Zeitschrift Z. anorg. allg. Chem. Leipzig 588 (1990) S. 1–208 für anorganische und allgemeine Chemie

Redaktion:

G. FRITZ, Karlsruhe

W. HANKE, Berlin

R. HOPPE, Gießen

Zeitschrift für anorganische und allgemeine Chemie

Band 588. September 1990. S. 1-208

Inhalt

Den Arbeiten ist das Datum des Einganges bei der Redaktion beigefügt	
	Seite
J. Birx und R. Hoppe, Gießen: Ein neues carbonatanaloges Oxocobaltat(II): RbNa ₇ (CoO ₃) ₂ . 22. Januar 1990	7
W. Schnick und J. Lücke, Bonn: Zur Kenntnis von Lithium-phosphor(V)-nitrid. Rein-	
darstellung und Verfeinerung der Kristallstruktur von LiPN ₂ . 22. Dezember 1989 L. RIESEL, H. VOGT und A. BRÜCKNER, Berlin: Zur Bildung von Difluorhalogenmethylarsanen	19
durch Reaktion von Difluorcarben mit Arsenhalogeniden. 5. Dezember 1989	26
ThF ₄ . 11. Januar 1990	33
U. Schaffrath und R. Gruehn, Gießen: Zum chemischen Transport von Verbindungen des Typs LnTa ₇ O ₁₉ (Ln = La-Nd) mit einer Bemerkung zur Strukturverfeinerung von	00
NdTa ₇ O ₁₉ . 22. Januar 1990	43
$\label{eq:halle_seq} \textbf{H. K\"{o}Hler}, \ \textbf{S. Ahmed} \ \ \textbf{und} \ \ \textbf{L. J\"{a}ger}, \ \ \textbf{Halle/Saale} \colon \ \textbf{Pseudochalkogenverbindungen}. \ \ \textbf{XXIV}.$	
Cyanamido-trimetaphosphimate. 29. Januar 1990	55
L. JÄGER und H. KÖHLER, Halle/Saale: Pseudochalkogenverbindungen. XXV. Phenoxy-cyan-	
amidoacetate $M[C_6H_5OCH_2-C(O)NCN]$ (M = Li, Na, K, Cs, Ag) — Darstellung und Methylierung. 20. Februar 1990	59
M. Paulus und G. Thiele, Freiburg i. Br.: Schwefeldichlorid als Ligand. Die Molekül- und	00
Kristallstrukturen von Trans-bis(dichlorsulfan)platin(IV)-chlorid PtCl ₄ (SCl ₂) ₂ und Trans-	
bis(dichlorsulfan)palladium(II)-chlorid PdCl ₂ (SCl ₂) ₂ . 1. Februar 1990	69
A. Jesih, K. Lutar, B. Žemva, B. Bachmann, St. Becker, B. G. Müller und R. Hoppe,	
Ljubljana (Jugoslawien) und Gießen: Einkristalluntersuchungen an AgF ₂ . 22. Januar	
1990	77
Untersuchung der Realstruktur von O-LaTa ₃ O ₉ , M-CeTa ₃ O ₉ und M2-PrTa ₃ O ₉ — Nachweis	
einer neuen M1-CeTa ₃ O ₃ -Modifikation. 2. Februar 1990	84
I. RÜTER und HK. MÜLLER-BUSCHBAUM, Kiel: Geordnete Oktaederbesetzung in	
$\mathrm{Ba_6La_2Al_{1,5}Fe_{2,5}O_{15}}$. 7. Februar 1990	97
N. Bertel, M. Noltemeyer und H. W. Roesky, Göttingen: Darstellung und Struktur von	400
Tris[2,4,6-tris(trifluormethyl)thiophenolato]indium(III)-diethyletherat. 8. Februar 1990 I. Pilchowski, A. Mewis, M. Wenzel und R. Gruehn, Köln und Gießen: BaCu _s P ₄ und	102
BaCu ₈ As ₄ : Darstellung, Strukturbestimmung und elektronenmikroskopische Unter-	
suchungen. 8. Februar 1990	109
A. Lalla und Hk. Müller-Buschbaum, Kiel: Zur Atomverteilung in Ba ₂ SrIn ₂ O ₆ mit einem	
Beitrag zur Existenz des Calciumferrat(III)-Typs bei Oxoindaten. 10. Februar 1990	117
R. Krausze, M. Khristov, P. Peshev, and G. Krabbes, Dresden and Sofia (Bulgaria): Crystal	
Growth of Chromium Silicides by Chemical Vapour Transport with Halogens. 2. Growth of	400
the Cr-rich Silicide Crystals. 1. Februar 1990	123
12. Februar 1990	133

4 Inhalt

B. Wallis, GU. Wolf und P. Leibnitz, Berlin-Adlershof: Über die Struktur einer neuen	
Modifikation des Phosphorsulfids P ₄ S ₉ . 23. Februar 1990	139
B. NEUMÜLLER, H. RIFFEL und E. FLUCK, Stuttgart und Frankfurt/Main: Bemerkungen zur	
Synthese von Difluorphosphoranen. n-Butyl-bis(dimethylamino)alkylidenphosphorane.	
Der Komplex $\{(CO)_4FeC[OSi(CH_3)_3]CH=P(n-C_4H_9)[N(CH_3)_2]_2\}$. 26. Februar 1990	147
C. Kraffert, D. Walther, K. Peters, O. Lindqvist, V. Langer, J. Sieler, J. Reinhold	
und E. HOYER, Leipzig, Jena, Stuttgart und Göteborg (Schweden): Komplexe mit Di-	
methyltetrathiooxalat: Struktur und Eigenschaften von [Ni(S2C2(SMe2)2] und	
$[Pd(S_2C_2(SMe)_2)(PPh_3)_2]. 26. Februar 1990 \dots$	167
E. Fluck, W. Plass und G. Heckmann, Frankfurt/Main und Stuttgart: Reaktion von	
$1,1,3,3$ -Tetrakis(dimethylamino)- $1\lambda^5,3\lambda^5$ -diphosphet mit monosubstituierten Acetyle-	
nen und Acetylen. 1 λ^5 , 3 λ^5 -Diphosphabenzole. IV. 21. März 1990	181
E. Nietzschmann, O. Böge, J. Heinicke und A. Tzschach †, Halle/Saale: [1,3]-Carbanio-	
nische Umlagerungen — Synthese von Bis-(o-Hydroxyphenyl)silicium-Verbindungen.	
15. Februar 1990.	192
D. Hoebbel, I. Pitsch, H. Jancke und B. Costisella, Berlin: NMR-spektroskopische Unter-	
suchungen der Reaktion von 3-Aminopropyltriethoxysilan mit Kieselsäurelösungen.	
19. Februar 1990	199
Vorbericht	
M. Wenzel und R. Gruehn, Gießen: Untersuchungen zum chemischen Transport im System V ₂ O ₃ /VO ₂ . 23. Juli 1990	203

Contents 5

Contents

	Page
J. Birx and R. Hoppe, Giessen: A New Carbonat-Analogous Oxocobaltate(II): RbNa ₇ (CoO ₃) ₂ . Received January 22nd, 1990	7
W. SCHNICK and J. LÜCKE, Bonn: On Lithium Phosphorus Nitride. Preparation and Refinement of the Crystal Structure of LiPN ₂ . Received December 22nd, 1989	19
L. Riesel, H. Vogt, and A. Brückner, Berlin: Formation of Difluorohalomethyl Arsanes by Interacting Difluorocarbene with Arsenic Halides. Received December 5th, 1989	26
G. Benner and B. G. Müller, Giessen: On Binary Tetrafluorides of the ZrF ₄ Type. Received January 11th, 1990	33
U. Schaffrath and R. Gruehn, Giessen: Chemical Transport Reactions of Compounds LnTa ₇ O ₁₉ (L = La-Nd) and Structure Refinement of NdTa ₇ O ₁₉ . Received January 22nd, 1990	43
H. KÖHLER, S. AHMED, and L. JÄGER, Halle/Saale: Pseudochalcogeno Compounds. XXIV. Cyanamido Trimetaphosphimates. Received January 29th, 1990	4 5
L. JÄGER and H. KÖHLER, Halle/Saale: Pseudochalcogeno Compounds. XXV. Phenoxy-cyan-amidoacetates $M[C_6H_5OCH_2-C(O)NCN]$ (M = Li, Na, K, Cs, Ag) — Synthesis and Methylation. Received February 20th, 1990	59
M. Paulus and G. Thiele, Freiburg i. Br.: Sulfur Dichloride as a Ligand. The Molecular and Crystal Structures of Trans-bis(dichlorosulfane)platinum(IV)chloride PtCl ₄ (SCl ₂) ₂ and Trans-bis(dichlorosulfane)palladium(II)chloride PdCl ₂ (SCl ₂) ₂ . Received February 1st, 1990	69
A. Jesih, K. Lutar, B. Žemva, B. Bachmann, St. Becker, B. G. Müller, and R. Hoppe, Ljubljana (Jugoslavia) and Giessen: Single Crystal Investigation on AgF ₂ . Received January 22nd, 1990	77
G. STEINMANN, R. GRUEHN, and B. LANGENBACH-KUTTERT, Giessen: Electronmicroscopic Investigations on Disordered Crystals of O-LaTa ₃ O ₉ , M-CeTa ₃ O ₉ , and M2-PrTa ₃ O ₉ — Proof of a New M1-CeTa ₃ O ₉ -Modification. Received February 2nd, 1990	84
Ba ₆ La ₂ Al _{1,5} Fe _{2,5} O ₁₅ . Received February 7th, 1990	97
Tris[2,4,6-tris(trifluormethyl)thiophenolato]indium(III) Etherate. Received February 8th, 1990	102
I. PILCHOWSKI, A. MEWIS, M. WENZEL, and R. GRUEHN, Cologne and Giessen: BaCu ₈ P ₄ and BaCu ₈ As ₄ : Preparation, Structure Determination, and HRTEM Investigations. Received February 8th, 1990	109
A. Lalla and Hk. Müller-Buschbaum, Kiel: On the Atomic Distribution in Ba ₂ SrIn ₂ O ₆ with a Contribution to the Existence of the Calciumferrite-Type of Oxoindates. Received	
February 10th, 1990	117
of the Cr-rich Silicide Crystals. Reveiced February 1st, 1990	123 133
B. Wallis, GU. Wolf, and P. Leibnitz, Berlin-Adlershof: On the Structure of a New Modification of Phosphorus Sulfide P ₄ S ₉ . Received February 23rd, 1990	139

6 Contents

B. NEUMÜLLER, H. RIFFEL, and E. FLUCK, Stuttgart and Frankfurt/Main: Remarks to the Syn-	
thesis of Difluorophosphoranes. n-Butyl-bis(dimethylamino)alkylidenephosphoranes. Com-	
plex $\{(CO)_4 FeC[OSi(CH_3)_3]CH = P(n-C_4H_9)[N(CH_3)_2]_2\}$. Received February 26th, 1990	147
C. Kraffert, D. Walther, K. Peters, O. Lindqvist, V. Langer, J. Sieler, J. Reinhold, and	
E. HOYER, Leipzig, Jena, Stuttgart, and Göteborg (Sweden): Structure and Properties of	
Homo- and Mixed-Ligand Bis-Complexes of Dimethyltetrathio-oxalate:	
$[Ni(S_2C_2(SMe)_2)_2]$ and $[Pd(S_2C_2(SMe)_2)(PPh_3)_2]$. Received February 26th, 1990	167
E. Fluck, W. Plass, and G. Heckmann, Frankfurt/Main and Stuttgart: Reactions of 1,1,3,3-	
Tetrakis(dimethylamino)-1λ ⁵ , 3λ ⁵ -diphosphete with Monosubstituted Acetylenes and Ace-	
tylene. $1\lambda^5, 3\lambda^5$ -Diphosphabenzenes. IV. Received March 21st, 1990	181
E. Nietzschmann, O. Böge, J. Heinicke, and A. Tzschach †, Halle/Saale: [1.3]-Carbanionic	
Rearrangements. Synthesis of Bis-(o-hydroxyphenyl)silane Derivatives. Received Febru-	
ary 15th, 1990	192
D. Hoebbel, I. Pitsch, H. Jancke, and B. Costisella, Berlin: N.M.R. Spectroscopic Inves-	
tigation on the Reaction of 3-Aminopropyltriethoxysilane with Silicic Acid Solutions.	
Received February 19th, 1990	199
Prereport	
M. Wenzel and R. Gruehn, Giessen: Investigations of Chemical Transport in the V ₂ O ₃ /VO ₂	
System. Received July 23rd, 1990.	208

Zur Kenntnis von Lithium-phosphor(V)-nitrid Reindarstellung und Verfeinerung der Kristallstruktur von LiPN₂

W. Schnick* und J. Lücke

Bonn, Institut für Anorganische Chemie der Universität

Inhaltsübersicht. Reines Lithium-phosphor(V)-nitrid (LiPN₂) wurde durch Festkörperreaktion der binären Nitride Li₃N und P_3N_5 erhalten. Die Kristallstruktur von LiPN₂ wurde auf der Basis von Röntgen-Pulverdiffraktometerdaten mit Hilfe der Rietveld-Methode verfeinert (I $\overline{4}$ 2d; a = 457,5(2) pm; c = 711,8(3) pm; 31 beob. Reflexe 20° < 2 Θ < 105°; Germanium-Monochromator, CuK α_1 ; R(wp) = 0,059; R(I, hkl) = 0,061). Die Kristallstruktur von LiPN₂ leitet sich vom Chalcopyrit-Typ ab. Phosphor und Stickstoff bilden ein dreidimensionales Netz eckenverknüpfter PN₄-Tetraeder (P-N 164,5(7) pm; P-N-P 123,6(8)°). Die Lithium-Kationen besetzen die verbleibenden Lücken. Sie sind verzerrt tetraedrisch von jeweils vier Stickstoff-Atomen koordiniert (Li-N 209,3(10) pm).

On Lithium Phosphorus Nitride. Preparation and Refinement of the Crystal Structure of $LiPN_2$

Abstract. Pure lithium phosphorus nitride (LiPN₂) has been prepared by solid state reaction of the binary nitrides Li₃N and P₃N₅. X-ray powder diffraction data have been used to refine the crystal structure of LiPN₂ by the Rietveld full-profile technique (I $\overline{4}$ 2d; a = 457.5(2) pm, c = 711.8(3) pm; 31 reflections observed; scan-range: $20^{\circ} < 2\Theta < 105^{\circ}$; germanium monochromator, CuK α_1 ; R(wp) = 0.059, R(I, hkl) = 0.061). The atomic arrangement derives from the chalcopyrite type of structure. Phosphorus and nitrogen form a threedimensional net of corner sharing PN₄-tetrahedra (P-N 164.5(7) pm, P-N-P 123.6(8)°). Lithium cations occupy positions which are nearly tetrahedrally coordinated by nitrogen (Li-N 209.3(10) pm).

Einleitung

Phosphor-Stickstoff-Verbindungen sind in großer Zahl in Form molekularer Spezies wie z. B. Phosphazanen, Phosphazenen oder Phosphorsäureamiden intensiv untersucht und beschrieben worden [1-3]. Demgegenüber ist die Kenntnis über binäres Phosphor(V)-nitrid und seine ternären Verbindungen mit elektropositiven Elementen völlig unzureichend. Weder für das binäre Nitrid P_3N_5 noch für ternäre Phosphornitride, z. B. der Alkalimetalle, sind zufriedenstellende Darstellungsmethoden mitgeteilt worden. Weiterhin fehlen für die gesamte Substanzklasse genaue Daten bezüglich grundlegender physikalischer und chemischer

Eigenschaften sowie der auftretenden Kristallstrukturen. Dieser Mangel begründet sich insbesondere darin, daß die entsprechenden Substanzen bislang nicht in reiner Form zugänglich waren.

Kürzlich haben wir ein optimiertes Darstellungsverfahren für binäres P_3N_5 entwickelt [4] und daraufhin mit der systematischen Untersuchung ternärer Phosphornitride begonnen. Die ersten Ergebnisse wurden im quasibinären System $\text{Li}_3N-P_3N_5$ erhalten [5]. In diesem System hatten bereits Rabenau u. Mitarb. [6, 7] die Verbindung LiPN_2 dargestellt und beschrieben. Auf der Basis von Debye-Scherrer-Aufnahmen wurde ein qualitatives Strukturmodell für diese Verbindung vorgeschlagen. Danach leitet sich die P-N-Teilstruktur von LiPN_2 vom β -Cristobalit-Typ ab [6, 7]. Aus den bisher verfügbaren Pulverdaten [6-8] war es jedoch nicht möglich, die genaue Lage aller Atome in LiPN_2 zu ermitteln.

Darstellung und Eigenschaften von LiPN₂

Das quasibinäre System Li₃N-P₃N₅ wurde im Bereich 10:1 bis 1:7 untersucht. Als phosphorreichste Phase wurde dabei LiPN₂ erhalten. Die Darstellung erfolgte durch Umsetzung äquimolarer Mengen der binären Nitride (Reaktionstemperatur: 800°C). Auf Grund der hohen Aggressivität der Ausgangsverbindungen unter den angegebenen Reaktionsbedingungen sowie der Empfindlichkeit von Lithiumnitrid wurde die Reaktion in kleinen Wolframtiegeln, welche unter reiner Stickstoffatmosphäre in Quarzampullen eingeschmolzen wurden, durchgeführt. Da Lithiumnitrid unter den gegebenen Reaktionsbedingungen bereits eine spürbare Flüchtigkeit (thermische Dissoziation und Rekombination) aufweist, wurde die Reaktion unterbrochen, die Reaktionsmischung nach dem Abkühlen unter Schutzgas fein zerrieben und der Li₃N-Verlust durch Zugabe von etwa 1 bis 2 mol% Lithiumnitrid ausgeglichen. Anschließend wurde die Mischung wieder zur Reaktion gebracht. Diese Prozedur wurde so oft wiederholt (2-3 mal), bis röntgenreine (einphasige) Proben von LiPN₂ erhalten wurden (Gesamtreaktionszeit 4 d).

Die Substanz fiel in Form eines hellbeigen, feinkristallinen Pulvers an. Weder längere Reaktionszeiten (bis zu mehreren Wochen) noch Variation der Temperatur (600—900 °C) führten zur Ausbildung größerer Kristalle von LiPN₂. Lithiumphosphor(V)-nitrid ist an der Luft beständig und unter Schutzgas bis etwa 900 °C thermisch belastbar.

Zur Analyse wurden die Produkte in einem speziellen Aufschlußsystem [9] bei 190°C und 12 bar (Reaktionsdauer: 6 h) in verdünnter Schwefelsäure gelöst. Die Analyse ergab: Lithium (flammenphotometrisch) 9,9% (theor. 10,5%); Phosphor (photometrisch als Molybdo-vanadato-phosphat) 46.3% (theor. 46,9%); Stickstoff (photometrisch als Indophenol) 41,9% (theor. 42,5%). Die Abwesenheit von Wasserstoff (N-H) wurde IR-spektroskopisch überprüft.

Röntgenbeugungsuntersuchungen, Strukturverseinerung

Die Strukturbestimmung von LiP N_2 (vgl. Tab. 1) wurde auf der Basis von Röntgen-Pulverdiffraktometer-Daten durchgeführt. Die Messungen erfolgten auf einem fokussierenden Transmissions-Pulverdiffraktometer STADI/P (Fa. Stoe, Darmstadt [10]) unter Verwendung fokussierter monochromatischer $\operatorname{CuK}\alpha_1$ -Strahlung (Germanium-Monochromator; $\lambda=154,056$ pm). Die untersuchten Pulverproben wurden in verschlossenen Glaskapillaren (0,5 mm) in Debye-Scherrer-Geometrie vermessen. Die Beugungsintensitäten wurden unter Verwendung eines linearen ortsempfindlichen Proportionaldetektors (MINI-PSD, Fa. Stoe [10], Öffnungswinkel 6,7°) aufgezeichnet. Die Entfernung von Röntgenröhre zu Monochromator und von Monochromator zu Detektor wurde jeweils auf 260 mm eingestellt. So wurde ein günstiger Kompromiß zwischen maximaler Reflexintensität bei möglichst hoher Winkelauflösung (etwa 0,08°) erhalten.

Tabelle 1 LiPN₂, kristallographische Daten

Kristallsystem	tetragonal
Raumgruppe	$1\bar{4}2d$ - D_{2d}^{12} (Nr. 122)
Gitterkonstanten	a = 457,5(2) pm, c = 711,8(3) pm
Volumen der Elementarzelle	$V = 1,49 \cdot 10^8 \text{ pm}^3$
Anzahl Formeleinheiten pro EZ.	$\mathbf{Z}=4$
Strahlung, Monochromator	$CuK\alpha_1$, Germanium ($\lambda = 154,056$ pm)
Dichte (röntgenographisch)	$\varrho=2,94~\mathrm{g\cdot cm^3}$
linearer Absorptionskoeffizient	$\mu = 109.6 \text{ cm}^{-2}$
Diffraktometer/Detektor	STOE STADI/P
,	Transmissions-Pulverdiffraktometer
	linearer ortsempfindlicher Zähler (STOE-PSD 2)
Beugungswinkelbereich	$20^{\circ} < 2\Theta < 105^{\circ}$
Anzahl Datenpunkte	5564
Gesamtmeßzeit	12 h
Anzahl beobachteter Reflexe	31
Anzahl verfeinerter Ortsparameter	1
Anzahl verfeinerter Temperaturfaktoren	3
R(wp) (Profil)	5,86%
R(l, hkl) (Struktur)	6,14%

Sämtliche beobachteten Röntgenreflexe von LiPN₂ ließen sich unter Annahme eines tetragonal-innenzentrierten Bravais-Typs indizieren (Tab. 2). Unter Berücksichtigung der systematischen Auslöschungen kommen lediglich die beiden Raumgruppen I4₁md und I42d infrage. In Übereinstimmung mit den früheren Arbeiten von Rabenau u. Mitarb. [6, 7] erwies sich von diesen I42d (Nr. 122) im Verlauf der Strukturverfeinerung als sinnvoll.

Die Strukturverfeinerung, die mit Hilfe einer Profilverfeinerungsmethode nach Rietveld [10] durchgeführt wurde, basierte auf Meßdaten, welche im Bereich $20^{\circ} < 2\Theta < 105^{\circ}$ aufgezeichnet wurden (erster beobachteter Reflex bei $2\Theta = 23,09^{\circ}$). Die verwendete Aufnahmegeometrie in Kombination mit einem ortsempfindlichen Zähler führte zu Reflexprofilen, die eine symmetrische Form besaßen und so mittels einer modifizierten Lorentz-Funktion (Mod. 2 Lorentz) approximiert werden konnten. Die Winkelabhängigkeit der Reflexhalbwertsbreiten (FWHM) sowie des Untergrundes konnte durch geeignete Tchebychev-Polynome beschrieben und mitverfeinert werden. Für alle beobachteten Reflexe wurde ein Integrationsbereich von jeweils drei Halbwertsbreiten auf jeder Seite der Reflexposition berücksichtigt. Die Halbwertsbreiten-Parameter, der Nullpunkt und der Skalierungsfaktor wurden vor Freigabe der Strukturparameter verfeinert.

Tabelle 2 Beobachtete und berechnete Röntgenpulverintensitäten für LiPN₂

h k l	$2\Theta_{ m beob.}$	FWHM	$I_{beob.}$	$\mathbf{I}_{\mathrm{theor.}}$	
101	23,09	0,30	1354,5	1293,2	
112	37,54	0,43	921,8	879,6	
$2\ 0\ 0$	39,36	0,44	39,6	53,5	
103	42,90	0,48	49,4	49,2	
211	46,12	0,51	150,0	134,2	
$2\ 0\ 2$	47,19	0,52	11,5	7,4	
0 0 4	51,30	0,55	0,3	7,2	
$2\ 2\ 0$	56,88	0,61	131,7	146,1	
213	59,62	0,63	159,5	144,7	
301	62,20	0,66	2,9	6,7	
310	64,34	0,68	7,6	6,1	
$2\ 0\ 4$	66,52	0,70	216,0	206,0	
105	69,04	0,73	16,0	14,1	
312	70,16	0,74	184,5	180,6	
3 0 3	73,80	0,78	52,6	47,1	
$3\ 2\ 1$	76,14	0,80	84,1	92,3	
$2\ 2\ 4$	80,11	0,84	33,6	29,7	
$2 \ 1 \ 5$	82,47	0,87	50,7	52,5	
400	84,67	0,89	32,9	$32,\!4$	
314	86,66	0,91	5,3	4,0	
3 2 3	87,01	0,91	14,5	12,5	
116	87,51	0,92	52,6	54,5	
411	89,27	0,94	45,9	44,1	
402	90,04	0,95	6,0	5, 5	
206	94,01	0,99	0,3	0,5	
$3\ 0\ 5$	95,49	1,00	26,7	24,7	
$3\ 3\ 2$	96,55	1,02	40,0	37, 3	
4 2 0	97,69	1,03	34,7	34,6	
413	100,05	1,06	16,6	17,5	
107	101,79	1,07	15,6	16,1	
422	103,15	1,09	5,6	3,7	

Als Startwerte für die Strukturverfeinerung von LiPN₂ wurden die dem (mit Li⁺-Kationen) aufgefüllten β -Cristobalit-Typ (PN₂⁻-Teilstruktur) entsprechenden Atompositionen [6, 7] eingesetzt. Die isotropen thermischen Schwingungsparameter wurden anschließend unter Fixierung der Ortsparameter verfeinert. Die Rechnungen konvergierten gegen R(wp) = 5,86% für das Profil und R(I, hkl) = 6,14% für die Strukturverfeinerung.

Trotz einer relativ hohen Überbestimmung (31 beobachtete Reflexe, 1 Orts- und 3 Temperaturparameter verfeinert) blieben die Standardabweichungen der ausverfeinerten isotropen Temperaturparameter relativ hoch. Dieser Umstand könnte auf einer breiten Verteilung der Korngrößen der untersuchten Präparate beruhen, die sich auch in vergleichsweise hohen Halbwertsbreiten der Röntgenreflexe bemerkbar macht (vgl. Tab. 2).

Tabelle 3	Verfeinerte Lageparameter und "isotrope" Temperaturfaktoren ^a)	mit Standardabwei-
chungen ir	n Einheiten der letzten angegebenen Dezimalstelle	

Atom	Position	x/a	y/b	z/c	U(iso)
Li	4b	0	0	1/2	0,025(15)
\mathbf{P}	4a	0	0	0	0,0109(25)
N	8d	0,1699(31)	1/4	1/8	0,0127(72)

a) Temperaturfaktorexponent in der Form $-8\pi^2 \mathrm{U} \sin^2 \Theta/\lambda^2$

Die endgültigen Atomparameter für LiPN₂ sind in Tab. 3 angegeben. Die Übereinstimmung zwischen beobachtetem und berechnetem Röntgenpulverdiagramm von LiPN₂ ist in Abb. 1 dargestellt.

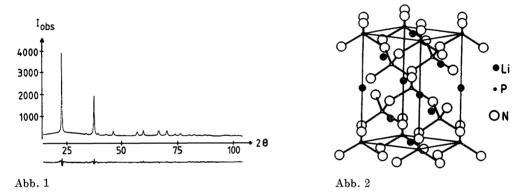


Abb. 1 Beobachtetes und Differenz-Röntgenpulverdiffraktogramm von $LiPN_2$

Abb. 2 Kristallstruktur von LiPN₂

Beschreibung der Kristallstruktur, Diskussion

Der Aufbau von LiPN₂ im Festkörper stellt einen Übergang zwischen dem (mit Li⁺-Kationen) aufgefüllten C9-Typ und der Chalcopyrit-Struktur dar. Beide Anordnungen entsprechen einem Formeltyp ABX₂ und können nach O'KEEFE und Hyde durch Rotation der auftretenden BX₄-Tetraeder um einen Drehwinkel φ ineinander überführt werden (aufgefüllter C9-Typ $\varphi = 0$; idealer Chalcopyrit-Typ, $\varphi = 45^{\circ}$) [11].

Die dem SiO_2 isoelektronische PN_2 --Teilstruktur in LiPN_2 besteht aus einem polymeren Netzwerk über gemeinsame Ecken verknüpfter PN_4 -Tetraeder. Ausgehend von der kubischen Elementarzelle des aufgefüllten C9-Typs sind allerdings sämtliche PN_4 -Tetraeder um $\varphi = -\tan^{-1}(4\mathrm{x}) = 34,2^\circ$ (x = x-Koordinate von Stickstoff [11]) um ihre $\overline{4}$ -Achse (parallel zur c-Achse) verdreht. Der Drehsinn direkt benachbarter Tetraeder ist dabei jeweils gegensinnig. Die beschriebene Verzerrung der Struktur bewirkt einen Übergang in das tetragonale Kristallsystem gemäß der Basistransformation (1/2 1/2 0; -1/2 1/2 0; 0 0 1). Im idealen Fall regulärer PN_4 -Tetraeder sollte das c/a-Verhältnis der resultierenden tetra-

Tabelle 4 Interatomare Abstände [pm] und Winkel [°] in Lil
--

$\overline{P-N}$	164,5(7) (4mal)
Li-N	209,3(10) (4mal)
P-N-P	123,6(8)
N-P-N	107,0(5) (4mal)
	114,5(2) (2mal)

gonalen Elementarzelle c/a = $\sqrt{(2+32x^2)}$ = 1,71 betragen [11]. Durch Stauchung der PN₄-Tetraeder in Richtung der c-Achse wird jedoch ein verkleinertes Verhältnis c/a = 1,56 beobachtet. Entsprechend weisen die PN₄-Tetraeder zwei verschiedene N-P-N-Bindungswinkel auf (4 mal 107° und 2 mal 114,5°; vgl. Tab. 4). Die beschriebene Verdrehung der PN₄-Tetraeder führt zu einem P-N-P-Bindungswinkel von 123,6(8)°, welcher deutlich niedriger ist als die entsprechenden Si-O-Si-Winkel in den beiden polymorphen Modifikationen des Cristobalit (147° bzw. 151°).

Mit den in dieser Arbeit bestimmten genauen Atomkoordinaten kann die von Rabenau u. Mitarb. aufgeworfene Frage nach dem Drehwinkel der PN₄-Tetraeder in LiPN₂ [6,7] nun zufriedenstellend beantwortet werden. Mit $\varphi=34,2^{\circ}$ ähnelt der Aufbau von LiPN₂ im Festkörper eher dem Chalcopyrit-Typ ($\varphi=45^{\circ}$) als einer aufgefüllten C9-Variante ($\varphi=0^{\circ}$).

Die beobachteten P-N-Bindungslängen (P-N 164,5(7) pm, vgl. Tab. 4) entsprechen etwa einer Bindungsordnung von 1,5 [2]. Gegenüber Li_7PN_4 , über dessen Kristallstruktur wir kürzlich berichtet haben, wird überraschenderweise eine signifikante Verkürzung der P-N-Bindungslängen beobachtet. Im Gegensatz zum polymeren Netzwerk eckenverknüpfter PN_4 -Tetraeder in LiPN_2 liegen hier "isolierte" PN_4 -Tetraeder mit einer mittleren P-N-Bindungslänge von 171 pm vor [12]. Aufgrund höherer polarer Bindungsanteile werden die kürzeren P-N-Bindungsabstände eigentlich in den "isolierten" PN_4 -Tetraedern erwartet. Andererseits könnte eine gegenseitige elektrostatische Abstoßung der formal relativ hoch geladenen Stickstoffatome ($\text{Li}_7\text{PN}_4 = (\text{Li}^+)_7(\text{PN}_4^{7-})$) die beobachtete Verlängerung der P-N-Bindungslängen in Li_7PN_4 erklären.

Wie aus Abb. 2 ersichtlich ist, besetzen die Lithium-Kationen die verbleibenden Lücken der Struktur. Es ergibt sich eine bisphenoidisch verzerrte tetraedrische Koordination der Li⁺-Kationen durch die Stickstoffatome des PN₂-Gerüstes. Die auftretenden Li—N-Abstände (Li—N: 209,3(10) pm, vgl. Tab. 4) sind etwas länger als die entsprechenden Abstände in binärem Lithiumnitrid [13].

Die Autoren danken Herrn Prof. Dr. M. Jansen für die freundliche Unterstützung. Die vorliegende Arbeit wurde dankenswerterweise vom Fonds der Chemischen Industrie sowie vom Minister für Wissenschaft und Forschung, Nordrhein-Westfalen, gefördert. Das verwendete Lithiumnitrid wurde freundlicherweise von Herrn Prof. Dr. A. Rabenau, Max-Planck-Institut für Festkörperforschung, Stuttgart, zur Verfügung gestellt.

Literatur

- [1] NIELSEN, M. L.: Develop. Inorg. Nitrog. Chem. 1 (1966) 307.
- [2] Allcock, H. R.: Phosphorus Nitrogen Compounds; New York, London: Academic Press 1972.
- [3] SCHNICK, W.: Z. Naturforsch. 44b (1989) 942.
- [4] SCHNICK, W.; LÜCKE, J.: unveröffentlicht.
- [5] SCHNICK, W.; JANSEN, M.; LÜCKE, J.: 22. Hauptversammlung der GDCh, Bonn, 18.—22. September 1989; Weinheim: Verlag Chemie 1989; S. 328 (Tagungsabstract).
- [6] ECKERLIN, P.; LANGEREIS, C.; MAAK, I.; RABENAU, A.: Angew. Chem. 72 (1960) 268.
- [7] ECKERLIN, P.; LANGEREIS, C.; MAAK, I.; RABENAU, A.: Spec. Ceram.; Proc. Symp. Brit. Ceram. Res. Assoc., (Hrsg. P. Popper); New York, London: Academic Press 1964, S. 79.
- [8] MARCHAND, R.; L'HARIDON, P.; LAURENT, Y.: J. Solid State Chem. 43 (1982) 126.
- [9] Buresch, O.; v. Schnering, H. G.: Fresenius Z. Anal. Chem. 319 (1984) 418.
- [10] STADI/P-Fast Powder Diffractometer System; Fa. Stoe, Darmstadt 1988.
- [11] O'KEEFE, M.; HYDE, B. G.: Acta Crystallogr. B 32 (1976) 2923.
- [12] SCHNICK, W.; LÜCKE, J.: J. Solid State Chem. (im Druck).
- [13] RABENAU, A.: Solid State Ionics 6 (1982) 277.

Bei der Redaktion eingegangen am 22. Dezember 1989.

Anschr. d. Verf.: Dr. Wolfgang Schnick, Dipl.-Chem. Jan Lücke, Inst. f. Anorg. Chemie d. Univ., Gerhard-Domagk-Str. 1, D-5300 Bonn 1