-

Inhalt

Contents

Anorganische Chemie/Inorganic Chemistry

Schmidbaur, H., Bublak, W., Schier, A., Reber, G., Müller, G.	1373	•	<i>cis</i> -1,2-Diphenylcyclopropan: Molekül- struktur und Versuche zur Chelat-Koor- dination von Gallium(I)		<i>cis</i> -1,2-Diphenylcyclopropane: Molecular Structure and Attempted Chelate Com- plexation of Gallium(I)
Roesky, H. W., Zimmer, M., Noltemeyer, M., Sheldrick, G. M.	1377	•	Darstellung von S.S-Diphenyl- N -(trime- thylsilyl)sulfimin und Reaktionen mit Wolframhexafluorid – Einkristall-Rönt- genstrukturanalyse von $F_4W(N = SPh_2)_2$		Preparation of S.S-Diphenyl-N-(trimethyl- silyl)sulfimine and Reactions with Tung- sten Hexafluoride – X-Ray Structure Analysis of $F_4W(N = SPh_2)_2$
Köster, R., Seidel, G., Müller, G., Boese, R. Wrackmeyer, B.	1381	•	Organosubstituierte 2,5-Dihydro-1,2,5- phosphasilaborole – Herstellung, Cha- rakterisierung und Umwandlungen		Organosubstituted 2,5-Dihydro-1,2,5- phosphasilaboroles – Preparation, Char- acterization, and Transformation
Jutzi, P., Meyer, M.	1393	►	Hochsubstituierte 1-tert-Butyl-1-silacy- clohexadiene		Highly Substituted 1-tert-Butyl-1-silacy-clohexadienes
Jutzi, P., Kroos, R.	1399	•	Pentamethylcyclopentadienyl-substitu- ierte Cyclophosphane als Quelle für P_x - Einheiten in Übergangsmetallkomplexen		Pentamethylcyclopentadienyl-Substituted Cyclophosphanes as a Source for P_x Units in Transition-Metal Complexes
Roesky, H. W., Meller, B., Noltemeyer, M., Schmidt, HG., Scholz, U., Sheldrick, G. M.	1403	•	$\begin{array}{llllllllllllllllllllllllllllllllllll$		Benzamidinato Complexes of Main Group and Transition Metals – Crystal Structures of $PhC(NSiMe_3)_2TiCl_2$ and $PhC-(NSiMe_3)_2MoO_2$
Wiberg, N., Preiner, G., Schurz, K.	1407	•	Zur Frage der intermediären Bildung von Silanonen $R_2Si = O$ bei Reaktionen von Silenen mit Distickstoffoxid		On the Problem of the Intermediate For- mation of Silanone $R_2Si = O$ by Reactions of Silenes with Dinitrogen Oxide
Lentz, D., Michael, H.	1413	•	Kopplung eines Fluormethyliden-Ligan- den mit Alkinen unter Bildung eines $CF - CR - CR$ -Liganden. Synthese von Fe ₃ - $(CO)_{8}(\mu_{3}-CF)(\mu_{3}-CF-CR-CR)$		Coupling of a Fluoromethylidyne Ligand with Alkynes and Formation of a CF – CR – CR Ligand. Synthesis of Fe ₃ (CO) ₈ - $(\mu_3$ -CF)(μ_3 -CF – CR – CR)
Wanjek, H., Steimann, M., Beck, W.	1417	•	Metallkomplexe mit biologisch wichtigen Liganden, XLVI. – Platin(II)-Komplexe mit Vorstufen von ungesättigten α -Aminosäuren		Metal Complexes of Biologically Impor- tant Ligands, XLVI. – Platinum(II) Com- plexes with Precursors of Unsaturated α - Amino Acids
Lindner, E., Stängle, M., Hiller, W., Fawzi, R.	1421	•	Darstellung und Eigenschaften von und Reaktionen mit metallhaltigen Heterocy- clen, LX. – Untersuchungen zur Darstel- lung und Struktur von Phosphidomolyb- daten		Preparation and Properties of, and Reac- tions with Metal-Containing Heterocycles, LX. – Investigations on the Preparation and Structure of Phosphidomolybdates
Pohlmann, H., Weiss, E.	1427	•	GeH ₃ -substituierte Carbonylmetallate und Carbonyl(cyclopentadienyl)metallate mit V, Nb, Cr, Mo, W, Re, Co und Ni. – Prä- parative und röntgenographische Unter- suchungen		GeH ₃ -Substituted Carbonyl Metallates and Carbonyl(cyclopentadienyl) Metal- lates with V, Nb, Cr, Mo, W, Re, Co, and Ni. – Preparative and X-Ray Investiga- tions
Hartwig, U., Pritzkow, H., Sundermeyer, W.	1435	►	Aminstabilisierte Sulfene, ihre Darstellung und Struktur		Amine-Stabilized Sulfenes, their Synthesis and Structure
Schmidbaur, H., Bach, I., Wilkinson, D. L., Müller, G.	1441	•	Zink(II)-bis-L-pyroglutamat durch Cycli- sierung von L-Glutaminsäure in Gegen- wart von Zinkoxid		Zinc(II) Bis-L-pyroglutamate through Cy- clization of L-Glutamic Acid in the Pres- ence of Zinc Oxide
Lentz, D., Graske, K., Preugschat, D.	1445	•	Synthese von Pentafluorphenylisocyanid und dessen Stabilisierung am Komplex, $Cp*Mn(CO)_2(CN-C_6F_5)$		Synthesis of Pentafluorophenyl Isocyanide and Its Stabilization as a Ligand in $Cp*Mn(CO)_2(CN-C_6F_5)$
Ebner, M., Werner, H.	1449		Komplexe mit Kohlenstoffsulfiden und -seleniden als Liganden, XXIII. – Syn- these von $Pt(CS)(PPh_3)_2$ und $Pt(CE)-$ (dpmb) (E = S, Se): Die ersten mononu- clearen Thio- und Selenocarbonyl-Kom- plexe von Platin(0)	•	Complexes with Carbon Sulfides and Selenides as Ligands, XXIII. – Synthesis of $Pt(CS)(PPh_{3})_{2}$ and $Pt(CE)(dpmb)$ (E = S, Se): The First Mononuclear Thio- and Selenocarbonyl Complexes of Platinum(0)
Kerschl, S., Wrackmeyer, B.	1451	▶	Synthese von tricyclischen 2,3-Dihydro- 1H-1,3-stannaborolen		Synthesis of Tricyclic 2,3-Dihydro-1 <i>H</i> -1,3- stannaboroles
		•	Publikationssprache	Þ	Language of Publication

Inhalt (Fortsetzung)

Binger. P., Biedenbach, B., Mynott, R., Regitz, M.	1455	•	Synthese von Bis(cyclopentadienyl)-1-metalla-3-phosphaindenen ($M = Titan, Zir-konium$)		Synthesis of Bis(cyclopentadienyl)-1-metalla-3-phosphaindenes ($M = Titanium$, Zirconium)
Stalke, D., Klingebiel, U., Sheldrick, G. M.	1457	•	Lithium-N-(fluorsilyl)pentafluoraniline – Synthese und Kristallstruktur		Lithium N-(Fluorosilyl)pentafluoroani- lines – Synthesis and Crystal Structure
Organische Chemie/Organic C	hemis	try			
Hasel, W., Hoffmann, H. M. R.	1461		Regio- und stereoselektive Transformation von 3,3,5,5-Tetramethylcyclohexan-Derivaten. – Oxygenierungen, Anellierungen und S_N2' -Reaktionen	•	Regio- and Stereoselective Transformations of 3,3,5,5-Tetramethylcyclohexane Derivatives. – Oxygenations, Annulations, and S_N2' -Reactions
Hasel, W., Schnick, W., Jansen, M., Hoffmann, H. M. R.	1469		Hochakylierte Cyclohexane. – Röntgen- strukturanalyse, Kraftfeld-Berechnungen und Konformationen von <i>cis/trans</i> -1,4-di- substituierten Cyclohexan-Isomeren	•	Highly Alkylated Cyclohexanes. – X-Ray Crystal Structures, Force-Field Calcula- tions, and Conformations of <i>cis/trans</i> -1,4- Disubstituted Cyclohexane Isomers
Aumann, R., Kuckert, E., Krüger, C., Goddard, R., Angermund, K.	1475	•	Organische Synthesen mit Übergangsme- tallkomplexen, 29. – 2,3-Dihydroazet- Komplexe und 2-Azitidinone durch Tem- platsynthese mit Carbenkomplexen, Iso- cyaniden und Inaminen		Organic Syntheses via Transition Metal Complexes, 29. – 2,3-Dihydroazete Com- plexes and 2-Azetidinones by Template Synthesis with Carbene Complexes, Iso- cyanides, and Inamines
Hanack, M., Renz, G., Strähle, J., Schmid, S.	1479	•	(1,2-Naphthalocyaninato)eisen(II)-Verbin- dungen mit Isocyaniden als axiale Ligan- den; Kristallstruktur eines Isomeren des Bis(cyclohexylisocyanid)(1,2-naphthalo- cyaninato)eisen(II)		(1,2-Naphthalocyaninato)iron(II) Com- pounds with Isocyanides as Axial Ligands; Crystal Structure of an Isomer of Bis- (cyclohexylisocyanide)(naphthalocyani- nato)iron(II)
Stamm, Th., Vilsmaier, E., Maas, G., Anders, E.	1487	•	Herstellung von (Bicycloalkyl)essigsäure- Derivaten durch zweifache nucleophile Substitution am Cyclopropan		Synthesis of (Bicycloalkyl)acetic Acid De- rivatives by a Twofold Nucleophilic Sub- stitution at a Cyclopropane
Molina, P., Alajarín, M., Pérez de Vega, M. J., Foces-Foces, M. de la C., Cano, F. H.	1495		Iminophosphoran-vermittelte Synthese von mesoionischen 1,3,4-Oxadiazolo[3,2-a]-pyri- dinylium-2-aminiden	•	Iminophosphorane-Mediated Synthesis of Mesoionic 1,3,4-Oxadiazolo[3,2-a]pyri- dinylium-2-aminides
Hoffmann, R. W., Dresely, S., Lanz, J. W.	1501		Stereoselektive Synthese von Alkoholen, XXVII. – Addition von $(\alpha$ -Chlorcrotyl)- boronsäureestern an Aldehyde	•	Stereoselective Synthesis of Alcohols, $XXVII Addition of (\alpha-Chlorocrotyl)-boronates to Aldehydes$
Bestmann, H. J., Röder, T., Sühs, K.	1509	•	Bororganyle, I. – Überführung von Phos- phoniumyliden in Phosphan – Mono- alkylboran-Komplexe. – Hydroborie- rungsreaktionen		Organoboron Compounds, I. – Transfor- mation of Phosphonium Ylides into Phos- phane Monoalkylborane Complexes. – Hydroboration Reactions
Erba, E., Gelmi, M. L., Pocar, D.	1519		5-Oxazolone, IV. – Reaktionen von 5(4H)-Oxazolonen mit Triphenylphospho- nium-methyliden	•	5-Oxazolones, IV. – Reactions of 5(4H)- Oxazolones with Triphenylphosphonium Methylides
Eberhardt, U., Mattern, G., Schiller, G.	1525	►	Über die Bildung zweier ungewöhnlicher mehrkerniger Eisen-Komplexe		On the Formation of Two Unusual Mul- tinuclear Iron Complexes
Eberhardt, U., Mattern, G.	1531	•	Über die stereoselektive Bildung von syn- und anti-Dicarbonyl(1-methyl- η^{3} -2-prope- nyl)nitrosyleisen und die Struktur von syn- Carbonyl(1-methyl- η^{3} -2-propenyl)nitro- syl(triphenylphosphan)eisen		On the Stereoselective Formation of synand anti-Dicarbonyl(1-methyl- η^{3} -2-propenyl)nitrosyliron and the Structure of synCarbonyl(1-methyl- η^{3} -2-propenyl)nitrosyl(triphenylphosphine)iron

Publikationssprache

Language of Publication

:

Contents (Continued)

Highly Alkylated Cyclohexanes. – X-Ray Crystal Structures, Force-Field Calculations, and Conformations of *cis/trans*-1,4-Disubstituted Cyclohexane Isomers

Winnfried Hasel^{a,e}, Wolfgang Schnick^{b,c}, Martin Jansen^{b,d}, and H. M. R. Hoffmann^{* a}

Department of Organic Chemistry, University of Hannover^a, Schneiderberg 1 B, D-3000 Hannover

Department of Inorganic Chemistry, University of Hannover^b, Callinstr. 9, D-3000 Hannover

Present Address: Max-Planck-Institut für Festkörperforschung^e, Heisenbergstr. 1, D-7000 Stuttgart 80

Present Address: Institute for Inorganic Chemistry, University of Bonn^d, Gerhard-Domagk-Straße 1, D-5300 Bonn

Present Address: Department of Chemistry, Columbia University^e, New York N.Y. 10027

Received January 28, 1988

The structures of mesylated *cis*- and *trans*-tetramethylshisool *cis*-2 and *trans*-2 have been elucidated by single-crystal X-ray techniques. In *cis*-2 the isopropenyl group adopts an axial position in the crystal, and the structural data obtained are in good agreement with those from force-field calculations. In *trans*-2 the two rotamers arising from rotation of the isopropenyl group were assigned by NOE measurements. Comparison of the spectroscopic data with those of other tetramethyllimonene derivatives showed that these can be classified into compounds with preferred equatorial and preferred axial position of the isopropenyl group.

Hochalkylierte Cyclohexane. – Röntgenstrukturanalyse, Kraftfeld-Berechnungen und Konformationen von *cis/trans*-1,4-disubstituierten Cyclohexan-Isomeren

Die Struktur von mesyliertem *cis*- und *trans*-Tetramethylshisool *cis*-2 und *trans*-2 wurde durch Einkristall-Röntgenmethoden aufgeklärt. In *cis*-2 nimmt die Isopropenylgruppe im Kristall eine axiale Stellung ein, und die erhaltenen Strukturdaten stehen in gutem Einklang mit Kraftfeldberechnungen. In *trans*-2 wurden zwei Rotamere, die durch Rotation der Isopropenylgruppe entstehen, durch NOE-Messungen zugeordnet. Der Vergleich der spektroskopischen Daten mit denen anderer Tetramethyllimonenderivate zeigt, daß diese in Verbindungen mit bevorzugt äquatorialer und bevorzugt axialer Lage der Isopropenylgruppe eingeordnet werden können.

The chemistry of tetramethyllimonenes (TM-limonenes) has posed interesting configurational and conformational problems, which made it desirable to obtain X-ray crystallographic information. For this purpose we have chosen two

key compounds, i.e. the isomeric TM-shisools *trans*-1 and *cis*-1. Although the two alcohols could be prepared stereoselectively, they did not form crystals suitable for X-ray crystallography. We therefore prepared the methanesulfonates *trans*-2 and *cis*-2 and have supported the experimental findings by force-field calculations on the alcohols *trans*-1 and *cis*-1.

Figure 1 represents the structure of *cis*-2 in the side view. Figure 2a shows the side view of *trans*-2 whereas Figure 2b illustrates the shape of *trans*-2 from another angle. The measured and calculated structural data are confronted in Table 1 and are interpreted as follows.

Figure 1. X-ray crystal structure of cis-2

Ring conformation: As suspected previously¹, the isopropenyl group adopts an axial position in *cis*-2, whereas in *trans*-2 it prefers the equatorial position. Apparently, *cis*-2 (a,e) is destabilized relative to *cis*-2 (e,a) because it contains an unfavourable interaction of the 1,3,5-syn-triaxial substi-

tuents and also an unfavourable interaction with the fixed isopropenyl group.

Figure 2a. X-ray crystal structure of trans-2 (side view)

Figure 2b. View on the isopropenyl group in *trans*-2 along the C(7)-C(4) bond axis [Atoms C(7) and C(4) coincide]

Ring flattening: As shown in Figure 2b, the syn-axial methyl groups repel each other strongly²⁾. Their distance in trans-2 is 3.35 Å compared with a distance of 2.64 Å of the quaternary ring carbons C(3) and C(5). Ring flattening shows up in the structural data, especially those of cis-2 (e,a) (Table 1). The axial isopropenyl group causes a further deformation of the cyclohexane chair. The torsion angles within the ring are clearly smaller than the "ideal angle" of 60° . They are comparatively large near carbon C(1) (55.5-56.2) and small in the vicinity of carbon C(4) (44.1-44.5). In other words, puckering is most developed at C(1) and least near C(4). Parallel to puckering of the molecule, the internal bond angles are expanded, least at C(1) (110.7°), but more at the other ring carbons $(111.3-114.4^{\circ})$. Furthermore, in *cis*-2 the normal carboncarbon bond length of 1.534 Å of cyclohexane has increased up to 1.566 Å in the vicinity of the quaternary carbons. The measured structural data of cis-2 suggest that the compound is asymmetrically distorted in the crystal lattice. The measurements showed that two molecules were present in the unit cell, which differed in the position of CH₂OMs. In contrast, the unit cell of trans-2 is smaller (820.6 vs. 1691.3.10⁶ pm³ for *cis*-2) and the molecule is symmetric within experimental error. The sum of the six internal torsion angles in trans-2 (322.8) is closer to the "ideal value" of 360° than in

cis-2 (301.0°), i.e. *trans*-2 is flattened less. It is noticeable that the C(3)-C(4)-C(5) bond angle has expanded to 116.0°.

Table 1. Selected experimental (X-ray crystallographic) vs. calculated (force-field) structural parameters of *cis*-2 and *trans*-2

	M50 ,	9 2 3 4 4 15 12 4 H15 13	M50	H H
	cis exp.	s- 2 calcd.	trai exp.	ns-2 calcd.
	Tamian	a analas E 7		
9-7-4-15	177.9	0.0	176.4	177.2
1 - 2 - 3 - 4	50.8	48.6	53.2	50.1
2 - 3 - 4 - 5	44.5	42.4	50.8	43.4
3 - 4 - 5 - 6	44.1	42.4	50.9	44.4
4 - 5 - 6 - 1	50.8	48.6	53.1	52.2
5 - 6 - 1 - 2	56.2	55.7	57.3	60.9
6 - 1 - 2 - 3	55.5	55.7	57.5	59.8
Σ	301.0	293.4	322.8	310.8
	Bond	angles [°]		
2 - 1 - 6	110.7	110.8	110.3	109.6
1 - 2 - 3	113.7	114.1	114.1	113.5
2 - 3 - 4	113.0	111.6	108.1	109.3
3-4-5	114.2	117.2	116.0	118.4
4 - 5 - 6	111.3	111.0	108.4	109.3
3 - 0 - 1	114.4	114.1	107.0	115.5
11 - 5 - 12 13 - 5 - 14	105.5	104.3	107.9	105.5
15 5 14	105.0	104.5	100.5	105.5
	Bond I	engths [A]		
1 - 2	1.525	1.536	1.510	1.535
2-3	1.516	1.544	1.537	1.548
3 - 4	1.502	1.560	1.301	1.558
4-5	1.500	1.500	1.537	1.500
6 - 1	1.540	1.536	1.517	1.536
~ *	Nonbondin	g distances	[Å]	
2-6	2 4 9 8	2 530	2 4 8 3	2 500
$\frac{2-5}{3-5}$	2.632	2.664	2.644	2.680
11 - 13	3.243	3.410	3.350	3.580

Rotamer population: In the crystal state cis-2 as well as trans-2 contain one rotamer each, i.e. α - and β -rotamer, respectively (cf. Table 2). In contrast, the force-field calculations suggest that the β -rotamer is a minimum for both compounds.

Force-field calculations: Table 1 shows satisfactory agreement of measured and calculated structural data. *cis*-2 (e,a) with axial isopropenyl group is preferred according to the calculations and flattening of *cis*-2 as well as *trans*-2 is reproduced in qualitatively correct fashion. Only the extent of flattening is overestimated, and this could be due to an overestimation of nonbonded interactions of MM2³.

Spectroscopic determination of the conformation of cis-2 in solution: Crystal structure data and force-field calculations cannot necessarily be extrapolated to the solvated state. It is well-known that axial and equatorial protons clearly differ in their chemical shift. In trans-2 the axial methylene protons at C(2) and C(6) resonate at 0.98 ppm and the equatorial ones at 1.53 ppm. Now in *cis*-2 and *trans*-2 the C(1) proton shows nearly the same chemical shift (2.11 and, respectively, 2.21 ppm), i.e. it is axial. Hence, *cis*-2 exists preferentially as *cis*-2 (e,a) in solution.

Figure 3. trans-2, 240 K

Table 2. NOE enhancements in trans-2 at 240 K

β^{H_1}	$\begin{array}{c} \overset{\mathfrak{g}}{\overset{\mathfrak{h}}{\underset{2}{\overset{1}{\overset{2}{\overset{2}{\overset{1}{\overset{2}{\overset{2}{\overset{1}{\overset{2}{\overset{1}{\overset{2}{2$	Ms0	H_{B} H_{3} H_{3} H_{2} H_{3} H_{3	H ₄ H ₅
Irradiatic δ I	on at Proton	NOE δ	(%)	with Proton
0.87	H-7	1.81	(1)	H-6
1.06	H-2	2.12 4.73	(2) (1)	H-1 H-4
1.60	H-3	1.81 0.94	(5) · (12)	H-6 H-8
1.81	H-6	1.60 5.06	(1) (1)	H-3 H-5
4.73	H-4	1.06 5.06	(8) (35)	H-2 H-5

Hindered rotation of the isopropenyl group of trans-2: The X-ray crystal structure of trans-2, and the MM2 calculations suggest that the β -rotamer (cf. heading of Table 2) is populated preferentially, in contrast to a previous interpretation of solution spectra⁴⁾. A NOE study of trans-2 at low temperature proved informative. In trans-2 the isopropenyl group is clearly equatorial and all proton signals are well-resolved at 200 MHz (Figure 3). At 240 K the rotameric equilibrium is frozen and the signals of the olefinic, allylic methyl, and axial methyl protons are split. The preferred rotamer, which according to integration is present to the extent of 89%, showed the enhancements of Table 2. Therefore,

a) the β -rotamer is energetically preferred in the crystal state and also in solution. This finding is at variance with a previous interpretation of the ¹³C-NMR spectra⁴).

b) the assignment of the olefinic protons must be reversed: the proton *trans* to the methyl group (H-4) appears at 4.73 ppm, the *cis* proton H-5 at 5.06 ppm. Hence, the two rotamers of *trans*-2 show the chemical shifts in Table 3.

c) contrary to general experience, the axial methyl proton signals appear at lower field than the equatorial ones. This is probably a consequence of van der Waals repulsion and deshielding.

Table 3. Chemical shifts [δ , ppm] of olefinic protons in α - und β -rotamer of trans-2

Η(4)β	Η(4)α	Η(5)β	Η(5)α
4.73	4.68	5.06	4.86

			н₃с н	(5)	
			ring H	(4)	
		H(4)ß	Η(4)α	H(5)/3	H(5)α
<u> </u>			Equatorial	isopropeny	/I
trans	-2	4.73	4.68	5.06	4.80
M	3	4.78	4.67	5.04	4.86
ci f f f f	4	4.67	4.67	5.06	4.84
OH	5	4.79	-	5.07	-
HO	6	4.66	4.66	5.06	4.76
HO	7	4.80	4.66	5.07	4.88
			Axial iso	opropenyl	
cis	- 1	4.74	4.64	4.84	4.60
но	8	4.81	4.66	4.97	4.60
À	9	4.76	4.62	4.84	4.58

Generalization of the spectroscopic measurements in the tetramethyllimonene series. Criteria for distinguishing axial and equatorial isopropenyl groups: As shown above, the isopropenyl group is equatorial in trans-2 (e,e) [and in the derived alcohol trans-1 (e,e)], whereas it is axial in cis-2 (e,a) and in cis-1 (e,a). As it turned out, trans-2, with its characteristic chemical shifts for the α - and β -rotamer (Table 3), is the prototype of a number of TML derivatives (Table 4) which show similar spectroscopic behaviour at low temperature, when the rotameric equilibrium is "frozen" on the NMR time scale: in 3-7 the isopropenyl group prefers the equatorial position. In 4, 5, and 6 the six-membered ring is saturated as in 8 and 9. However, 8 and 9 behave spectroscopically like cis-1, i.e. the isopropenyl group is axial. Apparently, ring inversion in 8 and 9 does not pay energetically, because of the build-up of the syn-triaxial interaction. On the other hand, in 4, 5, and 6 a syn-triaxial interaction of substituents is present, irrespective of the position of the isopropenyl group.

Conclusions: Although the isopropenyl group is large, it cannot automatically be assumed to adopt the equatorial position. In the *cis*-1,4-disubstituted series *cis*-1, 8, and 9 an equatorial isopropenyl group would cause an unfavourable *syn*-triaxial interaction of substituents. Instead, the isopropenyl group adopts the axial position.

We thank Dr. E. Hofer for the NOE measurements and the Fonds der Chemischen Industrie for financial support.

Experimental

trans-2: A solution of trans-TM-shisool (trans-1)¹¹ (0.32 g, 1.52 mmol) and DMAP (10 mg, 0.08 mmol) in absol. pyridine (3 ml) was cooled to 0 to -10° C, and methanesulfonyl chloride (0.22 g, 1.69 mmol) in 1 ml of pyridine was stirred in slowly. The mixture was stirred for 4 h at 0 to -10° C, then ice/water (5 ml) was dropped in, and the aqueous phase was extracted with ether (2 ×). The combined ether phase was washed with ice-cold 10% aqueous HCl (2x), aqueous NaHCO₃ and NaCl, and dried (Na₂SO₄). After removal of the solvent, the resulting yellow crystals were recrystallized from light petroleum to afford *trans*-2; colourless needles, 0.33 g (75%), mp 101 – 103 °C. – 200-MHz ¹H-NMR (CDCl₃): δ = 0.88 (s, 6H, eq CH₃), 0.98 (d, 2H, ax CH₂), 1.08 (s, 6H, ax CH₃), 1.45–1.58 (m, 2H, eq CH₂), 1.6 (m, 1H, allyl CH), 2.0–2.33 (m, 1H, CHCH₂O), 3.02 (s, 3H, SO₂CH₃), 4.02 (d, *J* = 6 Hz, 2H, CH₂OMs), 4.73 (s, 1H, *trans*-CH₂=CCH₃), 5.03 (s, 1H, *cis*-CH₂=CCH₃).

cis-2: cis-TM-shisool (cis-1) (0.96 g, 4.57 mmol) and DMAP (34 mg, 0.27 mmol) in 10 ml of pyridine was allowed to react with methanesulfonyl chloride (0.65 g, 5 mmol) in 2.5 ml of pyridine, giving cis-2 (1.1 g 84%), mp 53-54°C. – 200-MHz ¹H-NMR (CDCl₃) (because of hindered rotation, the signals are partially split and broadened considerably): $\delta = 0.91 + 0.96$ (s, 6H, 2CH₃), 1.15 (s, 6H, 2CH₃), 1.26-1.51 (m, 4H, 2CH₂), 1.77 + 1.91 (m, 4H, allyl CH₃ + allyl CH), 2.07-2.24 (m, 1H, CHCH₂OMs), 3.02 (s, 3H, SO₂CH₃), 4.07 (d, J = 6 Hz, 2H, CH₂OMs), 4.55-4.95 (m, 2H, olefin H).

The intensities were measured in the ω -scan mode on a Siemens-Stoe-AED-2-Diffractometer with Mo- K_{α} radiation (graphite monochromator) and corrected as usual. The structure was determined by direct methods (MULTAN-80) and refined using the program system STRUCSY (STOE). The hydrogen atoms were refined iso-

Table 5. X-ray crystal data

	cis- 2	trans-2
Recrystallized from	ether/light petr	oleum, 1:1
Empirical formula	$C_{15}H_{28}SO_3$	$C_{15}H_{28}SO_3$
Molecular mass	288.5	288.5
Ζ	4	2
Space group	P 1	P 1
a [pm]	776.0(25)	638.4(28)
b [pm]	1283.8(55)	782.5(28)
c [pm]	1845.0(108)	1739.3(67)
α [ີ	109.8(3)	95.0(3)
β []	100.2(4)	96.6(4)
γ[°]	92.5(3)	106.6(3)
$V [pm^3 \cdot 10^6]$	1691.3	820.6
Number of centered reflexions	38	26
Diffractometer	AED-2-Siemen	s-Stoe
Temperature [°C]	21	21
Radiation used	Mo- K_{α} ; $\lambda = 7$	1.069 pm;
	graphite mono	chromator
Calculated density D_x [g/cm ³]	1.133	1.168
Scan mode	2.4°, ω	3.3°, ω
2⊖-range [[°]]	$2 \leq 2\Theta \leq 55$	$2 \leq 2\Theta \leq 55$
Number of reflexions measured	7963	4875
Number of observed reflexions	3810	3083
$(F_{\alpha} \geq 3\sigma(F_{\alpha}))$		
Number of variables	344	172
R	0.0940	0.0651
$R_{\rm w}, w = 1/\sigma^2(F_{\rm o})$	0.0818	0.0549

Table 6. Local ($\times 10^4$) and thermal parameters^{a)} [pm²] of cis-2

Atom	x/a	y/b	z/c	Ueq
S1	478(2)	5785(1)	1393(1)	601
01	-966(6)	5064(3)	854(2)	844
02	2052(6)	5338(3)	1593(3)	959
03	63(5)	6393(3)	2193(2)	693
C1	964(7)	6837(4)	1061(3)	737
Hia	1945(7)	7337(4)	1420(3)	811
H1b	1254(7)	6521(4)	552(3)	811
H1c	-45(7)	7237(4)	1022(3)	811
C2	-1906(7)	6597(5)	2194(3)	692
H2a	-2630(7)	5896(5)	2006(3)	762
H2b	-2288(7)	7017(5)	1864(3)	762
C3	-2062(6)	7219(4)	3033(3)	486
НЗа	-1282(6)	7899(4)	3241(3)	534
C4	-3973(6)	7455(4)	3029(3)	550
H4a	-4688(6)	6749(4)	2821(3)	605
H4b	-4300(6)	7878(4)	2695(3)	605
C5	-4329(6)	8063(4)	3841(3)	538
C6	-3615(6)	7506(4)	4454(3)	563
H6a	-3471(6)	8098(4)	4953(3)	620
C7	-1712(7)	7156(5)	4426(3)	592
C8	-1490(7)	6582(4)	3572(3)	584
H8a	-2194(7)	5872(4)	3361(3)	642
H8b	-273(7)	6472(4)	3578(3)	642
C9	-3527(8)	9283(4)	4127(4)	806
H9a	-3745(8)	9671(4)	4642(4)	887
Н9Ь	-2280(8)	9315(4)	4149(4)	887
H9c	-4060(8)	9627(4)	3768(4)	887
C10	-6335(7)	8104(5)	3770(4)	786
H10a	-6898(7)	7355(5)	3593(4)	864
H10b	-6593(7)	8521(5)	4271(4)	864

Table 6 (Continued)

H10c	-6765(7)	8448(5)	3395(4)	864
C11	- 286(7)	8165(5)	4836(3)	833
H11a	-436(7)	8530(5)	5366(3)	917
Н11Ь	870(7)	7926(5)	4845(3)	917
H11c	-423(7)	8674(5)	4556(3)	917
C12	-1306(8)	6343(6)	4861(4)	1017
H12a	-1434(8)	6692(6)	5396(4)	1119
H12b	-2120(8)	5679(6)	4612(4)	1119
H12c	-124(9)	6153(6)	4855(4)	1119
C13	-4892(8)	6621(6)	4485(4)	739
C14	-5484(9)	5581(5)	3797(5)	1058
H14a	-4907(9)	5608(5)	3383(5)	1163
H14b	-5171(9)	4952(5)	3941(5)	1163
H14c	-6737(9)	5511(5)	3617(5)	1163
C15	-5546(9)	6771(7)	5137(4)	1077
H15a	-5157(9)	7451(7)	5576(4)	1185
LISA	-6370(9)	6220(7)	5173(4)	1195
62	5772(2)	7204(2)	142(1)	000
010	5772(3)	(2)	143(1)	023
010	5430(10)	6094(6)	-549(6)	1537
нюа	5824(10)	6106(6)	-1011(6)	1691
H16D	6086(10)	5609(6)	-336(6)	1691
H16C	4199(10)	5826(6)	-684(6)	1691
04	7483(7)	7898(4)	228(3)	1164
05	5214(7)	7382(6)	797(3)	1543
O6	4701(-)	8054(-)	-289(-)	1813
C17	2911(-)	8070(-)	-419(-)	2381
H17a	2602(-)	8740(-)	-62(-)	2619
H17b	2344(-)	7435(-)	-356(-)	2619
C18	2388(12)	8025(7)	-1265(4)	1069
H18a	2867(12)	7402(7)	-1593(4)	1175
C19	449(12)	7690(6)	-1361(4)	1007
H19a	309(12)	7023(6)	-1242(4)	1108
H19b	-9(12)	8282(6)	-994(4)	1108
C20	-632(8)	7483(5)	-2177(4)	703
C21	-313(6)	8491(4)	-2437(3)	523
H21a	-636(6)	8189(4)	-3001(3)	575
C22	1664(7)	8965(5)	-2286(3)	593
C23	2641(7)	9051(6)	-1469(4)	832
H23a	3876(7)	9231(6)	-1430(4)	915
H23b	2214(7)	9644(6)	-1090(4)	915
C24	1768(8)	10129(5)	-2362(4)	984
H24a	1164(8)	10080(5)	-2876(4)	1082
H24b	1235(8)	10630(5)	-1970(4)	1082
H24c	2984(8)	10401(5)	-2283(4)	1082
C25	2614(8)	8228(5)	-2910(4)	846
H25a	1997(8)	8172(5)	-3423(4)	931
H250	3809(8)	8543(5)	-2826(4)	931
H250	2605(8)	7500(5)	-28/3(4)	931
U26	-2605(9)	7269(5)	-2167(5)	1138
H268	-3301(9)	7135(5)	-2681(5)	1252
H260	-2000(9)	003/(5)	-2014(5)	1252
C27	-2932(9)	/919(5)	-1/90(5)	1252
U27	-132(9)	6395(5)	-2/59(4)	983
⊓2/a ⊔275	-/99(9)	62/2(5)	-32//(4)	1081
112/D	1103(9)	6479(5)	-2/59(4)	1081
⊓2/C	-397(9)	5771(5)	-2608(4)	1081
028	-1506(7)	9389(5)	-2162(4)	664
029	-1415(8)	10022(5)	-1318(4)	919

Table 6 (Continued)

H29a	-529(8)	9756(5)	-1012(4)	1010
H29b	-1110(8)	10800(5)	-1210(4)	1010
H29c	-2533(8)	9916(5)	-1183(4)	1010
C30	-2666(9)	9613(6)	-2705(5)	1079
H30a	-2710(9)	9193(6)	-3250(5)	1187
Н30Ь	-3438(9)	10180(6)	-2561(5)	1187

^{a)} U_{eq} is calculated from the orthogonal U_{ij} -tensor exp $[2\pi^2(h^2a^{*2} U_{11} + k^2b^{*2} U_{22} + ... 2hka^*b^*U_{12}...)]$.

Table 7. Local ($\times 10^4$) and thermal parameters^{a)} [pm²] of trans-2

Atom	x/a	y/b	z/c	U _{ea}
<u></u>	0.926/1)	6985/1)	510	466
C1	7991(4)	7010(4)	-473(1)	583
U10	6401(4)	6902(4)	- 473(1)	641
Line Line	9721(4)	8758(4)	-624(1)	641
	0/21(4)	6/30(4)	-024(1)	641
	0303(4)	0003(4) 7000(2)	-770(1)	942
~	7400(3)	7293(3)	750(1)	684
~	7422(3)	5434(3)	750(1)	493
00	8490(2)	8715(2)	920(1)	521
02	6246(4)	8846(4)	894(1)	573
HZa	5214(4)	7661(4)	801(1)	573
H20	5957(4)	9518(4)	4/9(1)	411
03	6005(4)	9777(3)	1662(1)	411
нза	4588(4)	9983(3)	1587(1)	432
C4	6023(4)	8635(3)	2319(1)	400
н4а	4912(4)	7497(3)	2166(1)	537
H4b	7451(4)	8450(3)	2403(1)	537
C5	5615(4)	9486(3)	3096(2)	503
C6	7301(4)	11406(3)	3296(1)	392
H6a	8701(4)	11169(3)	3326(1)	431
C8	7723(4)	11599(3)	1889(1)	426
H8a	7669(4)	12311(3)	1468(1)	468
Н8р	9145(4)	11401(3)	1970(1)	468
C9	3156(4)	9399(4)	3051(2)	781
H9a	2923(4)	9947(4)	3536(2)	860
H9b	2778(4)	10039(4)	2636(2)	860
H9c	2242(4)	8171(4)	2954(2)	860
C13	7311(4)	12326(3)	4105(1)	520
C7	7428(4)	12640(3)	2637(1)	390
C10	6126(7)	8354(4)	3730(2)	910
H10a	5874(7)	8848(4)	4224(2)	1001
H10b	5202(7)	7132(4)	3605(2)	1001
H10c	7648(7)	8388(4)	3759(2)	1001
C11	9479(5)	14274(3)	2864(2)	652
H11a	10743(5)	13858(3)	2978(2)	717
H11b	9676(5)	14983(3)	2439(2)	717
H11c	9318(5)	14995(3)	3316(2)	717
C12	5476(4)	13380(3)	2461(2)	559
H12a	5275(4)	14028(3)	2927(2)	615
H12b	5758(4)	14172(3)	2068(2)	615
H12c	4164(4)	12400(3)	2276(2)	615
C14	5712(5)	12981(4)	4316(2)	715
H14a	4438(5)	12881(4)	3944(2)	787
H14b	5841(5)	13558(4)	4837(2)	787
C15	9273(6)	12487(5)	4680(2)	926
H15a	10246(6)	11946(5)	4438(2)	1019
H15b	10029(6)	13732(5)	4856(2)	1019
H15c	8820(6)	11880(5)	5117(2)	1019

^{a)} U_{eq} is calculated from the orthogonal U_{ij} -tensor exp $[2\pi^2 (h^2 a^{*2} U_{11} + k^2 b^{*2} U_{22} + ... 2hk a^* b^* U_{12} ...)].$

tropically, all other atoms anisotropically. All parameters were finally refined with the weighting $w = 1/\sigma^2 (F_0)^{5}$.

Force-field calculations were performed with the MM2 program⁴⁾.

CAS Registry Numbers

- ³⁾ U. Burkert, N. L. Allinger, in *Molecular Dynamics*, ACS Monograph No. 177, Am. Chem. Soc., 1982.
- ⁴⁾ H. M. R. Hoffmann, R. J. Giguere, D. Pauluth, E. Hofer, J. Org. Chem. 48 (1983) 1155.
- ⁵⁾ Further details concerning the X-ray analysis may be obtained from Fachinformationszentrum Energie, Physik, Mathematik GmbH, D-7514 Eggenstein-Leopoldshafen 2, by specifying registry number CSD-52986, authors, and the reference to this publication.

[18/88]

trans-1: 113831-04-2 / *cis*-1: 113831-05-3 / *trans*-2: 113831-06-4 / *cis*-2: 113831-07-5 / 3: 68930-33-6 / 4: 84602-70-0 / 5: 83379-14-0 / 6: 83379-15-1 / 7: 96043-26-4 / 8: 113831-08-6 / 9: 113831-09-7

¹⁾ W. Hasel, H. M. R. Hoffmann, *Chem. Ber.* **121** (1988) 1461; preceding paper.

 ^{cecting} paper.
²⁾ The consequence of syn-axial repulsion ("reflex effect") has also been studied in 2,2,6,6-tetramethylcyclohexanes. For selected references cf. H. J. Schneider, W. Freitag, Chem. Ber. 112 (1979)

^{16. –} B. Waegell, G. Ourisson, Bull. Soc. Chim. Gr. 1963, 495, 496, 503. – C. W. Jefford, A. Baretta, J. Fournier, B. Waegell, Helv. Chim. Acta 53 (1970) 1180.