Z7), the description of the
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emitied electron by a target eigenstate can be applied for
considerably smaller angles than in case of Z,/Z,=1.
The basic difference between the two theories lies in the
inelastic contribution: while for B2, this contribution
gains importance when Z is reduced, it is vice versa for
EIA. This is so because the electron-electron coupling
(which governs B2 at forward angles) is the more im-
portant as compared to electron-nucleus couplings (which
enter into the ETA), the smaller the nuclear charges [8,22].
Inclusion of the coherent projectile-target ionisation in
the EIA would lead to some enhancement on the low-
energy side of the loss peak, particularly for the H° + He
system, improving the agreement with the data.

7. Conclusion

Electron loss spectra from collisions of hydrogen and
helium with He have been calculated within three high-
velocity perturbative prescriptions, the second-order Born
approximation, the electron impact approximation and
the prior impulse approximation. Comparison of the
shape and position of the electron loss peak with exper-
imental data confirms the conjecture that electrons ejected
into the forward hemisphere are predominantly influ-
enced by the projectile field. The second Born theory
which accounts for this fact, is in good agreement with
the data. At backward emission angles (8,2110° for
He™ + He), electron loss is preferably described in terms
of electron capture to the target continuum. The smaller
the ratio between the projectile and target nuclear charges,
the more extends the validity of this prescription into the
forward hemisphere. The (first-order) EIA theory gives
a satisfactory explanation of the data, whereas the prior
impulse approximation for electron capture overesti-
mates the experimental spectra at all angles. The failure
of this higher-order theory which originally was designed
as an improvement on the EIA, may be due to the de-

scription of the electronic intermediate states: when the
clectrons are predominantly influenced by the target field
in their final state, this field will also act on their inter-
mediate states, even for symmetric systems like He + He.
Hence, an improvement on the EIA is rather expected
from a second-Born type theory which includes target
intermediate states. Since, however, exact eigenstates to
the atomic target field are essential for a proper descrip-
tion of electron loss at the larger emission angles, such a
theory is far more intricate than the EIA or prior IA.

We have found that consideration of simultaneous
target excitation is very important for electron loss, ir-
respective of the emission angle and the projectile and
target species. This inelastic process not only enhances
the peak intensity considerably, but also gives the dom-
inant contribution to low-energy electron emission.
Hence, the electron loss peak is shifted to lower energies
as compared to the elastic contribution alone, and the
peak width is increased, particularly near a critical for-
ward angle which depends on the collision system. There
are two contributions to simultancous target excitation:
at small emission angles, the coherent projectile-target
ionisation must be taken into consideration. This con-
tribution which is important for small momentum trans-
fers to the projectile electron, increases with decreasing
electron energy and emission angles, and also with de-
creasing nuclear charge of projectile and target. The in-
coherent projectile-target ionisation, on the other hand,
should be included at all angles and is largely dominant
for high momentum transfers. Hence, this contribution
increases with increasing electron energy and emission
angles, and also with increasing projectile and target
charges. When calculated within a second-order approx-
imation, the incoherent contribution scales relative to the
elastic contribution approximately with Z2= Z,. This
scaling may, however, break down for large Z, and Z,
where third- and higher-order terms will have to be in-
cluded.
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