135. Chemie von α -Aminonitrilen¹)

Aldomerisierung von Glycolaldehyd-phosphat zu racemischen Hexose-2,4,6-triphosphaten und (in Gegenwart von Formaldehyd) racemischen Pentose-2,4-diphosphaten: *rac*-Allose-2,4,6-triphosphat und *rac*-Ribose-2,4-diphosphat sind die Reaktionshauptprodukte

von Daniel Müller²), Stefan Pitsch²), Atsushi Kittaka³), Ernst Wagner⁴), Claude E. Wintner⁵) und Albert Eschenmoser^{*}

Organisch-chemisches Laboratorium der Eidgenössischen Technischen Hochschule, Universitätstrasse 16, CH–8092 Zürich

Günther Ohloff gewidmet

(3.V.90)

Chemistry of α-Aminonitriles. Aldomerisation of Glycolaldehyde Phosphate to rac-Hexose 2,4,6-Triphosphates and (in Presence of Formaldehyde) rac-Pentose 2,4-Diphosphates: rac-Allose 2,4,6-Triphosphate and rac-Ribose 2,4-Diphosphate Are the Main Reaction Products

Glycolaldehyde phosphate aldomerizes in aqueous NaOH solution to a product mixture containing the racemates of the two diastereoisomeric tetrose 2,4-diphosphates and eight hexose 2,4,6-triphosphates. At room temperature in the absence of air and after 7 days, a solution 0.08M in glycolaldehyde phosphate (= formylmethyl dihydrogenphosphate) and 2M in NaOH gives products, in up to 80% yield, with a tetrose/hexose derivative ratio of ca. 1:10 and with rac-allose 2,4,6-triphosphate comprising up to 50% of the mixture of sugar phosphates. When the reaction is run under the same conditions but in the presence of 0.5 mol-equiv. of formaldehyde, sugar phosphates are formed in up to 45% yield, with pentose 2,4-diphosphates now predominating over hexose triphosphates by a ratio of 3:1. rac-Ribose 2,4-diphosphate is found to be the major component, the ratios among ribose, arabinose, lyxose, and xylose 2,4-diphosphates being 52:14:23:11 in a representative experiment. The pentose diphosphates are constitutionally stable under the reaction conditions (observed for 23 weeks), but the diastereoisomeric ratios slowly change with time (to 22:34:30:14 after 23 weeks), showing that ribose 2,4-diphosphate is not the thermodynamically favored diastereoisomer. The observed product distributions in both the pentose and the hexose series (after 1 week) reveal an aldolization mode that is preferentially erythro in the product-determining step (the reaction of glycolaldehyde phosphate as its enolate with glycerinaldehyde 2-phosphate and tetrose 2,4-diphosphate, respectively). An attempt is made to rationalize both this fact and the kinetic predominance of ribose 2,4-diphosphate in the pentose series and allose 2,4,6-triphosphate in the hexose series. Their configuration along the C-chain can be interpreted as corresponding to a minimum number of 1-5 repulsions in the packing of phosphate and OH substituents and minimal steric interaction between substituents at the reaction centers in the transition state of the product-determining step. The aldomerization of glycolaldehyde phosphate in the presence of formaldehyde is a variant of the formose reaction. It avoids the formation of complex formose product mixtures, largely as a consequence of the fact that aldoses which are phosphorylated at the C(2)

¹) 4. Mitteilung über die Chemie von α-Aminonitrilen. 3. Mitteilung: [1].

²) Vgl. [2] bzw. [3].

³) Postdoktorand ETH Zürich, 1987-89; zur Zeit: School of Pharmaceutical Sciences, Showa University, Tokyo, Japan.

⁴⁾ Postdoktorand ETH Zürich, 1985-87; zur Zeit: Forschungsinstitut für molekulare Pathologie, Wien.

⁵) Department of Chemistry, Haverford College, PA/USA, Akademischer Gast an der ETH Okt. 1989 – Juli 1990.

position cannot undergo aldose-ketose tautomerization. This work, with its demonstration of an intrinsic kinetic preference for ribose 2,4-diphosphate and allose 2,4,6-triphosphate formation, adds a piece of factual chemical information to the ongoing discussion about the origin of ribonucleic acids. The English *Footnotes* (*) referring to Schemes 1-17, Figs. 1-13, and Tables 1-5 are intended to provide an extension of this summary.

1. Einleitung. – Die Monosaccharide sind neben den α -Aminosäuren und den Nucleinsäure-Basen das hervorragende Beispiel dafür, dass die nach strukturformalen Kriterien komplexen molekularen Strukturen der grundlegenden biologischen Bausteine nach dem Kriterium der Fähigkeit zur Selbstkonstituierung [4] elementare molekulare Gebilde sind. Komplex und elementar im Sinne dieses Kriteriums sind Attribute, die sich auf das Ausmass an äusserer Instruktion beziehen, welche die Konstituierung einer molekularen Struktur aus Grundbausteinen erfordert. Adenin, das sich aus HCN als einzigem Synthese-Baustein unter verschiedenen Reaktionsbedingungen selbst zu konstituieren vermag [5], besitzt in diesem Sinne eine elementare Molekülstruktur; das HCN-Molekül enthält im wesentlichen die gesamte Information, die zur Entstehung der Adenin-Struktur notwendig ist. Was die Blausäure aus solcher Sicht für die Konstitution der Nucleinsäure-Base Adenin darstellt, bedeutet der Formaldehyd für die Konstitution des Nucleinsäure-Zuckerbausteins Ribose; denn die sogenannte 'Formose-Reaktion' – von Butlerow [6] vor rund 130 Jahren entdeckt, von Loew [7] präparativ entwickelt, von Emil Fischer [8] durch Isolierung des Osazons der ' d_l -Lävulose' (= rac-Fructose) aus dem Reaktionsgemisch konstitutionell erstmals eingeordnet und seither immer wieder bis in unsere Zeit hinein mit diversen Zielsetzungen eingehend untersucht – ist ein Prototyp dessen, was man als Selbstkonstituierung der molekularen Konstitution einer ganzen Klasse von Naturstoffen bezeichnen kann.

In zahlreichen Varianten basischer Reaktionsbedingungen - ursprünglich vorzugweise in Gegenwart von Ca(OH)₂ - 'oligomerisiert' sich Formaldehyd in wässriger Lösung zu komplexen Zuckergemischen (ursprünglich als 'Formose' bezeichnet [7]), von welchen aus vielen Untersuchungen⁶) bekannt ist, dass sie nebst Disproportionierungsprodukten Triosen, Tetrosen, Pentosen, Hexosen und höhere (CH2O)-Oligomere enthalten, wobei in der Regel Pentosen gegenüber Hexosen, Ketosen gegenüber Aldosen und geradkettige gegenüber verzweigten Zuckern vorherrschen. Die Reaktionswege sind konstitutionell mehrgleisig und - wie die Produktverteilung - stark von den Reaktionsbedingungen (Metall-Ion, Formaldehyd-Konzentration, Reaktionsdauer, Anwesenheit von spezifischen Reaktionsbeschleunigern) abhängig [9-17]⁷). Kern des Reaktionsgeschehens ist die Aldolisierung von Formaldehyd mit Glycolaldehyd (= 2-Hydroxyacetaldehyd) zu Glycerinaldehyd (= 2,3-Dihydroxypropanal), begleitet von dessen Tautomerisierung zu Dihydroxyaceton. Von diesen beiden Triosen führt ein Weg zu Hexosen, zusammen mit Glycolaldehyd ein solcher zu Pentosen, von Dihydroxyaceton mit Formaldehyd einer zu Tetrosen. Schlüsselsubstanz des Prozesses ist der Glycolaldehyd, dessen - wenn überhaupt - höchstens spurenweise erfolgende (nach Lehrbuch-Mechanistik 'verbotene') direkte Bildung aus Formaldehyd für die Induktionsperiode verantwortlich ist, die bei der Formose-Reaktion beobachtet wird. Man nimmt an, dass es retro-Aldolisierungen an höheren (insbesondere auch verzweigten) Aldolisierungsprodukten zwischen Triosen und Formaldehyd sind, welche Glycolaldehyd erzeugen und dadurch die beobachtete Autokatalyse der Formose-Reaktion bewerkstelligen. In der Tat bringt die Zugabe von Glycolaldehyd (oder höherer Zucker) zu Reaktionsbeginn die Induktionsperiode zum Verschwinden. Der Engpass der Glycolaldehyd-Bildung aus Formaldehyd kann (in organischen Lösungsmitteln) auch durch Einsatz von ('Umpolungs')-Katalysatoren des Thiamin-Typs umgangen werden [18-20].

Die Komplexität der Produktgemische von Formose-Reaktionen wird in der Literatur wohl kaum wo eindrücklicher vor Augen geführt als durch das aus einer Arbeit von *Decker et al.* [15] stammende Kapillar-GC der trifluoroacetylierten *O*-Butyloxime der Reaktionsprodukte einer in 0,156M Formaldehyd-Lösung in Gegenwart

⁶) Vgl. die umfassende Übersicht von Mizuno und Weiss [9].

⁷) Für Literatur vor 1950 über die Formose-Reaktion vgl. [9].

Fig. 1. Kapillar-GC der trifluoroacetylierten O-Butyloxime eines Zucker-Gemisches aus einer Formose-Reaktion, nach [15]*)

*) The 'constitutional self assembly' of sugars by the formose reaction is widely considered to have been a prebiotic process, a view which is intimately connected with the occurrence of ribose in nucleic acids. However, responding to recent speculation following the discovery of ribozymes, several critics [25-27] have been correct in pointing to the complexity of formose reaction product mixtures, to the paucity of ribose in these mixtures, and to the lack of evidence for the chemical feasibility of steps proposed to have occurred beyond the formation of ribose. *Fig. 1* (taken from [15]) shows the GC of trifluoroacetyl derivatives of *O*-butyloximes of carbohydrates produced in a formose reaction.

von Ca(OH)₂ und NaOH bei 40° über 40 min gelaufenen, durch Zugabe von Glycolaldehyd gestarteten Reaktion (vgl. *Fig. 1*). 33 der über 40 durch GC erfassten Produkte⁸) sind in diesem Experiment identifiziert worden. In dem einer Ausbeute von *ca.* 20% entsprechenden Zuckergemisch ist die Ketopentose 2-Xylulose (*ca.* 2,5% Ausbeute) die Hauptkomponente.

Bereits *Oparin* [21] hatte in seinen die Präbiotik begründenden Schriften auf die Formose-Reaktion als möglichen Weg einer präbiologischen Entstehung von Zuckern hingewiesen. In dem seither erschienenen Schrifttum hat sich diese Auffassung nicht nur behauptet, sondern sie stellt heute nebst den auf das *Miller* sche Experiment [22] zurückgehenden Vorstellungen über die präbiologische Bildung von α -Aminosäuren und der durch die *Oro* sche Entdeckung [5] der Oligomerisation von Blausäure zu Adenin begründeten Auffassung über den präbiotischen Ursprung der Nucleinsäure-Basen einen der drei experimentell solide abgestützten Grundpfeiler des Vorstellungsgebäudes dar, auf welchem die präbiotische Chemie aufbaut [23]. Naturgemäss erheischt in diesem Zusammenhang die Ribose kraft ihrer Rolle als Baustein der Ribonucleinsäuren spezielles Interesse, dies neuerdings ganz besonders angesichts des 'Origin-of-Life'-Spekulationsbooms, der durch Entdeckung der Ribozyme [24] ausgelöst worden ist und wonach Ribonucleinsäuren mit katalytischen Eigenschaften am Anfang der biologischen Evolu-

⁸) Da die O-Butyloxime mehrerer Komponenten als zwei Diastereoisomeren auftreten, entsprechen die 61 erfassten GC-Signale (vgl. Originalarbeit [15], S. 286) rund 40 Reaktionsprodukten.

tion gestanden haben sollen. Zu Recht sind kritische Stimmen laut geworden [25–27], welche die Berechtigung einer leichthin gemachten Voraussetzung präbiologischer Verfügbarkeit von Oligoribonucleotiden vorerst nachdrücklich in Frage stellen. Sie tun dies durch den berechtigten Hinweis darauf, dass die bisher beigebrachten experimentellen Fakten zur Frage der Selbstkonstituierung des Strukturtyps der Ribonucleotide eine solche Voraussetzung bislang keineswegs rechtfertigen. Insbesondere seien eine Bildung von Purin-Nucleotiden aus Ribose kaum und jene von Pyrimidin-Nucleotiden experimentell überhaupt nicht gestützt. Zudem wird – unter anderem mit direkter Bezugnahme auf das GC von *Decker, Schweer* und *Pohlmann (Fig. 1)* – auf die enorme Schwierigkeit hingewiesen, welcher aus chemischer Sicht die Vorstellung einer präbiologischen Verfügbarkeit von Ribose als Ausgangsstoff für die Selbstkonstituierung von Ribonucleosiden bei nüchterner Betrachtung begegnen muss, dies angesichts der Komplexität der Formose-Reaktionsgemische mit ihrem geringen Anteil an (racemischer!) Ribose. Als Ergebnis einer umfassenden und kritischen Analyse des gesamten Problemkreises der präbiolischen Ribose-Synthese kam *Shapiro* [26] kürzlich zur Ansicht:

'The evidence that is currently available does not support the availability of ribose on the prebiotic earth, except perhaps for brief periods of time, in low concentration, as part of a complex mixture, under circumstances that are unsuitable for nucleotide synthesis. This situation could change if some alternative pathway for ribose synthesis were discovered: One that produced it in better yield and was not as vulnerable to interference from nitrogen-containing substances.'

Miller [27] meint zur Formose-Reaktion im gleichen Zusammenhang:

'It is difficult to envision how the relative yield of ribose could be greatly increased in this reaction or how any prebiotic reaction of sugars could give mostly ribose.'

Die auffallende Tatsache, dass in der Natur der Metabolismus der Monosaccharide ausschliesslich über phosphorylierte Zucker-Derivate abläuft und die Nucleinsäuren dem Strukturtyp der Zucker-Phosphate angehören (vgl. in diesem Zusammenhang [28]), muss die Frage auslösen, ob es potentiell präbiotische Reaktionswege gibt, welche nicht zu freien, sondern direkt zu phosphorylierten Zuckern führen. Diese Frage hat uns schon seit Beginn unserer Arbeiten über die Chemie des 2-Aminopropennitrils [29] beschäftigt, ist aber erst dann akut geworden, als es gelang, Aziridin-2-carbonitril in O³-Phosphoserinnitril und damit in Glycolaldehyd-phosphat überzuführen (vgl. [1]).

Die Aldomerisation von Glycolaldehyd-phosphat ist in dem hier verfolgten Zusammenhang unseres Wissens nie untersucht worden⁹). Indessen finden sich in der biochemischen Literatur Arbeiten [31], in denen beobachtet wurde, dass gealterte Proben von Glycolaldehyd-phosphat die Aktivität der D-Glycerinaldehyd-3-phosphat-dehydrogenase hemmen, und sich dabei herausstellte, dass die aktive Spezies, das D-Threose-2,4diphosphat, sich (als Racemat) aus Glycolaldehyd-phosphat bildet. Es konnte gezeigt werden, dass aus Glycolaldehyd-phosphat in alkalischer Lösung ein Gemisch von (racemischem) Threose-2,4-diphosphat und Erythrose-2,4-diphosphat entsteht. Weitere in solchen Reaktionsgemischen vorhandene Komponenten wurden weder identifiziert noch gesucht¹⁰).

⁹) Hingegen hatten offenbar Orgel und Sanchez bereits 1968 Versuche angestellt, durch eine Formose-Reaktion in Gegenwart von Phosphat und Cyanamid zu phosphorylierten Zuckern zu gelangen [30].

¹⁰) Im besonderen blieb eine Chromatogramm-Fraktion (vgl. [31a], S. 2519) unbearbeitet; von dieser haben wir zu Beginn unserer Arbeit angenommen, dass sie eine Hexose-2,4,6-triphosphat-Fraktion gewesen sein könnte.

Im Gegensatz zum Glycolaldehyd-phosphat wurden Aldolkondensationen des freien Glycolaldehyds in dem hier interessierenden Zusammenhang schon mehrfach untersucht¹¹). Bereits *Emil Fischer* [33] hatte die Umwandlung des Glycolaldehyds in verdünnter NaOH-Lösung in eine 'Tetrose' (isoliert als Phenylosazon der Erythrose) beobachtet. In neuerer Zeit haben dann insbesondere *Pfeil* und *Ruckert* [10b,c] und später *Voelter et al.* [16] im Zuge ihrer Untersuchungen über den Mechanismus der Formose-Reaktion die Aldomerisierung von Glycolaldehyd in Ab- und Anwesenheit von Formaldehyd sowie seine Umsetzung mit Glycerinaldehyd und Dihydroxyaceton studiert. Ohne Formaldehyd bildet Glycolaldehyd die beiden Tetrosen und (langsamer) das Gemisch aller acht Aldohexosen [10c] [16]. Demgegenüber entstehen in Gegenwart von Formaldehyd vorwiegend Triosen und Pentosen. Mit Glycerinaldehyd aldolisiert Glycolaldehyd u. a. zu den Aldopentosen Arabinose, Ribose, Xylose und Lyxose zu etwa gleichen Teilen [10c].

Konfigurationsformeln der Zuckerphosphate rac-4 bis rac-17 vgl. Schema 10.

^{*)} Aldose sugar phosphates expected to be formed by aldomerization of glycolaldehyde phosphate in the absence and in the presence of formaldehyde. Note that the pentose 2,4-diphosphates and the hexose 2,4,6-triphosphates can form pyranose, but not furanose, cyclic hemiacetals.

¹¹) Untersuchungen über die Aldomerisierung von Glycolaldehyd-Derivaten, in welchen die OH-Gruppe des Glycolaldehyds glykosidisch mit einem chiralen Rest verbunden war, sind vor unseren Arbeiten von Noe und Wagner (Institut für Organische Chemie, TU Wien) durchgeführt worden [32].

Analoge Beobachtungen hatten zuvor schon *Hough* und *Jones* [34] gemacht; diesen Autoren war es übrigens gelungen, aus dem Reaktionsgemisch der Umsetzung von D-Glycerinaldehyd mit Glycolaldehyd DL-Ribose als *p*-Toluolsulfonyl-hydrazon zu isolieren.

Eine wichtige Ursache der Komplexität von Produktgemischen aus Formose-Reaktionen ist die generelle Bereitschaft der Aldosen zur Isomerisierung in Ketosen. Diese Möglichkeit der Aldose Ketose-Isomerisierung entfällt bei den Zucker-Phosphaten, die sich aus Aldomerisierungsreaktionen des Phosphats von Glycolaldehyd ableiten. Die Konstitutionstypen der zahlenmässig stark eingeschränkten Gruppe hier noch möglicher Aldomerisierungsprodukte sind im Schema 1 zusammengestellt. Die nachstehend beschriebenen Experimente haben gezeigt, dass in der Tat bei alkalischen Aldomerisierungen von Glycolaldehyd-phosphat mit und ohne Formaldehyd diese und anscheinend im wesentlichen keine anderen Zucker-Konstitutionstypen entstehen.

2. Herstellung von Glycolaldehyd-phosphat. – Das in unseren Versuchen verwendete Glycolaldehyd-phosphat (2) haben wir durch Ozonolyse von Ammonium-allyl-phosphaten 1 hergestellt, welche wir durch Phosphorylierung von Allylalkohol in Gegenwart von CCl₃CN [35] bereiteten¹²) (Schema 2). Anfänglich verwendeten wir Proben von 2, welche durch Ozonolyse des Bis(cyclohexylammonium)-Salzes 1a gewonnen und als gefälltes Ca-Salz 2a isoliert und eingesetzt wurden. Solche Proben erwiesen sich aber beim Aufbewahren als Folge ihres Restgehaltes an Cyclohexylamin als unstabil, indem sie im festen

^{*)} The glycolaldehyde phosphate (2) used in the present investigation was prepared by ozonolysis of bis(cyclohexylammonium) allyl phosphate (1a) or, better, mono(triethylammonium) allyl phosphate (1b). Compound 2 can be stored as its Ca salt 2a.

¹²) Über frühere Herstellungsweisen von Glycolaldehyd-phosphat vgl. [36] (Glycol-Spaltung von Glycerin-1-phosphat mit HIO₄, Isolierung als Barium-Salz) und [37] (Phosphorylierung von Glycolaldehyddiethyl-acetal und Hydrolyse, Isolierung als Brucin-Salz) sowie [1].

Zustand je nach Bedingungen und Dauer der Aufbewahrung variierende Mengen an Tetrose-diphosphaten bildeten¹³).

Einheitliche und stabile Proben des Ca-Salzes 2a erhielt man schliesslich dadurch, dass man die Ozonolyse am Mono(triethylammonium)-Salz 1b durchführte, welches man aus 1a durch Freisetzen des Allvl-dihydrogenphosphats mit Ionenaustauscher, Schütteln von deren wässriger Lösung mit einer ätherischen Lösung von Et₃N und nachfolgendem Einengen der wässr. Allylphosphat-Lsg. herstellte. Nach Ozonolyse in MeOH bei -78° und Ozonid-Spaltung mit Me₂S bei -20° setzte man in wässriger Lösung die Säure-Form des Produkts frei (Ionenaustauscher), versetzte deren wässrige Lösung mit einer solchen von (1 mol-equiv.) Ca(OAc), und fällte 2a bei 4° durch vorsichtiges Zutropfen von Aceton. Nach Lyophilisation erhielt man 2a als farbloses, nach DC sowie nach den ¹H-, ¹³C- und ³¹P-NMR-Spektren im wesentlichen einheitliches (jedoch ca. 30 Gew.-% H₂O enthaltendes) Pulver in 74% (korrigierter) Ausbeute. Auf solche Weise gewonnenes, farbloses Calcium-Salz 2a des Glycolaldehyd-phosphats zeigte nach mehrmonatigem Aufbewahren bei RT. keine ¹H-NMR-spektroskopisch feststellbaren Veränderungen. Die Methode erlaubt die problemlose Bereitung des Salzes im 1-10-g-Maßstab. Nach dem ¹H- und ¹³C-NMR-Spektrum in D₂O ('mit 1 Tropfen konz. DCl versetzt') liegt **2a** in solcher Lösung vollständig als Hydrat vor.

3. Aldomerisierung von Glycolaldehyd-phosphat in Abwesenheit von Formaldehyd. -Orientierende Versuche zur Aldomerisierung von 2a in wässriger alkalischer Lösung unter Ausschluss von Luft-O2 zeigten, dass dabei relativ rasch und einheitlich eine Diphosphat-Fraktion (im DC polarer als 2a) und langsamer eine Triphosphat-Fraktion (im DC Startfleck) entstanden. Das experimentelle Problem lag vor allem in der Isolierung, Charakterisierung und Quantifizierung der gebildeten mehrfach phosphorylierten Zucker. Ein Gesamtüberblick auf die Zusammensetzung eines Produktgemisches liess sich jeweils durch folgendes generelles Vorgehen gewinnen: Überführung der Produkte in der Reaktionslösung (oder einer wässrigen Suspension des gefällten Ca-Salz-Gemisches der Produkte) in ihre Säure-Form mittels Ionenaustauscher, Entphosphorylierung der Zucker-phosphat-Komponenten in wässriger alkalischer Lösung (pH 9,8) mit alkalischer Phosphatase¹⁴), Reduktion des Gemisches der nunmehr freien Zucker in neutraler wässriger Lösung mit NaBH₄, Überführung des Gemisches der Polyalkohole in die polyacetylierten Derivate mit Ac₂O/Pyridin, und GC-Analyse des Acetat-Gemisches an einer mit Cyanosilicon auf BaCO₃ beschickten Glaskapillarsäule gemäss einer bekannten Bestimmungsmethode [38]¹⁵). Die Zuordnung der GC-Signale beruht in allen Fällen auf Koinjektionsidentität mit den Signalen authentischer Proben von Tetritol-, Pentitol- und

¹³) Von solchen Proben konnten durch Chromatographie an Ionenaustauschern zwar die Tetrose-diphosphate, jedoch nicht die Rest-Mengen an Cyclohexylamin vollständig entfernt werden. Eine derart gereinigte Probe bildete auch bei -20° aufbewahrt innert Wochenfrist erneut Tetrose-diphosphate und verfärbte sich, bei RT. aufbewahrt, braungelb.

¹⁴) In einem Versuch, ausgehend vom Ca-Salz einer durch Ionenaustauschchromatographie gereinigten Hexosetriphosphat-Fraktion, wurde nachgewiesen, dass die Entphosphorylierung mit alkalischer Phosphatase nach DC-Kontrolle praktisch quantitativ verläuft; die (Gewichts)-Ausbeute in diesem Versuch betrug mindestens 93%. Der ursprüngliche Vorschlag, alkalische Phosphatase zur Analyse der Zucker-phosphat-Fraktionen zu verwenden, geht auf Dr. M. Göbel (Postdoktorand ETH 1987–88) zurück.

¹⁵) Wir danken Dr. D. Felix für ihre Hilfe bei der Vorbereitung und Durchführung der GC-Analysen.

сно 	Bedingungen A, B und C	rac-Tetrose-2.4-diphosphate	+	rac-Hexose-2.4.6-triphosphate
cH₂ oPO₃ ⁼ (Ca ²⁺ -Salz) 2a	(Zur Analyse der Reaktionsgemische vgl. <i>Schema 4</i>)			
	zu folgenden Anteilen ^a)			
	А	1 :		11 <i>ca</i> . 60% ^b)
	В	1 :		16 <i>ca.</i> 80% ^c)
	с	3 :		2

Schema 3*)

Bedingungen:

- A: 2a gemischt mit 4 equiv. 10N NaOH, 4 Tage bei RT. unter N₂ (heterogen).
- B: 2 (aus 2a durch Behandlung mit IR 120 (H⁺-Form)) gelöst in 25 equiv. 2N NaOH (c = 0,08M) 7 Tage bei RT. unter N₂ (homogen).
- C: 2a gemischt mit 4 equiv. 1N NaOH 7 Tage bei RT. unter N₂ (heterogen).
- ^a) Nach Entphosphorylierung, Reduktion und Acetylierung GC-analytisch bestimmt (FID), vgl. Fig. 2-4.
- b) Gefällte Ca²⁺-Salze, lyophilisiert und gewogen (Hexose- und Tetrose-phosphate).
- ^c) ¹H-NMR-spektroskopisch mit Pentaerythritol als internem Standard bestimmt (Hexose- und Tetrose-phosphate).
- *) Aldomerization of glycolaldehyde phosphate in the absence of CH₂O under 3 sets of reaction conditions. Conditions A (high concentration or 2a as a paste in 4 equiv. of NaOH) yielded predominantly hexose triphosphates, whereas Conditions C (2a in 4 equiv. of 1N NaOH) yielded more tetrose diphosphates. Conditions B (0.08M of 2 in 2N NaOH) match those used in the formation of pentose diphosphates (Scheme 8) except that they lack CH₂O. Isolation and characterization procedures are dealt with in Scheme 4 and diastereoisomer distributions in Figs. 2-4.

Hexitol-polyacetaten, die zum Zwecke dieses Vergleichs ausgehend von den kommerziell erhältlichen Zuckern hergestellt wurden.

Im Schema 3 sind die Reaktionsbedingungen (A, B und C) gegeben, unter welchen Aldomerisierungen von 2 durchgeführt wurden, und Schema 4 orientiert über den Gang der Isolierungs-, Reinigungs- und Charakterisierungsarbeiten, die sich jeweils an solche Experimente anschlossen.

Das zu Beginn angestrebte Ziel, möglichst ausschliesslich Hexose-2,4,6-triphosphate zu produzieren, hatte uns zu den *Bedingungen A* geführt, bei denen das mit 4 mol-equiv. konz. NaOH zu einer Paste verriebene Ca-Salz **2a** in hoher Konzentration und in zum Teil heterogener Phase zur Reaktion gebracht wurde; dabei entstanden bei praktisch vollständigem Edukt-Verbrauch hauptsächlich eine *rac*-Hexose-2,4,6-triphosphat-Fraktion und nur geringe Mengen von *rac*-Tetrose-2,4-diphosphaten in (zusammen) *ca*. 60% Ausbeute (als Ca-Salz gefällt, Ausbeute um durch ¹H-NMR nachgewiesene Beimengungen, insbesondere Glycolsäure-phosphat, korrigiert). Später, d.h. im Anschluss an die im *Kap. 4* beschriebenen Aldomerisierungen von **2** in Gegenwart von Formaldehyd zu Pentose-2,4-diphosphaten, stellten wir in zum Vergleich angestellten Versuchen fest, dass die *Bedingungen B*, bei welchen **2** in relativ geringer Konzentration, jedoch bei hohem Basenüberschuss reagiert, ebenfalls zu vorwiegend Hexose-2,4,6-triphosphaten führen (durch ¹H-NMR mit Hilfe eines internen Standards bestimmte Produktgemisch-Aus-

^{*)} Isolation and characterization protocol for experiments run under Conditions A and B. The diastereoisomer distribution of the hexose triphosphates was determined for the sugar-phosphate mixture (= product mixture) as a whole and also for the hexose fraction after its separation from the tetrose fraction by ion-exchange chromatography. The diastereoisomer ratios were determined by GC after the product mixtures had been dephosphorylated using alkaline phosphatase, reduced with NaBH₄ to the polyols, and peracetylated. The glucose-gulose and altrose-talose ratios were determined by ¹H-NMR spectroscopy of the mixtures of the free sugars (Table 1).

beute um 80%). Tetrose-2,4-diphosphate als Hauptfraktion bilden sich schliesslich unter den *Bedingungen C*, die sich von den *Bedingungen B* durch höhere Edukt-Konzentration und geringere Basenkonzentration unterscheiden.

Die Fig. 2-4 zeigen die Kapillar-GC der acetylierten Alditol-Gemische, die auf oben erwähnte Weise (vgl. auch Schema 4) aus Rohproduktgemischen unter den Bedingungen A, B und C erhalten wurden. Diese Chromatogramme dokumentieren eine anscheinend praktisch Fremdprodukt-freie Entstehung der nach einer konstitutionell einheitlich verlaufenden Aldomerisierung des Glycolaldehyd-phosphats erwarteten Zucker-Phosphate.

Fig. 2. GC des Produktgemisches der Aldomerisierung von 2a (Bedingungen A; s. Schema 3 und Exper. c in Tab. 1). Aufnahme nach Entphosphorylierung, Reduktion und Acetylierung zu den Tetritol- und Hexitol-acetaten (s. Schema 4)*)

Hervorzuhebende Tatsache ist die Dominanz des Allose-2,4,6-triphosphats (rac-10) im Ensemble der Hexose-triphosphate; sie ist ganz besonders deutlich in dem unter den Bedingungen B entstandenen Reaktionsgemisch¹⁶). Grund zur Aufmerksamkeit ist dabei die konfigurative Entsprechung zwischen dem Allose-2,4,6-triphosphat und dem Ribose-2,4diphosphat, wie im Zusammenhang mit Schema 6 noch näher zu erörtern sein wird.

^{*)} GC of a representative product mixture obtained from aldomerization of **2a** under *Conditions A*, followed by dephosphorylation, reduction, and acetylation. *Ca.* 97% of the FID-recorded material is accounted for (see *Schemes 3* and *4* and *Table 1*, *Exper. c*).

¹⁶) In der Arbeit von Voelter et al. [16] findet sich ein Konzentrations-Zeit-Diagramm der Aldomerisierung von Glycolaldehyd in Gegenwart von Ca(OH)₂, in welchem die sich am raschesten bildende Hexose die Allose ist; im Chromatogramm des nach 3facher Reaktionszeit isolierten Gemisches erscheint dieser Zucker jedoch nur noch als Nebenprodukt.

Fig. 3. GC des Produktgemisches der Aldomerisierung von 2 (Bedingungen B; Exper. b in Tab. 3). Aufnahme nach Entphosphorylierung, Reduktion und Acetylierung zu den Tetritol- und Hexitol-acetaten (s. Schema 4)*).

Da die Hexitole aus Altrose und Talose sowie aus Glucose und Gulose identisch sind, vermögen GC zwischen der Bildung von Altrose- und Talose- bzw. Glucose- und Gulose-2,4,6-triphosphaten nicht zu unterscheiden. Die in *Fig. 3* aufgeführten Anteile dieser Zucker-Derivate stammen aus ¹H-NMR-spektroskopischen Gehaltsanalysen der entphosphorylierten Zucker-Gemische (vgl. unten). Dabei ist vor allem bemerkenswert, dass das relativ intensive, dem (Glucose/Gulose)-Paar entsprechende GC-Signal hauptsächlich für Gulose-2,4,6-triphosphat und nicht für das entsprechende Glucose-Derivat steht.

Fig. 5 zeigt den Bereich der Protonen am Anomerie-Zentrum im 300-MHz-¹H-NMR-Spektrum des Gemisches der freien Zucker, das durch enzymatische Entphosphorylierung ausgehend von dem als Ca-Salze gefällten Produktgemisch (*Bedingungen A, Schema 4*, dem in *Fig. 2* abgebildeten GC entsprechend) gewonnen wurde. Das Spektrum illustriert das Vorliegen des gesamten Ensembles der Anomerenpaare der Pyranose- und Furanose-Formen der acht Hexosen insofern, als eine beinahe vollständige Zuordnung der in diesem relevantesten Bereich des ¹H-NMR-Spektrums auftretenden Signale möglich ist. Die Bezugswerte wurden aus Referenzspektren der acht kommerziell erhältlichen Hexosen (vgl. *Exper. Teil* und [2]) gewonnen, wobei auf die Verschiebungsdifferenzen sowie Kopplungskonstanten entsprechender Signale (α -D- und β -D-Anomere, Pyranose- und Furanose-Formen) der einzelnen Hexosen abgestellt und darauf geachtet wurde, dass die Bezugsspektren unter möglichst gleichen Bedingungen aufgenommen waren und die Vergleichszucker-Lösungen sich im äquilibrierten Zustand befanden.

^{*)} GC of a representative product mixture obtained from aldomerization of 2 (Na salt) under *Conditions B*, followed by dephosphorylation, reduction, and acetylation. Again, *ca.* 97% of the FID-recorded material is accounted for (see *Schemes 3* and *4* and *Table 3*, *Exper. b*). Note the higher proportion of the allose derivative compared with that of *Fig. 2*, and the presence of only small amounts of the glucose derivative.

Fig. 4. GC des Produktgemisches der Aldomerisierung von 2a (Bedingungen C; s. Schema 3). Aufnahme nach Entphosphorylierung, Reduktion und Acetylierung zu den Tetritol- und Hexitol-acetaten (s. Schema 4)*).

*) GC of a representative product mixture obtained from aldomerization of **2a** under *Conditions C*, followed by dephosphorylation, reduction, and acetylation. *Ca.* 82% of the FID-recorded material is accounted for (see *Schemes 3* and 4).

2,4,6-Triphosphat von	Anteil im Produktgemisch						Anteil in der Hexose-2,4,6-triphosphat Fraktion nach IA-Chromatographie		
	nach ¹ H-NMR der freien Zucker (Fig. 5)		nach GC der Hexi hexaacet	nach GC der Hexitol- hexaacetate		nach GC der Hexitolhexaacetate (vgl. <i>Exper. Teil</i>)			
	Exp	øer.	a	Exper. a	Exper. b	Exper. c ^a)	Exper. b		
Allose	33			35,2	25,7	31,3	30,1		
Mannose	10			10,7	15,9	15,7	14,5		
Altrose Talose	12 9	}	21	21,6	21,1	21,2	16,3		
Galactose	2	,		2,6	4,1	3,7	5,5		
Gulose Glucose	25 3	}	28	24,8	27,4	23,7	29,3		
Idose	6	,		5,1	5,8	4,4	4,3		
	100			100	100	100	100		
^a) Vgl. Fig. 2.									

 Tab. 1. Prozentuale Zusammensetzung des rac-Hexose-2,4,6-triphosphat-Gemisches aus 2a

 (Bedingungen A, Exper. a-c)*)

*) Percentage composition of the hexose 2,4,6-triphosphate mixture in three representative aldomerizations (*Exper. a, b,* and *c*) under *Conditions A*. The data from NMR analysis of the free sugars obtained by enzymic dephosphorylation of the crude product mixture are in agreement with those from GC analysis of the hexaacetates derived from the same mixture.

Fig. 5. ¹H-NMR-Bereich (300 MHz, D₂O) der Anomer-Proton-Signale des Produktgemisches der Aldomerisierung von **2a** (Bedingungen A; s. Schema 3). Aufnahme nach Entphosphorylierung*).

*) ¹H-NMR Spectrum (300 MHz, D₂O) of the hexose anomeric-proton region of the mixture prepared by enzymic dephosphorylation of a product mixture obtained under *Conditions A* (see *Schemes 3* and *4*, *Tables 1* and *6* (in the *Exper. Part*)).

Das ¹H-NMR-Spektrum der *Fig. 5* wird vom Signalpaar des axialen Protons der β -DL-Allopyranose überragt (*d*, bei 4,842 ppm, (J = 8,2 Hz)), wobei die Intensität des entsprechenden Signalpaars der β -DL-Gulopyranose in unmittelbarer Nachbarschaft (*d*, bei 4,838 ppm, (J = 8,4 Hz)) deutlich macht, dass das im GC der Hexitole für Glucose und Gulose stehende Signal hauptsächlich die Gulose vertritt. Die Auswertung der Signal-Integrale ergibt eine prozentuale Zusammensetzung des (auf 100% normierten) Hexose-Gemisches, welche in *Tab. 1* aufgeführt und den entsprechend normierten Intensitätswerten des Kapillar-GC von *Fig. 2* gegenübergestellt ist.

Die Fraktion der Hexose-2,4,6-triphosphate liess sich von den Tetrose-diphosphaten sowie Monophosphat-Komponenten (u.a. Glycolsäure-phosphat) durch Ionenaustausch-Chromatographie sauber abtrennen (*Dowex 1 × 8*, HCO₃⁻-Form, Elution mit wässrigen Lösungen von Et₃NH⁺HCO₃⁻), wenn auch relativ verlustreich, so dass die präparative Ausbeute (von **2a** zum chromatographierten und lyophilisierten Gemisch der Hexose-triphosphat-Ca-Salze) nur noch *ca.* 30% betrug. Nach GC-Analyse entspricht das Mengenverhältnis der isomeren Hexosen in einer solchen Fraktion ungefähr dem bei der GC-Analyse des Gesamtreaktionsprodukts gefundenen. Die Abwesenheit von niede-

1423

reren Zucker-Phosphaten ist durch das FAB-MS (negativer Modus) der chromatographierten Hexose-2,4,6-triphosphat-Fraktion (in Form der Et_3NH^+ -Salze) bestätigt.

Im Hinblick auf eine direkte ¹H-NMR-spektroskopische Identifizierung zumindest der Hauptkomponente des chromatographierten Hexose-2,4,6-triphosphat-Gemisches wurden ausgehend von Diaceton-D-glucose (= 1,2:5,6-di-*O*-isopropyliden- α -D-glucose) auf konstitutionell eindeutigem Wege die in der Literatur bislang nicht beschriebenen 2,4,6-Triphosphate der D-Allose und D-Glucose synthetisiert [39]¹⁷). Dadurch wurden die ¹H-NMR-spektroskopischen Daten (insbesondere die Signale der Protonen am Anomerie-Zentrum) dieser beiden 2,4,6-Triphosphate zugänglich (vgl. *Tab. 2*). Darüber hinaus gewann man auch entsprechende Daten für D-Altrose- und D-Mannose-2,4,6-triphosphat, indem man Proben von D-Allose- und D-Glucose-2,4,6-triphosphat der Äquilibrierung in alkalischer Lösung unterwarf. Dabei entstanden nach ¹H-NMR und GC in beiden Fällen binäre Gemische, deren neu erscheinende Anomer-Proton-¹H-NMR-Signale dem durch Epimerisierung an C(2) gebildeten D-Altrose- bzw. D-Mannose-2,4,6triphosphat zukommen (vgl. *Tab. 2* und *Exper. Teil*).

2,4,6-Triphosphat von	Referenzp (D-Enantic	roben [2] omere, vgl. Fu	ussnote 17)	<i>rac</i> -Hexose-2,4,6-triphosphat-Fraktion nach IA-Chromatographie (<i>Fig.6a</i>)		
	δ [ppm]	<i>J</i> [Hz]	α/β	δ [ppm]	J [Hz]	
α-DL-Glucose	5,40	3,4	3:1	5,32	3,3	
β -DL-Glucose	4,80	7,3				
α-DL-Mannose	5,34	1,5		5,26	1,6	
β -DL-Mannose	5,00	br. s	5.5:1			
α-DL-Allose	5,18	3,8	1 3 5	5,20	3,9	
β -DL-Allose	4,94	8,0	1:3.5	4,94	8,1	
α/β -DL-Altrose	5,14	br. s		5,15	br. s	
β/α -DL-Altrose	5,07	br. <i>s</i>	1:1	5,08	br. s	

Tab.2.¹H-NMR-Daten (D₂O) der Protonen am Anomerie-Zentrum der rac-Hexose-2,4,6-triphosphate*)

*) ¹H-NMR data for the protons at the anomeric centers of allose, altrose, glucose, and mannose 2,4,6-triphosphates in the hexose-triphosphate fraction (see *Fig. 6*). Left-hand columns: values from individual samples independently synthesized [2] from D-glucose. Right-hand columns: components of fraction after chromatography, as assigned by comparison with reference samples. Note (only for 'aficionados') the enhanced anomeric effect in the triphosphate series as compared to the free hexoses.

Fig. 6a zeigt den Signal-Bereich der Anomer-Protonen im 300-MHz-¹H-NMR-Spektrum der (chromatographierten) Hexose-2,4,6-triphosphat-Fraktion und die mit Hilfe der erwähnten Vergleichsdaten vorgenommenen Zuordnungen. Die hieraus entnommenen prozentualen Mengenanteile für die 2,4,6-Triphosphate der *rac*-Allose, -Altrose, -Mannose und -Glucose im (chromatographierten) Hexose-2,4,6-triphosphat-Gemisch sind in befriedigender Übereinstimmung mit den entsprechenden, durch GC bestimmten Anteilen (vgl. *Tab. 1*).

¹⁷) Die experimentellen Einzelheiten konstitutionell eindeutiger Synthesen der 2,4,6-Triphosphate der D-Allose und D-Glucose [39] (aus D-Glucose), der 2,4-Diphosphate von D-Ribose, D-Arabinose und D-Xylose [40] (aus D-Ribose, D-Glucose bzw. D-Xylose) sowie der 2,4-Diphosphate von D-Erythrose und D-Threose [39] [40] (aus D-Glucose bzw. D-Arabinose) werden zu einem späteren Zeitpunkt in dieser Zeitschrift publiziert (vgl. auch [2] und [3]).

Unter den Bedingungen B, bei welchen man im Unterschied zu den Bedingungen A nicht das Ca-Salz von 2, sondern die hieraus durch Ionenaustausch hergestellte freie Säure einsetzte und die Umsetzung in homogener Phase durchführte, entstand ebenfalls rac-Allose-2,4,6-triphosphat (rac-10) als Hauptprodukt, nun aber noch deutlich ausgeprägter als unter den Bedingungen A (vgl. Schemata 3 und 4, Fig. 3 und Tab. 3). Der Anteil an rac-10 relativ zur gesamten Hexose-triphosphat-Fraktion lag bei 50% bzw. 30% (B vs. A) und das Verhältnis zum nächsthäufigen Hexose-triphosphat-Isomeren bei 1:0,4 bzw. ca. 1:0,6. Die im GC der Fig. 3 aufgeführten relativen Anteile an Altrose- und Talose- bzw. Gulose- und Glucose-2,4,6-triphosphat sind aus dem ¹H-NMR-Spektrum der (nicht-chromatographierten) Hexose-triphosphat-Fraktion entnommen. In einem solchen Spektrum ist der Signal-Bereich der Anomer-Protonen nunmehr klar durch das Dublett-Signal des β -Anomeren der Pyranose-Form von rac-10 beherrscht (vgl. Fig. 6b). Zwecks gewichtsunabhängiger Ermittlung der Ausbeute an Hexose-triphosphat-Gemisch wurde in dieser Versuchsreihe auch ein Ansatz in Gegenwart einer bekannten Menge Pentaerythritol als internem Standard für eine sowohl ¹H-NMR-spektroskopische als auch GC-analytische Ausbeute-Bestimmung durchgeführt. Rund 80% der eingesetzten mol-equiv. 2 fanden sich im Produktgemisch wieder, 66% als rac-Hexose-2,4,6triphosphate, 5% als rac-Tetrose-2,4-diphosphate und 10% als Ausgangsprodukt 2 (Tab.3, Exper. c). Das Rohprodukt enthielt auch ca. 2,5% des Disproportionierungsprodukts Glycolsäure-phosphat.

Das den Reaktionsverlauf unter den *Bedingungen C* widerspiegelnde GC der *Fig. 4* zeigt die Bildung der beiden diastereoisomeren racemischen Tetrose-2,4-diphosphate als klare Hauptprodukte zu gleichen Anteilen nebst einer geringeren Hexose-triphosphat-

2,4,6-Tri- phosphat von	Anteil im	Produktgem	isch			Anteil in der H triphosphat-Fr IA-Chromatog	lexose-2,4,6- raktion nach graphie	
	nach GC hexaaceta	nach GC der Hexitol- hexaacetate			nach ¹ H-NMR der Hexose-triphosphate		nach ¹ H-NMR der Hexose- triphosphate	
	Exper. a	Exper. b ^a)	Exper.c	Exper.b	Exper.c	Exper.a	Exper. a	
Allose	54	51	47	51	47	41	41	
Mannose	13	8	10			12		
Altrose Talose	} 11 ^b)	25	25	$\begin{cases} 18 \\ 7 \end{cases}$	18 7	24	{ 15 9	
Galactose	2	2	2			4	C C	
Gulose Glucose	} 18	13	13	{ 8 5	9 4	17	12 5	
Idose	2	2	3	C		2		
	100	101	100			100		

Tab. 3. Prozentuale Zusammensetzung des rac-Hexose-2,4,6-triphosphat-Gemisches aus 2a (Bedingungen B, Exper. a-c)*)

^a) Vgl. Fig. 3.

^b) Fraglicher Wert.

*) Percentage composition of hexose 2,4,6-triphosphate mixtures obtained under *Conditions B* in *Exper. a, b* and *c*. Left-hand columns: in the crude product mixture (see *Fig. 3*). Right-hand columns: after chromatography of the crude mixture.

Fraktion, in welcher rac-10 ähnlich vorherrscht wie unter den Bedingungen B und auch die übrigen Diastereoisomeren ähnlich stark vertreten sind wie dort. Das Reaktionsbild zeigt, dass die Stufe der Aldomerisierung von 2 mit sich selbst rascher erfolgt als jene der Tetrose-2,4-diphosphate mit 2; bei letzterer muss - wie die Produktverteilung in der Hexose-triphosphat-Fraktion impliziert - Erythrose-2,4-diphosphat (rac-4) etwas rascher zu Hexose-2,4,6-triphosphaten weiterreagieren als sein threo-Diastereoisomer rac-5. Die Mengengleichheit der beiden Tetrose-diphosphate (Fig. 4) kann entweder eine etwas höhere Bildungsgeschwindigkeit von rac-4 im Vergleich zu jener von rac-5 bedeuten oder eine unter den Bedingungen C gegenüber der Weiterreaktion rasche Äquilibrierung der diastereoisomeren Tetrose-diphosphate (via α -Epimerisierung an C(α) und/ oder Dealdolisierung). Für die Bedingungen C wurden diese Fragen nicht abgeklärt; dass jedoch unter den Bedingungen B eine Prääquilibrierung der Tetrose-2,4-diphosphate vor der Aldomerisierung zu den Hexose-triphosphaten stattfinden kann, zeigt der im Schema 5 dokumentierte Versuch, in welchem D-Erythrose-2,4-diphosphat¹⁷) den Aldomerisierungsbedingungen unterworfen wurde. Nach 3,5 h waren in der Reaktionslösung ein (1:1)-Gemisch der beiden Tetrose-diphosphate und vorderhand nur geringe Mengen Hexose-triphosphate anwesend, aber nach 7 Tagen sah das Reaktionsbild nach Menge und Isomerenverteilung der Hexose-triphosphat-Fraktion ungefähr so aus, wie wenn man die Reaktion ausgehend von Glycolaldehyd-phosphat geführt hätte.

		Schema 5	*)	
CHO Bedingu - OPO₃H₂ (Scheme - OH	ungen B a 3) Erythrose-2,4	-diphosphat ^a) +	Threose-2,4-diphosphat ^a)	+ Hexose-2,4,6-triphosphate ^a)
CH20PO3H2	Reaktionszeit ^b)	zu folgenden /	Anteilen ^c)	
D-Erythrose-2,4-diphosph	0 min 45 min 3,5 h 7 h 25 h 3 Tage 7 Tage	94 62 48 45 29 17 7	6 38 44 41 27 16 6	0 8 14 44 67 87 ^d)

^a) Nicht geprüft, ob racemisch.

b) Zeit, nach welcher ein Aliquot der Reaktionslösung zur GC-Analyse entnommen wurde.

^c) Nach Reduzieren, Entphosphorylieren und Acetylieren mittels GC bestimmt.

^d) Zusammensetzung im wesentlichen gleich wie in *Fig. 3*.

Im Unterschied zur Hexose-triphosphat-Fraktion (und auch zur Pentose-diphosphat-Fraktion, vgl. unten) bereitete die chromatographische Isolierung der Tetrose-2,4-diphosphat-Fraktion Schwierigkeiten, was damit zusammenhängen mag, dass die Aldehyd-Funktion der Tetrosen nicht durch intramolekulare Halbacetal-Bildung maskiert und damit stabilisiert ist. Gereinigte Tetrose-diphosphat-Fraktionen wandeln sich zudem leicht in unreine Fraktionen, in denen wieder **2** auftaucht (DC). Dieser Labilität gegen-

^{*)} Under Conditions B, the two diastereoisomeric tetrose diphosphates equilibrate. This is demonstrated by an experiment in which D-erythrose 2,4-diphosphate (synthesized [40] from D-glucose) was partially converted to threose 2,4-diphosphate (whether D or DL not determined) and, more slowly, to the mixture of hexose 2,4,6-triphosphates with diastereoisomer composition similar to that illustrated in Fig. 3.

über Dealdolisierung musste bei der GC-Bestimmung der Tetrose-diphosphat-Fraktionen Rechnung getragen werden. Um eine (teilweise) Dealdolisierung im alkalischen Medium der enzymatischen Entphosphorylierung zu verhindern, wurde die Fraktion zuerst mit NaBH₄ reduziert und erst dann entphosphoryliert. Eine mit Verlusten verbundene, jedoch zwecks Charakterisierung angestrebte Isolierung einer konstitutionell weitgehend einheitlichen *rac*-Tetrose-2,4-diphosphat-Fraktion (als Na-Salze) gelang durch Ionenaustausch-Chromatographie (IA) unter Verwendung eines (HCOONa/HCOOH)-Puffers (pH 2,3–4), (aufwendiges) Entfernen des Puffers durch mehrmaliges Einengen aus H₂O (bis *ca.* 30° i.V.) und anschliessende Chromatographie an Polyacrylamidgel.

Die Zuordnung der ¹H-NMR-Signale der Tetrose-2,4-diphosphat-Fraktion an die in D_2O als Hydrate vorliegenden Komponenten (vgl. *Exper. Teil*) erfolgte durch unabhängige Synthese sowohl des D-Erythrose- als auch des D-Threose-2,4-diphosphats ausgehend von D-Glucose bzw. D-Arabitol¹⁷) und die Zuordnung der GC-Signale durch Vergleich mit den aus käuflicher Erythrose und Threose hergestellten diastereoisomeren Tetritol-acetaten.

4. Aldomerisierung von Glycolaldehyd-Phosphat in Anwesenheit von Formaldehyd

Im Anschluss an die mit den Bedingungen A gemachte Erfahrung, wonach bei der Aldomerisierung von 2 im wesentlichen eingleisig Hexose-2,4,6-triphosphate entstehen und dabei Allose- und Altrose-2,4,6-triphosphat mit ihrer ribo-Konfiguration an C(3), C(4) und C(5) mehr als die Hälfte des Reaktionsgemisches ausmachen, hatten wir vorerst versucht, auf dem Wege einer Fragmentierung von der Reihe der Hexosen zu jener der Pentosen, d.h. im besonderen zu den 3,5-Diphosphaten der rac-Ribose und rac-2-Desoxy-ribose zu gelangen. Massgebend gewesen für diese Absicht war nebst der erwähnten konfigurativen Entsprechung vor allem auch ein formaler konstitutioneller Zusammenhang zwischen Allose-2,4,6-triphosphat und dem Konstitutionstyp der Nucleinsäuren (vgl. Schema 6, oben): die in den beiden Hexose-2,4,6-triphosphaten phosphorylierten Positionen O - C(4) und O - C(6)würden den phosphorylierten Positionen in Oligoribo(bzw. Oligodeoxyribo)nucleotiden entsprechen, wenn es gelänge, einen Übergang zwischen Allose(bzw. Altrose)-2,4,6-triphosphat und Ribose(bzw. 2-Desoxyribose)-3,5diphosphat herzustellen. Unsere Bemühungen, einen solchen Übergang durch sich formal anbietende Fragmentierungsprozesse¹⁸) zu bewerkstelligen, schlugen fehl. Versuche, einen Aufbau von Erythrose-2,4-diphosphat zu Ribose-3,5-diphosphat mit Hilfe einer Reaktion zu erreichen, die sozusagen einer 'homo-Strecker'-Reaktion entspräche (Schema 6, Mitte)¹⁹), führten ebenfalls zu Schwierigkeiten. Zudem mussten wir in parallel dazu durchgeführten Versuchen zur Bildung von Pentose-2,5-diphosphaten aus 2 und Glycerinaldehyd-3-phosphat²⁰) zur Kenntnis nehmen, dass die β -Stellung einer Phosphat-Gruppe relativ zu einer Aldose-(C==O)-Gruppe für den Aufbau von Zucker-Phosphaten mittels alkalisch induzierter Aldolkondensationen infolge der steten β -Eliminationsgefahr ein generelles Handicap darstellt (vgl. hiezu z.B. auch [44]). Dies veranlasste uns schliesslich, das Ziel eines direkten Zugangs zum Ribose-3,5-diphosphat (bzw. zu Pentose-3,5-diphosphaten) mit sozusagen 'richtiger' Anordnung der Phosphat-Gruppen (vgl. Schema 6) vorderhand aufzugeben und die durch Kombination von

¹⁸) Denkbare, an Modell-Zucker-Derivaten untersuchte Fragmentierungen sind u. a. die alkalische Fragmentierung des Allose-2,3(cyclo),4,6-triphosphats zum 1-Enol-phosphat des 2-Desoxyribose-3,5-diphosphats, *retro*-Aldolspaltung des Cyanhydrins von Allose-4,6-diphosphat und '*retro-Strecker*'-Dealdolisierung des entsprechenden α-Aminonitril-Derivats [41].

¹⁹) Unter einer 'homo-Strecker'-Reaktion wäre die Aldolisierung eines Aldehyds mit α-Amino-α-cyanoessigsäure [42] [43] [2] (potentielles Produkt einer partiellen Hydrolyse des HCN-Trimeren Amino-malonodinitril) zum α-Aminonitril-Derivat eines homologen α-Hydroxyaldehyds zu verstehen. Während Glycolaldehydphosphat mit α-Amino-α-cyanoessigsäure in neutraler wässriger Lösung recht einheitlich zum Gemisch der beiden diastereoisomeren α-Aminonitril-Derivate des rac-Glycerinaldehyd-3-phosphats reagiert [43] [2], nimmt die entsprechende Umsetzung z. B. mit dem Erythrose-4-phosphat einen komplexen Verlauf [2] [3]. Die 'retro-Strecker'-Reaktion in der Reihe höherer Zucker-phosphate bereitet (im Gegensatz zur Spaltung des O³-Phosphoserinnitrils in Glycolaldehyd-phosphat [1]) Schwierigkeiten, die nicht geklärt sind.

²⁰) Orientierende Versuche zur alkalischen Kondensation von Glycerinaldehyd-3-phosphat mit Glycolaldehydphosphat unter sehr milden (die β-Elimination von Phosphat aus Glycerinaldehyd-3-phosphat möglichst vermeidenden) Bedingungen führten vorwiegend zu den Tetrose-2,4-diphosphaten [41].

a) Als Racemat.

*) Interlude. Allose 2,4,6-triphosphate and ribose 3,5-diphosphate are related with respect both to configuration and to sites of phosphorylation, which, in the ribose derivative, are those occurring in the ribonucleic acids. This relationship induced experiments designed to reach ribose 3,5-diphosphate by fragmentation routes from allose 2,4,6-triphosphate or else by a 'homo-Strecker' [2]/'retro-Strecker' [1] sequence starting from erythrose 2,4-diphosphate. Failure in practice to reach ribose 3,5-diphosphate (with its 'correct' phosphate substitution) by such routes prompted the study of the close relationship that exists between ribose 2,4-diphosphate ('incorrect' phosphate substitution) and glycolaldehyde phosphate and formaldehyde. This change of target, at first thought to be a compromise, quickly was justified by the ensuing results.

Glycolaldehyd-phosphat-Aldomerisierungen mit Formaldehyd sich anbietende Bildung von Glycerinaldehyd-2phosphat bzw. Pentose-2,4-diphosphaten mit 'falscher' Anordnung der Phosphat-Gruppen zu untersuchen (Schema 6, 3. Zeile). Dieser vorerst eigentlich als Kompromiss gedachte Zielwechsel fand im nachhinein durch die experimentellen Ergebnisse eine nachhaltige Rechtfertigung.

Als orientierende Studie auf dem Wege zu Pentose-2,4-diphosphaten wurde vorerst die stufenweise Kondensation von Formaldehyd mit 2 zu Glycerinaldehyd-2-phosphat (*rac-3*) und dessen anschliessende Aldolisierung mit 2 untersucht. Eine 0,1M wässrige Lösung von 2 mit einer 10fachen Menge CH₂O unter N₂ bei pH 10,7 während 6 Tagen bei RT. belassen, bildete ein nach DC weitgehend einheitliches Reaktionsprodukt, das nach Chromatographie an *DEAE*-Cellulose (HCO₃⁻-Form, Elution mit Et₃NH⁺HCO₃⁻-Puffer) und anschliessendem Ionenaustausch in bis zu 66% Ausbeute *rac-3* als Mono-Na-Salz (nach Lyophilisation als weisser Schaum) lieferte (*Schema 7* und *Exper. Teil*); seine Aldehyd-Gruppe liegt nach dem ¹H-NMR-Spektrum fast ausschliesslich als Hydrat

Schema 7*)

- ^a) Anteile berechnet aus der FID-Anzeige im GC der durch enzymatische Dephosphorylierung, Reduktion und Acetylierung des Produktgemisches erhaltenen acetylierten Polyalkohole.
- *) In exploratory experiments, glycolaldehyde phosphate (2) was found to react cleanly with formaldehyde at pH 10.7 to give rac-glycerinaldehyde 2-phosphate (rac-3) as the sole product. When equivalent amounts of 2 and rac-3 were allowed to react in 2N NaOH, a mixture of pentose 2,4-diphospates was obtained, in which the predominant product (by GC, after dephosphorylation, etc.) turned out to be the ribose derivative.

vor. Wegweisend war dann anschliessend ein Experiment, in welchem äquimolare Mengen von 2 und rac-3 in 0,037M Lösung in 2N NaOH unter Ar bei RT. so lange stehen gelassen wurde, bis nach DC praktisch sämtliches rac-3 verbraucht war: die orientierende GC-Analyse, nach Entphosphorylierung, NaBH₄-Reduktion und Acetylierung, zeigte ein bemerkenswert einfaches Produktgemisch, das zum weit überwiegenden Anteil die Pentaacetate der drei Pentitole zeigte, darunter das aus Ribose-2,4-diphosphat (rac-6) hervorgehende Pentaacetat als klare Hauptkomponente (Schema 7). In Folgeexperimenten (mit einem mol-Verhältnis der Reaktionspartner rac-3 und 2 von 1,8:1) mit Isolierung der Pentose-2,4-diphosphat-Fraktion durch Chromatographie an DEAE-Cellulose (Ausbeute ca. 60%) und enzymatischer Entphosphorylierung wurde die Identität der vier diastereoisomeren Pentosen im erhaltenen Gemisch durch 'H-NMR (Identifizierung der Signale im Bereich der Anomer-Protonen) sichergestellt. Nachdem mit diesen Befunden feststand, dass über die Stufe einer Aldolkondensation von rac-3 mit 2 ein selektiver Zugang zum Ensemble der Aldopentose-2,4-diphosphate existiert, wobei in diesem Ensemble (überraschenderweise) das Ribose-Derivat vorherrscht, und dass zudem rac-3 problemlos durch Kondensation von CH₂O mit 2 entsteht, konzentrierten sich von hier ab unsere Bemühungen auf die Möglichkeit, von 2 ausgehend durch Aldomerisierung in Gegenwart kontrollierter Mengen CH₂O direkt zum Gemisch der rac-Pentose-2,4-diphosphate zu gelangen.

In systematischen Vorversuchen zur Aldomerisierung von 2 in Gegenwart von CH₂O wurde der Reaktionsablauf bei unterschiedlichen relativen und absoluten Konzentrationen der Reaktionspartner (inklusive NaOH) durch DC verfolgt; dabei gelangte

Schema 8*)

zu folgenden molaren Anteilen^a)

					J	, , ,
СНО + СН ₂ ОРО₃Н₂ 2 (0,08м)	СН ₂ =О (0,04м)	2N NaOH, 7 Tage, RT., N ₂	<i>rac</i> -Pentose-2,4-di <i>rac</i> -Hexose-2,4,6-tripl <i>rac</i> -Tetrose-2,4-dipho <i>rac</i> -Glycerinaldehyd-2	phosphate nosphate sphate 2-phosphat	72 Teile 19 Teile 4 Teile 5 Teile	bose 36 'abinose 11 /xose 17 /lose 8
		Ausbeuter	n im Rohgemisch:	<i>rac</i> -Pentose <i>rac</i> -Ribose-	e-2,4-diphosphate 2,4-diphosphat	28-32% ^b) 14-16% ^c)
		Ausbeute wiedergeft	der in den Produkten undenen mol-equiv.:	Glycolaldeh Formaldehy	yd-phosphat d	45-50% 30-35%

- ^a) Berechnet aus der FID-Anzeige im GC der durch enzymatische Entphosphorylierung, Reduktion und Acetylierung des Produktgemisches erhaltenen acetylierten Polyalkohole ((Arabinose/Lyxose)-Verhältnis aus ¹H-NMR).
- ^b) Aus der FID-Anzeige im GC mittels internem Standard, Pentaerythritol, bestimmt.
- ^c) ¹H-NMR spektroskopisch mittels Referenzsubstanzen sowie aus der FID-Anzeige im GC mittels internem Standard bestimmt.
- *) Without recourse to the isolation of glycerinaldehyde 2-phosphate as an intermediate, 2 reacts with 0.5 equiv. of CH₂O in 2N NaOH to yield an aldose-phosphate mixture consisting of triose, tetrose, pentose, and hexose phosphates, with the pentose 2,4-diphosphate fraction predominating, and with ribose 2,4-diphosphate as the major product. Isolation and characterization procedures are dealt with in Scheme 9 and diastereoisomer distributions in Fig. 7 and Table 4.

man schliesslich zu Bedingungen (2 in 0,08M Lösung, ein halbes mol-equiv. CH₂O in 2N wässriger NaOH), unter denen nach GC in der Tat mit hoher Selektivität das Ensemble der rac-Pentose-2,4-diphosphate mit rac-6 als Hauptprodukt entsteht. Bei geringerer Basenkonzentration (z.B. pH 11) wurden nach einer Woche Reaktionszeit vorwiegend rac-3 und Tetrose-diphosphate festgestellt, während bei höheren NaOH-Konzentrationen (nicht identifizierte) Nebenprodukte auftraten. Abweichungen vom Stöchiometriegerechten mol-Verhältnis führten entweder zu vermehrter Bildung von Hexose-triphosphaten oder (bei CH_2O -Überschuss) zu Nebenprodukten und weniger C₅-Produkten, offenbar infolge (raschen) Verbrauchs von 2 durch eine Überschussproduktion von rac-3. Das sich unter den schlussendlich gewählten Standardbedingungen ergebende Reaktionsbild (Schema 8) erwies sich in zahlreichen Experimenten als gut reproduzierbar. Einer der Reproduktionsansätze, der zwecks Abklärung der Luftempfindlichkeit unter extremem Ausschluss von Luft im Handschuhkasten (< 5 ppm O₂) durchgeführt wurde, zeigte ein Reaktionsbild (¹H-NMR) wie die normal unter N_2 durchgeführten Ansätze. Die Reaktionsdauer entspricht dem Zeitpunkt, bei welchem nach DC kein 2 mehr im Reaktionsgemisch nachweisbar ist.

Schema 9 gibt den Überblick auf den Weg der Aufarbeitung, Isolierung und Charakterisierung. Der linke Teil von Schema 9 bezieht sich auf die Charakterisierung des Produktgemisches, der rechte hauptsächlich auf die chromatographische Isolierung sowie spektroskopische und GC-Identifizierung der Pentose-2,4-diphosphate bzw. freien Pentosen.

*) Isolation and characterization protocol for experiments according to Scheme 8. The desalted and neutralized aldose-phosphate mixture (= product mixture) was characterized by two routes. After lyophilization, the crude product mixture was subjected to spectroscopic and (after dephosphorylation, etc.) GC analysis. Alternatively, the product mixture was separated by ion-exchange chromatography into a forerun (pre-sumably monophosphates, not further examined), the major pentose-diphosphate fraction, and the minor hexose-triphosphate fraction (all in the form of Na salts). Clean (¹H- and ¹³C-NMR, GC) mixtures of the 4 diastereoisomeric disodium pentose 2,4-diphosphates was achieved (after enzymic dephosphorylation) by NMR spectroscopic comparison of the pentose mixture with authentic samples. A direct identification of the ribose, arabinose, and xylose 2,4-diphosphates in the diphosphate mixture was achieved by unambiguous syntheses [3] of these three pentose phosphates from D-ribose, D-glucose, and D-xylose, respectively (to be published later).

Das FAB-MS (negativer Modus) einer Probe des Produktgemisches (nach Überführung in die Et₃NH⁺-Salz-Form) zeigte ein Signal mit der Masse des ([M-H⁺])-Anions von Pentose-diphosphaten (m/z 309, 74%) als das in der Zucker-Phosphat-Region weitaus intensivste Signal; prominent war daneben nur noch der entsprechende Pik der Hexose-triphosphate (m/z 419, 33%). Das in Fig. 7 wiedergegebene GC zeigt die Zusammensetzung des Produktgemisches nach dessen enzymatischer Entphosphorylierung, Reduktion mit NaBH₄ und Acetylierung. Rund 92% des durch GC detektierten Materials²¹) sind durch Koinjektion mit Vergleichssubstanzen identifiziert; die sich von den Pentose-2,4-diphosphaten herleitenden Pentitol-pentaacetate machen ca. zwei Drittel des Gemisches aus, und das Signal, welches für das 2,4-Diphosphat der rac-Ribose steht, ist das Basis-Signal des gesamten GC. Die Differenzierung zwischen rac -Lyxose- und rac-Arabinose-2,4-diphosphat ist infolge der Identität der entsprechenden Pentitole nicht aus dem

²¹) Glycol-diacetat wird infolge seiner kürzeren Retentionszeit nicht erfasst.

Fig. 7. GC des Produktgemisches der Aldolisierung von 2 mit CH_2O . Aufnahme nach Entphosphorylierung, Reduktion und Acetylierung zu den Alditol-acetaten (s. Schema 9)*).

GC zu entnehmen; die in *Fig.* 7 aufgeführten Gehaltszahlen für diese beiden Pentosen sind aus dem 'H-NMR-Spektrum des Gemisches der freien Zucker ermittelt, das durch enzymatische Entphosphorylierung des Produktgemisches anfällt; dort lassen sich in der Region der Anomer-Protonen (4,4–5,4 ppm) die charakteristischen Signale der vier isomeren Pentosen unter Zuhilfenahme von Spektren authentischer Vergleichsproben leicht orten und bezüglich ihrer Intensität auswerten (vgl. *Exper. Teil*; über das 'H-NMR-Spektrum eines solchen Pentose-Gemisches nach Reinigung vgl. unten).

Gemäss GC- und 'H-NMR-Analyse überwiegt im Produktgemisch das 2,4-Diphosphat der *rac*-Ribose die entsprechenden Diphosphate der *rac*-Arabinose, -Lyxose und -Xylose im mol-Verhältnis von rund 6:2:3:1 (*Fig.* 7 und *Tab.* 4).

Soweit aus den naturgemäss komplexen ¹H- und ¹³C-NMR-Spektren des Produktgemisches zu entnehmen ist, enthält dieses nebst den Zucker-Phosphaten zusätzlich das Edukt-Disproportionierungsprodukt Glycolsäure-phosphat²²) sowie Beimengungen, die

^{*)} GC of a representative product mixture obtained from aldomerization of 2 (Na salt) under *Conditions B* in the presence of 0.5 equiv. of CH₂O, followed by dephosphorylation, reduction, and acetylation. *Ca.* 92.4% of the FID-recorded material is accounted for (see *Schemes 8* and 9 and *Table 4*). Note that the arabinose/lyxose ratio is determined by ¹H-NMR after enzymic dephosphorylation.

²²) Glycolsäure-phosphat ist am scharfen ¹H-NMR-Dublett-Signal um 4,2 ppm sowie am ¹³C-NMR-Signal um 183 ppm erkennbar. Aus der relativen Intensität des ¹H-NMR-Signals im Vergleich zu demjenigen von H-C(1) des β-DL-Ribopyranose-2,4-diphosphats lässt sich ein Glycolsäure-phosphat-Gehalt abschätzen, der ca. 5% Ausbeute entspricht.

	Anteil im Produktgemisch		Anteil in der Pentose-2,4-diphosphat-Fraktion					
			nach IA-Chro	omatographie	nach IA- und gel-Chromate	Polyacrylamid- ographie		
	nach GC der Polyalkohol- acetate (Fig.7)	nach ¹ H-NMR der freien Zucker	nach GC der Pentitol- pentaacetate	nach ¹ H-NMR der freien Zucker (<i>Fig.8</i>)	nach GC der Pentitol- pentaacetate (Fig. 12)	nach ¹ H-NMR der Pentose- diphosphate (Fig. 10)		
rac-Glycerin- aldehyd-2-phosphat	2,6							
rac-Erythrose-2,4- diphosphat	0,6		0,7		0,5			
rac-Threose-2,4- diphosphat	2,2		2,7		0,5			
<i>rac</i> - Ribose-2,4- diphosphat	33,1	49,6	47,4	48,7	46,9	48		
rac-Arabinose-2,4-)	15,0 .)	15,3		16		
diphosphat rac-Lyxose-2,4- diphosphat	26,1	23,8	37,2	25,0	39,4	25		
rac-Xylose-2,4- diphosphat	6,8	11,6	9,6	11,0	9,7	11		
rac-Allose-2,4,6- triphosphat	9,8							
rac-Mannose-2,4,6- triphosphat rac-Altrose-2,4,6-	2,3							
triphosphat rac-Talose-2,4,6- triphosphat	\$ 5,0							
rac-Galactose-2,4,6- triphosphat	0,7							
rac-Glucose-2,4,6-	} 2,8							
triphosphat rac-Idose-2,4,6- triphosphat	0,4			•				
	92,4	100	97,6	100	97,0	100		

Tab. 4. Prozentuale Zusammensetzung des rac-Pentose-2,4-diphosphat-Gemisches*)

*) Percentage composition of pentose 2,4-diphosphate mixtures obtained in representative experiments according to *Scheme 8*. Left-hand columns: in the crude product mixture. Right-hand columns: after ion-exchange chromatography and subsequent polyacrylamide-gel chromatography.

sich durch Signalhaufen um 1,1–3,4 ppm (¹H-NMR) bzw. 38–44 ppm (¹³C-NMR, CH₂-Signale gemäss DEPT-Experiment) zu erkennen geben, die nicht (normale) Zucker-Derivate sein können. Das Integral über diese Signalhaufen im ¹H-NMR-Spektrum entspricht ungefähr 20% des Gesamtintegrals über die Signale der CH-Protonen. Die Kalibrierung der durch GC ermittelten Verhältniszahlen erfolgte mit Hilfe von Pentaerythritol als Standard sowie durch Gehaltsbestimmung des im ¹H-NMR-Spektrum von Produktgemischen intensivsten Signals im Bereich der Anomer-Protonen (Signal der β -Pyranose-Form von *rac*-6) mittels ¹H-NMR-Standardsubstanzen²³). Der so abgeschätzte absolute Gehalt der Produktgemische an Aldose-phosphaten entspricht 45–50% der in die Reaktion eingesetzten mol-equiv. von 2. Die entsprechende Wiederfindungsrate für CH₂O beträgt 30–35%. *rac*-Pentose-2,4-diphosphate sind in solchen Produktgemischen entsprechend einer Ausbeute (bzgl. eingesetztem CH₂O bzw. 2) von *ca*. 30% und *rac*-Ribose-2,4-diphosphat (*rac*-6) ist in einer solchen von *ca*. 15% anwesend (vgl. Schema 8).

Die Charakterisierung der Pentose-2,4-diphosphate erfolgte durch Auftrennung des Produktgemisches durch Gradienten-Ionenaustausch-Chromatographie in Fraktionen von Komponenten mit unterschiedlicher Anzahl der Phosphat-Gruppen. Dabei gelang zwar eine vollständige Trennung der Pentose-diphosphat- von der (langsamer eluierten) Hexose-triphosphat-Fraktion (FAB-MS, 'H-NMR, GC), doch verblieben bei der Pentose-diphosphat-Fraktion noch geringe Mengen der Beimengungen, die sich im 'H-NMR-Spektrum durch Signale im Nicht-Zucker-Bereich zwischen 1,1–3,4 ppm angezeigt hatten

Fig. 8. ¹H-NMR-Bereich (300 MHz, D₂O) der Anomer-Proton-Signale des Gemisches der rac-Pentosen, erhalten nach Ionenaustausch-Chromatographie und Entphosphorylierung*)

*) ¹H-NMR Spectrum (300 MHz, D₂O) of the anomeric-proton region, showing the mixture of racemic pentoses obtained (*Conditions B*, 0.5 equiv. of CH₂O) after ion-exchange chromatography of the product mixture and enzymic dephosphorylation of the pentose 2,4-diphosphate fraction (see *Schemes 8* and 9 and *Tables 4* and 7).

²³) Na-benzoat und Natrium-4,4-dimethyl-4-silapentansulfonat.

Fig. 9. ¹³C-NMR-Spektrum (75 MHz, D₂O) des Gemisches der rac-Pentosen, erhalten nach Ionenaustausch-Chromatographie und Entphosphorylierung*)

*) ¹³C-NMR Spectrum (75 MHz, D₂O) of the same sample of racemic pentoses as in Fig. 8 (see Schemes 8 and 9 and Table 8). Of the total of 40 signals, 37 could be assigned by comparison with spectra of authentic samples. For the distribution among the anomeric forms of pentoses in equilibrium in aqueous solution at room temperature, see Table 9.

(noch ca. 20% der ursprünglichen Protonenzahl; s. oben). Durch Chromatographie wurde auch eine vor der Pentose-diphosphat-Fraktion eluierte Fraktion abgetrennt, welche nicht näher untersucht wurde (nach Elutionsverhalten vermutlich Monophosphate, mehrere Flecken im DC). Durch zusätzliche Chromatographie der Pentose-diphosphat-Fraktion an Polyacrylamid-Gel konnten die restlichen Verunreinigungen beinahe vollständig abgetrennt werden. Nach GC-Analyse kommen in solchen zweifach chromatographierten Pentose-diphosphat-Fraktionen die diastereoisomeren Diphosphate in praktisch gleichem mol-Verhältnis vor wie im ursprünglichen Produktgemisch (vgl. Fig. 12 und Tab. 4); dies zeigt, dass die Reinigungsoperationen das Reaktionsbild bezüglich dieser Zusammensetzung nicht verfälschen.

Den Kern der spektroskopischen Beweise für die Bildung der vier racemischen Pentosediphosphate bilden die ¹H- und ¹³C-NMR-Spektren des Gemisches der freien Pentosen, welches durch Ionenaustausch-Chromatographie des Produktgemisches und anschliessende enzymatische Entphosphorylierung der Pentose-diphosphat-Fraktion²⁴) erhalten wurde. Diese Spektren sind in *Fig. 8* und *9* wiedergegeben.

Die Region der Anomer-Protonen (4,4-5,3 ppm) im ¹H-NMR-Spektrum der *Fig. 8* enthält (nebst dem intensiven HDO-Signal) im wesentlichen die Signale der Anomerenpaare der Pyranose-Formen der vier Aldopentosen. Mit Hilfe von Vergleichsspektren (vgl. [45]) authentischer Proben kann das über 40 Signale aufweisende

²⁴) Gemäss ¹H-NMR fehlen nach dieser Behandlung die vor der Entphosphorylierung noch anwesenden, oben erwähnten Verunreinigungen.

HELVETICA CHIMICA ACTA - Vol. 73 (1990)

Fig. 10. ¹H-NMR-Spektrum (300 MHz, D₂O) des Gemisches der rac-Pentose-2,4-diphosphate nach Ionenaustauschund Polyacrylamidgel-Chromatographie, im Vergleich zum Spektrum von D-Ribose-2,4-diphosphat¹⁷)*)

*) ¹H-NMR Spectroscopic demonstration of the presence of ribose 2,4-diphosphate in the *rac*-pentose-diphosphate fraction obtained after ion-exchange and polyacrylamide-gel chromatography (see *Schemes 8* and 9 and *Tables 4* and 5). D-Ribose 2,4-diphosphate was synthesized by constitutionally unambiguous routes from D-glucose as well as from D-ribose (to be published later), and the signals of its spectrum (300 MHz, D₂O) were assigned on the basis of a 2D-COSY experiment.

¹³C-NMR-Spektrum (*Fig. 9* und *Tab. 7* im *Exper. Teil*) – mit Ausnahme von drei (schwachen) Signalen – lückenlos als Spektrum des Gemisches der vier Aldopentosen interpretiert werden. Das Gemisch ist weitgehend frei von Fremdkomponenten und enthält aufgrund des Vergleichs der ¹H-NMR-Region der Anomer-Protonen mit Referenzspektren unter Zuhilfenahme selbst gemessener (vgl. *Tab. 9* und *10* im *Exper. Teil*) wie auch publizierter Werte über die Gleichgewichtszusammensetzung der Aldopentosen in wässriger Lösung [46] die vier Pentosen in der in *Tab. 4* aufgeführten Zusammensetzung. Die Gehaltsbestimmung durch das ¹H-NMR-Spektrum des Gemisches der freigesetzten Pentosen einerseits und anderseits durch GC (nach Entphosphorylierung, Reduktion und Acetylierung) stimmen in ihrer Aussage überein (vgl. *Tab. 4*).

Fig. 11. ¹³C-NMR-Spektren (75 MHz, D₂O) des Gemisches der rac-Pentose-2,4-diphosphate nach Ionenaustauschund Polyacrylamidgel-Chromatographie, im Vergleich zum Spektrum von D-Ribose-2,4-diphosphat¹⁷)*)

*) ¹³C-NMR spectroscopic comparison analogous to that of Fig. 10.

Reinheitsgrad und Gehalt der durch Chromatographie an Polyacrylamid-Gel nachgereinigten Pentose-diphosphat-Fraktion sind aus den in *Fig. 10* und *11* wiedergegebenen ¹H- und ¹³C-NMR-Spektren dieser Fraktion ersichtlich. Zur eindeutigen Identifizierung insbesondere von *rac*-**6** in diesem Pentose-diphosphat-Gemisch wurden die bisher in der Literatur nicht beschriebenen 2,4-Diphosphate der D-Ribose, D-Arabinose und D-Xylose auf konstitutionell eindeutigem Wege synthetisiert [40]¹⁷). Die Gegenüberstellung der ¹H- und ¹³C-NMR-Spektren des synthetischen D-Ribose-2,4-diphosphats und der Pentose-diphosphat-Fraktion in *Fig. 10* und *11* sowie *Tab. 5*

2,4-Diphosphat von	Referenzpi (vgl. Fussn	roben ote 17)		rac-Pentose-2,4-diphosphat-Fraktion nach IA- und Gel-Chrom. (Fig. 10)		
	δ [ppm]	J [Hz]	α/β	δ [ppm]	<i>J</i> [Hz]	
α-Ribose	5,07	3,11	1.2	5,06	3,16	
β -Ribose	4,88	7,25	1:3	4,89	7,25	
a-Arabinose	4,59	6,57	2.2	4,65	6,13	
β -Arabinose	5,24	2,89	2:3	5,29	3,15	
a-Xylose	5,26	3,38		5,28	3,50	
β -Xylose	4,59	7,23	2:1	4,62	7,47	
α-Lyxose	5,00 ^a)	5,11 ^a)	2 18	5,02	5,06	
β-Lyxose	4,91 ^a)	1,77 ^a)	5:1")	5,01	< 2,50	

Tab. 5. ¹H-NMR (D₂O) der Protonen am Anomerie-Zentrum der rac-Pentose-2,4,6-diphosphate*)

^a) Werte aus dem ¹H-NMR-Spektrum eines durch Epimerisierung von D-Xylose-diphosphat erhaltenen Gemisches.

*) ¹H-NMR Data for the protons at the anomeric centers of pentose 2,4-diphosphates (pyranose forms) in the pentose-diphosphate fraction (see *Fig. 10*). Left-hand columns: values from individual reference samples independently synthesized [3]. Right-hand columns: components of fraction after ion exchange and polyacrylamide-gel chromatography, as assigned by comparison with reference samples.

Fig. 12. GC der Pentose-diphosphat-Fraktion der Aldolisierung von 2 mit Formaldehyd, erhalten nach Ionenaustausch- und Polyacrylamidgel-Chromatographie sowie Entphosphorylierung, Reduktion und Acetylierung*)

*) GC of the *rac*-pentose 2,4-diphosphate fraction obtained after ion-exchange and polyacrylamide-gel chromatography (see *Schemes 8* and 9 and *Table 4*). The data of *Figs. 10-12* come from the same sample. belegt nachdrücklich die dominierende Präsenz des Ribose-Isomeren in der Pentose-diphosphat-Fraktion des Aldomerisierungsgemisches und verschafft einen Bezug für die Beurteilung der Reinheit dieser Vierkomponenten-Fraktion. Die GC-analytische Zusammensetzung der Fraktion (nach Entphosphorylierung, Reduktion und Acetylierung) illustriert *Fig. 12*; die Fraktion enthält praktisch nur noch die (drei) Derivate der (vier) Pentosen (vgl. auch *Tab. 4*).

In einem eigens zur Bestimmung der Ausbeute an zweifach chromatographierten Pentose-diphosphaten durchgeführten Aldomerisierungsansatz wurde (nach Chromatographie an Ionenaustauscher und anschliessend an Polyacrylamid-Gel) eine in der Na-Salz-Form lyophilisierte Pentose-diphosphat-Fraktion erhalten, die einen ¹H-NMRspektroskopisch mit Hilfe von zwei Standardsubstanzen (Na-Benzoat und -Acetat) bestimmten Pentose-2,4-diphosphat-Gehalt von 87% aufwies, was bei Berücksichtigung des Fraktionsgewichts einer Ausbeute an rac-Pentose-2,4-diphosphaten von 23% und einer Ausbeute an rac-6 von 11% bzgl. der eingesetzten Edukte entspricht. Diese Werte sind im Zusammenhang mit den Anteilen von 45-50 % bzw. 30-35 % zu sehen, mit denen die in die Reaktion eingesetzten mol-equiv. der Edukte 2 und Formaldehyd im Produktgemisch wiedergefunden werden. Ein Teil von 2 (um 10%) scheint einer Cannizzaro-Disproportionierung zu unterliegen (vgl. den NMR-spektroskopischen Nachweis von Glycolsäure-phosphat), und ein anderer scheint die Phosphat-Gruppe durch Hydrolyse zu verlieren. Die Ergebnisse von Phosphat-Bestimmungen²⁵) zu verschiedenen Reaktionszeiten weisen darauf hin, dass es sich um eine Hydrolyse des Edukts oder von Zwischenprodukten, jedenfalls nicht um eine solche der Pentose- und Hexose-phosphate handelt: am Reaktionsende nach 7 Tagen enthielt das Produktgemisch einen Anteil von anorganischem zu totalem Phosphat von 34%, nach 8 Wochen einen solchen von 39%, wobei die verwendete Bestimmungsmethode vor der Reaktion weniger als 5% anorganisches Phosphat anzeigte.

Zur Beurteilung der Stabilität der Pentose-2,4-diphosphate und ihres Produktverhältnisses unter den Reaktionsbedingungen wurde ein Langzeit-Aldomerisierungsversuch durchgeführt, bei welchem Pentaerythritol als interner ¹H-NMR-Standard im Reaktionsgemisch anwesend war und die Produktzusammensetzung durch GC (nach Entphosphorylierung, Reduktion und Acetylierung) sowie durch ¹H-NMR nach Entphosphorylierung (für die Differenzierung von *rac*-7- und *rac*-8) nach 7 Tagen, 8, 17 und 23 Wochen bestimmt wurde. Nach *ca.* 7 Tagen ist die Aldomerisierungsphase im wesentlichen abgeschlossen, und die Gesamtmenge der Zucker-Phosphate ändert sich vorerst kaum mehr. Hingegen nimmt der Gehalt an *rac*-Ribose-2,4-diphosphat (*rac*-6) zugunsten des *rac*-Arabinose-2,4-diphosphats (*rac*-8) langsam ab. Das Mengenverhältnis *rac*-6/*rac*-8 im Reaktionsgemisch bewegt sich wie folgt: 78:22 (nach 1 Woche), 57:43 (8 Wochen), 43:57 (17 Wochen) und schliesslich 40:60 (23 Wochen). Wichtig an diesem Langzeitversuch ist auch die Beobachtung, dass sich Wesentliches weder an der Konstitution (¹H-NMR der Pentose-diphosphat-Fraktion), noch an der Gesamtmenge der *rac*-Pentose-diphosphate über 23 Wochen hinweg änderte (*Fig. 13*).

Gemäss der GC-Analyse des Produktgemisches entstehen bei der (2:1)-Mischaldomerisation von 2 und CH₂O in 2N NaOH die einzelnen Diastereoisomeren der Hexose-triphosphat-Fraktion im gleichen Verhältnis zueinander wie bei der Aldomerisation von 2

 ²⁵) Spektroskopische Bestimmung vor und nach Entphosphorylierung mit alkalischer Phosphatase nach Ames
 [47]. Wir danken Prof. J. Knowles (Harvard University) für den Hinweis auf diese Literaturstelle.

Fig. 13. Langzeit-Aldomerisierung von 2 in Anwesenheit von HCOH (0,5 equiv.) unter Standardbedingungen (s. Schema 8)*)

ohne CH₂O unter sonst gleichen Bedingungen (*Bedingungen B, Schemata 3* und 4). Die in einem Charakterisierungsexperiment durch Ionenaustausch-Chromatographie von den Pentose-diphosphaten abgetrennte Hexose-triphosphat-Fraktion enthielt ähnlich wie die entsprechende Pentose-diphosphat-Fraktion noch Beimengungen, weshalb sie noch zusätzlich durch Chromatographie an Polyacrylamid-Gel gereinigt wurde, bevor man sie ¹H-, ¹³C- und ¹³P-NMR-spektroskopisch charakterisierte (vgl. *Fig. 6b* und *Exper. Teil*). Im oben erwähnten Langzeitversuch wurde gleichzeitig mit der Pentose-diphosphat-Fraktion auch das Verhalten der (in untergeordneter Menge vorhandenen, vgl. *Fig.* 7) Hexose-triphosphat-Fraktion GC-analytisch verfolgt und dabei beobachtet, dass das Verhältnis von *rac*-10 zur Summe *rac*-12 + *rac*-15 zwischen der ersten und der 23. Woche von 2:1 auf *ca.* 1:1 abfällt, offenbar geht Allose-triphosphat – analog dem Verhalten des Ribose-diphosphats in der Pentose-diphosphat-Reihe – durch α -Epimerisierung langsam in Altrose-triphosphat über.

5. Diskussion der Ergebnisse. – Verschiedene in dieser Arbeit gemachte Befunde sind aus rein chemischer Sicht bemerkenswert. Zwar sind die bisher vorliegenden Daten nicht durchwegs im wünschbaren Ausmass quantifiziert, doch ist die Tendenz ihrer Aussage klar genug, um einen Versuch ihrer Interpretation zu rechtfertigen sowie auf zusätzliche Fragestellungen, die sich hieraus ergeben, hinzuweisen.

1. Die GC-Analysen der Produktgemische und die NMR-spektroskopischen Charakterisierungen der durch Ionenaustausch-Chromatographie abgetrennten Zucker-phosphat-Fraktionen bestätigen die ursprüngliche Erwartung, wonach die Anwesenheit einer Phosphat-Gruppe im Glycolaldehyd dessen Aldomerisierung und dessen Rolle in der Formose-Reaktion soweit konstitutionell vereinfacht, dass im wesentlichen nur noch

^{*)} Long-term (23 week) experiment on the aldomerization of 2 in the presence of 0.5 equiv. of CH₂O under standard conditions (*cf. Scheme 8*). Yields, based on CH₂O, were determined by GC, using an internal standard; arabinose/lyxose ratios by ¹H-NMR. Note the change – due to epimerization at $C(\alpha)$ – of the ribose/arabinose ratio with time, showing that ribose formation during the 1st week is under kinetic control. According to the ¹H-NMR spectra of the pentose-diphosphate fraction, no discernible constitutional changes take place during the period between the 2nd and the 23rd weeks. The GC data from the (minor) hexose triphosphate fraction of the product mixture show a change of the ratio between allose-triphosphate and altrose + talose triphosphates from *ca*. 2:1 (after 1 week) to 1:1 (after 23 weeks).

(entsprechend phosphorylierte) Aldosen und keine Ketosen mehr entstehen. Die einmal gebildeten, in ihren Pyranose-Formen vorliegenden Pentose-2,4-diphosphate und Hexose-2,4,6-triphosphate sind unter den Reaktionsbedingungen über beträchtliche Zeiträume hinweg konstitutionell stabil.

2. In der gemischten Aldomerisierung von 2 und CH_2O in dem für die Pentose-diphosphat-Bildung stöchiometrischen mol-Verhältnis von 2:1 (0,08 bzw. 0,04M in 2N NaOH-Lösung) dominiert die Bildung der *rac*-Pentose-2,4-diphosphate über jene der *rac*-Hexose-2,4,6-triphosphate um einen Faktor von über 3:1 (*Fig. 7*). Dies kommt (wohl) dadurch zustande, dass die Aldolisierung von Formaldehyd mit 2 zu *rac*-3 (plausiblerweise) rascher verläuft und weniger reversibel ist als die zu *rac*-Tetrose-2,4-diphosphaten führende Aldomerisierung von 2 mit sich selbst, und dass die anschliessenden Kondensationsschritte mit 2 zu den Pentose-2,4-diphosphaten bzw. Hexose-2,4,6-triphosphaten (infolge Stabilisierung dieser Zucker als Pyranose-Formen) unter den Reaktionsbedingungen im wesentlichen irreversibel sind.

3. Soweit unsere (unvollständigen) Beobachtungen reichen, ist unter den verwendeten Reaktionsbedingungen (2N NaOH, beschränkte Reaktionszeit) der produktbestimmende Schritt der Pentose-diphosphat-Bildung (Aldolisierung von rac-3 mit 2) kinetisch kontrolliert. Ribose-2,4-diphosphat ist unter den Reaktionsbedingungen thermodynamisch weniger stabil als Arabinose-2,4-diphosphat; es geht unter den Reaktionsbedingungen (durch α -Epimerisierung) in letzteres über, tut dies aber um vieles langsamer als es gebildet wird (Fig. 13). In der Hexose-Reihe verhält sich rac-Allose-2,4,6-triphosphat analog. Für nachträgliche Äquilibrierungen der Zucker-Phosphate via intermediäre Dealdolisierungen bestehen (bislang) keine Anhaltspunkte. Thermodynamische Kontrolle (zumindest eine partielle) ist indessen für die Anfangsphase der Aldomerisierung von 2 zu den Hexose-triphosphaten nachgewiesen: die beiden Tetrose-2,4-diphosphate können unter den Bedingungen B ineinander übergehen, ehe sie zum Gemisch der Hexose-2,4,6triphosphate weiter reagieren (Schema 8).

4. Charakteristisches Merkmal der Aldomerisierung von 2 ist die Tatsache, dass sowohl bei den Hexose-2,4,6-triphosphaten als auch bei den Pentose-2,4-diphosphaten jenes Diastereoisomere am raschesten gebildet wird, dessen C-Kette eine durchwegs erythro-artige Konfiguration aufweist ('Allose ist die Ribose unter den Hexosen'). Nimmt man den konfigurativen Verlauf des jeweils produktbestimmenden Aldolisierungsschritts (2 + rac - 4 bzw. 5 und 2 + rac - 3) als Parameter einer Korrelation mit den Anteilen, in welchen die diastereoisomeren Hexose-triphosphate (Bedingungen B) und Pentose-diphosphate jeweils in den Produktgemischen vorliegen, so stösst man zudem auf folgenden Zusammenhang (vgl. Schema 10): Die mit hohen Anteilen auftretenden Zucker-phosphate entsprechen in ihrer Konfiguration an den Zentren C(2) und C(3) einem produktbestimmenden Aldolisierungsschritt, der die neue (C-C)-Bindung mit erythro-artiger Konfiguration knüpft. In der Pentose-Reihe trifft dies für Ribose- und Lyxose-2,4-diphosphat zu; die beiden machen ca. 75% der Pentose-2,4-diphosphat-Gesamtfraktion aus. In der Hexose-Reihe verläuft der abschliessende Aldolisierungsschritt zu Allose-, Mannose-, Gulose- und Talose-2,4,6-triphosphat nach dem erythro-artigen Modus; diese vier Komponenten machen wiederum rund 75% der Hexose-2,4,6-triphosphat-Gesamtfraktion aus. Massgebend ist auch der Vergleich der Anteile an Hexose-triphosphat-Isomeren innerhalb der sich einerseits ausgehend von rac-4 und anderseits von rac-5 bildenden Isomerengruppen. Eine Ausnahme bildet das Altrose-Derivat; der innerhalb der Ery-

- ^a) Bereich der in 8 Versuchen beobachteten Werte.
- b) Bereich der in 3 Versuchen beobachteten Werte (Bedingungen B).
- *) Correlation of the aldolization mode, erythro- or threo-like, in the product-determining steps in both the pentose and hexose series, with percentages by which the individual diastereoisomeric aldose phosphates are formed in 2N NaOH in the presence and absence of CH₂O (Conditions B). Ribose and lyxose 2,4-diphosphates comprise 75% of the pentose fraction; allose, mannose, gulose, and talose 2,4,6-triphosphates, 75% of the hexose fraction. In both series, these diastereoisomers have the erythro-configuration about the newly formed C(2)--C(3) bond. In the formation of the hexoses, the aldolization incorporates ca. 4 times as much erythrose 2,4-diphosphate as threose 2,4-diphosphate.

throse-diphosphat-Gruppe gegenüber Mannose etwas höhere Altrose-Anteil kann – wie ein Vergleichsexperiment mit D-Allose-2,4,6-triphosphat¹⁷) in 2N NaOH während 7 Tagen zeigt – nur zu einem untergeordneten Mass (zu weniger als 10% des Anteils) einer α -Epimerisierung von Allose-triphosphat während der Aldolisierungsdauer angelastet werden.

Jeglicher Versuch einer Deutung des konfigurativen Reaktionsablaufs muss notgedrungen mit beträchtlicher Unsicherheit behaftet bleiben, erscheinen doch die Unterschiede an freier Aktivierungsenthalpie, die den (an sich deutlichen) Produktmenge-Unterschieden entsprechen, minim angesichts der strukturellen und mechanistischen Komplexität von Aldol-Kondensationen in wässrig-alkalischer Lösung zwischen Aldehyden, die OH-Gruppen und mehrfach negativ geladene Phosphat-Gruppen als Substituenten tragen. Doch die auffallende Kohärenz der Beobachtungen und der besondere Hintergrund ihrer möglichen Bedeutung für die präbiotische Chemie drängen zu einem Deutungsversuch. Die dabei gewonnenen Einsichten – so scheint es uns – rechtfertigen ihn.

Mit Hilfe der Schemata 11-16 wird eine stereochemische Analyse dargelegt, in welcher idealisierte, d.h. rein gestaffelte Einfachbindungen aufweisende Primärkonformationen der Aldolisierungsprodukte als Modelle für die Konformation der möglichen Übergangszustände des produktbestimmenden Aldolisierungsschritts benutzt werden. Diese Konformationen werden vorab nur nach zwei Kriterien differenziert: erstens, ob sie frei sind von sterischen Repulsionen des Typs, wie sie bei diaxialer Lage 1,3-ständiger Substituenten in Cyclohexan-Systemen auftreten (1,5-Repulsionen) und zweitens, ob die OH-Gruppe an C(3) (ursprünglich die (C=O)-Gruppe des Carbonyl-Partners der Aldomerisierung) mit OH-C(5) durch eine intramolekulare H-Brücke verbunden sein kann. Diese beiden Kriterien hängen insofern eng miteinander zusammen, als eine intramolekulare H-Brücke zwischen zwei 1,3-ständigen OH-Gruppen dann räumlich möglich ist, wenn die zwei zu den OH-Gruppen führenden (C-O)-Bindungen zueinander parallel angeordnet sind, und die damit eigentlich einhergehende 1,5-Repulsion zwischen den beiden O-Atomen durch die H-Brücke von einer repulsiven in eine bindende Wechselwirkung konvertiert wird. Eine solche H-Brücke erlaubt u.a. eine dichteste Packung von 1,3-ständigen OH-Gruppen entlang einer C-Kette. Wie nachstehend ausgeführt werden soll, gelangt man mit diesem Kriterium der 'minimalen Anzahl von 1,5-Repulsionen bei der konformationellen Packung der OH- und Phosphat-Gruppen entlang der C-Kette' zu einer effizienten Einengung der Anzahl der in Betracht zu ziehenden und in der Folge einer weiteren Differenzierung zu unterwerfenden Übergangszustandsmodelle.

Geht man von der Voraussetzung aus, dass sich Enolat- und Carbonyl-Doppelbindung der Aldolisierungspartner bezüglich der neu zu bildenden (C-C)-Bindung nur in gestaffelter Anordnung paaren, so ergeben sich für den produktbestimmenden Schritt der Pentose-Reihe bei Berücksichtigung sämtlicher Möglichkeiten unter Einbezug beider Enantiomeren von rac-3 insgesamt 48 Paarungsvarianten. Dabei handelt es sich um 24 räumlich unterschiedliche Spiegelbild-Paare, welche in 3 Sätzen von je 8 Varianten den je 2 Enantiomeren der 4 diastereoisomeren Pentose-2,4-diphosphate entsprechen. Die 48 Paarungsvarianten gehen aus der Variation folgender Parameter hervor: (Z)- oder (E)-Konfiguration des Enolat-Partners, Chiralitätssinn der Paarung der Reaktionspartner, synclinale oder antiperiplanare Anordnung der Reaktionsdoppelbindungen, 'syn'- oder 'anti'-ständige (C=O)- bzw. Enolat-O-Atome bei synclinaler Anordnung der Reaktionsdoppelbindungen (vgl. Paarungsmodi A-M in Schema 11).

Die 8 Formelbilder im Schema 12a stellen (idealisierte) Modelle der Primärkonformeren jener Aldomerisierungsprodukte dar, welche durch Paarung der Reaktionsbindungen nach den Modi A, B, C, und D (synclinal, 'syn'-ständige (C=O)- bzw. Enolat-O-Atomen) zustande kommen. Das Schema 12b zeigt die entsprechenden Formelbilder für die vier Modi I, K, L und M (antiperiplanare Anordnung der Reaktionsdoppelbindungen). In allen diesen Modellen sind die Teilkonformationen um die Einfachbindungen (C(1)-C(2) und C(2)-C(3)) durch den Paarungsmodus festgelegt. Die Teilkonformationen um die Bindungen C(3)-C(4) und C(4)-C(5) ergeben sich aus der absoluten Konfiguration am Chiralitätszentrum des Glycerinaldehyd-2-phosphat-Molekülteils und aus der Forderung, sterische 1,5-Interaktionen (1,3-ständige Bindungen des (C,O)-Skeletts in paralleler Anordnung) zu vermeiden, es sei denn, es handle sich um (C--OH)-Bindungen,

- SPO OPO3ď Ē E E-Re,Re,ap £ Xylose threo-artig -Re, Re, ap $\widehat{\mathcal{O}}$ ŝ Ś Arabinose 3 So 5 E-Re,Si,ap erythro-artig ő Z-Re,Si,ap enythro-artic υ İσ Ē 5 E g BS Ś -Geo ଡ Z-Si, Si, +sc threo-artig Lyxose E-Si,Si,+sc hreo-artig æ Ē BB E Å E E ŝ Ribose erythro-artig Z-Si, Re, +sc E-Si,Re,+sc enythro-artig ∢ Ś AS Ś ŝ Abs. Konfigura-Reaktionswed Abs. Konfigura-Reaktionsweg doppel-bindungen 2,4-Diphos-phat von сноро₃-сн₂он tion von 3 сноро3-Paarungs Paarungs--loppel-bindungen synclinal, 'syn'a) CH₂OH tion von 3 Reaktions synclinal, 'anti' a) modus modus Reaktions Ľ å

a) Carbonyl- und Enolat-O-Atome 'syn'- resp. 'anti'-ständig.

Xylose

Arabinose

Lyxose

Ribose

2,4-Diphosphat von *) Rationalization of the kinetic preference for ribose 2,4-diphosphate and allose 2,4.6-triphosphate formation. If one considers only the staggered pairing modes for C(2)–C(3) bond formation in the product-determining step, there are 48 (24 enantiomorphous pairs of pairings, in 3 sets of 8 variations). For evaluation, the nascent product conformers (idealized conformation: all single bonds ideally staggered) are taken as models for the transition states.

Schema 11*)

droxyl and phosphate groups along the C-chain'. This seeks freedom from groups at C(3) (originally the C=O group of the aldomerization partner of H-bridge. These two sub-criteria are closely related: an intramolecular Hbridge between two 1,3-OH groups converts a potential 1,5-repulsion into a bonding interaction, allowing the closest packing of 1,3-OH groups along a bottom of Scheme 11. Two diametrically opposed prognoses for the relative rates via synclinal (sc) and antiperiplanar (ap) transition states result. From these and the experimental results, it is concluded that the formation of pentose 2,4-diphosphates occurs preferably via sc transition states. Scheme 12 In a first step, differentiation of the conformers is made on the basis of the interactions of the 1,3-diaxial type; furthermore, it implies that the OH glycolaldehyde phosphate), and C(5) can interact through an intramolecular C-chain. Twelve conformers are found to be unstrained according to the outlined criteria, with 9 allowing an intramolecular H-bridge and 3 not. The conclusions are presented by the arrows, coded according to the chart at the criterion of 'minimal 1,5-repulsion in the conformational packing of hyillustrates the conformations of the transition-state models in detail.

^{*)} Nascent product conformers for pairing modes A-D (synclinal) and I-M (antiperiplanar) as idealized transition state models for use in the construction of *Scheme 11*. Conformers marked by \Rightarrow have obligatory 1,5-repulsions. Interactions between vicinal substituents in a synclinal relationship are ignored at this stage. For the conformation at the C=O group, see formulae in *Footnote 26*.

zwischen denen eine intramolekulare H-Brücke möglich ist. Bei der Befolgung dieser Forderung ist allerdings zur Kenntnis zu nehmen, dass bei idealisierter Staffelung jegliche sekundär gebundene Phosphat-Gruppe notgedrungenerweise mindestens eine formal repulsive 1,5-Interaktion zwischen einem Phosphat-O-Atom und einem C-Zentrum aufweist, wobei letzteres in Richtung der Phosphat-Gruppe ein H-Atom (und nicht ein Substituent) zu tragen hat. (Über die bei der Konstruktion der Modelle befolgten Regeln zum konformationellen Reaktionsverlauf vgl. die Formelbilder in Fussnote²⁶).)

Von den acht in Fig. 12a behandelten Primärprodukt-Konformeren sind nur vier, nämlich die Varianten A_s , A_r , C_r und C_s innerhalb des gesetzten Kriterienrahmens spannungsfrei²⁷). Es trifft sich, dass alle vier dem erythro-artigen Aldolisierungmodus entsprechen, die vier als gespannt befundenen Konformeren $\mathbf{B}_{\mathbf{R}}, \mathbf{B}_{\mathbf{S}}, \mathbf{D}_{\mathbf{S}}$ und $\mathbf{D}_{\mathbf{R}}$ hingegen dem threo-artigen. Unterstellt man einer intramolekularen H-Brücke zwischen OH-C(5) und dem sich von einer (C=O)- zu einer OH-Funktion wandelnden O-Atom an C(3) einen reaktionsfördernden Einfluss, so wären nach den gesetzten Kriterien die Wege A_s , C_B und Cs die kinetisch günstigsten. Dieses Ergebnis ist im Schema 11 durch eine entsprechend differenzierende Pfeilsymbolik wiedergegeben; bezüglich obligater 1,5-Repulsionen wird dabei unterschieden, ob diese das (C,O)-Skelett allein, oder auch eine (als Substituent durch Entstaffelung sich vermutlich leichter anpassende) Phosphat-Gruppe miteinbeziehen²⁶); ferner wird unterschieden, ob ein erlaubter Reaktionsweg eine H-Brücke aufweist oder nicht. Nebst dem erwähnten Ergebnis der Analyse der Paarungsmodi A-D enthält das Schema 11 auch die Resultate analoger Analysen der Varianten E-M; davon sind die 8 Konformeren der Paarungsmodi I-M mit antiperiplanarer Anordnung der Doppelbindungen im Schema 12b abgebildet.

Die am Beispiel der Gruppe A–D erläuterte Art der Ermittlung der Produkterwartung gibt für die Gruppen A–D und E–H gegenüber den Gruppen I–M ein krass unterschiedliches Ergebnis: die Produkterwartung der Paarungsmodi A–D (synclinal) ist eindeutig *rac*-Ribose- > Lyxose- > Arabinose- > Xylose-2,4-diphosphat, während die Prognose für I–M (antiperiplanar) in ihrer Essenz gerade umgekehrt ausfällt, nämlich *rac*-

²⁶) Nachstehende Formelbilder orientieren über die bei der Konstruktion der Produkt-Primärkonformationen (Schemata 12, 14 und 16) befolgten Annahmen über den konformationellen Verlauf a) der Addition eines Elektrophils an das (Z)- bzw. (E)-Enolat des Glycolaldehyd-phosphats und b) der Addition eines Nukleophils an eine Aldehyd-(C=O)-Bindung. Bei a liegt in den Modellen der Primärkonformationen jeweils jener Substituent an C(α) synperiplanar zur Aldehyd-(C=O)-Bindung, welcher im Enolat *cis* zum Oxido-O-Atom steht, und bei b wird angenommen, dass der Additionsprozess von der 'ekliptischen' (die Annäherung des Nukleophils weniger behindernden) Carbonyl-Konformation ausgeht und in die gestaffelte Addukt-Konformation einmündet.

²⁷) Abgesehen von je einer obligaten (CH/PO₃²⁻)-Repulsion pro sekundär gebundener Phosphat-Gruppe.

Xylose- ~ Arabinose- > Lyxose- ~ Ribose-2,4-diphosphat. Für die Gruppe E-H (synclinal mit 'anti'-ständigen (C=O)- bzw. Enolat-O-Atomen) ergibt sich eine Prognose die derjenigen für A-D ähnlich ist. Nach dem Kriterium der Vermeidung von 1,5-Repulsionen in der Primärkonformation des Aldolisierungsprodukts ist aus dem Vergleich dieser Prognosen mit der experimentellen Beobachtung zu folgern, dass die Reaktion von Glycolaldehydphosphat zu den rac-Pentose-2,4-diphosphaten im produktbestimmenden Aldolisierungsschritt den Weg über eine synclinale Anordnung der Doppelbindungen einschlägt.

Die im Schema 11 zusammengefassten Differenzierungen über die Zugänge zu den rac-Pentose-2,4-diphosphaten lassen sich auf einfache Weise für die Reihe der rac-Hexose-2,4,6-triphosphate nutzbar machen, indem man in den Primärkonformationsmodellen die beiden diastereoisotopen H-Atome der endständigen CH_2OH -Gruppe einzeln durch eine $(CH_2OPO_3^{2-})$ -Gruppe ersetzt (Aldolisierung mit rac-4 oder rac-5) und dabei die bisher verwendeten Kriterien der Konformationsbeurteilung auf den dazugekommenen Teilbereich der (nunmehr) Hexose-triphosphat-Modelle anwendet. Übernimmt man die (vom exper. Ergebnis abgeleitete!) Schlussfolgerung, wonach der produktbestim-

^a) 2,4-Diphosphat. ^b) 2,4,6-Triphosphat.

^{*)} Extension of the analysis to the hexose series, by systematic replacement of the diastereoisotopic H-atoms at C(5) in the four pentose diphosphates by CH₂OPO₃⁻, using the criterion of minimal 1,5-repulsion in conformational packing. The analysis can be confined to the (allowed) pentose diphosphate pathways A, C, E, and F (solid-line arows in synclinal modes of Scheme 11). The 8 hexose 2,4,6-triphosphate pathways thereby permitted are illustrated in conformational detail in Scheme 14.

*) Eight nascent product conformers (of five hexose 2,4,6-triphosphate diastereoisomers) which remain allowed by the criterion of minimal 1,5-repulsion. Further differentiation of the 8 pathways is attained by analysis using the criterion of minimal interaction between substituents at the reaction centers in the aldolization transition state (*Scheme 15*).

mende Aldolisierungsschritt einen synclinalen Additionsmodus benutzen soll, so kann sich die Erweiterung der Analyse auf die Paarungsmodi A, C, E und F beschränken; sie ist im Schema 13 durchgeführt. Darunter sind jene Wege, die im Rahmen der verwendeten Kriterien als unbehindert gelten (d.h. die mit \longrightarrow bezeichneten) im Schema 14 mit ihren idealisierten Primärkonformationsmodellen wiedergegeben. Dabei kann es nun offensichtlich nicht darum gehen (ΔG^{\neq} -Unterschiede von weniger als 1 kcal/mol, wässrige NaOH-Lösung, Phosphat-Gruppen!) einen *a-priori*-Stabilitätsvergleich der 8 Konformeren anstellen zu wollen, indessen ist es sinnvoll, die experimentellen Beobachtungen im Sinne der Frage miteinzubeziehen, ob es unter den 8 Modellen eine Entsprechung zur kinetischen Sonderstellung des Allose-2,4,6-triphosphats (und damit auch des Ribose-2,4-diphosphats) gibt.

Auf den Weg zu einer solchen Entsprechung gelangt man durch eine Differenzierung der 8 Varianten nach Massgabe der gegenseitigen Behinderung der Substituenten an den beiden Reaktionszentren im Übergangszustand des produktbestimmenden Aldolisierungsschritts in Berücksichtigung der räumlichen Gegebenheiten des *Bürgi-Dunitz*-Reak-

^{*)} It is generally appreciated [51] that the Bürgi-Dunitz trajectory [48] for nucleophilic addition to C=O groups must be taken into account as steric interactions between reaction center substituents are evaluated. The drawings of Scheme 15 remind the reader why. While it can be difficult to weigh the contributions of the four relevant interactions for an aldehyde/ketone-enolate pair, the problem for the case of an aldehyde/aldehyde-enolate pair turns out to have a unique solution: the one indicated in Scheme 15, where none of the interacting substituents is juxtaposed with a non-H-atom partner. By this reasoning, applied to Scheme 14, only the pathways A_{S,S} (to allose) and A_{S,R} (to talose) survive. In the pentose series, the surviving pathways of Scheme 12a are A_S (to ribose) and A_R (to lyxose). Note that, by this criterion alone, all pathways in Scheme 11 with synclinal pairing modes, except modes A, would have been eliminated.

tionspfads [48]; Schema 15 dient der Erläuterung²⁸). Sucht man nach einer Verteilung der Substituenten a-f, bei welcher eine möglichst geringe Zahl der eingetragenen räumlichen Behinderungen vorkommt, so gelangt man insofern zu einer unikalen Lösung, als es eine Verteilung gibt, bei welcher keine einzige dieser Behinderungen auftritt (alle Substituenten haben als Interaktionspartner nur ein H-Atom). Diese besondere Möglichkeit einer Null-Lösung bei der Analyse der *Bürgi-Dunitz*-Behinderungen gibt es nur, wenn bei der Aldolisierung *beide* Reaktionspartner Aldehyde sind.

²⁸) Bürgi-Dunitz sches Postulat [48] der quasi-tetraedrisch ausgerichteten Ausrichtung des Reaktionspfads bei der Addition von Nukleophilen an (C=O)-Bindungen. Die Substituenten b und f sowie d und e sind einander näher, als es der gestaffelten und orthogonalen Annäherung der Reaktionszentren bei zueinander parallel bleibenden Partnerebenen entsprechen würde (Literatur zur Anwendung des Postulats bei der Interpretation des sterischen Verlaufs von Aldolreaktionen vgl. u. a. [51] [52]).

Die 'Null-Lösung' entspricht unter den acht zur Beurteilung anstehenden Paarungsmodi im Schema 14 nur den zu Allose-2,4,6-triphosphat und Talose-2,4,6-triphosphat führenden Varianten $\mathbf{A}_{S,S}$ und $\mathbf{A}_{S,R}$ (bzw. den enantiomorphen Varianten). Bei diesen Reaktionswegen liegen im Aldolisierungsübergangszustand die grossen Substituenten an den beiden Reaktionszentren (d. h. die Phosphat-Gruppe im (Z)-Enolat und das C-Skelett im Aldehyd) antiperiplanar zueinander. Sowohl bei den Varianten $\mathbf{C}_{R,S}$ und $\mathbf{C}_{S,S}$ als auch $\mathbf{F}_{R,R}$ und $\mathbf{F}_{R,S}$ sind diese Substituenten synclinal angeordnet, was die sterischen Interaktionen des Typus $\mathbf{e} \leftrightarrow \mathbf{c}$ bzw. d $\leftrightarrow \mathbf{e}$ nach sich zieht. Bei den Paarungswegen $\mathbf{E}_{S,S}$ und $\mathbf{E}_{S,R}$ liegen die beiden grossen Substituenten zwar wie bei A ebenfalls antiperiplanar, doch zieht die (E)-Konfiguration des Enolats die Interaktion b \leftrightarrow f mit sich.

Das Kriterium der Minimisierung der sterischen Interaktionen zwischen den Substituenten an den Reaktionszentren im Übergangszustand im Sinne des Schemas 15 ermöglicht nachträglich eine noch fällige Entscheidung in der Pentose-Reihe: Ribose-2,4-diphosphat entsteht nicht über die Wege C_R oder E_s , sondern über A_s (oder den enantiomorphen Weg). Die Tatsache, dass Allose-2,4,6-triphosphat in der Hexose-Reihe als Hauptprodukt auftritt, der Weg $C_{R,R}$ zu ihm jedoch verboten ist, stimmt damit überein.

Offensichtlich sind die sich auf die Detailstruktur des produktbestimmenden Aldolisierungsübergangszustandes beziehenden Wechselwirkungen des Typs $d \leftrightarrow e, e \leftrightarrow c, c \leftrightarrow f$ und $f \leftrightarrow b$ für die Differenzierung der acht Paarungswege, welche die sterische Analyse der Produkt-Primärkonformationen überlebt haben, ganz besonders effizient. Würde man dieses Ausscheidungskriterium direkt auf die im *Schema 11* aufgeführten Paarungsmodi A-H anwenden, so wären von vorneherein sämtliche Modi mit Ausnahme des Modus A auszuschliessen, denn nur letzterer entspricht der 'Null-Lösung'. Infolge der Unmöglichkeit einer Quantifizierung dieser Interaktionen ist aber gerade hier entsprechende Vorsicht geboten.

Für die abschliessende Differenzierung der zwei zuletzt noch überlebenden, d.h. zu Allose- bzw. Talose-2,4,6-triphosphat führenden Paarungsmodi $A_{S,S}$ und $A_{S,R}$ (experimentell beobachtetes Mengenverhältnis *ca.* 5:1!) verbleibt die folgende Tatsache: Die Primärkonformation des Allose-triphosphat-Modells $A_{S,S}$ (bzw. des enantiomorphen Modells) besitzt mit der durch die oben erwähnte antiperiplanare Stellung der Phosphat-Gruppe an C(2) bedingten Ausnahme in ihrer kriteriengerecht ungespannten Form eine gestreckte C-Kette, während das ebenfalls eine intramolekulare H-Brücke aufweisende und nach den bisherigen Kriterien ebenfalls ungespannte Talose-triphosphat-Modell einen synclinal-Knick im Threose-Teil der C-Kette aufweist (*Schema 16*). Dieser Knick ist (zwecks Vermeidung einer 1,5-Repulsion) im Talose-2,4,6-triphosphat-Modell erforderlich, keineswegs jedoch im Konformationsmodell des freien Aldolisierungspartners Threose-2,4-diphosphat. Letzterer hat sich auf dem Wege zur Paarung mit dem *cis*-Enolat von 2 zwecks Vermeidung einer 1,5-Repulsion in eine unstabilere Konformation zu bemühen.

Auch in der Pentose-Reihe betrifft der abschliessende Differenzierungsschritt einen an sich geringfügigen Konformationsunterschied der Primärkonformeren des Riboseund Lyxose-2,4-diphosphats (Produktverhältnis 2:1!). Das Lyxose-Konformer (*Schema* 16) weist im Vergleich zum Ribose-Konformer eine zusätzliche synclinale Anordnung im C-Skelett auf, und es entbehrt zudem der intramolekularen H-Brücke zwischen OH-C(5)und OH-C(3).

Die zwei einzigen Reaktionswegmodelle $A_{s,s}$ und A_s (bzw. enantiomorphe Modelle),

Schema 16*)

*) A final criterion differentiates pathways A_{S,S} to allose and A_{S,R} to talose 2,4,6-triphosphate (product ratio: 5:1) as well as pathways A_S to ribose and A_R to lyxose 2,4-diphosphate (product ratio: 2:1). At best, the talose conformer must have a synclinal arrangement in the threose portion of the C-chain, for which there is no necessity in *free* threose 2,4-diphosphate. In the pentose series, the lyxose conformer also has such a synclinal relationship, and in addition lacks the OH-C(3)/OH-C(5) H-bond. Thus, in the hexose series, allose 2,4,6-triphosphate, and in the pentose series, ribose 2,4-diphosphate are left as the survivors of the formal screening based only on three conformational (!) criteria and encompassing, respectively, all 48 and 24 variants of the nascent aldose-phosphate conformations.

welche das mit (ausschliesslich sterischen Kriterien durchgeführte!) Ausschlussverfahren schussendlich noch überleben, beziehen sich auf Reaktionswege, die in der Hexose-Reihe zu Allose-2,4,6-triphosphat und in der Pentose-Reihe zu Ribose-2,4-diphosphat führen.

Von der sonst durchgehend befolgten Regel, wonach der produktbestimmende Aldolisierungsschritt einen *erythro*-artigen Paarungsmodus bevorzugt, stellt in der Hexose-Reihe der Anteil an Altrose-triphosphat gegenüber jenem von Mannose-triphosphat eine Ausnahme dar (vgl. *Schema 10*). Dem Altrose-Derivat steht einer der acht gemäss 1,5-Repulsion-Kriterium 'ungespannten' Reaktionswege zur Verfügung (Weg $\mathbf{F}_{R,R}$, *Schema 14*); dieser verletzt zwar die Forderung nach minimaler Substituentenwechselwirkung im Aldolisierungsübergangszustand (synclinale Lage von Aldehyd-Kette und (*E*)-Enolat-phosphat-Gruppe), ist aber als einziger von den acht Wegen dadurch ausgezeichnet, dass er zu einer Produkt-Primärkonformation mit durchgehend antiperiplanarer Anordnung des Hexose-C-Gerüsts führt.

Die vorstehend erörterte, zwar breit angelegte und dennoch notgedrungenerweise das Problem extrem simplifizierende Analyse läuft auf das Postulat hinaus, dass eine kinetische Bevorzugung von rac-Ribose-2,4-diphosphat und rac-Allose-2,4,6-triphosphat bei der Aldomerisierung von 2 mit und ohne CH₂O mit folgender Deutung übereinstimmt: Im produktbestimmenden Aldolisierungsschritt $(2 + rac - 3 \rightarrow rac - 6 \text{ bzw. } 2 + rac - 6 \text{ bzw. }$ $4 \rightarrow rac-10$) reagiert der Enolat-Partner in seiner (Z)-Konfiguration mit synclinaler Anordnung der Reaktionsdoppelbindungen sowie antiperiplanarer Lage der Phosphat-Gruppe relativ zur C-Kette des Aldehyd-Partners (Reaktionswege A_s und $A_{s,s}$ bzw. die dazu enantiomorphen Wege, Schema 16). Diese beiden Reaktionswege sind unter insgesamt 48 bzw. 24 formal möglichen Wegen dadurch ausgezeichnet, dass sie folgenden Forderungen entsprechen: bezüglich der konfigurativen Anordnung der Substituenten entlang der C-Kette der Forderung nach minimaler Zahl von 1.5-Repulsionen bei der Packung der Phosphat- und OH-Substituenten bei idealer Staffelung der Einfachbindungen mit möglichst gestreckter C-Kette und Betätigung intramolekularer H-Brücken sowie bezüglich der Konfiguration an den beiden Reaktionszentren der Forderung nach geringster Behinderung der Substituenten an den Reaktionszentren im produktbestimmenden Aldolisierungsübergangszustand. Die Analyse ist in dem Sinne autonom, als sie zwar bekannte Reaktivitätskriterien, jedoch keine experimentellen Informationen über den sterischen Verlauf anderer Aldol-Reaktionen verwendet. Der in der Deutung enthaltene Vorschlag, dass der produktbestimmende Aldolisierungsschritt einem synclinalen Paarungsmodus folgt, ist aus dem Experiment abgeleitet, da die verwendeten (sterischen) Reaktionskriterien nicht darüber zu entscheiden vermögen, ob der antiperiplanare oder der (in zwei Varianten mögliche) synclinale Modus an sich kinetisch überlegen ist²⁹). Die Anwendung der primären Differenzierungskriterien auf die Reaktionswege mit antiperiplanarem Paarungsmodus führt zu einer Reaktionsprognose, die den experimentellen Beobachtungen diametral widerspricht. Dass sich das Phänomen der bevorzugten Bildung von rac-Ribose-2,4-diphosphat und rac-Allose-2,4,6-triphosphat in wässrig-alkalischer Lösung allein durch Verwendung konformationeller Reaktivitätsfaktoren rationalisieren lässt, ist an sich eher überraschend.

Die Wege A_s und $A_{s,s}$ (bzw. die dazu enantiomorphen Wege) zu rac-6 und rac-10 benutzen die (Z)-Konfiguration des Enolats von 2 und die 'syn'-ständige (formal chelierbare) Anordnung der (C=O)- bzw. Enolat-O-Atome der beiden Reaktionspartner. Zu der dadurch aufgeworfenen Frage nach der relativen Bildungs- und Reaktionsgeschwindigkeit der diastereoisomeren Glycolaldehyd-phosphat-Enolate haben wir keine unabhängige experimentelle Kenntnis (vgl. jedoch *Fussnote 26*). Für die Frage, ob die Möglichkeit einer Chelierung der (C=O)- bzw. Enolat-O-Atome unter den verwendeten Reaktionsbedingungen (wässrige Lösung!) eine Rolle spielt, ist die in orientierenden Versuchen in der Pentose-Reihe gemachte Beobachtung von Belang, dass die Produktzusammensetzung im wesentlichen unverändert bleibt, wenn NaOH, KOH oder CsOH unter sonst gleichen Bedingungen eingesetzt werden; einzig LiOH erzeugt ein etwas verschiedenes Reaktionsbild (weniger Ribose- zugunsten von Arabinose-2,4-diphosphat).

Schwierig zu kommentieren ist die Frage nach der Rolle, welche die Phosphat-Gruppen unter den verwendeten Reaktionsbedingungen für die kinetische Selektion der diaste-

²⁹) Vgl. eine in diesem Zusammenhang neulich erschienene Arbeit von Denmark und Henke [49].

reoisomeren Zucker-phosphate spielen. Hervorzuheben ist hier jedenfalls der geometrische Zusammenhang, wonach die gestreckte Konformation der C-Kette beim bevorzugten Weg zu Allose-triphosphat mit einer möglichst grossen Entfernung der (endständigen) Phosphat-Gruppen einhergeht (vgl. indessen die Wege A_s und A_R in der Pentose-Reihe). Hiezu sich aufdrängende Vergleiche mit Produktgemischen, die unter analogen Bedingungen aus Glycolaldehyd statt aus dessen Phosphat entstehen würden, stehen aus (und dürften auch nicht unbedingt so einfach sein³⁰), vgl. jedoch [10] und [16]). Anderseits könnte ein in der Arbeit von Voelter et al. [16]¹⁶) enthaltener (nicht interpretierter) Befund, nämlich das intermediäre Hervortreten der Allose bei der Aldomerisierung von Glycolaldehyd in Gegenwart von Ca(OH)₂, einen Hinweis darauf darstellen, dass die stereochemische Rolle der Phosphat-Gruppe bei der Aldomerisierung von Glycolaldehyd-phosphat in Ab- und Anwesenheit von CH₂O nicht entscheidend ist, bzw. dass sich diese Rolle hauptsächlich auf das Konstitutionelle (Blockierung der (Aldose ⇒ Ketose)-Gleichgewichte, Langzeitstabilität der Zucker, etc.) bezieht. Zwar sind in der dargelegten Analyse des sterischen Verlaufs der Aldomerisierung von Glycolaldehyd-phosphat die Phosphat-Gruppen in die stereochemische Argumentationskette einbezogen, doch treffen Teile der Interpretation der Sonderstellung der Primärkonformation A_{s,s} in modifizierter Form sinngerecht auch für die freie Allose zu, insbesondere das Kriterium der dichtesten Packung durch intramolekulare H-Brücken sowie das der minimalen Repulsion der Substituenten an den Reaktionszentren im Aldolisierungsübergangszustand.

Unsere heutigen, aus systematischen Arbeiten von Dubois et al. [50], Heathcock et al. [51], Evans et al. [52], Masamune et al. [53] und andern stammenden Kenntnisse über die Stereochemie von Aldolreaktionen beziehen sich hauptsächlich auf die Umsetzung von Aldehyden mit Ketonen, vorzugsweise auch auf Bedingungen, bei denen sich gezielt zur Chelierung eignende Metall-Ionen in nicht-wässrigen Reaktionsmedien mitwirken, Variablen, von denen der sterische Reaktionsverlauf sehr empfindlich abhängt. Beispiele von (Aldehyd-Aldehyd)-Kombinationen, insbesondere in wässriger Lösung, sind unseres Wissens bisher nicht systematisch stereochemisch analysiert worden. Das Reaktionsbild der Aldomerisierung von Glycolaldehyd-phosphat in Ab- und Anwesenheit von CH₂O und der Versuch seiner stereochemischen Interpretation dürfen demzufolge auch als Beitrag zur Kenntnis der Stereochemie von Aldol-Reaktionen gelten. Die dabei gezogene Schlussfolgerung, wonach die Aldolisierungsschritte einen synclinalen Paarungsmodus befolgen, passt gut zu einer seinerzeit von Seebach und Golinski [54] betonten Verallgemeinerung; eine andere Folgerung hingegen, dass nämlich die Phosphat-Gruppe des (Z)-Enolats und die C-Kette des Aldehyd-Partners antiperiplanar zueinander zu stehen kommen sollen (Schema 16), steht im Widerspruch zur Vorstellung einer bevorzugt äquatorialen Lage der Substituenten in einem 'quasi-sesselförmigen' Aldolisierungsübergangszustand [55] [51] [52].

Die Produktverteilung sowohl in der Pentose-diphosphat- als auch in der Hexosetriphosphat-Reihe hat offensichtlich wenig oder nichts gemein mit den für die freien Zucker in wässriger Lösung bekannten (bzw. angenommenen) thermodynamischen Stabilitäten der einzelnen Diastereoisomeren. So tritt das Triphosphat der allgemein als stabilste Hexose betrachteten Glucose im Aldomerisierungsgemisch des Glycolaldehyd-

³⁰) Ein orientierender Versuch dieser Art in der Pentose-Reihe hat zu einem Gemisch geführt, in welchem mit GC überhaupt keine der vier Pentosen nachgewiesen werden konnte.

phosphats nur zu einem sehr untergeordneten Anteil auf. Nicht dass dies an sich verwunderlich wäre, denn die erörterte Interpretation der Produktverteilung verwendet als Differenzierungskriterium die relativen Stabilitäten der Produkte in ihrer nicht-cyclischen Primärkonformation, worin diese von jenen der konstitutionell und konformationell äquilibrierten (cyclischen) Zucker völlig verschieden sein können. Bei der Gelegenheit ist daran zu erinnern, dass sowohl die 2,4-Diphosphate der Pentosen als auch die 2,4,6-Triphosphate der Hexosen als cyclische Form nur die Pyranose-Form zur Verfügung haben.

Die Bildung von rac-3 aus 2 und CH₂O sowie der Aldomerisierungsschritt von 2 zu rac-4 bzw. rac-5 sind die *chirogenen Reaktionsstufen* [56] bei der Entstehung von Pentose-2,4-diphosphaten und Hexose-2,4,6-triphosphaten aus Glycolaldehyd-phosphat. Diese beiden Stufen durch die besondere Bezeichnung unter allen anderen hervorzuheben, impliziert den Hinweis darauf, dass für sie das Problem der Auffindung von enantioselektiven Katalysatoren ansteht. Solche Katalyse angesichts der im Substrat enthaltenen Phosphat-Gruppe an enantiomorphen Oberflächen zentrosymmetrisch kristallisierender Mineralien im Sinne der Vorstellungen und Ergebnisse von *Lahav* und Mitarbeitern [57] zu suchen, würde dem Hintergrund, um dessentwillen die Chemie der hier behandelten Zucker-Phosphate speziell interessiert, in besonderem Masse entsprechen. Dass ein derartiger Enantioselektionskatalysator gegebenenfalls nicht umhin könnte, grundsätzlich auch Diastereokontrolle auszuüben, liegt auf der Hand.

6. Schlussbemerkungen. – Die konstitutionelle und konfigurative Selektivität in der Entstehung von rac-Ribose-2,4-diphosphat und rac-Allose-2,4,6-triphosphat bei der Aldomerisierung von Glycolaldehyd-phosphat mit und ohne CH₂O in alkalisch-wässriger Lösung bringt ein neues Element in die Diskussion zur Frage nach dem Ursprung des Kohlenhydrat-Bausteins der Nucleinsäuren. Es ist dies die Vorstellung, dass an den Ausgangspunkt von potentiell präbiotischen Reaktionsketten, die in die Richtung molekularer Strukturen des Typs der Oligonucleotide weisen, nicht (nur) die freien Zucker, sondern auch aus Glycolaldehyd-phosphat sich ableitende, phosphorylierte Zucker-Derivate zu setzen sind. Wie weit diese Vorstellung im Entwurf eines experimentell begründeten Bildes von den chemischen Voraussetzungen der Anfänge des Biologischen wird Bestand haben können, wird u.a. von verschiedenen experimentell abzuklärenden Fragen über die Chemie der phosphorylierten Zucker-Derivate, im besonderen auch des Ribose-2,4-diphosphats, abhängen. Zu den wichtigsten dieser Fragen gehört wohl die, ob ausgehend von Zucker-Phosphaten und heterocyclischen Basen effiziente Wege potentieller Selbstkonstituierung von Bausteinen des Mononucleotid-Typs existieren und, wenn ja, ausgehend von welchen Zucker-Phosphaten und von welchen Basen. Denn mit Recht weist die eingangs erwähnte Kritik [25–27] an der Vorstellung über den Ursprung der Ribonucleinsäuren darauf hin, dass bislang ausgehend von Ribose mit Nucleopyrimidinen keine – und mit Nucleopurinen keine überzeugenden – Wege potentieller Selbstkonstituierung von Monoribonucleotid-Bausteinen experimentell nachgewiesen sind.

Versucht man, sich aus chemischer Sicht auch nur einigermassen in die unabsehbare Welt von Voraussetzungen hineinzudenken, die für den Vorgang einer präbiologischen Selbstkonstituierung von Strukturen des Nucleinsäure-Typs unter natürlichen Bedingungen allenfalls hätte vorliegen müssen, so fallen einem einige (gegebenenfalls entscheidende) Vorteile auf, die Glycolaldehyd-phosphat und phosphorylierte Zucker-Bausteine gegenüber freiem Glycolaldehyd und freien Zuckern hätten bieten können: nämlich ihre zu vermutende Eigenschaft, an mineralischen Ionenaustausch-Oberflächen adsorbierbar und dadurch aufkonzentrierbar zu sein und die spezifische Möglichkeit für Aufbaureaktionen an Oberflächen zu bieten. Das bemerkenswerte Phänomen, wonach die enzymatische Chemie der Zucker in lebenden Zellen praktisch ausschliesslich eine Chemie an phosphorylierten Zuckern ist, mag eine vorbiologische Entsprechung gehabt haben³¹).

^{*)} This paper and the two which precede it demonstrate a structural relationship between members of the $C_3H_4N_2$ ensemble of amino(or imino)nitriles and racemic sugar phosphates. At the core of this relationship is the one between O^3 -phosphoserinenitrile and glycolaldehyde phosphate. From a chemical point of view, there certainly are other potentially prebiotic modes of formation of glycolaldehyde phosphate; further comment will have to be based on experimental data. However, it was this path which led us to the sugar phosphates and to the finding that allose 2,4,6-triphosphate and ribose 2,4-diphosphate are formed with ease and with unexpected selectivity. In retrospect, we recognize the special role of this chemistry in having led us to ask the question: Why did nature take a pentose rather than a hexose as the sugar component in the nucleic acids? Three subsequent papers in this series, to appear in this journal, will discuss experiments which grew out of this question.

³¹) Vgl. hiezu das Essay von F. Westheimer, 'Why Nature Chose Phosphates' [28].

Im Schema 17 ist der hier und in den beiden voranstehenden Arbeiten experimentell behandelte Zusammenhang zwischen dem Strukturtypus der α -Amino- bzw. α -Iminonitrile des C₄H₄N₂-Ensembles [29] [56] [1] und der Struktur der Zucker-Derivate rac-Ribose-2,4-diphosphat und rac-Allose-2,4,6-triphosphat nochmals zusammenfassend dargestellt. Kern des Zusammenhangs ist die Verbindung zwischen O³-Phosphoserinnitril, einem α -Aminosäure-Derivat, und Glycolaldehyd-phosphat, dem Vorläufer der Zucker-Phosphate. Dass für diesen Vorläufer aus chemischer Sicht auch noch andere potentiell präbiotische Entstehungsweisen denkbar sind, versteht sich von selbst; weitergehende Kommentare hierüber werden vor allem experimentell zu erbringen sein. Rückblickend erkennen wir eine besondere Bedeutung unserer bisherigen Festlegung auf die Chemie der $C_{1}H_{1}N_{2}$ -Verbindungen im vorliegenden Zusammenhang vor allem darin, dass uns diese Arbeiten auf das Glycolaldehyd-phosphat und auf die Untersuchung von dessen Aldomerisierung hingeführt haben. Denn abgesehen von der Auffindung der kinetischen Sonderstellung des rac-Ribose-2,4-diphosphats hat uns die Erfahrung von der überraschend leicht erfolgenden Bildung von Hexose-2,4,6-triphosphaten aus Glycolaldehydphosphat zur Frage geführt, warum eigentlich die Natur als Zucker-Bausteine ihrer Nucleinsäuren eine Pentose und nicht eine der anscheinend doch ebenso leicht, wenn nicht gar leichter zugänglichen Hexosen ausgewählt hat. Über die Ergebnisse eines aus dieser Fragestellung hervorgegangenen Experimentalprojekts, der Synthese und der Untersuchung der Eigenschaften von Oligonucleotiden, die als Zuckerbaustein D-2,3-Dideoxy-allose aufweisen (Homo-DNA's), wird in drei demnächst in dieser Zeitschrift erscheinenden Arbeiten berichtet werden [58-60].

Diese Arbeit wurde grosszügig unterstützt vom Schweizerischen Nationalfonds zur Förderung der wissenschaftlichen Forschung und von der Ciba-Geigy AG, Basel, sowie der Firma Firmenich SA, Genf. A.K. dankt für ein Postdoktorat-Stipendium der Yamada Science Foundation, Japan. Wir danken Dr. Jakob Schreiber für seine Hilfe bei der Lösung von HPLC-Problemen und Dr. Dorothee Felix für ihre Hilfe bei solchen der Gaschromatographie. Dr. E. Zass danken wir für seine Mithilfe bei der Fertigstellung des druckfertigen Manuskripts und Prof. J. Knowles, Harvard University, für einen wertvollen Literaturhinweis.

Experimenteller Teil

Allgemeines. Reagenzien: von Fluka, jeweils höchste erhältliche Qualität. Phosphatase-Stammlsg.: 3 mg alkalische Phosphatase aus Rinderdarm (Boehringer, Mannheim) in 0,3 ml Salz-Lsg. (Bestellnr. 567744) wurde mit 0,1N 2,2'-Iminobis[ethanol]/HCl-Puffer pH 9,8 auf 10 ml aufgefüllt. Ionenaustauscher (IA): Fluka AG, Buchs; Amberlite IR 120 (H⁺-Form), vor Gebrauch gründlich mit H₂O gewaschen, in Spezialfällen zusätzlich über Nacht in MeOH aufbewahrt, IR 120 (Na⁺-Form) durch Behandlung mit 1N NaOH und anschliessendem gründlichem Waschen mit H₂O erhalten; Amberlyst A 27 (Cl⁻-Form) und Amberlyst A 21 (freie Base) durch Behandlung mit lN NaOH in OH⁻-Form überführt und mit H₂O gewaschen. IA für die Chromatographie: Dowex 1×8 , Cl⁻-Form, Korngrösse 200-400 mesh, je nach Chromatographie in HCOO⁻-Form oder HCO₃⁻-Form verwendet. Chromatographie an Polyacrylamid-Gel: Bio Gel P2 (Bio Rad Laboratories, Richmond, CA); Korngrösse 200-400 mesh, Detektion mit Refraktometer, Eluent mittels Peristaltik-Pumpe befördert. DC: Kieselgel 60 F254-Platten (Merck); Standardlaufmittel BuOH/H₂O/AcOH 5:3:2; Färbereagenzien: Tauchlsg.: 10 ml Anisaldehyd, 10 ml konz. H₂SO₄, 2 ml AcOH, 180 ml EtOH; Sprühlsg.: 750 mg 2,4-Dinitrophenylhydrazin (mit 33% H₂O angefeuchtet), 100 ml H₃PO₄ (85%), in der Hitze entwickelt. GC: Carlo-Erba-4160; Glaskapillarsäule Cyanosilicon auf Bariumcarbonat, SP 2340, 25 m \times 0,3 mm, mobile Phase H₂, 0,4 bar; Flammenionisationsdetektor (FID) bei 240°; Retentionszeit (t_R) in min (FID-Anzeige in %, Zuordnung durch Koinjektion mit authentischen Proben, wobei nicht der Name des zugeordneten polyacetylierten Alditols, sondern derjenige der entsprechenden freien Aldose angegeben wird); Temp.-Programm 1: Injektion bei 50°, auf 150° in 3 min, dann auf 220° mit 2°/min; 2: Injektion bei 50°, auf 135° in 2 min, dann auf 220° mit 2°/min; Injektion: *ca.* 0,2 μl CH₂Cl₂-Lsg. der Derivate (vgl. unten) direkt auf die Säule; Integrator *HP 3390 A* und *HP 3380 A*. IR: *Perkin-Elmer-283* für KBr-Presslinge, \tilde{v} [cm⁻¹]. NMR: ¹H: *Bruker-WM-300*, δ-Werte in ppm bzgl. 4,4-Dimethyl-4-silapentansulfonat (DSS) als externem Standard, J [Hz]; ¹³C: *Varian-XL-300*, δ-Werte in ppm bzgl. DSS als externem Standard, Multiplizitäten aus DEPT-Spektren ermittelt; ³¹P: *Varian-XL-300*, δ-Werte in ppm bzgl. 85% H₃PO₄ als externem Standard, alle NMR-Proben in D₂O (99,95% D, *Dr. Glaser AG*, Basel) gemessen, wässr. Lsgn. von Zucker-phosphaten in der Na⁺-Form (durch Behandlung mit *IR 120*, Na⁺-Form, erhalten) wiesen einen pH Wert um 5,5 auf (bei *c* = *ca.* 15 mg/ml; d. h. üblicher NMR-Konz.). FAB-MS (negativer Modus): Massenspektrometer *VG ZAB2 SEQ*, Substanzen als (Et₃NH⁺)- oder als Na⁺-Salze gemessen, *m/z* (Intensität in %, ggf. Zuordnung), nur Signale mit Intensität > 10% angegeben.

Enzymatische Entphosphorylierungen der Zucker-Phosphate. Lsg. von 20 mg Zucker-Phosphate in 2 ml NaHCO₃/Na₂CO₃-Puffer (0,1M, pH 9,8) mit 0,2 ml Phosphatase-Stammlsg. versetzt, während *ca.* 15 h bei RT. stehengelassen, mit H₂O auf 5 ml verdünnt, mit 3 ml *IR 120* (H⁺-Form) versetzt, 20 min geschüttelt, vom IA abfiltriert, mit *ca.* 10 ml H₂O nachgewaschen, i. RV. bei RT. auf *ca.* 2 ml eingeengt, saure Lsg. mit *ca.* 3 ml H₂O und 3 ml *A 27* (OH⁻-Form) versetzt, 20 min geschüttelt, vom IA abfiltriert, neutrales Filtrat auf 1 ml eingeengt, lyophilisiert und bis zur Gewichtskonstanz i. HV. getrocknet.

Herstellung von Derivaten für die GC-Analyse. Lsg. von ca. 5 mg entphosphorylierter Zucker(gemische) in 1 ml H_2O mit einer Lsg. von 5 mg NaBH₄ in 0,5 ml H_2O versetzt, 1,5 h bei RT. gerührt, mit ca. 1 ml *IR 120* (H⁺-Form) versetzt, 20 min nachgerührt, vom IA abfiltriert, Filtrat i. RV. bei RT. zur Trockene eingeengt, 3mał mit je 3 ml MeOH/konz. HCl (1000:1) versetzt und jedesmal zur Trockene eingedampft, resultierendes Produkt (Polyalkohole) in 1 ml H₂O aufgenommen, eingedampft, 30 min i. HV. getrocknet, mit je 1,5 ml Pyridin und Ac₂O versetzt, 15 h bei RT. stehengelassen, mit N₂ flüchtige Komponenten abgeblasen und Rückstand in 3 ml CH₂Cl₂ aufgenommen.

Gehaltsbestimmung anorganischen Phosphates [47]. Das zu bestimmende Material wurde in zwei Aliquote aufgeteilt und ein Teil enzymatisch entphosphoryliert. Beide Teile wurden gemäss [47] behandelt und danach spektrophotometrisch die Absorptionswerte bestimmt. Aus deren Verhältnis liess sich der Anteil an anorg. Phosphat gegenüber Gesamt-Phosphat bestimmen. Solche Bestimmungen wurden jeweils 3mal durchgeführt.

Die Bezeichnung der entphosphorylierten Zucker im *Exper. Teil* erfolgt gemäss IUPAC-Nomenklaturregeln [62]; z.B. β -D-Ribopyranose = β -D-Ribp.

Exper. zu Schema 2 (s. [2]). – *Bis(cyclohexylammonium)-allyl-phosphat* (1a). Zu einer Lsg. von 1,90 g (19,4 mmol) H₃PO₄ (krist.) und 4,00 g (39,6 mmol) Et₃N in 30,00 g (517 mmol) Allylalkohol wurden 14,40 g (100 mmol) CCl₃CN getropft und 4 h bei 75° gerührt. Nach Abdestillieren des CCl₃CN (75°/*ca.* 30 mbar) wurde die Lsg. i. RV. bei RT. auf 15 ml eingeengt und dann mit 200 ml H₂O versetzt. Die wässr. Lsg. wurde 2mal mit 150 ml Et₂O extrahiert, mit 15 ml (130 mmol) Cyclohexylamin (Chx) versetzt und bei RT. eingedampft. Das weisse Pulver wurde in 50 ml H₂O gelöst und mit Aceton bis zur Trübung versetzt. Nach einigen h bei 4° fiel das Produkt als weisses, amorphes Pulver aus; aus der Mutterlauge wurde mit Aceton weiteres Material gefällt, welches mit der ersten Fällung vereinigt und i. HV. (0,01 Torr) bei RT. bis zur Gewichtskonstanz getrocknet wurde: 5,21 g (76%) 1a als weisses, amorphes Pulver. Schmp. 217–219°. Nach ¹H- und ¹³C-NMR einheitlich. IR (KBr): 2940s, 2860s, 2710m, 2620m, 2560m, 2215m, 1630m, 1560m, 1455m, 1395m, 1070s, 980m, 820m. ¹H-NMR (300 MHz, D₂O): 1,37–2,01 (Signalhaufen, 20 H, ChxNH₃⁺); 3,11–3,21 (*m*, 2 H, ChxNH₃⁺); 4,17 (pseudo-*t*, 2 H–C(1)); 5,19 (*dd*, *J* = 10,5, 1,4, 1 H–C(3)); 5,34 (*dd*, *J* = 17,3, 1,7, 1 H–C(3)); 6,02 (*m*, H–C(2)); die übrigen Kopplungskonstanten gingen aus dem Spektrum nicht hervor. ¹³C-NMR (75 MHz, D₂O): 26,50 (CH₂, ChxNH₃⁺); 26,98 (CH₂, ChxNH₃⁺); 3,01 (CH₂, ChxNH₃⁺); 5,2,97 (CH, ChxNH₃⁺); 6,798 (CH₂(1)); 118,76 (CH₂(3)); 138,00 (CH(2)). ³¹P-NMR (36,5 MHz, D₂O): 20, ¹H-entkoppelt): 3,05 (s, 1 P).

Calcium-glycolaldehyd-phosphat (= Calcium-(formylmethyl)-phosphat; **2a**) durch Ozonolyse von Triethylammonium-allyl-hydrogenphosphat (**1b**) [2] [3]. Zur Überführung von **1a** in **1b** wurden 5,4 g (16 mmol) **1a** in 50 ml H₂O suspendiert und mit *IR 120* (H⁺-Form) 20 min geschüttelt. Es wurde vom IA abfiltriert und mit 150 ml H₂O nachgewaschen. Das Filtrat wurde mit 250 ml Et₂O und 20 ml (144 mmol) Et₃N versetzt, geschüttelt, die wässr. Phase bei RT. eingedampft und 2 h i. HV. getrocknet: farbloses Öl (3,9 g, 15 mmol), gemäss ¹H-NMR (80 MHz, D₂O) **1b**. Dieses Öl wurde in 130 ml MeOH bei -78° solange ozonolysiert, bis die Lsg. intensiv blau war (*ca.* 30 min). Nach Entfernen des überschüssigen O₃ mittels eines N₂-Stromes gab man 5,5 ml Me₂S (75 mmol, 5 equiv.) zu und beliess das farblose Gemisch 24 h bei -20° . Im Eisbad wurde die Lsg. mit 100 ml Eiswasser und 100 ml *IR 120* (H⁺-Form) versetzt und 30 min gerührt. Danach wurde vom IA abfiltriert, mit 400 ml Eiswasser nachgewaschen und bei RT. auf 50 ml eingeengt. Man versetzte mit einer Lsg. von 2,5 g Ca(OAc)₂ (15,8 mmol, 1 equiv.) in 25 ml H₂O und tropfte bei 4^o innert 30 min 50 ml Aceton zu. Die Suspension wurde 14 h bei 4^o aufbewahrt, danach das gebildete Präzipitat mittels Zentrifugation abgetrennt. Durch Versetzen der Mutterlauge mit 30 ml Aceton wurde zusätzliches Präzipitat gewonnen. Die vereinigten Präzipitate wurden in H₂O aufgeschlämmt und lyophilisiert: 2,95 g **2a** (74%); nach ¹H-NMR (D₂O) liegt **2a** als Hydrat vor. Gehalt an **2a** im Präzipitat 78% (¹H-NMR mit Ref. Pentaerythritol), Rest vermutlich H₂O; anorg. Phosphat (vgl. *Allgemeines*) < 5%. DC: R_f 0,52. IR (KBr): 3380s (br.), 3250s (sh), 3160s (sh), 2940w (sh), 2900w (sh), 1720w, 1630w (br.), 1460w (br.), 1420w (br.), 1385w, 1355w, 1290w (br.), 1240w, 1140vs, 1100vs (br.), 1020vs, 920s, 830s (br.), 590s (br.) 540s, 490m, 400w. ¹H-NMR (200 MHz, D₂O/1 Tr. DCl): 3,72 (*dd*, *J* (H–C(2), H–C(1)) = 4,90, *J* (H–C(2), P) = 6,75, 2 H–C(2)); 5,09 (*t*, *J* (H–C(1), H–C(2)) = 4,86, H–C(1)). ¹³C-NMR (75 MHz, D₂O/1 Tr. bCl): 70,48 (*d*, *J* (C(2), P) = 4,7, CH₂(2)); 91,48 (*d*, *J* (C(1), P = 9,3, CH(1)). ³¹P-NMR (121 MHz, D₂O/1 Tr. DCl): 0,91 (¹H-entkoppelt); 0,88 (*t*, *J* (P, H–C(2)) = 6,75, ¹H-gekoppelt). FAB-MS (neg., Glycerin, Ca²⁺-Salz vorgängig in Et₃NH⁺-Salz übergeführt): 419 (9,3 [*M* – 1]), 279 (61, [2 *M* – 1]), 177 (13), 139 (100, [*M* – 1]), 97 (27), 79 (40).

Aldomerisierungsexperimente unter den Bedingungen A wurden mit **2a** durchgeführt, welches durch Ozonolyse von **1a** gewonnen worden war. Die im Produkt mittels ¹H- und ¹³C-NMR nachgewiesenen Restmengen Cyclohexylamin konnten (erstaunlicherweise) nicht durch Behandlung mit saurem *IR 120* (H⁺-Form) entfernt werden. Diese mit Cyclohexylamin verunreinigten Proben von **2a** erwiesen sich beim Aufbewahren als unstabil, indem sie variierende Mengen an Tetrose-2,4-diphosphaten enthielten und sich langsam bräunlich färbten; Details vgl. [2].

Exper. zu Schemata 3 und 4 (s. [2]). - Aldomerisierung von 2a zum Gemisch der rac-Hexose-2,4,6-triphosphate unter den Bedingungen A. a) Ohne IA-Chromatographie (Exper. a in Tab. 1). Das Ca²⁺-Salz 2a (1000 mg, ca. 4,74 mmol; Gehalt an 2a in Gew.-% nach 300-MHz-¹H-NMR: 93%, 7% Ca(OAc)₂) wurde mit 2 ml (ca. 4 mol-equiv.) 10N NaOH zu einem Brei vermischt und 4 Tage bei RT. unter N2 im 10-ml-Schlenkkolben gerührt. Der weisse Brei färbte sich nach wenigen h braun. Nach Zugabe von 40 ml H₂O und Neutralisation mit AcOH wurde die nunmehr klare dunkelbraune Lsg. mit 25 g (ca. 100 mol-equiv.) IR 120 (H⁺-Form) behandelt und dann mit Aktivkohle bei RT. entfärbt (Produkt in Säure-Form). DC: dominanter Startfleck (Hexose-2,4,6-triphosphat) und je eine Spur Edukt (R_f 0,40) und Tetrose-2,4-diphosphat (R_f 0,17). Die farblose Lsg. wurde mit 654 mg (4,14 mmol) festem Ca(OAc)₂ versetzt, welches sich sofort löste, und bei 30° eingedampft. Das farblose Pulver wurde in H₂O gelöst und bei RT. auf etwa 50 ml eingeengt. Durch Zugabe von 100 ml Aceton wurden unter starkem Rühren die Ca²⁺-Salze der Zucker-phosphate ausgefällt. Der Niederschlag wurde abzentrifugiert, in H₂O aufgeschlämmt und dann lyophilisiert. Man erhielt nach Trocknen i. HV. (RT./0,01 Torr, 24 h) 660 mg farbloses Pulver. ¹H-NMR (300 MHz; Zucker-phosphate mit IR 120 (H⁺-Form) in die Säure-Form überführt, 2mal aus D₂O eingeengt; D₂O): 3,60-4,50 (Signalhaufen, nicht-Anomer-Protonen); 4,40 (herausragendes d, J = 8,6, ca. 1 H-equiv. bzgl. Anomerenbereich, Glycolsäure-phosphat, ca. 14 Gew.-% entsprechend); 4,90-5,40 (Anomer-Protonen); 8,00, 8,55, 8,70 (Verunreinigungen, die offenbar aus nicht genügend gereinigtem IR 120 stammen). Davon wurden 80 mg nach Standardverfahren entphosphoryliert. Nach Lyophilisieren und Trocknen i. HV. erhielt man 16,5 mg Zucker-Gemisch.¹H-NMR (300 MHz, D₂O, Fig. 5): 3,10-4,40 (Signalhaufen, nicht-Anomer-Protonen); 4,54-5,39 (Anomer-Protonen; s. Tab. 6 und Exper. a in Tab. 1).

Die Spektren der äquilibrierten, authentischen Referenzproben wurden erhalten, indem die Lsg. von je 10 mg Zucker in 0,5 ml D₂O gelöst und vor der Messung 24 h bei RT. aufbewahrt wurde (D-All, D-Gal, D-Gul, D-Man, D-Glc und D-Tal, *Fluka puriss.*; D-Alt, *Fluka purum*; D-Ido, *Sigma* 95% Reinheit). Die Zuordnung wurde aufgrund der chemischen Verschiebung und der Kopplungskonstanten entsprechender Signale aus den Spektren der Referenzproben der 'freien' Zucker vorgenommen, Details und *Fig.* vgl. [2].

Für die GC-Analyse wurden 4,5 mg des entphosphorylierten Aldolisierungsgemisches nach Standardverfahren (vgl. *Allgemeines*) reduziert, acetyliert und in 2 ml CH₂Cl₂ aufgenommen. GC (Programm *1, Exper. a* in *Tab. 1*): 10,6 (3,5%, Erythritol-tetraacetat *ex rac-*4), 12,2 (6,2%, Threose), 27,0 (30,3%, All), 28,0 (9,2%, Man), 28,6 (18,6% Alt/Tal), 29,3 (2,2% Gal), 31,2 (21,3%, Gul/Glc), 33,8 (4,5%, Ido).

b) Mit IA-Chromatographie (Exper. b in Tab. 1). Unter analogen Bedingungen wurden 204 mg (ca. 0,94 mmol) **2a** zur Reaktion gebracht. Die wässr. Lsg. des Produktgemisches wurde in die Säure-Form überführt und bei RT. auf 50 ml eingeengt. Von dieser Lsg. wurde 1 ml (d.h. ca. 2 mg Produktgemisch) entnommen und nach den eingangs beschriebenen Methoden entphosphoryliert, reduziert und acetyliert. GC (Programm 1, Exper. b in Tab. 1): 10,1 (2,3%, Erythrose), 11,8 (4,4%, Threose), 26,8 (20,6%, All), 27,8 (12,7%, Man), 28,4 (16,8%, Alt/Tal), 29,1 (3,2%, Gal), 31,0 (21,9%, Gul/Glc), 33,7 (4,6%, Ido); s. Fig. 2 für GC eines analog erhaltenen repräsentativen Produktgemischs (vgl. Exper. c in Tab. 1). Die Hauptmenge wurde bei RT. auf 5 ml eingeengt und mittels IA-Chromatographie (ca. 6 ml Dowex 1 × 8, HCO₃-Form) getrennt. Nach Spülen mit 100 ml H₂O eluierte man mit je 50 ml 0,1M, 0,2M, 0,3M, ..., 0,9M, 1,0M Et₃NH(HCO₃)-Pufferlsg. (pH 7,5) mit einem N₂-Überdruck von 0,5–0,6 bar (Fraktionen zu je 25 ml). In den Fr. 7 und 8 (0,1M und 0,2M Puffer) wurde mittels DC ein (offenbar durch Überladung eluiertes) Gemisch aus Glycolaldehyd-phosphat, Tetrose-diphosphaten und Hexose-triphosphaten gefunden. Die Fr. 15–20 (0,7 bis 1,0M Puffer), welche nur Hexose-triphosphate enthielten, wurden vereinigt, mit saurem

Hexose	Authentische Referenzproben (D-Enantiomere; <i>Fluka, Sigma</i>) ^a)		Produktgemisch aus Reaktions- bedingungen A (Exper. a), vgl. Fig. 5		
	δ [ppm]	J [Hz]	δ [ppm]	<i>J</i> [Hz]	
α-Allofuranose	5,36	4,5	5,32	4,5	
β -Allofuranose	5,23	2,2	5,18	< 3	
α-Allopyranose	5,14	3,7	5,10	3,7	
β -Allopyranose	4,88	8,2	4,84	8,2	
α-Gulofuranose	5,29	4,5			
α-Gulopyranose	5,15	3,8			
β -Gulopyranose	4,85	8,4	4,84	8,4	
β -Altrofuranose	5,28	4,6	5,25	> 4	
α-Altrofuranose	5,24	2,5	5,21	2,3	
β -Altropyranose	5,11	1,4	5,07	1,4	
α-Altropyranose	4,98	3,4	4,95	3,8	
α-Mannopyranose	5,08	1,8	5,13	1,8	
β -Mannopyranose	4,80	1,1			
α-Glucopyranose	5,13	3,7			
β -Glucopyranose	4,57	7,9	4,60	7,9	
β -Talofuranose	5,36	4,0	5,33	4,0	
α-Talopyranose	5,27	1,8	5,23	2,0	
α-Talofuranose	5,23	1,4	5,20	< 2	
β -Talopyranose	4,81	1,0			
α-Galactopyranose	5,16	3,5			
β -Galactofuranose	5,12	3,0			
β -Galactopyranose	4,47	7,9	4,54	7,8	
β -Idofuranose	5,32	4,3	5,39	4,0	
α-Idofuranose	5,11	1,2			
β -Idopyranose	4,97	1,6	5,03	2,0	
α-Idopyranose	4,88	6,1	4,95	6,0	
^a) Je 10 mg Zucker in 0,5	ml D ₂ O gelöst und	l die Lsg. vor der Messu	ng 24 h be	i RT. aufbewahrt.	

Tab. 6. ¹H-NMR-Daten (D₂O) der Anomer-Proton-Signale der entphosphorylierten rac-Hexosen

IR 120 (H⁺-Form) behandelt bis der pH-Wert 2 betrug, bei RT. auf 10 ml eingeengt, mit 159 mg (1,00 mmol) festem Ca(OAc)₂ versetzt, welches sich sofort löste, und 5 min gerührt. Die wässr. Lsg. wurde bei RT. eingedampft und der farblose Rückstand zwecks Entfernung überschüssigen Ca(OAc)₂ in 20 ml H₂O/Aceton (4:1) bei RT. digeriert. Das durch Abzentrifugieren gewonnene farblose Material enthielt nach ¹H-NMR noch Spuren von Ca(OAc)₂ und wurde deshalb nochmals auf gleiche Weise digeriert und abzentrifugiert. Das so erhaltene Salz wurde in H₂O aufgeschlämmt und lyophilisiert: 50 mg (0,09 mmol, 29%) Gemisch von Hexose-triphosphaten mit folgenden anal. Daten: ¹H-NMR (300 MHz, D₂O/2 Tropfen DCl): 4,90–5,40 (Anomer-Protonen; vgl. *Fig. 6a* und *Tab. 2*); 3,65–4,60 (Signalhaufen, nicht-Anomer-Protonen). ¹³C-NMR (75 MHz, D₂O/2 Tropfen DCl): 66,4–66,8 (Signalhaufen, C(6)); 70,7–77,2 (Signalhaufen, C(2), C(3), C(4), C(5)); 94,2–95,4 (Signalhaufen, C(1)). ³¹P-NMR (121 MHz, D₂O/2 Tropfen DCl. ¹H-entkoppelt): –0,70 bis 1,10 (Signalhaufen, Erwartung: mindestens 32 Signale). FAB-MS (neg.; Glycerin, Et₃NH⁺-Salze): 839 (16,8, [2 *M* – 1]), 419 (100,0, [*M* – 1]; Hexose-triphosphate in Säureform, *M* 420), 199 (10,5), 177 (32,2), 159 (27,7), 97 (83,0, [*M* – 1]), H₃ PO₄); 91 (21,0, Matrix). Eine Probe von *ca.* 4 mg dieser Hexose-triphosphatfraktion wurde entphosphoryliert, reduziert und acetyliert. GC (Programm *1, Exper. b* in *Tab. 1*): 25,9 (28,3%, All), 26,8 (13,7%, Man), 27,4 (15,4%, Alt/Tal), 28,1 (5,2%, Gal), 30,0 (27,6%, Gul/Gle), 32,7 (4,1%, Ido); keine Signale von Tetrose-diphosphaten.

Epimerisierung von D-Glucose-2,4,6-triphosphat (D-13)¹⁷) zu D-Mannose-2,4,6-triphosphat (D-11). Zu 23 mg (55 μ mol) D-13 als freie Säure wurden bei 0° 130 μ l 12N wässr. NaOH-Lsg. gegeben. Das zähe gelbliche Öl wurde unter N₂ bei RT. 62 h stehen gelassen, dann mit 3 ml H₂O verdünnt und bei 0° zu 5 g *IR* 120 (H⁺-Form) in 5 ml H₂O gegeben. Nach 10 min wurde der IA entfernt und gewaschen, die vereinigte wässr. Lsg. nochmals über 1 g *IR* 120 (H⁺-Form) filtriert, gewaschen und dann lyophilisiert. DC: keine Mono- oder Diphosphate, d.h. es fand keine Phosphat-Hydrolyse statt. ¹H-NMR (300 MHz, D₂O): 3,7-4,6 (Signalhaufen, 6 H, nicht-Anomer-Protonen;

darunter 0,7 H bei 4,3–4,6, nicht von D-13); 4,80 (d, J = 7,3,0,17 H, H–C(1), β -D-13p); 5,00 (s, 0,05 H, H–C(1), β -D-11p); 5,34 (d, J = 1,5,0,28 H, H–C(1), α -D-11p); 5,40 (d, J = 3,4,0,46 H, H–C(1), α -D-13p); entsprechend 66 % D-13 und 34 % D-11. GC nach Derivat-Bildung (Programm 1): 28,4 (24,0%, Man), 31,6 (54,3%, Glc).

Epimerisierung von D-Allose-2,4,6-triphosphat (D-10)¹⁷) zu D-Altrose-2,4,6-triphosphat (D-12). Zu 16 mg (38 µmol) D-10 als freie Säure wurden bei 0° 90 µl 12N wässr. NaOH gegeben. Das zähe Öl wurde unter N₂ bei RT. 110 h stehen gelassen und analog wie oben aufgearbeitet. DC: keine Mono- oder Diphosphate. ¹H-NMR (300 MHz, D₂O): 3,70-4,55 (Signalhaufen, 6 H, nicht-Anomer-Protonen); 4,94 (d, J = 8,0,0,6 H, H–C(1), β -D-10p); 5,07 (br. s, ca. 0,12 H, H–C(1), α/β -D-12p); 5,14 (br. s, ca. 0,12 H, H–C(1), α/β -D-12p); 5,18 (d, J = 3,9, ca. 0,16 H, H–C(1), α -D-10p); entsprechend 75% D-10 und 25% D-12. GC (Programm 1): 27,5 (16,6%, All), 29,0 (5,2%, Alt), (Verunreinigungen bei 20,4 und 21,1).

Epimerisierung von D-Allose-2,4,6-triphosphat $(D-10)^{17}$ zu D-Altrose-2,4,6-triphosphat (D-12) unter Bedingungen B. Ca. 16 mg (0,04 mmol) D-10 (Säureform, lyophilisiert) wurden in 0,5 ml 2N NaOH bei RT. unter N₂ 7 Tage stehen gelassen. Nach Aufarbeitung wie oben wurde das Produktgemisch nach Standardverfahren in die Derivate für die GC-Analyse überführt. GC (Programm 2): 30,4 (96,0%, All), 31,9 (4,0%, Alt).

Aldomerisierung von 2 als Na⁺-Salz zum Gemisch der rac-Hexose-triphosphate unter Bedingungen B (Exper. a in Tab. 3). Eine Aufschlämmung von 200 mg 2a (Gehalt nach ¹H-NMR 85% (0,87 mmol)) in 10 ml H₂O wurde mit IR 120 (H⁺-Form) behandelt bis der pH 2 betrug. Nach Entfernen und Waschen des IA wurde die nun klare Lsg. auf 10 ml eingeengt und mit 2,5 ml 10N NaOH versetzt. Die Lsg. wurde entgast und unter N₂ 7 Tage bei RT. stehen gelassen (nach 1 Tag gelb, später braun). Vor der Aufarbeitung wurde die Lsg. mit IR 120 (H⁺-Form) angesäuert (pH 2). Zur GC-Analyse wurden der braunen Lsg. 5 Vol.-% entnommen und nach Standardvorschrift entphosphoryliert, reduziert und acetyliert. GC (Programm 2, Exper. a in Tab. 3); 13,3 (3,4%, Erythrose), 15,4 (7,2%, Threose), 32,2 (30,1%, All), 33,1 (7,2%, Man), 33,7 (6,0%, Alt/Tal), 34,4 (1,3%, Gal), 36,4 (10,3%, Gul/Glc), 39,2 (1,4%, Ido); s. Fig. 3 für GC eines analog erhaltenen Produktgemisches (vgl. Exper. b in Tab. 3). Die restlichen 95 Vol.-% der Produktlsg. wurden auf 3 ml Dowex 1×8 (HCOO⁻-Form) geladen, mit 50 ml 0,2N HCOOH gespült, mit 600 ml HCOOH/Na(HCOO) Puffer (linearer Gradient von 0,2N HCOOH bis 0,2N HCOOH/0,5N Na(HCOO)) und schliesslich mit 400 ml 0.2N HCOOH/0.5N Na(HCOO) chromatographiert. Dabei wurden gemäss DC, GC und ¹H-NMR Edukt und Tetrose-diphosphate abgetrennt (Fraktionen zu ca. 20 ml). Die Hexose-triphosphate (DC: $R_{\rm f}$ 0,0) wurden vereinigt und zur Entfernung des Puffers 2mal mit IR 120 (H⁺-Form) behandelt und jeweils bei ca. 30° auf 50 ml eingeengt, 5mal mit 200 ml H₂O verdünnt und wieder auf 50 ml eingeengt, nochmals mit IR 120 (H⁺-Form) behandelt, auf 50 ml eingeengt und solange mit 200 ml H₂O verdünnt und eingeengt, bis kein Geruch von HCOOH mehr festgestellt wurde. Nach Lyophilisjeren der Lsg. und Trocknen i. HV. erhielt man 75 mg eines leicht gelblichen Öls, das nach DC nach wie vor Hexose-triphosphate (in der Säure-Form) enthielt. Man überführte dieselben in die Ca²⁺-Salze und fällte mit Aceton nach dem vorher beschriebenen Verfahren aus: 30 mg (ca. 20%) farbloses Pulver. ¹H-NMR (300 MHz, D₂O/2 Tr. DCl): Fremdsignale nur bei 1,92 (AcOH, < 1 Gew.-%) und 8,06 (HCOOH, < 0,2 Gew.-%); Hexose-triphosphate bei 3,80-4,50 (nicht-Anomer-Protonen) und 4,84-5,32 (Anomer-Protonen; ähnlich Fig. 6a) in korrektem Integrationsverhältnis. ¹³C-NMR (75 MHz, D₂O/2 Tropfen DCl): 67,0-67,6 (Signalhaufen, CH₂(6)); 71,1-78,2 (Signalhaufen, CH(2), CH(3), CH(4), CH(5)); 93,6-95,5 (Signalhaufen, CH(1)); 23,0 und 168,3 (AcOH). ³¹P-NMR (121 MHz, D₂O, ¹H-entkoppelt): -0,82 bis 0,82 (Signalhaufen). FAB-MS (neg.; 3-NOBA, Et₃NH⁺-Salze): 839 (14, [2 M - 1]), 419 (100 [M - 1]), 306 (13), 281 (14), 202 (39), 200 (32), 189 (72), 168 (28), 159 (17), 153 (79), 138 (13), 127 (25), 122 (18), 97 (46, [M-1] H₃PO₄), 79 (32). Eine Probe von 4 mg der Hexose-triphosphate als Ca²⁺-Salze wurde für die GC-Analyse wie üblich entphosphoryliert, reduziert und acetyliert. GC (Programm 2): 30,7 (39,2%, All), 31,6 (11,4%, Man), 32,2 (22,6%, Alt/Tal), 32,8 (3,9%, Gal), 35,1 (16,6%, Gul/Glc), 38,7 (2,3%, Ido); Summe (Hexosen) 96%.

Aldomerisierung von 2 als Na⁺-Salz zum Gemisch der rac-Hexose-triphosphate unter den Bedingungen B mit Pentaerythritol als internem Standard zur Ausbeutebestimmung (Exper. c in Tab. 3). Eine Aufschlämmung von 200 mg 2a (Gehalt nach ¹H-NMR 85% (0,87 mmol)) in 10 ml H₂O wurde wie oben mit *IR 120* (H⁺-Form) behandelt bis der pH-Wert 2 betrug. Nach Entfernen und Waschen des IA wurde die auf 10 ml eingeengte Lsg. mit 10,9 mg (0,08 mmol) Pentaerythritol und 2,5 ml 10N NaOH versetzt. Die Reaktion wurde wie oben durchgeführt und im Laufe der Aufarbeitung anstelle der Fällung als Ca²⁺-Salz die Lsg. mit *IR 120* (Na⁺-Form) neutralisiert und das Produktgemisch als Na⁺-Salz Jyophilisiert: 173,6 mg braunes Pulver. ¹H-NMR (300 MHz, D₂O): dominierendes Signal 3,49 (s, Pentaerythritol); 3,60–4,60 (nicht-Anomer-Protonen; herausragend 3,70 (dd, J = 4,9, 6,8, H–C(2), 2, Na⁺-Salz), 4,22 (d, J = 7,3 H–C(2), Glycolsäure-phosphat) und 4,50 (t, J = 2,8, H–C(3), β-rac-10p)); 4,80– 5,70 (mehrere d, Anomer-Protonen, Aldehydhydrat-Protonen); 2,63 (s, DMSO, < 0,8 Gew.-%); 7,50–8,00 (Spuren von Verunreinigungen von *IR 120*); der Anteil an *rac*-10 im Produktgemisch wurde ausgehend vom Integral des t bei 4,50 (J = 2,8, H–C(3), β-rac-10p), dem Signal der Referenz Pentaerythritol und dem Gleichgewichtsverhältnis der α/β -D-Allose-triphosphate (22:78) in wässr. Lsg., das aus dem Referenzspektrum des synthetisierten **D-10**¹⁷) bekannt ist, zu 0,089 mmol berechnet. GC (Programm 2, *Exper. c* in *Tab. 3*): 12,6 (1,9%, Erythrose), 14,6 (3,7%, Threose), 20,7 (21,4%, Pentaerythritol), 31,1 (31,8%, All), 31,9 (7,1%, Man), 32,6 (17,0%, Alt/Tal), 33,2 (1,2% Gal), 35,3 (9,0%, Gul/Glc), 38,0 (2,0%, Ido); aus dem dem GC entnommenen Anteil an All (46,7%) der Hexosen (100%) errechnet sich der Gesamt-Hexose-triphosphat-Anteil des Gemisches zu 0,190 mmol (66% bzgl. eingesetztem **2a**). Ausgehend vom ¹H-NMR-Integral bei 5,07 (t, J = 4,9, H–C(1), **2**), wurden für **2** 0,087 mmol (10%) berechnet. Der Gehalt an Glycolsäure-phosphat im Produktgemisch wurde anhand des ¹H-NMR-Integrals bei 4,22 (d, J = 7,3, H–C(2), Glycolsäure-phosphat) zu 0,022 mmol (2,5%) berechnet. Die Berechnung der Tetrose-diphosphat-Ausbeute wurde anhand der GC-Daten durchgeführt: dort entsprachen 21,4% FID-Anzeige einer Menge von 10,9 mg Pentaerythritol, demnach berechnet man für 5,6% Tetrosen eine Menge von 2,85 mg (0,023 mmol, 5,4%). Bei der Kontrolle der Ausbeute der Hexose-triphosphate ausschliesslich aufgrund der GC-Daten erheilt man ebenfalls 66%. Somit wurde von den 0,87 mmol eingesetzten **2a** insgesamt 84,9% wiederge-funden in Form von Hexose-triphosphaten (66%), Tetrose-diphosphate (5,4%), **2a** (10%) und Glycolsäure-phosphat (2,5%).

Aldomerisierung von 2a zum Gemisch der rac-Tetrose-diphosphate unter den Bedingungen C. Eine Aufschlämmung von 230 mg **2a** (Gehalt nach ¹H-NMR 85%, 1,0 mmol) in 4,0 ml 1N NaOH wurde 7 Tage bei RT. unter N_2 stehen gelassen. Danach wurde das immer noch heterogene Gemisch mit IR 120(H⁺-Form) behandelt und vom IA befreit. Nach Waschen des IA wurden die vereinigten wässr. Lsgn. bei RT. auf ca. 100 ml eingeengt. Von der klaren, braunen Lsg. des Produktgemisches (freie Säuren, pH 2), welche bei -20° aufbewahrt wurde, wurden 5 ml zur GC-Analyse der Derivat-Bildung unterworfen (zuerst Reduktion mit NaBH4, dann Entphosphorylierung und Acetylierung (um partielle Dealdolisierung der Tetrose-diphosphate in alkalischem Milieu zu vermeiden)). GC: (Programm 2, Fig. 4): 13,4 (23,5%, Erythrose), 15,6 (25,4%, Threose), 32,4 (15,3%, All), 33,3 (4,7%, Man), 33,9 (3,5%, Alt/Tal), 34,6 (0,8%, Gal), 36,6 (6,6% Gul/Glc), 39,4 (0,6%, Ido). Aus einem analog durchgeführten Versuch wurden 40 Vol.-% der Produktgemisch-Lsg. (64 ml) bei RT. auf 15 ml eingeengt und an 4 ml Dowex 1×8 (HCOO⁻-Form) chromatographiert. Nachdem der IA mit 100 ml 0,2N HCOOH gespült, die 15 ml Produktgemisch mit 15 ml 0,2N HCOOH-Lsg. verdünnt und aufgetragen worden war, spülte man vorerst mit 50 ml 0,2N HCOOH-Lsg., bevor man mit einem Gradienten von 300 ml 0,2N HCOOH bis 0,2N HCOOH/0,25N Na(HCOO)-Lsg. chromatographierte. Da laut DC die Tetrose-diphosphate noch nicht vollständig eluiert waren, wurde mit weiteren 200 ml 0,2N HCOOH/0,25N Na(HCOO) bis 0,2N HCOOH/0,5N Na(HCOO) in Fraktionen von 20-25 ml chromatographiert. Nach DC enthielten die Fr. 14-20 Tetrose-diphosphate. Die Fr. 13-20 wurden vereinigt (230 ml) und zum grössten Teil (160 ml davon) durch mehrmaliges Einengen aus etwa 300 ml wässr. Lsg., Behandeln mit IR 120 (H⁺-Form) und Polyacrylamidgel-Chromatographie vom Puffer befreit. Die Ausbeute an Tetrose-diphosphaten als Na⁺-Salze nach Lyophilisieren betrug 34 mg. Farbloses Pulver. ¹H-NMR (300 MHz, D₂O): 5,02 (d, J = 4,6, 0,65 H, H–C(1), rac-5); 5,07 (d, J = 1,6, 0,35 H, H–C(1), rac-4); 3,60–4,15 (Signalhaufen, ca. 12 H, nicht-Anomer-Protonen); Fremdsignale bei 4,09 (d, J = 5,9, ca. 1 H, Signalhaufen überlagernd, Glycolsäure-phosphat); ca. 7 H-equiv. (nicht zugeordnet) bei 3,60–4,15. ¹³C-NMR (75 MHz, D₂O): 67,8 (d, J = 5, CH₂(4), rac-5); 68,0 (d, J = 5, CH₂(4), rac-4); 72,8 (t, J = 8, CH(3), rac-5); 73,0 (t, J = 5, CH(3), rac-4); 77,5 (d, J = 6, CH(2), rac-5); 78,4 (d, CH(2), rac-4); 91,8 (s, CH(1), rac-4); 92,4 (s, CH(1), rac-5); 64,5, 64,7 (unbekannte Verunreinigung); Zuordnung der Signale im ¹H- und ¹³C-NMR durch Vergleich mit Referenzspektren von D-4 und D-5¹⁷).

Verhalten von synth. D-Erythrose-2,4-diphosphat $(D-4)^{17}$ unter Bedingungen B [3]. In 1,1 ml 2N NaOH wurden 13 mg D-4 $(Na^+)_2$ -Salz (ca. 0,05 mmol; synth. Materiał, ca. 10 mol-% Glucose-4,6-diphosphat enthaltend) gelöst und unter Ar bei RT. stehengelassen. In verschiedenen Abständen wurden 0,1 ml entnommen und mittels *IR 120* (H⁺-Form) entsalzt. Daraufhin wurde das Gemisch für die GC-Analyse jeweils der Derivat-Bildung unterworfen (zuerst Reduktion, dann enzymatische Entphosphorylierung und Acetylierung). GC: s. Schema 5. Aus dem GC des Produktgemisches nach 1 Woche Reaktionsdauer wurde folgendes normierte Verhältnis (FID) der Hexosen ermittelt: 50,1% All, 7,9% Man, 26,7% Alt/Tal, 2,9% Gal, 10,6% Gul/Glc, 1,7% Ido.

Exper. zu Schema 7. – rac-Glycerinaldehyd-2-phosphat (rac-3) durch Aldolisierung von Formaldehyd mit 2. Eine Suspension von **2a** in H₂O wurde mit *IR 120* (H⁺-Form) versetzt, geschüttelt und filtriert. Das (saure) Filtrat wurde mit *IR 120* (Na⁺-Form) versetzt, filtriert und lyophilisiert : **2** als Na⁺-Salz. Eine Lsg. von 100 mg (0,62 mmol) davon in 5 ml H₂O wurde mit 0,5 ml Formalin-Lsg. (36,5%; *ca.* 6,2 mmol, *ca.* 10 mol-equiv.; *Fluka*) und dann mit 0,65 ml 1N NaOH versetzt (pH 10,7) und bei RT. unter Ar 6 Tage gerührt. Daraufhin wurden 3 ml H₂O und 1 g *IR 120* (H⁺-Form) filtriert. Das (saure) Filtrat wurde auf *DEAE*-Cellulose (HCO₃⁻-Form, 1 × 20 cm) geladen und mittels eines Et₃NH(HCO₃)-Puf-fers (pH 8; Gradient von 0–0,1m) chromatographiert. Die produkt-haltigen Fraktionen (DC) wurden eingedampft, der Rückstand (farbloser Schaum) in 8 ml H₂O gelöst und durch 10 ml *IR 120* (Na⁺-Form) filtriert. Nach Waschen mit 20 ml H₂O wurde das Filtrat bei RT. eingedampft und lyophilisiert: 85,6 mg (66%) *rac-3* (Na⁺-Salz). Farbloser

Schaum. ¹H-NMR (300 MHz, D₂O): 3,67 (*dd*, J(H-C(3),H-C(2)) = 5,2, J(H-C(3),H'-C(3)) = 12,4, H-C(3)); 3,72 (*dd*, J(H'-C(3),H-C(2)) = 4,2, J(H'-C(3),H-C(3)) = 12,4, H'-C(3)); 3,98 (*ddt*, J(H-C(2),H-C(1)) = 4,2, J(H-C(2),H'-C(3)) = 4,2, J(H-C(2),H-C(3)) = 5,2, J(H-C(2),P) = 9,1, H-C(2)); 5,01 (*d*, J(H-C(1),H-C(2)) = 4,2, H-C(1) des Hydrats von *rac*-3); daneben sehr schwaches *d* (0,06 H) der Aldehyd-Form von *rac*-3 bei 9,15 (J(H-C(1),H-C(2)) = 2,9) sowie einige sehr schwache Fremdsignale (evtl. von dimeren Formen) bei 3,9, 5,1, 5,7 und 6,1. ¹³C-NMR (75 MHz, D₂O): 63,7 (CH₂(3)); 80,4 (*d*, J(C(2),P) = 5,4, CH(2)); 91,7 (*d*, J(C(1), P) = 5,4, CH(1) des Hydrats); daneben schwache Fremdsignale bei 64, 84, 86 und 110. ³¹P-NMR (121 MHz, D₂O): 0,85 (P des Hydrats); daneben schwache Fremdsignale bei 0,96, 1,33 und 1,36. FAB-MS (neg.; Glycerin): 169 (24, [M - 1]).

Aldolisierung von rac-3 mit 2 (orientierender Versuch). Eine Lsg. von 35 mg (0,09 mmol) rac-3 (Et₃NH⁺-Salz aus oben beschriebener Chromatographie) und 14 mg (0,09 mmol) 2 (Na⁺-Salz) in 2,4 ml 2N NaOH wurde unter Ar bei RT. 2 Wochen gerührt. Dann wurde bei 0° *IR 120* (H⁺-Form) zugegeben, gerührt, vom IA abfiltriert, bei RT. auf 3 ml eingeengt, enzymatisch entphosphoryliert, reduziert und acetyliert. GC (Programm 2): 5,96 (8,2%, Glycerinaldehyd), 20,34 (43,3%, Rib), 21,01 (33,1%, Ara/Lyx), 24,96 (7,5%, Xyl); Summe (zugeordnete Aldose-Derivate) 92,1%; mehrere schwache Signale im Hexose-Bereich nicht zugeordnet.

Exper. zu Schema 8 und 9 (s. [3]). - Aldomerisierung von Glycolaldehyd-phosphat (2; Na⁺-Salz) und Formaldehyd zu rac-Pentose-2,4-diphosphaten. In 15 ml entgastem H₂O wurden 1000 mg (4,0 mmol) 2a (Gehalt 78,4%) suspendiert und mit ca. 10 ml IR 120 (H⁺-Form) versetzt. Die Suspension wurde 20 min geschüttelt; danach wurde vom IA abfiltriert und mit 120 ml entgastem H2O gewaschen. Das Filtrat wurde bei RT. auf 20 g Lsg. eingeengt, mit 10 ml (0,1 mol) 10 NaOH versetzt, 3 mal i. HV. ausgefroren, jeweils mit N_2 begast und daraufhin mit 20 ml (2,0 mmol, 0,5 mol-equiv.) 0,102M Formalin-Lsg. (Gehalt durch iodometrische Titration [61] ermittelt) versetzt. Die klare Lsg. wurde bei RT. unter N₂ im verschlossenen Kolben stehengelassen (nach 3 h goldgelb, nach 4 Tagen gelbbraun). Nach 1 Woche wurden 5 ml (von insgesamt 50 ml) der Reaktionslsg. mit 5 ml H₂O verdünnt und zusammen mit 5 ml IR 120 (H⁺-Form) 10 min geschüttelt. Daraufhin wurde vom IA abfiltriert, mit ca. 25 ml H₂O gewaschen und bei RT. auf ca. 10 ml eingeengt. Die bräunliche Lsg. wurde mit 3 ml IR 120 (Na⁺-Form) versetzt, 10 min geschüttelt, filtriert und lyophilisiert: 98,1 mg Produktgemisch (Na⁺-Salze) als oranges Pulver, welches mittels ¹H-NMR, ¹³C-NMR, ³¹P-NMR, FAB-MS (neg.) sowie, nach enzymatischer Entphosphorylierung, mittels ¹H-NMR (Tab. 4) und GC (Fig. 7, Tab. 4) charakterisiert wurde (Charakterisierungsprobe A, vgl. unten). In einem analog durchgeführten Experiment wurde in diesem Lyophilisat ein Anteil von $33 \pm 2\%$ anorg. Phosphat gegenüber Gesamt-Phosphat bestimmt (vgl. Allgemeines). Von der verbliebenen Reaktionslsg. wurden 44 ml (ebenfalls nach 1 Woche Reaktionszeit) mit 25 ml IR 120 (H⁺-Form) versetzt und 30 min geschüttelt. Daraufhin wurde vom IA abfiltriert und mit ca. 200 ml H₂O gewaschen. Das (saure, goldgelbe) Filtrat wurde bei RT. auf 50 ml eingeengt und auf *Dowex 1 × 8* (200–400 mesh, HCO₃⁻-Form, 1 × 14 cm) geladen. Es wurde zuerst mit 50 ml H₂O, dann mit 1,51 Et₁NH(HCO₃)-Puffer (pH 7,6, linear Gradient von 0–0,6M) und noch mit je 50 ml desselben Puffers (0,7, 0,8, 0,9, 1,0M) chromatographiert (Fraktionen von je 50 ml, Analyse im DC (Sprühlsg.)). Die rac-Pentose-diphosphate $(R_{\rm f}, 0, 27)$ eluierten bei einer Pufferkonz. von 0,2–0,45M und die rac-Hexose-triphosphate $(R_{\rm f}, 0, 13)$ bei 0,5–0,9M. Als Vorlauf eluierten bei 0,1-0,25M Fraktionen, die nach DC mindestens 4 (nicht weiter untersuchte) Komponenten, vermutlich Monophosphat-Derivate, enthielten (R_f 0,77, 0,70, 0,65, 0,38). Die vereinigten Pentose-diphosphat-haltigen Fraktionen wurden zwecks Entsalzung zweigeteilt, beide Teile 4mal mit je 30 ml IR 120 (H⁺-Form) versetzt, ca. 10 min geschüttelt, dann vom IA abfiltriert und mit ca. 500 ml H₂O gewaschen. Das Filtrat wurde bei RT. auf je 50 ml eingeengt und hierauf wieder vereinigt. Die (saure, gelbe) Lsg. wurde mit ca. 30 ml IR 120 (Na⁺-Form) versetzt, 20 min geschüttelt, vom IA abfiltriert, bei RT. auf 50 ml eingeengt und lyophilisiert: 293 mg Pentose-diphosphat-Fraktion (gemäss ¹H-NMR noch ca. 6 Gew.-% Et₃N enthaltend) als gelblicher, fester Schaum (geschätzte Ausbeute ca. 40% Pentose-diphosphate ((Na⁺)₂-Salze), bzgl. 2a bzw. Formaldehyd). Diese Fraktion wurde mittels ¹H-NMR, ¹³C-NMR, ³¹P-NMR, FAB-MS (neg.) sowie, nach enzymatischer Entphosphorylierung, mittels ¹H-NMR (Fig. 8, Tab. 7), ¹³C-NMR (Fig. 9, Tab. 8) und GC (Tab. 4) charakterisiert (Charakterisierungsprobe B, vgl. unten). Zur weiteren Reinigung wurden vom eben beschriebenen Lyophilisat 18 mg an Polyacrylamidgel (16×500 mm, 1.6 kg/cm²) mit entgastem, ultrafiltriertem H₂O chromatographiert. Dabei eluierte zunächst etwas Produkt in der Et₃NH⁺-Form, danach Produkt in der Na⁺-Form, daraufhin unbekanntes Nebenprodukt und Verunreinigung aus dem IA. Das Produkt in der Na⁺-Form wurde lyophilisiert: 12,1 mg (67% Chromatographie-Ausbeute) rac-Pentose-diphosphate (Na⁺-Salze) als farbloses Pulver, welches mittels ¹H-NMR (Fig. 10, Tab. 4 und 5) und ¹³C-NMR (Fig. 11) sowie, nach enzymatischer Entphosphorylierung, mittels GC (Fig. 12, Tab. 4) charakterisiert wurde (Charakterisierungsprobe C, vgl. unten). In einem analogen, zur Bestimmung der Ausbeute durchgeführten Ansatz wurde ein Aliquot dieses Lyophilisats mit gewogenen Mengen an NaOBz und NaOAc versetzt und im ¹H-NMR (300 MHz, D₂O) durch Vergleich der Integrale der Anomer-Protonen mit denjenigen der 2 Standardsubstanz-Signale die mol-equiv. an rac-Pentose-2,4-diphosphaten bestimmt. Daraus liess sich eine Ausbeute von 23% rac-Pentose-2,4-diphosphaten (nach IA- und Polyacrylamidgel-Chromatographie) ermitteln (bzgl. 2a), davon ca. 11% rac-Ribose-2,4-diphosphat (rac-6). die Hexose-triphosphat-haltigen Fraktionen aus der IA-Chromatographie wurden ebenfalls vereinigt. Die (bräunliche) Lsg. wurde 5mal mit je 30 ml IR 120 (H⁺-Form) versetzt, ca. 10 min geschüttelt, vom IA abfiltriert und mit ca. 500 ml H2O gewaschen, das Filtrat bei RT. auf ca. 50 ml eingeengt, mit 30 ml IR 120 (Na⁺-Form) 20 min geschüttelt, vom IA abfiltriert, das Filtrat bei RT. auf ca. 50 ml eingeengt und lyophilisiert: 136 mg Hexose-triphosphat-Fraktion (nach ¹H-NMR noch ca. 11 Gew.-% Et₃N enthaltend) als braunes Pulver (geschätzte Ausbeute ca. 20% Hexose-triphosphate ($(Na^+)_3$ -Salze, bzgl. 2a). Dieses Produkt wurde mittels ¹H-NMR und FAB-MS (neg.) sowie, nach enzymatischer Entphosphorylierung, mittels ¹H-NMR, ¹³C-NMR und GC charakterisiert (*Charakterisierungsprobe D*, vgl. unten). Von diesem Lyophilisat wurden 36 mg an Polyacrylamidgel (16×500 mm, 1,6 kg/cm²) mit entgastem, ultrafiltriertem H₂O chromatographiert. Dabei eluierte zunächst wiederum etwas Produkt in der Et₃NH⁺-Form, danach Produkt in der Na⁺-Form, daraufhin verschiedene unbekannte Verunreinigungen sowie Material, das aus dem IA stammte. Das Produkt in der Na⁺-Form wurde lyophilisiert: 20,2 mg (56% Chromatographie-Ausbeute) rac-Hexose-triphosphate (Na⁺-Salze) als leicht gelbes Pulver, welches mittels ¹H-NMR (Fig. 6b), ¹³C-NMR und ³¹P-NMR charakterisiert wurde (Charakterisierungsprobe E, vgl. unten).

Charakterisierungsprobe A (Produktgemisch). ¹H-NMR (300 MHz, D₂O): 3,50-4,65 (Signalhaufen, 6,1 H, nicht-Anomer-Protonen); 4,80-5,40 (viele Signale unterschiedlicher Intensität, def. = 1,00 H, Anomer-Protonen, darunter das d von β -rac-6p (= β -rac-Ribopyranose-2,4-diphosphat) bei 4,85 (J = 7,63, ca. 0,18 H)); Fremdsignale bei: 1,10–3,40 (mehrere Signalhaufen, nicht zugeordnet, 1,7 H); 4,17 (d, J = 6,9, ca. 0,17 H, H–C(2) Glycolsäure-phosphat); 7,50-8,10 (mehrere Signale, 0,1 H, Material aus IA). ¹³C-NMR (75 MHz, D₂O): 60-70 (Signalhaufen, CH₂(ω) der Zucker); 70-80 (Signalhaufen, Bereich der übrigen Zucker-CH); 94-97 (8 teilweise schlecht aufgelöste Signale unterschiedlicher Intensität, Anomer-CH); Fremdsignale bei 38-44 (mehrere schwache Signale, CH₂, nicht zugeordnet); ca. 183 (Signalhaufen geringer Intensität, C, Glycolsäure-phosphat). ³¹P-NMR (121 MHz, D₂O, ¹H-entkoppelt): -0,5 bis 4,5 (Signalhaufen). FAB-MS (neg.; Glycerin; Na⁺-Salze in die Et₁NH⁺-Salze überführt): 419 (33, [M - 1] der Hexose-triphosphate), 309 (74, [M - 1] der Pentose-diphosphate), 201 (17), 199 (17), 195 (18, [2 M - 1] von H₃PO₄), 177 (49, $[2 M - H_2O - 1]$ von H₃PO₄), 159 (32, $[2 M - 2H_2O - 1]$ von H₃PO₄), 139 (10), 97 (98, [M - 1] von H₃PO₄), 79 (100, [M - H₂O - 1] von H₃PO₄). Vom lyophilisierten Rohprodukt wurden 39,2 mg enzymatisch entphosphoryliert und aufgearbeitet (vgl. Allgemeines): 8,8 mg farbloses Öl. ¹H-NMR (300 MHz, D₂O; vgl. Tab. 4): 3,10-4,30 (Signalhaufen, 6,8 H, nicht-Anomer-Protonen); 4,40-5,35 (viele Signale unterschiedlicher Intensität, def. = 1,00 H, Anomer-Protonen; darunter die d von α -rac-Arap bei 4,43 $(J = 7,73, 0,06 \text{ H}), \beta$ -rac-Xylp bei 4,49 $(J = 7,85, 0,05 \text{ H}), \beta$ -rac-Ribp bei 4,84 $(J = 6,55, 0,20 \text{ H}), \alpha$ -rac Lyxp bei 4,92 (J = 4,52, 0,11 H); 1,20-2,65 (mehrere Signalhaufen, 0,5 H, nicht zugeordnet). Für die GC-Analyse wurde die Hälfte dieser NMR-Probe (4,4 mg) reduziert und acetyliert (vgl. Allgemeines). GC (Programm 2, vgl. Fig. 7, Tab. 4): 5,81 (2,6%, Glycerinaldehyd), 13,74 (0,6%, Erythrose), 15,84 (2,2%, Threose), 23,94 (33,1%, Rib), 24,57 (26,1%, Ara/Lyx), 28,67 (6,8%, Xyl), 32,59 (9,8%, Ali), 33,54 (2,3%, Man), 34,15 (5,0%, Alt/Tal), 34,79 (0,7%, Gal), 36,84 (2,8%, Glc/Gul), 39,58 (0,4%, Ido); Summe (zugeordnete Aldosen) 92,4%.

Charakterisierungsprobe B (Pentose-diphosphat-Fraktion nach IA-Chromatographie). ¹H-NMR (300 MHz, D₂O): 3,30-4,50 (Signalhaufen, 5,0 H, nicht-Anomer-Protonen); 4,60-5,60 (mehrere Signale, def. = 1,00 H, Anomer-Protonen; darunter die d von β -rac-9p bei 4,61 (J = 7,21, 0,05 H), α -rac-8p bei 4,64 (J = 6,18, 0,06 H), β -rac-6p bei 4,88 (J = 7,21, 0,32 H), α -und β -rac-7p bei 5,01 (J = 5,20, 0,22 H), α -rac-6p bei 5,06 (J = 3,39, $(0,10 \text{ H}), \alpha$ -rac-9p bei 5,27 ($J = 3,49,0,05 \text{ H}), \beta$ -rac-8p bei 5,29 (J = 3,14, ca.0,07 H)); Fremdsignale bei 1,20 (t, 1,9H, CH_3 , Et_3N); 1,80–3,00 (mehrere Signalhaufen, 0,2 H); 3,10 (q, 1,3 H, CH_2 , Et_3N); 5,20 (t, J = 2, 0,03 H); 5,50 (t, J = 2, 0,04 H); 7,50–8,10 (mehrere Signale, 0,1 H, Material aus IA). ¹³C-NMR (75 MHz, D₂O): 59–69 (10 Signale unterschiedlicher Intensität, $CH_2(\omega)$ der Zucker); 69–80 (18 Signale unterschiedlicher Intensität, übrige Zucker-CH); 93-98 (6 Signale unterschiedlicher Intensität, Anomer-CH); Fremdsignale bei 11 (CH₃, Et₃N); 49 (CH₂, Et₃N); 107-132 (mehrere schwache Signale); 179 (C). ³¹P-NMR (121 MHz, D₂O, ¹H-entkoppelt): +0,4 bis 1,5 (Signalhaufen). FAB-MS (neg.; Glycerin; Na⁺-Salze in die Et₃NH⁺-Salze überführt): 309 (100, [M - 1] der Pentose-diphosphate), 211 (10), 201 (12), 199 (25), 177 (45, $[2 M - H_2O - 1]$ von H_3PO_4), 159 (45, $[2M - 2H_2O - 1]$ von H₃PO₄), 139 (10), 97 (62, [M - 1] von H₃PO₄), 79 (74, $[M - H_2O - 1]$ von H₃PO₄). Von der lyophilisierten Pentose-diphosphat-Fraktion wurden 82,9 mg enzymatisch entphosphoryliert und aufgearbeitet: 23,4 mg rac-Pentosen als farbloses Öl. ¹H-NMR (300 MHz, D₂O; vgl. Fig. 8, Tab. 4 und 7): 3,10-4,20 (Signalhaufen, 5,4 H, nicht-Anomer-Protonen); 4,40-5,30 (verschiedene d, def. = 1,00 H, Anomer-Protonen (vgl. *Tab.* 7): 4,41 (J = 7,74, 0,09 H, α -rac-Arap); 4,47 (J = 7,88, 0,07 H, β -rac-Xylp); 4,76 (J = 1,75, 0,17 H, β -rac-Lyxp/ α -rac-Ribp); 4,82 (J = 6,55, 0,29 H, β -rac-Ribp); 4,90 (J = 4,52, 0,17 H, α -rac-Lyxp); 5,09 (J = 3,67, 0,03 H, α -rac-Xylp); 5,13 (J = 3,40, ca. 0,05 H, β -rac-Arap); 5,12–5,18 (br. s, ca. 0,06 H, mehrere Furanosen)).

pm]	J [Hz]	ð [ppm]	
		o [bbm]	J [Hz]
5	1,83	4,76	1,75 ^a)
2	6,59	4,82	6,55
1	7,75	4,41	7,74
3	3,48	5,13	3,40
)	3,66	5,09	3,67
7	7,87	4,47	7,88
)	4,44	4,90	4,52
5	1,49	4,76	1,75 ^a)
	6 2 1 3 9 7 0 6	6 1,83 2 6,59 1 7,75 3 3,48 9 3,66 7 7,87 0 4,44 6 1,49	6 $1,83$ $4,76$ 2 $6,59$ $4,82$ 1 $7,75$ $4,41$ 3 $3,48$ $5,13$ 9 $3,66$ $5,09$ 7 $7,87$ $4,47$ 0 $4,44$ $4,90$ 6 $1,49$ $4,76$

Tab. 7. ¹H-NMR-Daten (D₂O) der Anomer-Proton-Signale der entphosphorylierten rac-Pentosen

Tab. 8. ¹³C-NMR-Daten (75 MHz, D₂O) der Charakterisierungsprobe B^a)

	δ [ppm]				
	C(1)	C(2)	C(3)	C(4)	C(5)
α-Ribopyranose	96,13	72,64	71,85	69,96	65,58
β -Ribopyranose	96,43	73,61	71,59	69,82	65,58
α-Arabinopyranose	99,41	74,49	75,10	71,11	69,01
β -Arabinopyranose	95,20	71,11	71,24	71,31	65,10
α-Xylopyranose	94,88	74,10	75,46	72,03	63,58
β -Xylopyranose	99,28	76,69	78,47	71,85	67,82
α-Lyxopyranose	96,70	72,64	73,13	70,18	65,70
β -Lyxopyranose	96,85	72,64	75,29	69,15	66,81
α-Ribofuranose			72,64		63,88
β -Ribofuranose				85,14	65,10

^a) Fremdsignale bei 65,26, 72,88 und 74,25 ppm. Die Zuordnung der Signale zum jeweiligen Zucker erfolgte durch Vergleich mit den Spektren der (käuflichen) Zucker. Die Zuordnung der Signale zum jeweiligen C-Atom erfolgte gemäss [45], wobei die Signale gegenüber [45] um jeweils 1,1 ppm tieffeld-verschoben sind.

Tab. 9. Prozentuale Gleichgewichtszusammensetzung (authentischer) Aldopentosen in wässr. Lsg. bei RT.

 $(c = 0, 1 \text{ M})^{a})$

	α-p-Pyranose	8-D-Pyranose	α-D-Furanose	B-D-Furanose	
				p-D-1 uranose	
Ribose	19,3	61,4	7,0	12,3	
Arabinose	60,6	35,2	4,2		
Xylose	34,1	65,3	0,6		
Lyxose	70,1	28,0	1,9		

^a) Durch ¹H-NMR (300 MHz, D₂O, 22°, 3 Tage bei RT. äquilibriert) bestimmt aufgrund der Integral-Intensität des jeweiligen Anomer-Proton-Signals. Zuordnung gemäss [46].

¹³C-NMR (75 MHz, D₂O; *Fig. 9*): *Tab. 8*. Von diesem Material wurden 10 mg reduziert und acetyliert. GC (Programm 2; vgl. *Tab. 4*): 13,74 (0,7%, Threose), 15,85 (2,7%, Erythrose), 23,95 (47,4%, Rib), 24,57 (37,2%, Ara/Lyx), 28,67 (9,6%, Xyl); Summe (zugeordnete Aldosen) 97,6%.

Charakterisierungsprobe C (Pentose-diphosphat-Fraktion nach IA- und Polyacrylamidgel-Chromatographie). ¹H-NMR (300 MHz, D₂O; vgl. Fig. 10, Tab. 4 und 5): 3,20–4,45 (Signalhaufen, 5,0 H, nicht-Anomer-Protonen);

1465

4,60–5,40 (mehrere d, def. = 1,00 H, Anomer-Protonen (vgl. Tab. 5): 4,62 (J = 7,47, ca. 0,03 H, β -rac-9p); 4,65 (J = 6,13, ca. 0,06 H, α -rac-8p); 4,89 (J = 7,25, 0,32 H, β -rac-6p); 5,02 (J = 5,06, 0,22 H, α - und β -rac-7p); 5,06 (J = 3,16, 0,11 H, α -rac-6p); 5,28 (J = 3,50, 0,06 H, α -rac-9p); 5,29 (J = 3,15, 0,11 H, β -rac-8p)). ¹²C-NMR (75 MHz, D₂O; vgl. Fig. 11): 59,4–68,5 (8 Signale unterschiedlicher Intensität, CH₂(ω) der Zucker, darunter die Signale von rac-6 bei 59,37 (br. s), 64,54 (d, J = 4,9)); 69,9–80,3 (17 Signale unterschiedlicher Intensität, übrige Zucker-CH, darunter die Signale von rac-6 bei 71,41 (br. s), 71,99 (d, $J \approx 5$), 72,57 (d, $J \approx 6$), 73,25 (d, J = 4,9), 76,98 (d, $J \approx 5$)); 93,6–98,4 (7 Signale unterschiedlicher Intensität, Anomer-CH, darunter die Signale von rac-6 bei 71,41 (br. s), 71,99 (d, $J \approx 5$), 72,57 (d, $J \approx 6$), 73,25 (d, J = 4,9), 76,98 (d, $J \approx 5$)); 93,6–98,4 (7 Signale unterschiedlicher Intensität, Anomer-CH, darunter die Signale von rac-6 bei 71,41 (br. s), 71,99 (d, $J \approx 5$), 72,57 (d, $J \approx 6$), 73,25 (d, J = 4,9), 76,98 (d, $J \approx 5$)); 93,6–98,4 (7 Signale unterschiedlicher Intensität, Anomer-CH, darunter die Signale von rac-6 bei 70,40 ($J \approx 6,3$)). Von diesem Material wurden 10 mg enzymatisch entphosphoryliert und für die GC-Analyse reduziert und acetyliert. GC (Programm 2, vgl. Fig. 12, Tab. 4): 13,72 (0,5%, Erythrose), 15,82 (0,5%, Threose), 23,90 (46,9\%, Rib), 24,54 (39,4\%, AraLyx), 28,61 (9,7\%, Xyl); Summe (Aldosen) 97,0\%.

Charakterisierungsprobe D (Hexose-triphosphat-Fraktion nach IA-Chromatographie). ¹H-NMR (300 MHz, D₂O): 3,50-4,65 (Signalhaufen, 6,3 H, nicht-Anomer-Protonen); 4,75-5,40 (13 Signale, def. = 1,00 H, Anomer-Protonen); Fremdsignale bei 1,20 (t, 5,4 H, CH₃, Et₃N); 1,80-3,00 (mehrere Signalhaufen, 1,0 H, nicht zugeordnet); 3,10 (q, 3,5 H, CH₂, Et₃N); 7,50–8,10 (mehrere Signale, 0,1 H, Material aus IA). FAB-MS (neg.; Glycerin; Na⁺-Salze in die Et₃NH⁺-Salze übergeführt): 839 (10, [2 M - 1] der Hexose-triphosphate), 431 (10), 419 (100, [M-1] der Hexose-triphosphate), 321 (12), 309 (18), 177 (36, $[2 M - H_2O - 1]$ von H_3PO_4), 159 (28, $[2 H_2O - 1]$) $M - 2H_2O - 1$ von H₃PO₄), 97 (93, [M - 1] von H₃PO₄), 79 (79, $[M - H_2O - 1]$ von H₃PO₄). Von der lyophilisierten Hexose-triphosphat-Fraktion wurden 72,9 mg enzymatisch entphosphoryliert und aufgearbeitet: 15,2 mg Hexosen als farbloses Öl. ¹H-NMR (300 MHz, D₂O): 3,00-4,40 (Signalhaufen, 6,0 H, nicht-Anomer-Protonen); 4,50-5,30 (mehrere, teilweise schlecht aufgelöste d, def. = 1,00 H, Anomer-Protonen); mehrere Fremdsignale bei 1,00-2,65 (0,7 H). ¹³C-NMR (75 MHz, D₂O): 63,3-68,7 (13 Signale verschiedener Intensität, CH₂(ω) der Zucker); 69,2-84,8 (Signalhaufen, übrige Zucker-CH); 90,4-98,5 (mehrere Signale unterschiedlicher Intensität, Anomer-CH); Fremdsignale bei 34,0-39,0 (mehrere schwache Signale CH₂, nicht zugeordnet); 182,0 (C, nicht zugeordnet). Für die GC-Analyse wurden von diesem Material 10 mg reduziert und acetyliert. GC (Programm 2): 32,8 (39,1%, All), 33,7 (12,3%, Man), 34,3 (14,3%, Alt/Tal), 35,0 (1,5%, Gal), 37,0 (11,3%, Glc/Gul), 39,7 (1,7%, Ido); Summe (Hexosen) 80,3%.

Charakterisierungsprobe E (Hexose-triphosphat-Fraktion nach IA- und Polyacrylamidgel-Chromatographie). ¹H-NMR (300 MHz, D₂O; vgl. Fig. 6b): 3,50–4,60 (Signalhaufen, 6,1 H, nicht-Anomer-Protonen); 4,60–5,40 (mehrere Signale, def. = 1,00 H, Anomer-Protonen, darunter die d von β -rac-10p bei 4,92 (J = 8, 12, 0,24 H), α und β -rac-12p bei 5,07 (br. s, 0,04 H)/5,10 (br. s, 0,06 H), α -rac-10p bei 5,18 (J = 2,52, 0,09 H), α -rac-11p bei 5,25 (J = 1,91, 0,11 H) und α -rac-13p bei 5,36 (J = 3,65, 0,03 H)); Fremdsignale bei 1,70–2,30 (0,8 H, nicht zugeordnet). ¹³C-NMR (75 MHz, D₂O): 66,1–68,6 (Signalhaufen, CH₂(ω) der Zucker); 70,6–77,1 (Signalhaufen, übrige Zucker-CH); 93,4–95,5 (6 teilweise nicht aufgelöste Signale, Anomer-CH); Fremdsignale bei 38,2–49,3 (mehrere schwache Signale, CH₂, nicht zugeordnet). ³¹P-NMR (121 MHz, D₂O, ¹H-entkoppelt): -1,9 bis 2,2 (Signalhaufen).

Bestimmung der Ausbeute an rac-Ribose-2,4-diphosphat (rac-6) im Produktgemisch. 1) ¹H-NMR-spektroskopisch: In zwei dem vorstehend beschriebenen Versuch analogen Experimenten wurde, nach entsalzender Neutralisation mit IR 120 (H⁺-Form) und IR 120 (Na⁺-Form) sowie anschliessender Lyophilisation, ein Aliquot des Produktgemisches mit bekannten Mengen NaOBz und DSS versetzt. Aus dem Vergleich der Integrale der zwei Standardsubstanz-Signale mit demjenigen des Anomer-Protons des β -rac-Ribopyranose-2,4-diphosphats und dem bekannten Gleichgewicht seiner zwei anomeren Formen in wässr. Lsg. (vgl. Fig. 10, Tab. 5) wurden die mol-equiv. rac-6 im Produktgemisch und daraus die Ausbeute ermittelt. In zwei unabhängigen Bestimmungen erhielt man so eine Ausbeute an rac-6 von 15 bzw. 14% (bzgl. 2a und Formaldehyd). 2) GC-analytisch: In drei dem vorstehend beschriebenen Versuch analogen Experimenten wurde der Reaktion eine bekannte Menge Pentaerythritol zugesetzt. Nach üblicher Derivat-Bildung wurden im GC durch Vergleich der FID-Anzeige des Pentaerythritol-tetraacetats mit denjenigen der Alditol-acetate deren (Gewichts-)Anteile im Produktgemisch und daraus ihre Ausbeuten bestimmt. Vorgängig wurde der Anzeige-Faktor zwischen Pentaerythritol und Ribose bestimmt und als Basis für die Ausbeutebestimmung von sämtlichen Zuckern benützt. Durchschnitts-Ausbeuten aus drei unabhängigen Bestimmungen (bzgl. 2a): Glycerinaldehyd 1%, Tetrosen 2%, Pentosen 33% (davon Ribose 16%), Hexosen 15%, Summe 51%.

Exper. zu Fig. 13 (s. [3]). – Bestimmung des Diastereoisomerenverhältnisses der rac-Pentose-2,4-diphosphate nach verlängerter Reaktionszeit. In einem dem vorstehend beschriebenen Versuch analogen Experiment wurde dem Reaktionsgemisch eine bekannte Menge an Pentaerythritol zugesetzt. Zu verschiedenen Zeiten (1, 8, 17, 23 Wochen) wurden je 2 ml Gemisch entnommen, entsalzend neutralisiert (*IR 120*, H⁺-Form, dann *IR 120*, Na⁺-Form), lyophilisiert, enzymatisch entphosphoryliert, entsalzt und getrocknet. Das so erhaltene Produktgemisch

Reaktionszeit	Pentose-2,4- diphosphat	Nach GC der Pentitol-pentaacetate		Nach ¹ H-NMR der
		Ausbeute ^b)	Anteile	Pentosen ^c)
1 Woche	Ribose	16,6	49,2	51
	Arabinose	135	40,0	14
	Lyxose	} 15,5		24
	Xylose	3,6	10,8	11
Summe		33,7	100,0	100
8 Wochen	Ribose	11,8	35,0	33
	Arabinose	} 17,8	52,8	25
	Lyxose			27
	Xylose	4,1	12,2	15
Summe		33,7	100,0	100
17 Wochen	Ribose	8,0	25,0	25
	Arabinose	} 19,2	60,0	32
	Lyxose			27
	Xylose	4,6	15,0	16
Summe		31,8	100,0	100
23 Wochen	Ribose	6,7	22,4	22
	Arabinose	} 19,0	63,0	34
	Lyxose			30
	Xylose	4,4	14,6	14
Summe		30,1	100,0	100

Tab. 10. Prozentuale Zusammensetzung des rac-Pentose-2,4-diphosphat-Gemisches bei verlängerter Reaktionszeit^a)

^a) Gleichzeitig mit der GC-Bestimmung der Pentosen wurden auch entsprechende Daten f
ür das Verh
ältnis von rac-10 zum Gemisch von rac-12 und rac-15 gewonnen. Dieses fiel vom Wert 2:1 (1 Woche) auf ca. 1:1 (17 Wochen).

b) Ausbeute mittels Pentaerythritol als internem Standard ermittelt.

^c) Anteile im ¹H-NMR-Spektrum durch Vergleich der Integrale der jeweiligen Anomer-Proton-Signale bestimmt.

wurde mittels ¹H-NMR (300 MHz, D₂O) analysiert (analog dem Vorgehen mit *Charakterisierungsprobe A*, d. h. Bestimmung der relativen Anteile der *rac*-Pentose-diphosphate durch Vergleich der Integral-Intensitäten ihrer Anomer-Proton-Signale unter Berücksichtigung der Gleichgewichtszusammensetzung). Dann wurde jeweils die Hälfte des entphosphorylierten Rohprodukts reduziert und acetyliert. Im GC wurden das Diastereoisomerenverhältnis der (entphosphorylierten, reduzierten und acetylierten) Zucker-phosphate sowie, durch Vergleich ihrer FID-Anzeige mit derjenigen des Pentaerythritol-tetraacetats, ihre jeweilige Absolut-Menge bestimmt (Zusammenfassung der ¹H-NMR- und GC-Resultate in *Tab. 10* unten). Nach 8 Wochen wurde im Gemisch 39 \pm 2% anorg. Phosphat (bzgl. Gesamt-Phosphat) bestimmt (vgl. *Allgemeines*). Nach 23 Wochen wurden zusätzlich 5 ml des Reaktionsgemischs durch IA-Chromatographie (Bedingungen analog beschriebener Chromatographie) getrennt, die Pentose-diphosphat-haltigen Fraktionen vom Puffer befreit, in die Na⁺-Salze überführt und lyophilisiert: 24 mg Pentose-diphosphat-Fraktion als farbloses Pulver mit folgendem ¹H-NMR (300 MHz, D₂O): 3,30–4,45 (Signalhaufen, 4,3 H, nicht-Anomer-Protonen); 4,55–5,47 (mehrere Signale unterschiedlicher Intensität, def. = 1,00 H, Anomer-Protonen, darunter die d von β -*rac*-9p bei 4,59 (J = 7,41, 0,035 H), α -*rac*-8p bei 4,62 (J = 6,42, 0,10 H), β -*rac*-6p bei 4,87 (J = 7,47, 0,12 H), β -*rac*-7p bei 4,59 (J = 2,00, 0,05 H), α -*rac*-7p bei 5,01 (J = 5,14, 0,16 H), α -*rac*-6p bei 5,04 (J = 3,44, 0,04 H), α -*rac*-9p bei 5,26 (J = 3,90, 0,07 H), β -*rac*-8p bei 5,27 (J = 3,35, 0,135 H)); Fremdsignale bei 1,5–2,9 (mehrere Signalhaufen, 0,6 H); 4,13 (d, J = 6,2, ca. 0,25 H: Glycolsäure-phosphat); 5,15 (t, J = 1,5, 0,06 H); 5,18, 5,19, 5,23 (3d, je $J \approx 1,5, 0,03 \text{ H})$; 5,37, 5,49 (2d, je J = 1,0, 0,06 H); 5,5 (t, J = 2,0, 0,05 H), ca. 6,65 (4s, 0,10 H); ca. 7,45 (4s, 0,07 H); bei 1,2 (t, 0,6 H) und 3,1 (q, 0,4 H) Signale von nicht vollständig entferntem Et₃N. Es handelt sich nach wie vor um das Spektrum eines Gemisches der 4 rac-Pentose-2,4-diphosphate (gegenüber der *Charakterisierungsprobe B* mit verschiedenen Anteilen, vgl. *Fig. 13*). Aufgrund der gegenüber dem Spektrum jener Probe neuen Fremdsignale (intensiverer Signalhaufen bei 1,5–2,9; 3dbei 5,18, 5,19 und 5,23; 2d bei 5,37, 5,49; 4s um 6,65; 4s um 7,45) hat sich das Gemisch nur in untergeordnetem Masse (auf nicht identifizierte Weise) konstitutionell verändert.

Epimerisierung von D-Ribose-2,4-diphosphat $(D-6)^{17}$ zu D-Arabinose-2,4-diphosphat (D-8) unter Standardbedingungen. Einer Lsg. von 37,5 mg D-6 (ca. 0,1 mmol, $c \approx 0,04M$) in 2,5 ml 2N NaOH, bei RT. unter Ar stehengelassen, wurde nach verschiedenen Zeiten ein Aliquot von je 0,1 ml entnommen, entsalzt (*IR 120*, H⁺-Form), enzymatisch entphosphoryliert, reduziert und acetyliert. Gemäss GC-Analyse finden sich im Gemisch D-6 und D-8 zu folgenden Anteilen: 95:5 (1 Woche Reaktionsdauer), 85:15 (3 Wochen), 78:22 (5 Wochen), 69:31 (8 Wochen), 59:41 (12 Wochen). Es wurden keine anderen Signale beobachtet.

Epimerisierung von D-Xylose-2,4-diphosphat $(D-9)^{17}$ zu D-Lyxose-2,4-diphosphat (D-7) unter Standardbedingungen. Analog vorgängigem Experiment wurde ein Versuch mit 24 mg (ca. 0,06 mmol, $c \approx 0,04$ M) D-9 durchgeführt. Gemäss GC finden sich im Gemisch D-9 und D-7 zu folgenden Anteilen: 85:15 (1 Woche Reaktionsdauer), 74:26 (2 Wochen), 66:34 (3 Wochen), 54:46 (5 Wochen). Es wurden keine anderen Signale beobachtet. Die Epimerisierung von 9 erfolgt also rascher als jene von 6. In einem zusätzlichen Experiment (Bedingungen analog, aber 5N NaOH, zwecks höherer Reaktionsgeschwindigkeit) wurden im ¹H-NMR die δ sowie die J der Anomer-Proton-Signale von D-7 bestimmt (Tab. 7).

LITERATURVERZEICHNIS

- [1] E. Wagner, Yi-Bin Xiang, K. Baumann, J. Gück, A. Eschenmoser, Helv. Chim. Acta 1990, 73, 1391.
- [2] D. Müller, 'Aldomerisierung von Glycolaldehyd-phosphat zu *rac*-Hexose-2,4,6-triphosphaten', Dissertation, ETH Zürich, in Vorbereitung.
- [3] S. Pitsch, Dissertation, ETH Zürich, in Vorbereitung.
- [4] A. Eschenmoser, Angew. Chem. 1988, 100, 5; ibid. Int. Ed. 1988, 27, 5.
- [5] a) J. Oró, Biochem. Biophys. Res. Commun. 1960, 2, 407; J. Oró, A. P. Kimball, Arch. Biochem. Biophys. 1961, 94, 217; b) J. P. Ferris, L. E. Orgel, J. Am. Chem. Soc. 1966, 88, 1074.
- [6] A. Butlerow, C. R. Séances Acad. Sci. 1861, 53, 145; Ann. Chem. 1861, 120, 295.
- [7] O. Loew, J. Prakt. Chem. 1886, 33, 321; Chem. Ber. 1888, 21, 270; ibid. 1889, 22, 470.
- [8] E. Fischer, Chem. Ber. 1888, 21, 988; E. Fischer, F. Passmore, ibid. 1889, 22, 359; E. Fischer, ibid. 1890, 23, 370.
- [9] T. Mizuno, A.H. Weiss, Adv. Carbohydr. Chem. Biochem. 1974, 29, 173; R.F. Socha, A.H. Weiss, M.M. Sakharov, J. Catal. 1981, 67, 207.
- [10] a) E. Pfeil, G. Schroth, Chem. Ber. 1952, 84, 293; b) E. Pfeil, H. Ruckert, Liebigs Ann. Chem. 1961, 641, 121;
 c) H. Ruckert, E. Pfeil, G. Scharf, Chem. Ber. 1965, 98, 2558.
- [11] W. Langenbeck, Tetrahedron 1958, 3, 185; W. Langenbeck, K.-H. Krüger, K. Schwarzer, J. Welker, J. Prakt. Chem. 1956, 3, 196.
- [12] R. Breslow, Tetrahedron Lett. 1959, 21, 22.
- [13] A. H. Weiss, V. A. Seleznev, M. M. Sakharov, O. V. Krylov, Y. B. Gorokhovatsky, N. P. Evmenenko, J. Catal. 1977, 48, 354.
- [14] Y. Shigemasa, M. Shimao, C. Sakazawa, T. Matsuura, Bull. Chem. Soc. Jpn. 1977, 50, 2138; Y. Shigemasa, T. Fujitani, C. Sakazawa, T. Matsuura, *ibid.* 1977, 50, 1527.
- [15] P. Decker, H. Schweer, R. Pohlmann, J. Chromatogr. 1982, 244, 281.
- [16] G. Harsch, H. Bauer, W. Voelter, Liebigs Ann. Chem. 1984, 623.
- [17] W.P. Huskey, I.R. Epstein, J. Am. Chem. Soc. 1989, 111, 3157.
- [18] J. Castells, F. Geijo, F. López-Calahorra, Tetrahedron Lett. 1980, 4517; J. Castells, F. López-Calahorra, F. Geijo, Carbohydr. Res. 1983, 116, 197.
- [19] T. Matsumoto, S. Inoue, J. Chem. Soc., Chem. Commun. 1983, 171; T. Matsumoto, H. Yamamoto, S. Inoue, J. Am. Chem. Soc. 1984, 106, 4829.
- [20] Y. Shigemasa, Y. Sasaki, N. Ueda, R. Nakashima, Bull. Chem. Soc. Jpn. 1984, 57, 2761.

- [21] A.I. Oparin, 'Origin of Life', 2. Aufl., Dover Publications, N.J., 1953, S. 124.
- [22] S.L. Miller, Science 1953, 117, 528; J. Am. Chem. Soc. 1955, 77, 2351.
- [23] S. L. Miller, L. Orgel, 'The Origins of Life on the Earth', Prentice-Hall, Englewoods Cliffs, N.J., 1974.
- [24] A.J. Zaug, T.R. Cech, Science 1986, 231, 470; C. Guerrier-Takada, K. Gardiner, T. Marsh, N. Pace, S. Altman, Cell 1983, 35, 849.
- [25] L. Orgel, J. Theor. Biol. 1986, 123, 127.
- [26] R. Shapiro, Origins Life Evol. Biosphere 1988, 18, 71; vgl. auch R. Shapiro, 'Origins A Sceptic's Guide to the Creation of Life on Earth', Summit Books, N.J., 1986.
- [27] S.L. Miller, Cold Spring Harbor Symp. Quant. Biol. 1987, 52, 17.
- [28] F. H. Westheimer, Science 1987, 235, 1173.
- [29] G. Ksander, G. Bold, R. Lattmann, C. Lehmann, T. Früh, Yi-Bin Xiang, K. Inomata, H.-P. Buser, J. Schreiber, E. Zass, A. Eschenmoser, *Helv. Chim. Acta* 1987, 70, 1115.
- [30] L. Orgel (Salk-Institute, La Jolla, CA), Privatmitteilung an A. E, 1990.
- [31] a) A. L. Fluharty, C. E. Ballou, J. Biol. Chem. 1959, 234, 2517; b) E. Racker, V. Klybas, M. Schramm, J. Biol. Chem. 1959, 234, 2510.
- [32] C. Noe, E. Wagner (Institut f
 ür Organische Chemie, TU Wien), unveröffentlichte Arbeiten; vgl. E. Wagner, 'Chiralitäts
 übertragung durch Acetalgruppen beim Aufbau von Kohlenhydraten', Dissertation, Techn. Univ., Wien, 1985.
- [33] E. Fischer, K. Landsteiner, Ber. Dtsch. Chem. Ges. 1892, 25, 2549.
- [34] L. Hough, J. K. N. Jones, J. Chem. Soc. 1951, 1122, 3191.
- [35] F. D. Cramer, G. Weimann, Chem. Ind. 1960, 46.
- [36] P. Fleury, J. Courtois, A. Desjobert, Bull. Soc. Chim. Fr. 1948, 694.
- [37] C. E. Ballou, Arch. Biochem. Biophys. 1958, 78, 328.
- [38] T. Anastassiades, R. Puzic, O. Puzic, J. Chromatogr. 1981, 225, 309.
- [39] E. Wagner, A. Kittaka, D. Müller, unveröffentlichte Arbeiten aus unserem Laboratorium.
- [40] S. Pitsch, K. Atsumi, unveröffentlichte Arbeiten aus unserem Laboratorium.
- [41] A. Kittaka, E. Wagner, unveröffentlichte Arbeiten aus unserem Laboratorium.
- [42] C. B. Warren, R. D. Minard, C. N. Matthews, J. Org. Chem. 1974, 39, 3375.
- [43] N. Hird, D. Müller, S. Pitsch, unveröffentlichte Arbeiten aus unserem Laboratorium.
- [44] J.P. Richard, J. Am. Chem. Soc. 1984, 106, 4926; R. Iyengar, I.A. Rose, ibid. 1983, 105, 3301.
- [45] M.J. King-Morris, A.S. Serianni, J. Am. Chem. Soc. 1987, 109, 3501.
- [46] S.J. Angyal, Adv. Carbohydr. Chem. Biochem. 1984, 42, 15.
- [47] B. N. Ames, Meth. Enzymol. 1966, 8, 115.
- [48] H. B. Bürgi, J. D. Dunitz, E. Shefter, Acta Crystallogr., Sect. B 1974, 30, 1517; H. B. Bürgi, J. D. Dunitz, J. M. Lehn, G. Wipf, Tetrahedron 1974, 30, 1563.
- [49] S.E. Denmark, B.R. Henke, J. Am. Chem. Soc. 1989, 111, 8032.
- [50] J.E. Dubois, M. Dubois, Tetrahedron Lett. 1967, 4215; J. Chem. Soc., Chem. Commun. 1968, 1567; J.E. Dubois, P. Fellmann, Tetrahedron Lett. 1975, 1225.
- [51] C. H. Heathcock, C. T. Buse, W. A. Kieschick, M. C. Pirrung, J. E. Sohn, J. Lampe, J. Org. Chem. 1980, 45, 1066; C. H. Heathcock, in 'Asymmetric Synthesis', Ed. J. D. Morrison, Academic Press, New York, 1984, Vol. 3, S. 111–212.
- [52] D.A. Evans, J.V. Nelson, T.R. Taber, in 'Topics in Stereochemistry', Eds. N.L. Allinger und E. Eliel, Wiley-Interscience, New York, 1983, Vol. 13, S. 1.
- [53] S. Masamune, W. Choy, J.S. Petersen, L.R. Sita, Angew. Chem. 1985, 97, 1; ibid. Int. Ed. 1985, 24, 1.
- [54] D. Seebach, J. Golinski, Helv. Chim. Acta 1981, 64, 1413.
- [55] H. E. Zimmermann, M. D. Traxler, J. Am. Chem. Soc. 1957, 79, 1920.
- [56] S. Drenkard, J. Ferris, A. Eschenmoser, Helv. Chim. Acta 1990, 73, 1373.
- [57] I. Weissbuch, L. Addadi, L. Leiserowitz, M. Lahav, J. Am. Chem. Soc. 1988, 110, 561.
- [58] A. Eschenmoser, M. Dobler, in Vorbereitung.
- [59] H.J. Roth, M. Böhringer, J. Hunziker, M. Göbel, R. Krishnan, C. Leumann, A. Eschenmoser, in Vorbereitung.
- [60] C. Leumann, H.J. Roth, M. Böhringer, J. Hunziker, M. Göbel, R. Krishnan, F. Giger, A. Eschenmoser, in Vorbereitung.
- [61] J. Mitchell, I. M. Kolthoff, E. S. Proskauer, A. Weissberger, 'Organic Analysis', Interscience, New York, 1953, Vol. 1, S. 267.
- [62] IUPAC/IUB, J. Biol. Chem. 1982, 257, 3347; Biochemistry 1971, 10, 3983; Pure Appl. Chem. 1982, 54, 1517.