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1 Einfiihrung

1.1 Einleitung

Amelia Earhart war die erste Frau, die alleine um den atlantischen Ozean geflogen ist. Allerdings
verschwand sie wihrend eines spéteren Fluges {iber den Pazifischen Ozean 1937 und ist seit dem,
zumindest offiziell, nicht mehr aufgetaucht. Ihr verdankt folgende Anwendung in R ihren Namen,
welche sich ebenfalls mit dem Problem des Fehlens beschéftigt. Und obwohl Amelia Earhart trotz
intensiver Bemiihungen nicht mehr gefunden wurde, bietet das R-Paket Amelia eine mogliche Lo-
sung zu diesem Problem. Fehlende Daten kommen immer wieder in statistischen Analysen vor
und konnen statistische Prozeduren erheblich beeinflussen. Sobald ein Datensatz vorliegt, kann
es zu einzelnen oder mehrfachen Datenliicken kommen. Die Frage, wie mit eben solchen fehlenden
Daten umzugehen ist, ergibt keine eindeutige Antwort und muss vom Datenanalyst immer wie-
der neu erwégt und hinterfragt werden. Diese Thesis beschiftigt sich mit der Imputation solcher
fehlender Werte. Die Untersuchung erfolgt an Simulationsdatenséitzen; die zu untersuchenden
Daten, die Kovariablenmatrix X und die Reponsevariablen werden im Verlauf der Thesis (im-
mer wieder neu) simuliert. Die fehlenden Werte, die innerhalb des Simulationsprozesses generiert
werden, werden wiederum mittels Amelia und einem Random-Forest Ansatz imputiert. Anschlie-
kend werden mehrere Regressionen durchgefithrt. Anhand der zuriickgehaltenen wahren Werte
konnen die verschiedenen Modelle miteinander verglichen werden. Der Vergleich erfolgt sowohl
beziiglich der Imputationen, als auch der Regressionen, sodass mit den wahren Parametern be-
ziehungsweise den eigentlichen Werten die Schitzfehler bestimmt werden kénnen. Weiterhin soll
der Einfluss einiger Parameter, wie dem Stichprobenumfang oder der Anzahl an Ziehungen des
Responsevektors, untersucht werden. Um die Methoden dieser Prozeduren ndher erldutern zu
konnen, miissen zundchst die Regularien zum Thema der fehlenden Daten erldutert werden.

1.2 Thematik

Wie [8] ausfiihrlich analysiert, wird in diesem Kontext von fehlenden Daten genau dann gespro-
chen, wenn wahre Informationen in Form von wahren Werten vorliegen, aber nicht verfiigbar
oder nicht beobachtet sind. Fiir die entsprechende Beobachtung liegt demnach keine Information
der entsprechenden Variable vor. Zunéchst sollte daher auf einige Muster und Mechanismen von
fehlenden Werten in Daten eingegangen werden. Folgende Informationen, Definitionen und No-
tationen sind daher aus 8] entnommen. Sei D eine n x ¢ Datenmatrix und d(, j) der Eintrag der
Variable j von Beobachtung i aus D, wobei i € {1,...,n} und j € {1,...,q} in welcher fehlende
Werte auftreten. Sei M die dementsprechende fehlende Daten-Matrix, sodass gilt:

N 17 fCLllS d(z,j) fehlend > d(l,_]) c D(mzss)
(4.3) — 0, sonst & dg gy € D(obs)

M gibt demnach fiir jede Variable j zu jeder Beobachtung ¢ an, ob der jeweilige Wert vorliegt oder
nicht. Das Fehlen der Daten kann nach [10] in folgende Mechanismen eingeteilt werden, welche
den Zusammenhang zwischen dem Fehlen der Daten und den Daten selbst definieren. Falls das
Fehlen der Daten nicht von den fehlenden Werten abhéngt, also f(M|D, ¢) = f(M|¢) gilt, kann
von Missing Completely At Random, oder kurz MCAR gesprochen werden. In diesem Fall
héngt das Fehlen der Werte nicht von den Daten D ab, sondern nur von einem unbekannten
Parameter ¢. Weder die beobachteten noch die fehlenden Teile der Daten beeinflussen demnach
die Wahrscheinlichkeit des Fehlens. Das einfache Ignorieren aller Beobachtungen mit fehlenden
Werten beziehungsweise nur der fehlenden Werte selbst wére eine Option, da die Daten nur
rein zufillig fehlen, und somit keine Information in den fehlenden Daten selbst verloren ginge.
Falls das Fehlen der Werte mit den fehlenden Daten selbst zusammenhéngt, spricht man von
Not Missing At Random, oder NMAR. Die Information der fehlenden Beobachtungen kann
nicht akkurat wiedergewonnen werden, da diese nicht in den beobachteten Daten vorhanden sein



muss. Eine Imputation der fehlenden Werte ist demnach schwierig, da keine Anhaltspunkte in
den beobachteten Daten vorhanden sein miissen. Ein weiterer Mechanismus von fehlenden Daten
ist Missing At Random(MAR). Falls das Fehlen der Werte zwar an den Daten selbst, jedoch
nur mit den beobachteten Daten zusammenhéngt, spricht man von MAR. MCAR impliziert
somit MAR, welches auch wie folgt ausgedriickt werden kann: p(M|D) = p(M|D*). p(M)
bedingt auf die Daten D entspricht also der gleichen Wahrscheinlichkeit, wie wenn diese nur auf
die beobachteten Daten D bedingt ist. Weiterhin kann MAR. auch folgendermafen definiert
werden:

F(M|D,¢) = f(M|D ¢), vDmss) o

Man gehe zum Beispiel von einer Umfrage per Fragebogen aus, bei dem nicht ausgefiillte
Fragen auftreten. MCAR. setzt voraus, dass das Fehlen der Daten nicht im Zusammenhang
mit den Daten selbst steht. Falls zum Beispiel ein paar der Umfragebdgen rein zufillig verloren
gehen, fehlen die dementsprechenden Antworten, was jedoch nichts mit den verlorenen gegan-
genen Daten selbst zu tun hat. MAR bedeutet, dass das Fehlen mit den beobachteten Daten
zusammenhingt. Falls zum Beispiel das Geschlecht der Probanden immer feststeht, aber Manner
bestimmte Fragen mit hoherer Wahrscheinlichkeit nicht beantworten wollen, héngt das Fehlen
zwar von den Daten ab, aber nur von der beobachteten Variable (Geschlecht). Von NMAR
spricht man, falls das Fehlen der Daten auch mit den fehlenden Daten selbst zusammenhéngt.
Arbeiter mit hoherem Gehalt kdnnten sich deswegen schimen und die dementsprechende Frage
iiber Gehalt auslassen. Somit hingt das Fehlen dieses Wertes mit diesem Wert selbst zusam-
men. Eine mogliche Schatzung des Gehalts wire somit unterschitzt und damit verzerrt. Da viele
statistische Prozeduren vollstéindige Datensétze benétigen, gibt es einige Ansétze zum Umgang
mit fehlenden Daten. Die einfachste Methode wire das Ignorieren von Beobachtungen, in denen
mindestens eine Variable nicht vorliegt.(Complete-Case- Analysis). Diese Methode kann aber zu
erheblichen Bias fiihren, falls die fehlenden Werte von den iibrigen Werten abweichen. Zudem
fiihrt die Complete-Case-Analysis zu einer Reduzierung des Stichprobenumfangs, was zu einem
deutlichen Informationsverlust fithren kann, vor allem wenn fehlende Werte in mehreren Varia-
blen auftreten. Zudem wird, sofern man von einem M AR-Mechanismus in den Daten ausgeht,
die eigentliche Information des Fehlens, welche sich noch in den Daten befindet, nicht beriick-
sichtigt. Eine weitere einfache Alternative bietet die Awailable-Case-Analysis. Hier werden nur
die einzelnen fehlenden Werte nicht beriicksichtigt, alle anderen verfiigbaren Daten gehen in die
Untersuchung ein. Je nach Fragestellung wird demnach auf alle interessierenden verfiigharen Da-
ten zuriickgegriffen, sodass fiir unterschiedliche Probleme verschiedene Subdatensétze verwendet
werden. Somit sind unterschiedliche Modelle aufgrund unterschiedlicher Datengrundlagen weni-
ger vergleichbar. Diese beiden Methoden versuchen, mit den iibrigen beobachteten Werten zu
arbeiten. Daher sind diese Ansétze besonders sinnvoll, falls nur wenige der Daten fehlen. Ein
weiterer Ansatz, bei dem die Dimension der Datenmatrix unverindert bleibt, ist die Imputati-
on der Daten. Die fehlenden Werte werden hierbei geschétzt. Single Imputation ersetzen jeden
fehlenden Wert durch einen Schitzwert. Als Schitzung bietet sich zum Beispiel der Mittelwert
(Mean-Imputation) oder Median der jeweiligen Variable an. Diese kénnen aber, wie [6] berich-
tet, zu Verzerrung, vor allem beziiglich Varianz- und Kovarianzschitzungen, fithren. Multiple
Imputation-Methoden verwenden komplexere Strukturen, um einen fehlenden Wert zu schétzen.
Zudem werden in multiplen Imputationsschritten mehrere Schitzungen generiert, sodass entwe-
der mehrere Datensiitze entstehen oder die Schitzungen zu einem Schétzwert generiert werden.
Zur tieferen mathematischen Analyse dieser Methode kann, neben [8] auch [4] hinzugezogen
werden, welche auch iiber weitere Methoden zum Umgang mit fehlenden Daten berichten. In
dieser Thesis werden zwei multiple Imputationsmethoden verwendet, um die fehlenden Daten zu
schitzen. Zunéchst soll auf Amelia eingegangen werden.



2 Methoden

2.1 Amelia

Amelia ist ein R-Paket, dass zur multiplen Imputation von fehlenden Daten benutzt wird und
von James Honaker, Gary King und Metthew Blackwell entwickelt wurde. Gegeniiber einfachen
Methoden wie der bereits zuvor beschriebenen Complete-Case-Analysis soll Amelia via multipler
Imputation den Bias verringern und die Effizienz steigern. Daher soll zunichst der Aufbau von
Amelia naher erldutert werden. Dieser Abschnit basiert auf [6]. Zunédchst nimmt Amelia multi-
variat normalverteilte Daten an. Fiir einen Datensatz D mit den Dimensionen (n x ¢) wird also
angenommen:
D~ N(,¥)

D folgt somit einer multivariaten Normalverteilung mit Erwartungswertvektor p und Kovarianz-
matrix ¥. Die weitere Annahme Amelias betrifft den Mechanismus des Fehlens von Daten. Dabei
wird von MAR ausgegangen. Verbindet man beide Annahmen und geht zudem davon aus, dass
M nicht von den vollstdndigen Daten Parametern abhéngt, fiir 0 = (u, %), gilt:

p(D*, M|6) = p(M|D**)p(D*"|6)

Dann folgt fiir die Likelihood Funktion
L(61D™) x p(D™16) = [ p(DI6) dD"*

Gerade unter MAR ist eine Imputation der Daten besonders sinnvoll, da die eigentlichen In-
formationen in den beobachteten Daten noch vorliegen. Um die fehlenden Werte auszufiillen,
bedient sich Amelia eines EMB-Algorithmus. Dieser ergibt sich aus einem EM(ezpectation-
mazimization)-Algorithmus, der dann wiederum auf mehrere Bootstrap-Stichproben angewandt
wird. Der EMB-Algorithmus kombiniert das EM-Modell, welches abwechselnd neue Imputationen
anhand der zuvor berechneten Parameter und anschlieffend neue Parameter anhand der zuvor
bestimmten Imputationen iteriert, mit dem Bootstrap-Ansatz. Dieser wiederum simuliert die Un-
sicherheit des Modells aufgrund fehlender Daten mit der Unsicherheit des Bootstraps. Diese wird
durch das Ziehen mit Zuriicklegen simuliert, da somit nur eine Stichprobe dem EM-Algorithmus
iibergeben wird. [2| beschreibt den mathematischen Hintergrund des EM-Algorithmus ausfiirlich,
wiahrend [5] ndher auf den EMB-Algorhitmus eingeht.

Im Amelia-Algorithmus werden Zun#chst m vervollstindigte Datensétze erstellt, in dem fiir
jede Datenliicke m verschiedene Werte eingefiillt werden. Zur Imputation werden zunichst die
Parameter p und ¥ anhand gebootstrapter Samples der Daten geschétzt. Da die gebootstrapten
Samples nur Subdatensétze des wahren Datensatz darstellen, entstehen aus den verschiedenen
Samples unterschiedliche Schitzungen fiir ¢ und . Im E — Step des EM-Algorithmus werden
dann die Erwartungswerte der fehlenden Werte bedingt der geschétzten Parameter [ und 5
bestimmt. Der EM-Algorithmus selbst setzt sich aus folgenden beiden Schritten zusammen:

1. Expectation-Step: In diesem Schritt wird jeder fehlende Wert aus der vorherigem Iteration
berechnetem 6 imputiert. Zur Schitzung werden zudem die beobachteten Daten aus X
hinzugezogen. Amelia verwendet fiir diese Schitzung eine Regression mit dem fehlenden
Wert als Responsevariable.

2. Mazimization-Step: Die Mazimum-Likelihood-Methode wird angewandt, um neue Parame-
ter 0 zu bestimmen. In diesem Fall besteht € aus neuen Schitzungen der Parameter p und
3. Die Berechnung erfolgt anhand der im Ezpectation-Step bestimmten Daten.

Diese Schritte werden so lange wiederholt, bis der Prozess konvergiert und sich die berechneten
Parameter also nicht mehr wesentlich &ndern. Der mathematische Algorithmus dieser Prozedur
stellt sich folgendermafien dar:



E-Step: Schiitze Q(6;0®)), wobei
Q(8,6) = By [1(8; y1yovs)]
M-Step: Berechne 01 aus 0, sodass:

Q(g(tﬂ); g(t)) > Q(6; g(t))

Im E-Step wird also der Erwartungswert der Log-Likelihood von y gegeben den beobachteten Da-
ten yops bestimmt. Im Allgemeinen ldsst sich fiir normalverteilte Daten die Likelihood-Funktion

nach [3] aus der Dichte von {y; ...,y,} bestimmen:
: L\ iy — )
20\ _ 2\ _ 2\ _ i=1\Yi
L(M,ff!y)—f(yl,---jynM,U)—Zﬂlf(yi\ma)—(%gz) exp<— 503 >

Fiir die Log-Likelihood ergibt sich damit
D (yi — 1)

n
g(u’ U) = IOgL(M,O'2) = _5 : 10g (271'0'2) — 952

Anhand dieser Log-Likelihood kénnen somit die ML-Schiitzer fiir 1 und o2 bestimmt werden,
welche dann wiederum im E-Step zur Schiatzung der fehlenden Werte verwendet werden kénnen.
Fiir die fehlenden Werte y.ps kdnnen somit anhand der aus dem Bootstrap generierten Para-
meterschitzungen fiir 6 Schitzungen getitigt werden. Diese werden wiederum in den weiteren
Iterationen des EM-Algorithmus verbessert. Nach |10] kann im Normalfall m = 5 als Richtwert
benutzt werden. Nachdem der EM-Algorithmus auf die gebootstrapten Stichproben angewandt
wurde, kénnen die Schétzer nach Rubins rule kombiniert werden. In [10] wurden diese Kombina-
tionsregeln zur Bestimmung der Schitzer und deren Varianzen definiert, die folgende Notation
ist nach [1] gewahlt. Seien Q) der Punktschitzer und U®) dessen Varianz jeweils im k-ten
Datensatz, k € {1,...,m}. Dann gilt fir die Vereinigung aller m Schétzer:

1 m
) — H(®)
Q=-—>0
t=1
In diesem Fall wurden die m aus den imputierten Ameliadatensitzen erstellten Regressionsmo-
delle und die daraus resultierenden Koeffizientenschitzern 8 ametia, 7 € {1, ..., ¢} zusammenge-
fiigt.

1 m
Bj,Amelia = Bj = Zﬂj,t
m t=1

Der aus der Kombination der m Amelia-Regressionen (Regressionen basierend auf den impu-
tierten Amelia-Datensétzen) gewonnene Koeffizientenschétzer einer Variable j entspricht also
nur dem arithmetischen Mittel der m Koeffizientenschitzer der Amelia-Regressionen. Neben
den kombinierten Punktschatzer der Koeffizienten wurde diese Regel auch auf die Kombinati-
on der Punktschitzer der fehlenden Werte der Imputationsdatensitzen von Amelia angewandt.
Zur Bestimmung der Varianz des Punktschétzers miissen sowohl die Streuungen innerhalb der
Schétzungen als auch die Streuungen zwischen den Schitzungen beriicksichtigt werden. Der Va-
rianzteil innerhalb der Schitzungen ergibt sich wiederum aus dem Mittelwert der m geschitzten
Varianzen der einzelnen Modelle. .
1
w=—=) vl

Die Varianz des Koeffizientenschiitzers der kombinierten Amelia-Regressionen ergibt sich also
aus deren gemittelten einzelnen Koeffizientenschétzern. Die weitere Varianzteil zwischen den



Schitzungen ldsst sich aus der unverzerrten Stichprobenvarianz der einzelnen Punktschitzer
bestimmen:

B—_1 ¥ (@ - Q)

m—1
t=1

Die gesamte Varianz T ergibt sich nach [10] aus Kombination der beiden Varianzteile:
1
Tr=w+ 1+ —)B
m

Wie die Multivariate-Noramlvereteilungsannahme zeigt, ist Amelia eine paramterische Imputati-
onsmethode. Bei Verletzung dieser Annahme ist die Wirksamkeit dieser Methode eingeschriankt
und kann zu Verzerrungen der Ergebnisse fithren. Allerdings kann nach [6] auch bei nicht nor-
malverteilten Daten bei ausreichendem Stichprobenumfang mit akkuraten Ergebnissen gerechnet
werden. Daher soll in dieser Thesis das Abschneiden von Amelia mit einer nichtparametrischen
Imputationsmethode verglichen werden. Dies soll im folgenden Abschnitt ndher erldutert werden.

2.2 Random Forest

Nichtparametrische Methoden nehmen keine parametrischen Verteilungen an. Es wird also nicht
ein passende Verteilungsfunktion F' und deren entsprechende Parameter gesucht, sondern viel-
mehr wird eine Funktion f an die Datenpunkte angepasst. Der Random Forest-Algorithmus,
welcher in |7] entwickelt und erldutert wird, bietet also eine nichtparametrische Alternative zur
Datenanalyse. Dabei bedient sich das Modell einfachen Entscheidungsbdumen, die durch Kombi-
nation fiir Schatzungen verwendet werden. Der Random Forest Algorhitmus geht im Allgemeinen
folgendermafsen vor:

1. Zunichst werden ng... Bootstrap-Stichproben aus den Daten gezogen.

2. Nun wird fiir jede einzelne Stichprobe ein Regressions- oder Klassifikationsbaum erstellt,
je nach Typ der Daten.

3. An jedem Zweig/Knoten des Baumes werden my,, der Variablen ausgewidhlt und der beste
Split der Daten anhand dieser Variablen bestimmt.

4. Um Daten vorherzusagen, werden die Vorhersagen der ny.ee Entscheidungsbdume kombi-
niert.

In diesem Fall wird der Random Forest Algorithmus verwendet, um Schitzungen fiir die fehlenden
Werte anhand der iibrigen beobachteten Daten zu generieren. Zur Imputation wurde hier das
R-Package missForest verwendet(|11]). Sei daher die Kovariablenmatrix X(n x ¢) vorhanden,
sodass X = (X1, Xo,...,X;). Sei zudem X,,s € {1,...,q} eine Variable mit fehlenden Werten

der Stellen i'*) C {1,...,n} (und demnach mit vorhandenen beobachteten Werten i) C

miss obs
{1,...,n}). Somit kann der Datensatz in 4 Teile eingeteilt werden:

1.y, Die beobachteten Werte der Variable X

2 Die fehlenden Werte der Variable X

s
© Ymiss

(s)

3. x5, Die Werte aller Variablen aufier X an den Stellen i,

4. x8 Die Werte aller Variablen aufter X an den Stellen i(s)

miss miss

Yobs UNd Ymiss sind demnach die beobachteten bzw. fehlenden Werte der Variable X, wahrend
ZTobs UNd Tpiss die dementsprechenden Werte aller anderen Variable an der jeweiligen Stelle be-
schreiben. MissForest schitzt zunéchst die fehlenden Werte mit einfachen Prozeduren wie mean



imputation, bei welcher die Mittelwerte der Variablen eingesetzt werden. Dann werden die Va-
riablen X einzeln nach ihrem Anteil von fehlenden Werten sortiert. Beginnend mit der Variable
mit den wenigsten fehlenden Werten wird jeweils ein RandomForest nach [7] mit Responseva-

() ) herechnet. Anschliekend wird dieses zuvor trainierte

riable y O‘Zs und mit den Pradiktoren

Modell zur Schatzung der fehlenden Werte yszss anhand der iibrigen Pradiktorvariablen xfig ss
angewandt. Das stop-criterion v wird erreicht, sobald sich die neuen Imputationen nicht mehr
ausreichend von der vorherigen Imputation unterschieden. Sobald also die Differenz einer stetigen
Variable NV « unterschreitet, wird der Prozess abgebrochen, wobei die Differenz der Imputationen

Ap folgendermafien definiert ist:

Y jen(Xneh = Xoi)?

Ay = impy2
ZjeN(Xnew)

Im n&chsten Abschnitt soll die Aufgabenstellung dieser Thesis erértert werden.

2.3 Methodik

Sowohl Amelia als auch Random Forest, beziehungsweise missForest, eignen sich also zur Im-
putation von fehlenden Werten. Daher sollen diese beiden Methoden im weiteren Verlauf dieser
Thesis anhand eines simulierten Datensatzes sowohl hinsichtlich der Imputationen als auch einer
aus den Daten resultierenden Regression verglichen werden. Dafiir wird zunéchst eine Kovaria-
blenmatrix X simuliert. Mittels festgelegter, variierender Parameter wird anschliefend anhand
einer Linearkombination der X-Variablen ein Responsevektor generiert. Abhéngig dieser Re-
sponsevektoren werden daraufhin fehlende Werte innerhalb von X erzeugt, wobei die entfernten
Daten fiir spétere Untersuchungen zuriickgehalten werden. Diese fehlenden Werte werden dann
mit dem vollstindigen Responsevektor und den iibrigen Variablen anhand Amelia und Ran-
domForest imputiert. Die imputierten Datensitze werden zunéchst mit dem wahren Datensatz
verglichen. Anschliefsend werden Regressionen der urspriinglichen und imputierten Datensétze
auf die Responsevariablen berechnet. Unter Verwendung der Koeffizientenschétzer der Regres-
sionsmodelle kann wiederum das Abschneiden der Imputation verglichen und bewertet werden.
Zur Bewertung des Abschneidens wird der Mean squarred Error (MSE) herzugezogen, der
wie folgt definiert ist:

n

MSE =3 (Y V)’

n -
=1

Der MSE beschreibt also die quadrierte Differenz der wahren Yy, von den geschétzten Y Werten
einer Variable Y. Zur Bewertung der Imputationen wird zudem der nach [9] definierte NRMSE
(Normalized root mean squarred error) verwendet:

mean[(yguess - yanswer)Q]
Var(yanswer)

NRMSE = \/

Somit misst der NRMSE auch die durchschnittliche (quadrierte) Differenz der imputierten ygyess
und der wahren Daten yqnswer, normiert diese aber zudem iiber die Varianz der wahren Daten.
Fiir einen NRMSE von 0 gilt perfekte Ubereinstimmung der Datensitze, bei einem NRMSE
von 1 liegen die Daten um die Varianz vom Datenpunkt entfernt. Variablen unterschiedlicher
Streuungen konnen aufgrund dieser Standardisierung miteinander verglichen werden. Weiterhin
wird der MSE in 2 Komponenten aufgeteilt:
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Anstatt einer Komponente des MSEs wird die (quadrierte) Abweichung vom wahren Wert nun
in einen Varianz- und einen Biasteil aufgeteilt. Der Varianzteil beschreibt dann die Streuung um
den Mittelwert der Schéitzungen, wihrend der Biasteil die Prézision misst, also die (quadrierte)
Abweichung der mittleren Schitzung zum wahren Wert an sich. Der kombinierte MSE-Schétzer
ist somit eine Schétzung der empirischen Varianz der einzelnen Koeffizientenschétzer §;. Dieser
kann sich dann wiederum mit den geschitzten Varianzen der Koeffizientenschétzer ergeben. Diese
lassen sich im linearen Modell aus der Kovarianzmatrix des ML-Schétzers von 3 bestimmen, die
nach [3] wie folgt definiert ist:

1

n—q

Cov(f) =6%(X' X) ' = ¢ ex x)™!

Da 62 somit von e abhingt, welches sich in einem linearen Regressionsmodell als Schitzfehler
E=y—Xp ergibt, verdndert sich die geschétzte Kovarianzmatrix in jedem Regressionsmodell. Im
Logit-Modell ist der ML-Schétzer wiederum nach [3] asymptotisch normalverteilt. Die geschitzte
Kovarianzmatrix ergibt sich aus der inversen Fisher-Matrix, wobei die Diagonalelemente a,, der
inversen Fishermatrix somit Schétzer der Varianz der r-ten Komponente von 8 (f,) sind.

Cov(B) =F'(B)



Somit hdngen beide Kovarianzen mit den Regressionsmodellen zusammen. Daher werden diese
nur beziiglich der Untersuchungen analysiert, bei denen X nur einmal simuliert wird. Im néachsten
Abschnitt soll beschrieben werden, wie die Daten simuliert wurden.

2.4 Daten

Die Ergebnisse der Untersuchung hangen natiirlich sehr stark von den Daten X selbst ab. Dem-
nach wurde X vielseitig simuliert, um moglichst aussagekraftige Ergebnisse zu erzielen. Generell
wurden ¢ = 10 Variablen verwendet, so dass X eine (n x 10) Matrix darstellt. Im Verlauf der
Untersuchung wird der Stichprobenumfang der Daten mehrfach variiert. Weiterhin werden einige
Parameter der Verteilungen, aus denen die X Werte gezogen sind, ebenso wie einige Faktoren,
anhand derer die Responsevariabeln bestimmt werden, differiert. Die Stichprobenanzahl wird
im Verlauf der Untersuchung, wie auch sowohl die Parameter der Verteilungen, aus denen die
X-Werte gezogen wurden, als auch die Faktoren, anhand derer die Responsevariablen aus X
bestimmt werden, mehrfach variiert. Fiir die Simulation von X werden folgende Ansétze verwen-
det:

1. X ~N(u,Y), d.h. X folgt einer multivariaten Normalverteilung. Damit wéren die Anfor-
derungen fiir Amelia erfiillt

2. X folgt keiner multivariaten Normalverteilung. Die X-Variablen werden aus anderen Ver-
teilungen generiert.

Falls X einer multivariaten Normalverteilung folgt, gilt:

X ~N(u,X), ,wobei
w=(61/2,0,1,,4,0.5,2,10,3,5)

1, fallsi=j
S, =4 “P'T) o yieqn,. 100, je{1,...,10}
0.4, fallsi##j

Die Kovarianz zwei verschiedener Variablen x; und x; betrdgt damit 0.4.

Da im Allgemeinen aber meistens nicht alle Variablen einer Normalverteilung folgen, wird
der Fokus dieser Thesis auf den zweiten Fall der Daten gelegt. Tabelle 1 beschreibt daher die
detaillierte Konstruktion der einzelnen Variablen.

Die zugehorigen Parameter der Verteilungen, anhand welcher die X-Variablen konstruiert
werden, werden aus folgenden Werten ausgewihlt, welche in Tabelle 2 dargestellt sind:

Demnach sind auch die Abhéngigkeiten der einzelnen Variablen wesentlich komplexer als
bei ausschliefslich multivariat normalverteilten Daten. Abbildung 1 soll daher eine Vorstellung
der Abhéngigkeiten der Variablen vermitteln. In Kapitel 3.2 wird ein Grundmodell erstellt, an-
hand dem die Variationen einzelner Parameter verglichen werden konnen. Bei der Simulation des
Grundmodells von X ergeben sich folgende Korrelationen, die in Abbildung 1 dargestellt sind.

Fiir jede Simulation von X wird demnach genau einer der vorliegenden Werte pro Parame-
ter zufillig bestimmt. Zur Konstruktion der Responsevariablen aus X wurden zwei generelle
Herangehensweisen benutzt:

1. Lineares Modell
2. Logit-Modell

Im Folgenden wird zur besseren Unterscheidung Z fiir die Zielvariable des linearen Modell und
Y fiir die Zielvariable des Logit-Modells gewahlt.
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Tabelle 1: Konstruktion der X-Kovariablenmatrix

Var konstruiert aus detailliert
x1 Gleichverteilung x1 ~U(0,0;)
To Normalverteilung xzg ~N(0,1)
T3 Exponentialverteilung Vi e {1,...,n}asi] ~ Exp(A = Oy + /| z2]i]|
0.7 1an, falls z;[i] € 64 [Z_Tl, é] ,led{l,...,4}
T4 diskret x4 nimmt mit Wahrscheinlichkeit 81 Z; zij zzgz IZ; E E: : g :]]2 ZZ Zz ZZ Z; ZZ 5
0.1 k3 an, wobei kg € {1,...,4} sk1 #£ ko #£ ks #£ 1
( if wmil=14 &
wsli] ~ Pois(1,604) { Z[Z [:();53* 0‘35’ e
. . . a0 e ¢ [0.25 * 93, 0.75 % 93]
x5 Poissonverteilung Vie{l,...,n}as[i] == i omli =23 &
. . X1 € [0.25 * 93, 0.75 % 93]
x5[i] ~ Pois(1,10 — 64) o= 14 &
I §é [0.25 * 92, 0.75 92]
Tg Normalverteilung Vi e {1,...,n}xgli] ~ N (T3, \/5]i])
x7  multivariate Normalverteilung w7 ~ N (u7, %7)
jr = (=5,20, —10)
1 03 0.1
=103 1 0.2
01 02 1
xs Gammaverteilung Vie{1,...,n}xsli] ~ G(1, /|xe[i]|




Tabelle 2: Ausprigungen von # und anderen Parametern

Parameter mogliche Ausprigungen

01 (50,75,100)
0 (0.3,0.4,0.6)
03 (0.1,0.25,0.4)
04 (3,5,7)
o (2.25,9,36)
T (0.05,0.1,0.25)
S (10,50,100)
T ¥ 2 ¥ g £ 5 2 g2 < 1
x1 | 1 0.56
0.8
x2 1
0.6
x3 1
r04
x4 10.56 1
0.2
x5 1
r o
X6 1
r-0.2
V7 1
-04
V8 1
-0.6
V9 1
-0.8
x8 1

Abbildung 1: Korrelationen eines simulierten Datensates

Im Fall des Linearen Modells wird Z als Linearkombination aus X erstellt, wobei die Faktoren
aus 31,..., 3, bestehen:

21 T11) T(2) - T(lg) €1
I e YOI A L
Zn Tn1) Tn2) - T(ng) €n
Die einzelnen Komponenten lassen sich dann folgendermafsen berechnen.
2 = B1x;1 + Boio + -+ ByTig + €
(B1,...,0y) sind wiederum festgelegte Parameter. Zudem wird ein Fehlerterm e simuliert, fiir

welchen gilt: € ~ N(0,0?). Die wahren 3 der Faktoren der Linearkombination, mit denen Y und
Z konstruiert werden, nehmen folgende Werte an, die in Tabelle 3 zu sehen sind:
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Tabelle 3: Auspragungen 3

Parameter mogliche Ausprigungen

51 (0.02,0.05,0.1)
52 ('1a172)

Bs (-0.1,0.1,0.3)
54 (17274)

Bs (-.1,0.7,-0.3)
Be (-0.5,-0.4,-0.2)
B, (0.4,0.6,0.9)
Br, (-1,-0.8,-0.6)
Br, (0.5,0.7,1)
Bs (-0.7,-0.5,-0.3)

Im Logit-Modell wird Y nicht direkt aus X bestimmt. Y ist hier eine binomiale Variable,
wobei die Wahrscheinlichkeit II | dass Y; 1 annimmt, von einer weiteren Variable n abhéngt:

szumznzlii%)

1 entspricht dann wiederum eine Linearkombination aus X, jedoch im Gegensatz zum linearen
Modell ohne Fehlerterm e:

m Ty T2 - T(le)

2 T2,1) T(2,2) --- T2 T
= (.) (.) _ (.q) x(B1 B .. Bg)

Tn L(n,1) T(n2) -+ T(ng)

Sowohl das lineare als auch das Logit-Modell beinhalten keinen konstanten Intercept [y, da
Y beziehungsweise Z auch ohne eine solche Konstante konstruiert wurden. Fiir die einzelne
Komponente n; gilt dann demnach:

M = P1xig + Bazio + -+ ByTig

Y; ist somit binomial verteilt, wobei die Wahrscheinlichkeit, dass Y; = 1 immer von 7; und
letztlich somit auch von z;1,...,2;, abhéngt. Im weiteren Verlauf der Untersuchung werden
Y und Z jeweils mehrfach gezogen, und die Regression der Kovariablen somit auf mehrere Re-
sponsevektoren angewandt. Dabei bleiben die sonstigen Parameter fiir beide Ziehungen gleich,
es gilt:

Zi =1+ €

Nach der bereits beschriebenen Simulation von X werden anschliefsend die fehlenden Werte
generiert. Die Wahrscheinlichkeit, dass die Beobachtung ¢ in der Variable j nicht vorhanden ist,
héngt sowohl vom vorher festgelegten Parameter m als auch von II ab, wobei II, wie bereits er-
wiahnt, die Wahrscheinlichkeit P(Y = 1|X) darstellt. Sei dafiir m wiederum die fehlende-Daten
Matrix, d.h. m;; = 1,4 € {1,...,n};j € {1,...,q}, falls 2; ; nicht vorhanden ist und m;; = 0,
sonst. Dann wird fiir jede Variable 5 genau ¢ mal, also fiir jede Beobachtung i ein Bernoulliex-
permient mit p = P(m;, = 1|X,Y’) durchgefiihrt, um zu bestimmen, ob x; ; vorhanden ist oder
zuriickgehalten wird. Fiir p gilt:

11;
p_ﬂ*l 4 L
n =177

Die Wahrscheinlichkeit, dass z;; fehlt entspricht also dem Verhéltnis von II; zu dem Mittelwert

aller IT (IT) multipliziert mit einem festgelegten Parameter 7. m entspricht somit der Wahrschein-
lichkeit p, dass x;; fehlend ist, falls II; genau dem Mittelwert II entspricht. Je nach Verhiltnis %
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ergibt sich demnach p, wobei fiir den Term gilt, dass das Produkt dieser Verhiltnisse 1 ergibt:
[Ii= 1”% = 1. Im Folgenden wird daher unter 7 der erwartete Anteil der fehlenden Werte
verstanden. Die fehlenden Werte werden dann anhand Amelia und missForest imputiert. Amelia
wird zudem iibergeben, dass x4 als ordinale Variable bestimmt werden soll (sofern nicht alle z;
normalverteilt sind). Die Anzahl an Endscheidungsbdumen fiir die Random-Forest-Kalkulation
innerhalb des missForest-Algorithmus wird zudem auf 50 gesetzt, um die Berechnungsdauer et-
was zu senken. Nun konnen die imputierten Datensitze hinsichtlich der MSEs der Schitzungen
der fehlenden Werte berechnet werden. Wie zuvor beschrieben, wird der MSE in eine Varianz-
und Biaskomponente unterteilt. Anschliefsend werden jeweils vier Regressionsmodelle erstellt:

1. Regression auf Datensatz ohne fehlende Werte (volles Modell)

2. Regression auf Datensatz mit fehlenden Werten. Hierbei beriicksichtigt R automatisch aus-
schlieflich vollstanige Beobachtungen ohne fehlende Werte (Complete-Case-Analysis)

3. Regression auf mit Amelia vervollstindigtem Datensatz
4. Regression auf mit missForest vervollstindigtem Datensatz

Demnach werden vier Regressionsmodelle der vier Datensétze sowohl auf Y als auch auf Z er-
stellt. Diese werden dann hinsichtlich der MSEs der Koeffizienten im Vergleich zu den wahren
Faktoren, mit denen Y beziehungsweise Z simuliert wurden, verglichen. Um die Aussagekraft der
Ergebnisse zu verstirken, werden sowohl die Kovariablen als auch die Responsevariablen mehr-
fach simuliert. Die Responsevektoren werden S mal gezogen, wobei S (, auker bei Variationen
dieses Parameters) 50 betragt. Demnach werden auch je 4 * S Regressionsmodelle der vier Ko-
variablendatenmatrizen auf die S gezogenen Responsevektoren berechnet. Der MSE wird somit
iiber die S Ziehungen gemittelt. Der gesamte Prozess wird im spéteren Verlauf der Thesis dann
wiederum W mal durchgefiihrt, wobei bei jeder w-ten Wiederholung ein neuer X Datensatz mit
neuen Parametern (welche, wie bereits erliutert, aus dem Pool der moglichen Auspragungen (2)
zufillig ausgewihlt werden) simuliert wird. Somit kénnen am Ende gemittelte Ergebnisse iiber
die W Simulationen von X, auf welche dann wiederum S Simulationen von Y bzw. Z folgen,
bestimmt werden. Zusammengefasst wurden im Experiment also folgende Schritte durchgefiihrt:

1. Simuliere X

e multivariat normalverteilt

e generiert aus mehrere Verteilungen
2. Simuliere Y und Z abhéngig von X
3. Generiere fehlende Werte in X abhéngig von Y
4. Berechne Regressionsmodelle von X auf Y und Z

volles Modell

Complete Cases

e anhand mit Amelia imputierter Daten

e anhand mit missForest imputierter Daten
5. Auswertung anhand MSE(-Komponenten)

e beziiglich Koeffizientenschitzer

e beziiglich Imputationen
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3 Variation einzelner Parameter bei festem Datensatz X

3.1 Probleme und Fehler bei der Simulation

Bevor die eigentlichen Ergebnisse prasentiert werden sollen, werden anschliefsend einige Probleme
erldutert, die bei der Simulation von Daten auftreten kénnen beziehungsweise aufgetreten sind.

In den Ergebnissen treten hiufig extrem hohen Fehler in den Modellen der Complete-Case-
Analysis auf. Gerade bei Reduzierung des Stichprobenumfangs oder Erh6hung von 7 kann es
zu einer sehr niedrigen Anzahl an Beobachtungen ohne jegliche fehlenden Werten kommen. Da
allerdings nur diese fiir die Complete-Case-Analysis beriicksichtigt werden, ist somit schon die
Schatzung stark beeintrachtigt. Weiterhin kann beim Logit-Modell ein sehr geringer Stichprobe-
numfang nco im Vergleich zu der Anzahl an Variablen ¢ oder ungiinstige Datenkonstellationen
nach |3] zu einer Nichtexistenz, oder zumindest einer Nicht-Konvergenz des ML-Schétzers fiithren.
In diesem Fall divergieren die sukzessiven Differenzen ||3*+1) — 3()|| sodass der Unterschied der
Schitzungen der Iterationsschritte nicht gegen 8 konvergieren, sondern immer weiter anwachsen.
Somit geht mindestens eine Variable 3; gegen d-co. Bei einer Divergenz und daraus resultieren-
den Nicht-Konvergenz des Schitzers, kann der Output der Funktion nicht sinnvoll interpretiert
werden, da keine sinnvollen Schitzungen fiir 3; getétigt werden.

Dieser Fall tritt vor allem im Logit-Modell und bei der Complete-Case-Analysis auf, zum
Beispiel beim reduzierten Stichprobenumfang auf n = 250 oder beim erhéhten erwarteten An-
teil von fehlenden Werten. In beiden Fillen trifft zu, dass n im Vergleich zu 7 reduziert wird.
Somit kénnen einige Ergebnisse, bei denen die Complete-Case-Analysis Werte extreme Werte
annehmen, nicht beriicksichtigt werden.

3.2 Grundmodell

Im ersten Teil der Untersuchung sollen nun einige Parameter hinsichtlich ihres Einflusses auf die
Regression untersucht werden. Um die neuen und alten Modelle voneinander unterscheiden zu
kénnen und die Notation zu erleichtern, wird im Folgenden unter dem Grundmodell das Modell
mit den im folgenden festgelegten Parametern verstanden. Anschlieffend wird jeweils ein Para-
meter des Grundmodells variiert, wihrend die anderen Parameter auf den festgelegten Werten
festgehalten werden. Es wird zunédchst nur ein Datensatz X simuliert. Zwar sind die Ergebnisse
somit weniger valide als bei W Ziehungen von X, da diese von der Simulation von X abhén-
gen. Jedoch sind fiir die Variationen der Parameter immer die gleichen Grundvoraussetzungen
beziiglich der Daten geschaffen, sodass eine Variation der Kovariablen die Ergebnisse nicht be-
einflussen kann. Eine Betrachtung der Fehler hinsichtlich der Imputationen ist demnach hier
noch nicht sinnvoll, da die fehlenden Werte nur einmal generiert werden. Fiir die Parameter wur-
den folgende Werte ausgewdhlt. Die fett hinterlegten Parameter werden zudem in den folgenden
Modellen variiert.

n = 500
S= 50
01 =175
02 = 0.4
03 = 0.25
04=05
o—=9
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1 03 0.1
Y,=(03 1 02
0.1 02 1

T = 0.1

Zunéchst werden also ausschliefslich die Fehler hinsichtlich der Regressionsschéitzung betrach-
tet. Die Faktoren der Linearkombination f, ..., 8, werden also {iber die S Responsevektoren mit
den geschitzten Regressionskoeffizienten der vier Regressionsmodelle (je 4 fiir das lineare und
das Logit-Modell) verrechnet.

1< . \2
MSE; =53 (8 - 8)

Im Folgenden wurde ein Modell mit den oben genannten Parametern gerechnet, und mehr-
fach variiert. Die folgenden Grafiken 2 und 3 sollen den dabei entstandenen Datensatz niher
beschreiben.

Abbildung 2: Boxplot-Variablen

Variablen

80-

Wert

—

- 1

x1 x2 x3 x4 x5 x6 x7_1 X7_2 X7_8 x8

In Abbildung 2 ist zunéchst zu sehen, dass die meisten Variablen Werte im Intervall [—10, 10]
um den Nullpunkt annehmen. Fiir 21 hingegen liegt der Mittelwert bei ungefihr 35 und nimmt
Werte bis iiber 70 an. Abbildung 3 bestétigt zudem, dass die Anzahl an fehlenden Werten in
den Variablen ungefihr um 50 schwankt, wie es auch durch den Parameter m, dem erwarteten
Anteil an fehlenden Werten, vorhergesehen ist (n 7w = 0.1 %500 = 50). Die Anzahl an fehlenden
Werten pro Variable schwankt dabei allerdings recht stark, wahrend in x3 nur 37 Daten nicht
beobachtet sind, sind es bei Variable z7, 59.
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Abbildung 3: Anzahl fehlender Werte in Variablen
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Wenn im Folgenden von der Varianzkomponente berichtet wird, ist damit der empirische
Teil der MSE-Zerlegung, der sich aus dem Mittelwert der quadrierten Differenzen von ﬁs,j und
den Mittelwert der Schiatzungen ﬂ_j ergibt, gemeint. Die Biaskomponente beschreibt anschliekend
die quadrierte Abweichung des Mittelwerts 3; und dem wahren Parameter 3;. Um die Notati-
on in der anschlieffenden Untersuchung zu vereinfachen, wird im folgenden Abschnitt unter der
Varianzkomponente, der Varianz oder der Streuung beziehungsweise der Biaskomponente, dem
Bias oder dem Prizisionsfehler die beiden Summen der MSE-Zerlegung verstanden. Die Tabel-
len 3 und 4 beschreiben die Varianz- und die Biaskomponente, die aus den Modellen mit den
angegebenen Parametern resultieren.

Zunichst fallt auf, dass beziiglich der Varianzkomponente im Allgemeinen das volle Modell
erwartungsgemafs am Besten abschneidet. Die Varianzen im Logit-Modell sind im Mittel pro Va-
riable um etwa 20% bei Amelia und 28% bei Random Forest hoher als beim vollen Modell, wobei
die durchschnittliche Varianz bei der Complete-Case-Analysis den 6.8 fachen Wert betragt. Fiir
Schitzer B¢ betrigt die Varianzkomponente bei Amelia sogar weniger als im vollen Modell. Die
imputierten Daten miissen hier also iiber die S = 50 Ziehungen der Y-Vektoren so simuliert
worden sein, dass die Streuung der Koeffizientenschétzer im Vergleich zu den wahren Werten
reduziert wurde. Auch im linearen Modell ist die Varianz im Durchschnitt im vollen Modell am
kleinsten, allerdings sind hier die Unterschiede deutlich geringer. Die Complete-Case- Analysis
verfiigt nur iiber eine im Mittel 2.32 mal héhere Varianzkomponente, wihrend die Varianz bei
Random Forest im Durschnitt nur 14% und bei Amelia sogar nur 5.4% hoher ist. Obwohl die
Differenz der Varianzen durchschnittlich bei Amelia um den Wert 0.004 hohere Werte annimmt,
ist die Varianzkomponente in den Koeffizientenschétzern (31, B4, 05 und [7, niedriger als im
vollen Modell. Was die Biaskomponente betrifft, sind im Logit-Modell bei 8 sowie bei 84 hhe-
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Tabelle 4: Varianzkomponente ,oben: Logit, unten: Linear

Var_voll Var CC Var Amelia Var RF

B1 <0.0001 0.0003 <0.0001 <0.0001
B2 0.0259 0.1862 0.0303 0.0310
B3 0.0255 0.3623 0.0273 0.0304
Ba 0.0291 0.1553 0.0371 0.0413
Bs 0.0055 0.0226 0.0061 0.0065
Be 0.0054 0.0225 0.0052 0.0064
B, 0.0179 0.1733 0.0263 0.0279
B, 0.0060 0.0362 0.0072 0.0076
B, 0.0178 0.1472 0.0227 0.0246
Bs 0.0216 0.1239 0.0262 0.0278
51 0.0008 0.0013 0.0007 0.0009
B2 0.1721 0.2824 0.1951 0.2168
B3 0.1815 0.4042 0.2250 0.2266
Ba 0.2387 0.6351 0.2095 0.2706
Bs 0.0305 0.0543 0.0274 0.0308
Be 0.0266 0.0341 0.0272 0.0284
B, 0.1144 0.2329 0.1380 0.1423
B, 0.0309 0.1051 0.0317 0.0306
B, 0.0853 0.3704 0.0918 0.0965
Bs 0.0741 0.1674 0.0867 0.0956

Tabelle 5: Biaskomponente,oben: Logit, unten: Linear

Bias_voll Bias CC Bias Amelia Bias RF

b1 0.0015 0.0005 0.0013 0.0014
B2 2.7546 2.1560 2.6573 2.6222
B3 0.0101 0.0046 0.0075 0.0087
Ba 2.7505 2.6006 2.8534 2.7574
Bs 0.3155 0.2461 0.3078 0.2999
Be 0.0975 0.0777 0.0895 0.0861
B, 0.2764 0.3227 0.2670 0.2627
B, 0.5211 0.4625 0.5440 0.5511
B, 0.3523 0.3213 0.3249 0.3132
Bs 0.1311 0.0640 0.1334 0.1358
B1 0.0000 0.0000 0.0000 0.0000
B2 0.0001 0.0128 0.0000 0.0074
B3 0.0050 0.0398 0.0080 0.0019
Ba 0.0023 0.0060 0.0077 0.0101
Bs 0.0005 0.0010 0.0014 0.0048
Be 0.0029 0.0028 0.0089 0.0114
B, 0.2626 0.3305 0.2074 0.1898
B, 0.5334 0.4621 0.6095 0.6128
B, 0.4836 0.6313 0.4325 0.4099
Bs 0.0005 0.0024 0.0015 0.0003

re Verzerrungen in allem Regressionsmodellen zu sehen. Auffillig ist weiterhin, dass bei dieser
Untersuchung im Logit-Modell beziiglich des Bias das volle Modell, wenn man die durchschnitt-
liche Biaskomponente pro Variable betrachtet, schlechter abschneidet als alle anderen Methoden,
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sowohl die Complete-Case-Analysis als auch die imputierten Datensétze. Auch bei komponen-
tenweiser relativer Betrachtung sind dhnliche Effekte zu sehen. Die Biaskomponente ist in der
Complete-Case-Analysis um etwa 25%, in Amelia und Random Forest noch um etwa 5% geringer
als im vollen Modell. Somit verbessert sich die Schétzung hinsichtlich ihrer Prizision in diesem
Fall, wenn man die fehlen Werte ignoriert, wobei eine Imputation hier sogar noch besser abschnei-
det als die Verwendung der urspriinglich wahren Daten. Die Daten, die bei dieser Simulation von
X fehlen, tragen demnach negativ zur Schidtzung von Y bei, sodass eine nicht Beriicksichtigung
und somit eine Reduzierung des Stichprobenumfangs, zur Verbesserung der Prizision fithrt. Eine
weitere mogliche Erklarung wire, dass die iibrig gebliebenen Beobachtungen alle giinstig beziig-
lich der wahren Schétzer 8 liegen. Im linearen Modell sind die Biaskomponenten sehr klein, wes-
halb es zu grofen relativen Verhéltnissen verglichen mit dem vollen Modell kommt. Wihrend der
Bias also zum Beispiel in 85 um den Faktor 167.2 mal hoher ausfillt als im vollen Modell, betrigt
dieselbe Biaskomponente bei Amelia nur 9% der Verzerrung des vollen Modells. Im Durchschnitt
iiber alle Variablen ist der Bias allerdings in der Complete-Case-Analysis um den Faktor 19.3 (vor
allem aufgrund der Schétzung von (), bei Amelia um den Faktor 2.2 und bei Random Forest
um den Faktor 12 mal grofer als beim vollen Modell. Betrachtet man die absoluten Verzerrun-
gen gegeniiber dem vollen Modell, betrigt die Differenz bei der Complete-Case-Analysis 0.02 im
Mittel zugunsten dem vollen Modell, wihrend Amelia um 0.001 und Random Forest um 0.004
besser abschneidet. Allerdings sind, wie bereits gesagt, bei solch geringen Biaskomponente die
Ergebnisse stark abhéngig von einzelnen (ungtinstigen) ungenaueren Schitzungen, die bei sonst
geringer Verzerrung einen groferen Einfluss verfiigen. Im Folgenden sollen die Ergebnisse dieses
Durchgangs mit den Resultaten verglichen werden, die durch einzelne Variationen der Parame-
ter entstehen. Dabei werden die einzelnen neuen Modelle jeweils vor allem hinsichtlich absoluter
Differenz und relativem Unterschied verglichen. Unter Differenz wird im Folgenden die absolute
Differenz zwischen dem neuen Modell mit variierendem Parameter und Grundmodell verstanden.
Eine positive Differenz zeigt demnach auf, dass sich die Fehlerkomponente im Vergleich zum ge-
rade beschriebenen Modell vergréfert haben, und das Modell somit schlechter abschneidet. Da
eine reine Betrachtung der Differenzen nicht mitberiicksichtigt, in welchem Verh#ltnis sich die
Variablen beziiglich der Fehlerkomponente im Grundmodell verdndert haben, wird neben der
Differenz auch noch der relative Unterschied gemessen. Somit wird das Verhiltnis der entspre-
chenden Fehlerkomponente des Modells mit den variierenden Parametern zu dem Modell mit den
urspriinglich festgelegten Parametern bestimmt. Ein Verhiltnis von a impliziert somit eine um
((a—1)%100)% hohere Fehlerkomponente durch die Variation. Falls in der Analyse der Varianz-
und Biaskomponenten von gemittelten oder durchschnittlichen Ergebnissen berichtet wird, ist
damit das arithmetische Mittel iiber alle Koeffizientenschitzer B1,..., s beziehungsweise den
entsprechenden Variablen 1, ..., xs gemeint.

3.3 Variationen
3.3.1 Stichprobenumfang

Zuerst soll der Einfluss des Stichprobenumfangs auf die MSE-Komponenten untersucht werden.
Die Ergebnisse beziiglich der MSE-Komponenten sind in folgender Tabellen 6 und 7 noch einmal
zusammengefasst. Wie in Kapitel 2.1 beschrieben, zeigt folgende Grafik die fiir die einzelnen
Koeffizientenschétzer {1, ..., B3} durchschnittlichen absoluten Differenzen des variierenden und
des Grundmodells auf. Weiterhin werden auch die relativen Unterschiede angegeben, die sich aus
dem Verhiltnis des variierenden und des Grundmodells ergeben.

Im Logit-Modell fallen die extrem hohen Varianzkomponenten beim Stichprobenumfang n =
250 der Complete-Case-Analysis auf. Aufgrund der bereits erlduterten Probleme kommt es hier
zu einer enormen Vezerrung der Schétzer, weshalb diese hier nicht sinnvoll interpretiert werden
kénnen. Ignoriert man diese Modelle, steigt die Varianzkomponente in den anderen Regression-
modelle ca. um 0.035 im Mittel an, was einer durchschnittlich um den Faktor 3 erhéhten Va-

18



Tabelle 6: Stichprobenumfang-Varianzkomponente

n = 250 absolut n = 250 relativ. n = 1000 absolut n = 1000 relativ

voll-log 0.0279 2.6904 -0.0074 0.5209
CC-log 76435.7508 597501.9155 -0.0777 0.4534
Amelia-log 0.0470 3.2870 -0.0090 0.5300
RF-log 0.0436 3.0240 -0.0099 0.5201
voll-lin 0.1471 2.5078 -0.0433 0.5843
CC-lin 0.3087 2.6177 -0.0926 0.6414
Amelia-lin 0.1886 2.9071 -0.0426 0.6238
RF-lin 0.1898 2.8130 -0.0445 0.6448

Tabelle 7: Stichprobenumfang-Bias

n = 250 absolut n = 250 relativ. n = 1000 absolut n = 1000 relativ

voll-log -0.1442 0.8368 0.0236 1.0502
CC-log 2021.6288 28988.9578 -0.0002 1.3909
Amelia-log -0.1816 0.7988 0.0348 1.0374
RF-log -0.1556 0.7800 0.0341 1.0572
voll-lin -0.0088 9.9320 0.0098 0.9160
CC-lin -0.0152 1.4314 -0.0108 0.5911
Amelia-lin -0.0029 47.8816 0.0139 19.4256
RF-lin 0.0024 1.3747 0.0148 1.6302

rianzkomponente entspricht. Aufgrund der Reduzierung des Stichprobenumfangs von n = 500
auf die Halfte, hat sich die jeweiligen Varianzen also durchschnittlich ungefahr verdreifacht. Fiir
die linearen Regressionsmodelle treten dhnliche Ergebnisse auf, wobei hier die Complete-Case-
Analysis interpretiert werden kann. Die Varianzkomponente steigt ebenfalls durchschnittlich bei
allen Regressionsmodellen an, allerdings ca. um 0.15 bei dem vollen Modell, und um ungefihr 0.18
bei Random Forest und Amelia, und um 0.31 bei der Complete-Case-Analysis. Dies entspricht
wiederum einer Steigerung um durchschnittlich den Faktor 2.7. Bei Erhohung des Stichproben-
umfangs erzielt das Logit-Modell recht dhnliche Ergebnisse. Die Varianz sinkt in allen Modellen
in etwa durchschnittlich um 50%; die Differenzen betragen bei der Complete-Case- Analysis unge-
fahr 0.08, und in den iibrigen Modellen im Mittel etwa 0.01. Wihrend sich bei der Verdoppelung
von n = 250 auf n = 500 im Logit-Modell die Varianzkomponente im Mittel noch verdreifacht
hat, ist sie bei einer weiteren Erhéhung auf n = 1000 nochmal auf das doppelte angestiegen. Im
linearen Fall sind weiterhin dhnliche Effekte aufzufinden, wenn auch hier die Varianzkomponente
nur um ungefihr 40% sinkt. Fiir die Complete-Case-Analysis reduziert sich somit die Streuung
durchschnittlich um 0.095 und bei den anderen Modellen im Mittel um ca. 0.045. Wiederum
fallt auf, dass auch beziiglich der Biaskomponente extreme Werte in der Complete-Case-Analysis
ergeben, sodass auch diese Werte nicht sinnvoll analysiert werden kénnen. Weiterhin sind die
Resultate beziiglich des Bias deutlich weniger konstant als die entsprechenden Varianzkompo-
nenten. Beim reduzierten Stichprobenumfang vermindert sich der Bias der {ibrigen Modelle im
Logit-Modell gegentiber dem Grundmodell um ca. durchschnittlich 20% und um die durchschnitt-
liche Differenz von ungefihr 0.16. Vor allem in 4 und in o treten Verbesserungen von ca. 0.9
beziehungsweise 0.7 auf, was wiederum einer Verbesserung von 25% beziehungsweise 30% gegen-
iiber dem Grundmodell entspricht. Auch die linearen Regressionsmodelle zeigen im Allgemeinen
leichte Verbesserungen beziiglich des Bias auf, wenn man die durchschnittlichen absoluten Dif-
ferenzen in Betracht zieht. Allerdings fillt vor allem [s auf, da der Bias hier gegeniiber dem
Grundmodell im vollen Modell um den Faktor 41 und bei Amelia um den Faktor 470 steigt,
was auch gemittelt iiber alle Koeffizientenschitzer im vollen Modell zu einer verh&ltnisméfigen
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Erhéhung des Bias um Faktor 5.93 und bei Amelia um den Faktor 47.88 fiihrt. Diese sehr hohen
relativen Verdnderungen liegen aber auch an den sehr niedrigen Biaskomponenten, sodass kleine
Verénderungen groften verhaltnismafige Steigerungen bedeuten. Die absolute Verdnderung liegen
bei B2 nur jeweils bei 0.003.

Bei Erhohung des Stichprobenumfangs auf n = 1000 sind ebenfalls nur bedingt die erwarteten
Ergebnisse eingetroffen. Obwohl der Stichprobenumfang, und damit erwartungsgeméif eigentlich
auch die Genauigkeit der Schitzungen, erhoht wurde, nimmt die Verzerrung der Koeffizienten-
schitzer im Logit-Modell durchschnittlich in allen Modellen zu; bei der Complete-Case-Analysis
um 40% und bei den anderen Regressionsmodellen ungefdhr durchschnittlich um ungefahr 5% .
Wiederum sind die absoluten Differenzen gegeniiber dem Grundmodell sehr gering, und betragen
im Mittel maximal 0.035 bei Amelia, wohingegen in der Complete-Case-Analysis deer Bias bei
erhdhtem Stichprobenumfang um 0.0002 im Mittel geringer ausféllt. Im linearen Modell hingegen
sind die Veréinderungen gegeniiber dem Grundmodell nicht konstant. Wahrend sich das volle Mo-
dell um durchschnittlich ungefihr 9% verbessert (aber absolut im Mittel um 0,01 an Verzerrung
zunimmt), betrdgt die Verzerrung bei der Complete-Case-Analysis mehr als 40% weniger (und
nimmt im Mittel um 0.011 ab). Fiir Amelia betréigt die Biaskomponente im Mittel den 20 fachen
Wert. Wiederum ist dies auf Variable By zuriickzufiihren, bei der die Verzerrung um den Faktor
186.42 steigt, was aber nur einer absoluten Differenz von unter 0.0013 entspricht. Ein weiterer
Anstieg um 64% im Mittel tritt hier bei Random Forest auf, was im Durchschnitt einer erhohten
Verzerrung von 0.015 entspricht.

Beim verglichenen Abschneiden von Amelia und Random Forest spielt der Stichprobenumfang
eine Rolle. Die anschliefsende Tabelle 8 vergleicht die absoluten und relativen Unterschiede von
Random Forest und Amelia. Positive Werte bei den Differenzen und Werte {iber 1 beziiglich der
relativen Verdnderungen bedeuten somit, das Random Forest {iber eine héhere Fehlerkomponente
verfligt. Die mittleren beiden Spalten beziehen sich in diesen wie auch allen weiteren Tabellen
zum Vergleich von Random Forest und Amelia auf das Grundmodell und bleiben somit in allen
Variationen konstant. Zur besseren Ubersicht von fortlaufenden Verinderungen bleiben diese
Werte trotzdem in den Tabellen.

Tabelle 8: Differenz und Verhéiltnis von Random Forest und Amelia

n250 nso0 1 = 1000

Varianzkomponente
logitapsolut  -0.0020 0.0015 0.0006
logit,elativ  -0.0020 0.0015 0.0006
lingpsolut ~ 0.0118 0.0106 0.0087
linpelativ  0.0118 0.0106 0.0087
Biaskomponente
logitapsolyt  0.0113  -0.0148 -0.0154
logitreiativ  0.8935 1.0033 1.0336
lingpsowe  0.0024  -0.0029 -0.0020
linpelativ  8-3560  106.9827 2.6196

Fiir das Modell mit n = 250 schétzt Random Forest die Varianzkomponente um 0.002 genauer
im Logit Modell, wihrend im linearen Modell Amelia um 0.012 geringere Varianzkomponente
aufweist. In den {ibrigen Modellen weist Amelia sowohl im linearen als auch im Logit-Modell
geringere Varianzkomponenten auf. Auch mit Bezug zum mittleren Verhiltnis der einzelnen
Variablen sind nur geringe Unterschiede feststellbar, beim kleinsten Stichprobenumfang liegt die
Varianzkomponente im Logit-Modell bei Random Forest fast 1% unter Amelia, wobei Amelia
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fiir n = 500 eine im Mittel um 5% und fiir n = 1000 eine im Mittel um 9% geringere Streuung
aufweist.

Wihrend bei n = 250 Amelia im Durchschnitt beziiglich der Biaskomponente noch um 0.011
im Logit- und 0.002 im linearen Modell besser als Random Forest abschneidet, erzielt Random
Forest fiir n = 500 ein um 0.014 beziehungsweise 0.003 geringeres Ergebnis, wobei sich fiir das
Ergebnis fiir n = 1000 dhnliche Werte (-0.015 und -0.002) ergeben. Die Ergebnisse sind demnach
genau andersherum, als bei der Varianzkomponente. Betrachtet man die relativen Verdnderung
pro Variable, fillt auf, dass sich vor allem im linearen Modell bei Random Forest eine deutliche
héhere durchschnittliche Verzerrung zeigt. Bei n = 1000 ergibt sich im Vergleich zu den Amelia-
Varianzkomponenten somit ein um den Faktor 2.62 , fiir n = 250 ein um den Faktor 8.35 und bei
n = 500 sogar ein um Faktor den 106.98 hoheren Bias. Die starke verhdltnisméfige Steigerung
ergibt sich aufgrund dem Schétzer fiir 82, bei dem der Prazisionsfehler bei RandomForest 1060.19
fach grofer ist als bei Amelia. Bei z2 handelt es sich um die Standard-Normalverteilte Variabel,
welche auch fiir die anderen linearen Modelle (n = 250 : +821%,n = 1000 : +543%) um
deutlich hohere Verzerrungen annimmt. Allerdings kann die verbesserte Performance Amelias
bei normalverteilten Daten im linearen Modell nicht an Variable x7 bestitigt werden. Obwohl a7
ebenfalls einer (in diesem Fall multivariaten) Normalverteilung folgt, schneidet Random Forest
beziiglich der Biaskomponente besser ab als Amelia.

Neben den MSE-Komponenten der Koeffizientenschitzer sollen auch die empirischen und
geschitzten Varianzen und deren Verdnderung bei Variation der Parameter untersucht werden.
Die folgenden beiden Grafiken Abbildung 4 und Abbildung 5 zeigen sowohl die Differenz als auch
das Verhiltnis des empirischen MSEs und der geschétzten Varianz der Regressionsmodelle.

Abbildung 4: Varianzvergleich-Differenzen
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Da im Logit-Modell beim Stichprobenumfang von 250 das Complete-Case-Regressionsmodell
nicht konvergiert ist, wird diese Differenz nicht beriicksichtigt. Ansonsten ist aber zu sehen, dass
alle Differenzen positiv sind. Da das volle Modell fast die gleichen Differenzen wie Amelia und
Random Forest aufweist, ist in Abbildung 5 der Punkt nur schwer zu erkennen. Bei Anstieg des
Stichprobenumfangs ist zu sehen, dass die Differenz der Varianzen im Logit-Modell von ca. 0.5
auf ungefdhr 0.7 ansteigt. Wahrend die Complete-Case-Analysis im Logit-Modell, soweit beriick-
sichtigt, mit der geringsten Differenz eingeschitzt wird, ist die Differenz im linearen Modell am
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Abbildung 5: Varianzvergleich-Verhéltnisse
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grofsten. Die Differenzen im linearen Modell sind im allgemeinen geringer als beim Logit-Modell.
Wihrend zudem bei Logit-Modell mit steigendem Stichprobenumfang die Differenzen zunahmen,
reduzieren sich die Diffferenzen der Varianzen beim linearen Modell bei ansteigendem n. Auch
bei Betrachtung der Verhéaltnisse der empirischen und der geschitzten Varianzen kann man eine
generelle Unterschitzung des MSEs feststellen. Im Logit-Modell steigt die Uberschitzung des
MSEs mit ansteigendem Stichprobenumfang von ungefahr 20% fiir n = 250 auf im ungefihr
70%, wobei wieder die Complete-Case-Analysis die geringsten Differenzen aufweist. Bei Anstieg
des Stichprobenumfangs von n = 250 auf n = 1000 steigen auch die Verhéiltnisse der Varianzen
im Schnitt auf die ungefdhr 2.5 fache Verhiltnis an, wobei das volle Modell eine etwa 6 mal
hohere Unterschied der Verhiltnisse aufweist.

Im Allgemeinen kann beim Stichprobenumfang beziiglich der Varianzkomponente sowohl im
linearen als auch im Logit-Modell ein Einfluss auf die Schitzung der Koeffizietenschitzer festge-
stellt werden. Zwischen dem Bias der Schitzungen und dem Stichprobenumfang zeigen die Daten
zumindest keinen eindeutigen Zusammenhang auf, die Biaskomponente nimmt bei den hier vor-
liegenden Daten bei steigendem Stichprobenumfang sogar eher zu. Im Vergleich von Amelia und
Random Forest ist Amelia in der Varianzkomponente meistens genauer, wihrend Random Fo-
rest eine geringere Biaskomponente aufweist. Random Forest schneidet im Allgemeinen zudem
beim Logit-Modell besser ab, wohingegen Amelia vor allem bei steigendem Stichprobenumfang
geringere Fehlerkomponenten aufweist. An dem Vergleich der Varianzen ldsst sich vor allem fest-
stellen, dass mit zunehmendem Stichprobenumfang die relativen Unterschiede der Schiatzungen
steigen, wobei vor allem im Logit-Modell die empirische Varianz generell héher ist als die ge-
schitzte Varianz. Beim vollen Modell ist der Unterschied der Verhéltnisse am hdchsten, wihrend
die Complete-Case-Analysis im Logit-Modell die geringsten Differenzen zwischen geschitzter und
empirischer Varianz aufweist.

3.3.2 Erwarteter Anteil fehlender Werte

Im n#chsten Abschnitt soll der Anteil an erwarteten fehlenden Werten betrachtet werden, welcher
von den m = 0.1 auf # = 0.05 vermindert und auf = = 0.25 erhoht wird. Im Folgenden sind daher
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wieder die Tabellen der mittleren absoluten und relativen Verdnderungen (Tabelle 9 und Tabelle
10) beziiglich der Vazianz- und Biaskomponente gelistet.

Tabelle 9: erwarteter Anteil fehlender Werte-Varianzkomponente

7 = 0.05 absolut 7 = 0.05 relativ 7 = 0.25 absolut 7w = 0.25 relativ

voll-log 0.0165 1.9374 -0.0056 0.5989
CC-log -0.0157 1.0084 18391.2912 180201.4354
Amelia-log 0.0172 1.8537 0.0007 0.9698
RF-log 0.0155 1.7165 0.0041 1.1688
voll-lin 0.0009 1.0759 0.0139 1.1144
CC-lin -0.0444 0.9411 0.3524 2.4331
Amelia-lin 0.0017 1.0882 0.0771 1.5762
RF-lin -0.0065 1.0365 0.1199 1.9574

Tabelle 10: erwarteter Anteil fehlender Werte-Biaskomponente

7 = 0.05 absolut 7 = 0.05 relativ. 7 = 0.25 absolut 7 = 0.25 relativ

voll-log -0.0673 0.9065 -0.1701 0.9362
CC-log -0.0665 1.0973 1680.3258 20773.4474
Amelia-log -0.0567 0.9308 -0.2240 0.9282
RandomForest-log -0.0497 0.9384 -0.2448 1.0941
voll-lin 0.0030 7.7946 -0.0090 5.4924
CC-lin -0.0159 0.9382 -0.0239 2.2026
Amelia-lin -0.0018 95.5301 -0.0010 243.5382
RandomForest-lin 0.0012 0.9168 0.0319 8.5574

Da im vollen Modell keine fehlenden Werte vorliegen, sollte sich eigentlich an den Schitzun-
gen zum Grundmodell keine wesentlichen Anderungen aufzeigen. Zur Anschauung und zum Ver-
gleich mit den Verdnderungen in den anderen Modellen, sind die Unterschiede im vollen Modell
dennoch aufgefithrt. Zunichst ist feststellbar, dass auch hier bei einer Simulation die Complete-
Case-Ergebnisse extrem iiber den anderen Ergebnissen liegen. Allerdings ist, bei # = 0.25 die
Wahrscheinlichkeit einer Beobachtung, fiir keine der 10 Variablen fehlende Werte zuhaben, auch
sehr gering (bei 10 Variablen und einer durchschnittlich erwarteten Wahrscheinlichkeit 1 — p,
dass die fehlende Variable j der Beobachtung i vorhanden ist: 0.75'° ~ 6%), wodurch der Stich-
probenumfang sich deutlich reduziert, und n im Vergleich zu ¢ zu klein wird. Aufgrund der
Nicht-Konvergenz wird die Complete-Case-Analysis im Logit-Modell nicht berticksichtigt Wah-
rend im Logit-Modell fiir 7 = 0.05 relativ gesehen alle Varianzkomponenten zunehmen, veringert
sich nur die mittlere absolute Differenz im Complete-Cases Modell um 0.016 (, wohingegen die
anderen Regressionsmodelle ungefihr durchschnittlich um den gleichen Betrag zunehmen). Die
relative Erhohung der Streuung im Complete-Case-Analysis-Modell betrédgt allerdings durch-
schnittlich 0.1%, wobei sich die Streuung bei Random Forest um 72%, bei Amelia um 85%
und beim vollen Modell um 94% steigert. Was die Prézision der Koeffizientenschitzer betrifft,
verbessert sich die Biaskomponente in allen Regressionsmodellen im Durchschnitt jeweils um
ungefdhr 0.06. Wihrend bei der Complete-Case-Analysis, was die relativen Verdnderungen be-
trifft, eine Erh6hung des Bias um ca 10% im Mittel auftritt, verringert sich der Bias ansonsten
um durchschnittlich zwischen 7 und 10% . Hinsichtlich dem linearen Model sind nur geringe-
re Verdnderungen feststellbar. Wéhrend bei der Complete-Case-Analysis eine Verminderung der
Varianzkomponente von durchschnittlich 6% erzielt wird(absolut: um 0.044), erh6hen sich die iib-
rigen Modelle beziiglich relativer Abweichung gegeniiber dem Grundmodell. Bei Random Forest
sinkt die durchschnittliche Varianzkomponente zwar um 0.007, im durchschnittlichen Verhéltnis
der Varianzkomponenten schneidet das Modell mit 7 = 0.05 allerdings um ca. 4% schlechter ab.
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Beziiglich der Biaskomponente féllt vor allem die im Mittel um 95.5 fach héheren Biaskomponen-
ten bei Amelia auf, wobei hinsichtlich der absoluten Differenzen die Prézision im Durchschnitt
um 0.002 genauer ist. Der hohe Faktor kann wiederum durch B erklért werden, die fiir 7 = 0.05
zwar nur um 0.007 hoher ist, was aber einer Erhéhung um den Faktor 952 gegeniiber dem Grund-
modell entspricht. Auch im vollen Modell fiithrt eine um 0.005 hohere Verzerrung in Sy zu einer
6657% Erhohung der Biaskomponente, weshalb auch beim vollen Modell die relative Erhohung
um 679% recht hoch ausfillt. Bei der Complete-Case-Analysis wie auch beim Random Forest
Modell nimmt die Biaskomponente im Vergleich zum urspriinglichen Modell jeweils um ca. 8%
im Durchschnitt ab.

Bei einer Erhohung des erwarteten Anteils der fehlenden Werte auf 25% kann, wie bereits
erldutert, die Complete-Case-Analysis nicht beriicksichtigt werden. Ansonsten fillt beim Logit-
Modell auf, dass im Vergleich der Varianzkomponenten zum Modell mit 7 = 0.1 nur sehr geringe
absolute Differenzen auftreten. Im vollen Modell ergibt sich eine im Mittel um 0.006 geringere
Varianzkomponente, allerdings sind die einzelnen Varianzkomponenten im Schnitt um ca. 40%
geringer. Wihrend bei Amelia die Unterschiede sowohl relativ als auch absolut nur gering sind,
ergibt das Random Forest Modell eine um pro Variabel im Durchschnitt um 0.004 beziehungs-
weise um 17% hohere Varianzkomponente. Allerdings verbessern sich alle Regressionsmodelle
beziiglich der Biaskomponente im Logit-Modell um ungefihr 0.2, was einer durchschnittlichen
Verbesserung von 6% im vollen Modell und von 7% bei Amelia entspricht. Bei Random Forest
ist zwar im Mittel eine um 10% hohere Biaskomponente beobachtbar, allerdings erhéht sich der
Bias nur in 3 Schétzern (B4, 87, , B75). Im linearen Modell entsprechen die Ergebnisse fiir 7 = 0.25
eher den instinktiven Erwartungen. In allen Modellen steigt die Varianz gegeniiber dem Modell
mit 7 = 0.1 im Durchschnitt an, bei der Complete-Case-Analysis sogar um 0.35. Betrachtete
man die relativen Verbesserungen, ist auch dort eine Erhéhung der Varianzkomponente erkenn-
bar (volles Modell: +11%, CC: +143%, Amelia: +58%, Random Forest:+96%). Beziiglich der
Biaskomponente wird die Prizision jedoch im vollen Modell um 0.009, bei der Complete-Case-
Analysis um 0.024 und bei Amelia um 0.001 verbessert. Beziiglich der relativen Verdnderungen
der Biaskomponente steigt die Verzerrung jedoch beim vollen Modell um den Faktor 5.49, bei der
Complete-Case-Analysis um den Faktor 2.20 und bei Amelia sogar um den Faktor 243. Wieder-
um fillt vor allem S aufgrund der hohen relativen Steigerungen auf; die Biaskomponenten im
Vergleich mit dem Modell der urspriinglichen Simulation beim vollen Modell, Amelia und Ran-
dom Forest ungefihr um die Faktoren 28, 2425 und 25, was zu den hohen relativen Verhéltnissen
fiihrt.

Im Folgenden soll wiederum Random Forest mit Amelia verglichen werden. Die anschliefende
Tabelle 11 bildet die durchschnittlichen Differenzen und Verhéltnissen von Random Forest und
Amelia in den Modellen ab.

Tabelle 11: Differenz und Verhéiltnis von Random Forest und Amelia

70.05 0.1 70.25

Varianzkomponente
logitapsolut -0.0003 0.0015  0.0049
logit elativ 0.9855 1.0722  1.3404
1N absolut 0.0024 0.0106  0.0087
linyelativ 1.0372 1.0936  1.3663
Biaskomponente
logitapsolut -0.0078 -0.0148 -0.0356
logit,elativ 0.9957 1.0033  1.0935
11N gbsolut 0.0002 -0.0029  0.0301
linpelativ  379.3109  106.9827 31.5157
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Beziiglich der Varianzkomponente liegt nur im Logit-Modell fiir 7 = 0.05 eine hohere Streu-
ung in Amelia vor, wihrend Amelia ansonsten, was sowohl die durchschnittlichen Differenzen
als auch die durchschnittlichen Verhaltnisse betrifft, besser abschneidet. Zudem fillt sowohl im
linearen als auch im Logit-Modell auf, dass sowohl der relative als auch der absolute Unterschied
zwischen Amelia und Random Forest mit zunehmenden 7 zunimmt, sodass Amelia mit zuneh-
mendem 7 im Vergleich mit Random Forest immer besser abschneidet. Was den Bias der beiden
Modelle angeht, fillt jedoch auf, dass sich im Logit-Modell die Differenz der Varianzkomponenten
von Amelia im Vergleich zu Random Forest zwar von -0.003 auf 0.0049 verbessert, gleichzetig
die Biaskomponente sich von -0.0078 auf -0.0356 verschlechtert. Somit betrigt die Differenz, um
die der empirische MSE bei Amelia gegeniiber Random Forest héher ist, fiir 7 = 0.05 im Mittel
-0.008, sodass hier Random Forest besser abschneidet. Fiir das Modell mit dem groften Anteil an
fehlenden Werten, betrégt diese durchschnittlichere Differenz ungeféhr 0.03, sodass hier Amelia
den geringeren Fehler aufweist. Fiir Gg ist zudem die Biaskomponente im linearen Modell bei
7 = 0.05 um 3678 mal hoher als bei Amelia, was zu der durchschnittlich um Faktor 379.31 ho-
heren Biaskomponente im selben Modell fiihrt. Weiterhin wird fg auch im linearen Modell mit
m = 0.25 deutlich unpréziser (um Faktor 220) bei Random Forest geschétzt, was die auch hier
hohe Biaskomponente erklirt. zg folgt wie auch o, welches im Grundmodell fiir den um den
Faktor 106.98 hohere Biaskomponente des Random Forest Modells sorgt, einer Normalverteilung.

Im Folgenden sind wieder die beiden Grafiken (Abbildung 6 und Abbildung 7)zum Vergleich
der Varianzen bei Variation von m abgebildet:

Abbildung 6: Varianzvergleich-Differenzen
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Auch in diesen Grafiken wurde die Complete-Case-Analysis fiir 7 = 0.25 aus den Grafi-
ken aufgrund der Nicht-Konvergenz des Modells entfernt. Wiederum iibersteigen alle empirisch
gemessenen Varianzen den geschitzten Varianzen des Modells. Im Logit-Modell fillt zunéchst
hinsichtlich der Differenz kein konstanter Einfluss des Anteils der fehlenden Werte auf die Schit-
zung der Varianz auf. Die geringste Differenz ergibt sich fiir 7 = 0.25, wobei die Differenzen fiir
7 = 0.05 bei allen Regressionsmodellen immer noch geringer sind wie fiir 7 = 0.1 ist. Die erhdhte
Unsicherheit aufgrund der groferen Anzahl von fehlenden Werten wird also von der geschitzten
Varianz besser aufgefasst, als wenn nur ein kleinerer Anteil an fehlenden Werten vorliegt. Dies
bedeutet nicht, dass die Varianzen selbst bei Erhéhung der erwarteten fehlenden Werten sinkt,
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Abbildung 7: Varianzvergleich-Verhéltnisse
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sondern vielmehr, dass das erhéhte Risiko durch einen gréfieren Anteil an fehlenden Werten bes-
ser geschitzt werden kann, zumindest im Logit-Modell. Beim linearen Modell hingegen steigen
die Unterschiede beziiglich der Differenzen der Schitzung im Durchschnitt zunehmend an. Wie
auch beim Stichprobenumfang ist die Differenz bei der Complete-Case-Analysis im Logit-Modell
am geringsten und im linearen Modell am hochsten. Betrachtet man die relativen Verdnde-
rungen, steigt die Uberschiitzung der Varianz wiederum in beiden Modellen mit zunehmendem
Anteil fehlender Werte an. Vor allem das volle Modell wird bei 7 = 0.05 noch um den Fak-
tor 22 unterschétzt, wihrend der empirische MSE bei m = 0.25 sogar den fast 60 fachen Wert
betrégt. Die sehr grofsen Verhéltnisse beziiglich der Varianz lassen sich wiederum auf die dazu
recht kleinen Varianzen zuriickfiihren, sodass eine kleine absolute Verdnderung eine hohe relative
Steigerung bedeutet. Im linearen Modell wird die empirische Varianz bei Amelia und Random
Forest beziiglich der mittleren Differenz durchweg um etwa ein Drittel unterschiitzt, wihrend die
Differenz zwischen geschétzter Varianz und empirischem MSE bei der Complete-Case-Analysis
mit zunehmenden 7 zunehmend ansteigt.

Vor allem beim linearen Modell wirkt sich der variierte erwartete Anteil an fehlenden Werte
auf die Schitzung aus. Bei einer Reduzierung von 7 in der Varianzkomponente sogar meistens
erh6hte Fehlerkomponenten auftreten, sodass sich die Koeffizientenschitzungen trotz weniger
fehlende Daten verschlechtert haben. An diesem Beispiel zeigt sich auf, wie abhéngig die Ergeb-
nisse von den Simulationen der Daten ist. Obwohl das volle Modell von diesen Schwankungen
nicht beeinflusst werden sollte, da sich die Datengrundlage hier nicht dndert, sind auch im vol-
len Modell verdnderte Fehlerkomponenten sichtbar. In der Complete-Case-Analysis sind jedoch
(sofern beriicksichtigt) die erwarteten Ergebnisse aufgetreten, sodass mit zunehmenden 7 die
Fehlerkomponenten ansteigen. Allerdings ist fiir # = 0.25 eine deutliche Steigerung der Feh-
ler im linearen Modell erkennbar. Wihrend Random Forest fiir im Logit Modell fiir 7 = 0.05
geringere Fehlerkomponenten aufweist, schneidet Amelia bei steigendem 7 besser ab. Auch im
linearen Modell weist Amelia, besonders bei hohen m, die geringeren Fehlerkomponenten auf.
Im Vergleich der Varianzen wird wiederum das volle Modell am meisten unterschétzt, wahrend
die Complete-Case-Analysis beziiglich der Differenz und dem Verhéltnis der empirischen und
geschétzten Varianz die geringsten Unterschiede aufweist.
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3.3.3 Ziehungen des Responsevektors

Als néchstes soll der Einfluss der Anzahl von wiederholten Ziehungen der Responsevariablen
untersucht werden. Tabelle 12 und Tabelle 13 vergleichen die Varianz- und Biaskomponenten,
wenn die Anzahl der Ziehungen von S = 50 auf S = 10 beziehungsweise S = 100 gesetzt wird:

Tabelle 12: Ziehungen von Y-Varianzkomponente

S =10 absolut S = 10 relativ .S = 100 absolut S = 100 relativ

voll-log -0.0061 0.6243 0.0004 1.0614
CC-log -0.0466 0.8216 -0.0367 0.9163
Amelia-log -0.0084 0.6100 -0.0001 1.0670
RF-log -0.0086 0.6231 -0.0014 1.0103
voll-lin 0.0263 1.3439 0.0102 1.1216
CC-lin 0.0210 1.2087 0.0831 1.4632
Amelia-lin 0.0202 1.2427 0.0234 1.2510
RF-lin 0.0212 1.2498 0.0242 1.2550

Tabelle 13: Ziehungen von Y-Biaskomponente

S =10 absolut S = 10 relativ S = 100 absolut S = 100 relativ

voll-log 0.0355 1.0268 0.1132 1.1469
CC-log 0.0133 1.4933 0.0963 1.5008
Amelia-log 0.0257 1.1076 0.1066 1.2100
RF-log 0.0338 1.1080 0.1130 1.2234
voll-lin 0.0467 20.4592 0.0272 1.1124
CC-lin 0.0287 4.3279 0.0101 1.9487
Amelia-lin 0.0824 1078.5615 0.0335 23.6247
RF-lin 0.0576 15.0840 0.0340 1.9560

Zunéchst soll wiederum das Logit-Modell betrachtet werden. Sowohl im absoluten als auch
im relativen Vergleich des Modells mit S = 10 Ziehungen gegeniiber den 50 Ziehungen sinkt
die Varianzkomponente in allen Regressionsmodellen. Die grofite mittlere absolute Verbesserung
wird dabei im Complete-Case-Modell erzielt, die Varianzkomponente sinkt um 0.047 im Mittel
und die Varianzkomponente verringert sich durchschnittlich um ungefdhr 18% in jedem Mo-
dell. Der grofite relative Unterschied wird bei Amelia festgestellt; fiir S = 10 wird eine um
fast 39% geringere Varianzkomponente festgestellt, wobei diese durchschnittlich um 0.008 ab-
nimmt. Allerdings nimmt die Biaskomponente in allen Modellen gleichzeitig zu. Wéhrend die
Complete-Case-Analysis beziiglich der Varianzkomponente die grofte absolute und kleinste rela-
tive Verbesserung vorweist, nimmt beztiglich des Bias die Complete-Case-Analysis verglichen mit
den anderen Modellen absolut mit 0.013 am wenigsten zu, obwohl der relative Unterschied mit
durchschnittlich fast 50% am hochsten ist. Im linearen Modell hingegen schneidet das Modell im
Vergleich sowohl der absoluten als auch der relativen Veranderungen hinsichtlich der Varianzkom-
ponenten schlechter ab, wobei die Varianzkomponente im Mittel bei allen Modellen um etwa 0.02
bis 0.026 hoher abschneidet, was einer durchschnittlichen Erhohung um etwa 20-36% entspricht.
Auch anhand der Biaskomponenten zeigt sich im Vergleich der absoluten Differenzen und der
relativen Verdnderungen im Durchschnitt, dass die reduzierte Anzahl an Ziehungen zu héheren
Verzerrungen fiihrt. Wihrend die durchschnittlichen Differenzen zum Grundmodell sich alle im
Intervall zwischen 0.03 und 0.08 befinden, variieren die mittleren relativen Unterschiede zwischen
deutlich stérker.Bei der Complete-Case-Analysis vervierfacht sich die Biaskomponente durch Re-
duzierung der Anzahl von Ziehungen des Responsevektors, wobei allein bei z4 eine um den Faktor
19 erhohte Biaskomponente auftritt. Das Random Forest Modell kann die Erh6hung um Fak-
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tor 15 vor allem auf die Schétzer von g (Faktor 72) und f3 zuriickgefiithrt werden, wihrend
die um den Faktor 1078 erhohte Biaskomponente bei Amelia anhand der um den Faktor 10727
gestiegenen Biaskomponente des Schétzers fiir 82 erklirt werden kann, wobei die absolute durch-
schnittliche Differenz bei 85 0.07 betrigt. Bei Erhéhung des Stichprobenumfangs auf .S = 100 ist
weiterhin ein dhnlicher Trend zu sehen. Bei der Complete-Case-Analysis sinkt die Varianzkom-
ponente im Vergleich zum Grundmodell um 0.037 und die Variablen sinken im Mittel um 9%
beziiglich der Varianz. Die absoluten Differenzen betragen in den anderen Modellen im Durch-
schnitt weniger als 0.001, wihrend die relativen Differenzen im vollen Modell und bei Amelia um
6 beziehungsweise 7% steigen. Obwohl die Anzahl an Ziehungen hoher ist, nimmt die Prézision
der Schétzungen im Durchschnitt in allen Modellen ab, sodass sowohl alle relativen Verhéltnisse
als auch absoluten Differenzen beziiglich der Biaskomponente im Vergleich héher ausfallen. Die
Unterschiede gegeniiber dem urspriinglichen Modell betragen im Mittel beziiglich der absoluten
Differenzen in allen Modellen je ungefihr 0.1, wihrend die Variablen durchschnittlich bei der
Complete-Case-Analysis um 50%, im vollen Modell um 15% und in Amelia und Random Forest
jeweils um etwa 20% steigen. Im linearen Modell kann sowohl bei der Varianzkomponente als
auch bei der Biaskomponente im Vergleich zum urspriinglichen Modell bei der Erh6hung der An-
zahl von Ziehungen des Responsevektor ein Verschlechterung des MSEs festgestellt werden. Das
Complete-Case-Analysis-Modell nimmt dabei am meiften (0.083 absolut, +46%) durchschnitt-
lich an Varianz zu. Was den Bias betrifft, kann bei der Complete-Case-Analysis eine mittlere
absolute Differenz von 0.01 beobachtet werden, widhrend die anderen Regressionsmodelle um
durchschnittlich etwa 0.03 zunehmen. Die relativen Unterschiede ergeben im Durchschnitt 11%
beim vollen Modell, wihrend bei der Complete-Case-Analysis und dem Random Forest Modell
eine im Durchschnitt um je etwa 95% grofere Verzerrung auftritt. Die um den Faktor 23.62
hohere durchschnittliche Biaskomponente kann wiederum auf Variable xo zuriickgefiihrt werden,
in welcher der Bias um 0.0015 zunimmt, was allerdings einem Anstieg um Faktor 223.6 bedeutet.

Tabelle 14: Differenz und Verhéiltnis von Random Forest und Amelia

S1o S50 S100

Varianzkomponente
logitapsort  0.0013 0.0015  0.0002
logit,elativ  1.1003 1.0722  1.0118
lingpsotwt  0.0117 0.0106 0.0114
linpejativ  1.1229 1.0936  1.0946
Biaskomponente
logitapsolwt -0.0067  -0.0148 -0.0083
logitrelativ  0.9793 1.0033  1.0109
lingpsolur  -0.0277  -0.0029 -0.0024
linypelativ  1.3130  106.9827  4.2729

Die Tabelle 14 vergleicht wiederum die Ergebnisse von Random Forest und Amelia. Bei mul-
tiplen Ziehungen des Responsevektors hat nur einen geringen Einfluss auf den Vergleich des
Abschneidens von Amelia und Random Forest. Sowohl im linearen als auch im Logit-Modell
schneidet Amelia beziiglich der Varianzkomponente im Logit-Modell um ca. 0.0014 und im li-
nearen Modell um ca. 0.0115 besser ab. Fiir S = 100 sinkt im Logit-Modell die Differenz auf
0.002, die Varianzkomponente weist also bei Random Forest dhnliche Fehler wie bei Amelia auf.
Wihrend bei Random Forest im linearen Modell die Varianzkomponente immer etwa 10% ho-
her ist, fillt wie auch bei den Differenzen auf, dass fiir S = 100 Random Forest beziiglich der
Streuung der Koeffizientenschiatzer nur noch um unter 2% schlechter abschneidet. Hinsichtlich
des Bias fallt wiederum auf, dass sich fiir Random Forest in allen Modellen im Durchschnitt

28



prézisere Schitzungen ergeben. Wihrend im linearen Modell die Differenz der Biaskomponenten
im Durchschnitt mit zunehmender Anzahl an Ziehungen konstant abnimmt, ist kein Trend beim
Logit Modell zu erkennen, wobei beide MSE-Komponenten je im Modell mit S = 50 iiber die
grofsten Fehler verfiigen. Im linearen Modell ist die MSE-Komponente, die sich als Summe der
Varianz- und Biaskomponente ergibt, also bei Amelia héher, wihrend fiir S = 50 und S = 100
Amelia einen geringeren MSE aufweist. Auch bei Betrachtung der mittleren Verhéltnisse féllt auf,
das Amelia nur im Logit-Modell schlechter abschneidet als Random Forest. Im Folgenden sollen
wiederum die Differenzen und Verhéltnise der empirischen und geschitzten Varianzen anhand
der Scatterplots Abbildung 8 und Abbildung 9 betrachtet werden.

Abbildung 8: Varianzvergleich-Verhaltnisse
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Zwischen den unterschiedlichen Regressionsmodellen sind durchgéngige Unterschiede beziig-
lich der Differenzen feststellbar, was allerdings die Ziehungen des Responsevektors angeht, kann
keine Konstanz festgestellt werden. Wahrend wiederum die Complete-Case-Analysis im Logit-
Modell die kleinsten Differenzen aufweist, sind diese im linearen Modell wieder verglichen mit den
anderen Regressionsmodellen am groften. Die Differenzen der beiden Imputationsmethoden sind
recht &hnlich, die Differenzen beim vollen Modell sind beim Logit-Modell am hdchsten und im
linearen Modell am zweithochsten hinter der Complete-Case- Analysis. Die Differenzen betragen
dabei beim Logit-Modell ungefihr 0.6 und 0.8, wihrend die Unterschiede sich im linearen Modell
auf ungefihr zwischen 0.1 und 0.3 belaufen. Fiir S = 50 erfolgt beziiglich des Verhéltnisses der
Varianzen der kleinste Unterschied. Sowohl im linearen als auch im Logit-Modell wird wieder-
um im vollen Modell die empirische Varianz am meisten unterschitzt, wobei der Unterschied
der Verhéltnisse der Varianzen im Logit-Modell nur etwa ein Fiinftel und im linearen Modell
ungefdhr ein Viertel der Unterschiede bei der Compelte-Case-Analysis betragen. Fiir Random
Forest und Amelia ergibt sich derweil ein &hnlich hohes Verhiltnis wie beim vollen Modell beim
Logit-Modell, wéhrend im linearen Modell sich dhnliche Verhéltnisse wie bei der Complete-Case-
Analysis ergeben.

Zusammenfassend zeigt vor allem das lineare Modell einen Einfluss von Variationen des Stich-
probenumfangs auf. In der Biaskomponente wurden bei Reduzierung auf 10 Ziehungen des Re-
sponsevektors durchgehend schlechtere Ergebnisse erzielt, allerdings schnitten sowohl Logit- als
auch lineares Modell ebenfalls bei einer Erhdhung von S schlechter ab als beim Grundmodell.
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Abbildung 9: Varianzvergleich-Differenzen
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Auch in der Varianzkomponente kann nur in der Complete-Case-Analysis ein besseres Ergebnis
fiir S = 100 erzielt werden, wéhrend wiederum im Logit-Modell die Reduzierung der Ziehungen
auch zu einer Reduzierung der Varianzkomponente fiithrt. Im Vergleich von Amelia und Random
Forest ist kaum ein auffélliger Einfluss von S sichtbar, wihrend Random Forest beziiglich der
Biaskomponenten immer kleinere Verzerrungen aufweist, wurden kleinere Varianzkomponenten
bei Amelia gemessen. Was die Varianzvergleiche betrifft, knnen im linearen Modell nur geringe
Unterschiede zwischen den geschétzten und den empirischen Varianzen bei Random Forest und
Amelia festgestellt werden.

3.3.4 Variation von ¢

Anschliefsend soll der Einfluss des Fehlerterms e auf das Modell untersucht werden. Je grofer die-
ser Fehler ist, desto mehr wird die Schitzung der Responsevektoren beeinflusst, was wiederum
den Einfluss der Kovariablen auf die Responsevektoren (und die Regressionsmodelle als Schét-
zung jener) schwicht. Da der Fehlerterm nur im linearen Modell auftritt, werden auch nur die
linearen Modelle untersucht.Wahrend im urspriinglichen Modell o = 9 verwendet wurde, wird o
in folgenden Modellen durch o = 2.25 und o9 = 36 ersetzt. Die folgenden Tabelle 15 zeigen also
die Varianzkomponente und die Biaskomponente dieser Variablen.

Sowohl beziiglich der Bias- als auch der Varianzkomponenten verlaufen die absoluten Diffe-
renzen erwartungsgemaf; je groker die Varianz des Storterms o, desto ungenauer die Schitzung
beziiglich des MSEs, beziehungsweise beziiglich der Varianz- oder der Biaskomponente. Aller-
dings kann man bei der Varianzkomponente sehen, dass die Erhéhung von o = 2.25 auf 0 = 9
mit einer durchschnittlichen Steigung der Varianzen iiber alle Modelle und {iber alle Variablen
von ungefdhr 0.08 eine geringere Verbesserung mit sich bringt als die erneute Erhéhung o von
9 — 36 von durchschnittlich ungefahr 1.812. Wiahrend durch die Reduzierung von ¢ somit eine
relative Verminderung der Varianz um ca. 50% bei Amelia und ca. 60% bei den anderen Modellen
feststellbar ist, erhoht sich die Varianz jeweils um ungefihr den Faktor 15 (beziehungsweise 16 bei
Random Forest) fiir 0 = 36. Auch in der Biaskomponente sinkt die Varianz in allen Regressions-
modellen, wenn o auf 2.25 gesetzt wird. Allerdings steigt das durchschnittliche Verhéltnis beim
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Tabelle 15: Einfluss e- Oben: Varianzkomponente, unten: Biaskomponente

o = 2.25 absolut o = 2.25 relativ o = 36 absolut o = 36 relativ

voll-var -0.0602 0.3918 1.3901 15.9168
CC-var -0.1536 0.3715 2.8611 14.8371
Amelia-var -0.0518 0.5182 1.4347 15.9501
RF-var -0.0685 0.4193 1.5857 16.3878
voll-bias -0.0115 2.4555 0.0245 42.4325
CC-bias -0.0305 2.1671 0.1057 13.2163
Amelia-bias -0.0054 270.2753 0.0521 26.2486
RF-bias -0.0097 21.0308 0.0488 41.0923

vollen Modell und bei der Complete-Case-Analysis um den Faktor 2, bei Amelia und Random
Forest sogar um den Faktor 270 beziehungsweise den Faktor 21. Der sehr hohe Wert beziiglich
der Verzerrung von Amelia ist wiederum auf xo zuriickzuriihren, welche im Vergleich zum Modell
mit 0 = 9 eine um 0.001 hohere beziehungsweise eine um 2665 fach grofsere Biaskomponente ver-
fiigt. In xg ist im Verhéltnis die Biaskomponente bei Random Forest um 17286% gestiegen. Bei
erneuter Erhohung von o auf 36 sind die Resulatate konstanter. In allen Regressionsmodellen ist
eine Steigung der Verzerrung um zwischen 0.025 beim vollen Modell und 0.1 bei der Complete
Case-Analysis zu sehen, was zu durchschnittlichen relativen Erh6hung der Biaskomponente um
den Faktor 40 beim vollen Modell und Random Forest und einer 13 beziehungsweise 26 fachen
Erhéhung bei Complete-Case-Analysis und Amelia sorgt.

Wiederum werden im Anschluss in Tabelle 16 die Differenzen und Verhéltnisse der Amelia
und Random Forest Modelle in folgenden Tabellen miteinander verglichen: Auch hier wird nur

Tabelle 16: Vergleich und Verhiltnis von Random Forest und Amelia- o

o=225 c=9 o=236

Var_absolut  -0.0061 0.0106  0.1615
Var_relativ 0.8976 1.0936  1.1133
Bias_absolut  -0.0072  -0.0029 -0.0062
Bias_relativ 0.9557 106.9827  2.4686

Riicksicht auf die linearen Fehlerterme genommen, da nur in diesen € vorhanden ist. Zunéchst
ldsst sich erkennen, dass Amelia beziiglich der Varianzkomponente mit zunehmenden o im Ver-
gleich zu Random Forest einee zunehmend geringere Streuung aufweist. Wahrend fiir o = 2.25
Random Forest noch eine um 0.061 im Mittel und durchschnittlich 10% geringere Varianzkompo-
nente aufweist, schneidet diese fiir o = 9 beziehungsweise ¢ = 36 um 0.01 und 0.162 schlechter ab,
was auch eine mittlere Erhshung der Varianzkomponente von 9 und 11% bedeutet. Beziiglich des
Bias schneidet Random Forest hinsichtlich der durchschnittlichen absoluten Unterschiede jeweils
besser ab, wobei Amelia fiir ¢ = 0.03 am besten abschneidet. Die um 106 mal hohere Random
Forest-Biaskomponente wurde bereits in der Sektion zu den Stichprobenumfingen erklért.

Nachfolgend sind in Abbildung 10 und Abbildung 11 die Varianzvergleiche graphisch darge-
stellt.

Auch beziiglich der Varianzen werden nur die linearen Modelle beriicksichtigt, da im Logit-
Modell kein Fehlerterm e erscheint, und somit eine Verédnderung von o keinen Einfluss zeigen
kann. Fiir ¢ = 2.25 im vollen Modell und fiir ¢ = 36 bei Amelia und Random Forest liegt die
geschitzte Varianz iiber dem empirischen MSE. Im vollen Modell ist mit zunehmender Varianz
des Fehlerterms € also eine deutliche Steigung von -0.45 auf 0.2 und schliefslich 1.6 feststellbar,
sodass hier eine konstanter Einfluss zu sehen ist. Ein dhnlicher Effekt ldsst sich auch bei der
Complete-Case-Analysis erkennen, wiahrend bei Amelia und Random Forest die Differenz der
empirischen und der geschitzten Varianz bei o = 2.25 und ¢ = 9 um 0.1 schwankt, wahrend fiir
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Abbildung 10: Varianzvergleich-Verhéltnisse
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o = 36 die Differenzen jeweils unter 0 fallen. Bei zunehmendem Fehlerterm im linearen Modell
trifft die geschétzte Varianz also eher zu. Im Umkehrschluss kénnte die geschétzte Varianz eben
diesen Fehlerterm unterschatzten, sodass die Varianz der Kovariablen zu klein eingeschétzt wird.
Betrachtet man die Verhéltnisse der Varianzen, ist auch dort beziiglich dem vollen Modell zu
sehen, dass fiir ansteigendes o die empirische Varianz deutlich hoher ausfillt, als die geschétzte
Varianz, sodass fiir 0 = 36 eine im Mittel um den Faktor 71 fache empirische Varianz gemessen
wird. Sowohl Amelia als auch Random Forest nehmen beziiglich dem relativen Unterschied der
Varianzen mit zunehmendem o ab. Wéhrend fiir ¢ = 2.25 die empirische Varianz den fiinfachen
Wert der geschétzten Varianz annimmt, liegt bei o = 9 nur noch ungefdhr der dreifache Wert
vor. Fiir 0 = 36 betréigt die empirische Varianz bei Random Forest im Mittel nur etwa 4% iiber
der geschitzten Varianz, wihrend bei Amelia die empirische Varianz um 7% geringer ist.

Der Einfluss der Standardabweichung o der Fehlerkomponente e ist sowohl beziiglich der
Varianz-, als auch der Biaskomponente recht deutlich zu sehen. Eine Erhéhung von o fiihrt so-
mit zu einem eindeutigen Anstieg der Fehler. Wahrend Amelia wiederum bei steigendem o im
Verhiltnis zu Random Forest weniger an Varianz zunimmt, schneidet Random Forest b(bei eben-
falls steigendem o) beziiglich der Biaskomponente besser ab. Allerdings treten keine konstante
Verdnderung der Differenzen oder Verhéltnisse auf. Fiir o = 36 kann zudem die kleinste Differenz
zwischen empirischer und geschitzter Varianz festgestellt werden.

Die Untersuchung der Variationen einzelner Parameter zeigt auf, wie sehr die Ergebnisse doch
von der Simulation des X-Datensatzes abhdngen. Daher soll im anschliefenden Abschnitt nun
auch X mehrmals gezogen werden.

4 Ergebnisse bei multiplen Ziehungen von X

4.1 Modell mit Parametern aus 3.2

Zunichst werden im folgenden Modell die Parameter des Grundmodells wieder verwendet. Al-
lerdings wird in diesem Fall X W = 20 mal simuliert. Die Ergebnisse sind hier also nicht nur
iiber die S Ziehungen von Y oder Z, sondern zusitzlich iiber die W Ziehungen von X gemittelt.
Da sich somit die wahre Kovarianzmatrix bei jeder Ziehung &ndert, wird hier kein Vergleich der
empirischen und geschétzten Varianzen durchgefiihrt. Allerdings wurden die MSE-Komponenten
bei multiplen Ziehungen von X nicht nur auf die Koeffizientenschétzer der Regressionen, sondern
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Abbildung 11: Varianzvergleich-Verhéltnisse
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auch auf die anhand Amelia und Random Forest imputierten Daten angewandt. Die Schétzun-
gen der fehlenden Werte bei Amelia werden wiederum nach [10] als die Mittelwerte aller m
vervollstindigten Datensétze bestimmt.

Die im Kapitel 3.2 festgelegten Parameter sollen anschliefsend in einem Modell angewandt
werden, bei dem X mehrfach simuliert wird. Tabelle 17 und Tabelle 18 zeigen daher die Varianz-
und Biaskomponenten der Koeflizientenschétzer fiir dieses Modell:

Tabelle 17: Varianzkomponente, oben: Logit, unten: Linear

Var_voll Var CC Var Amelia Var RF

b1 0.0001 0.0004 0.0002 0.0002
B2 0.0531 0.1972 0.0642 0.0728
B3 0.0430 0.0537 0.0390 0.0462
Ba 0.0480 0.1915 0.0471 0.0581
Bs 0.0068 0.0179 0.0073 0.0084
Be 0.0087 0.0273 0.0079 0.0099
B, 0.0310 0.1026 0.0250 0.0272
B, 0.0070 0.0146 0.0064 0.0065
B, 0.0258 0.0629 0.0215 0.0234
Bs 0.0335 0.0774 0.0277 0.0284
51 0.0004 0.0007 0.0005 0.0005
B2 0.1259 0.4138 0.1852 0.1864
B3 0.1560 0.2021 0.1617 0.1784
Ba 0.1631 0.4958 0.1671 0.1907
Bs 0.0404 0.0613 0.0469 0.0535
Be 0.0310 0.0582 0.0397 0.0372
B, 0.1114 0.2143 0.1049 0.1191
B, 0.0353 0.0815 0.0417 0.0443
B, 0.1234 0.2326 0.1463 0.1507
Bs 0.1065 0.1238 0.1075 0.1141

Zunéchst soll dieses Modells dem aus nur einem Datensatz resultierenden Modell aus 3.2 ge-
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Tabelle 18: Biaskomponente, oben: Logit, unten: Linear

Bias_voll Bias CC Bias Amelia Bias RF

B1 0.0000 0.0001 0.0000 0.0000
B2 0.0214 0.0635 0.0007 0.0569
B3 0.0020 0.0053 0.0092 0.0082
Ba 0.0129 0.0805 0.0003 0.0445
Bs 0.0014 0.0094 0.0005 0.0090
Be 0.0012 0.0034 0.0001 0.0022
B, 0.2949 0.3423 0.3771 0.3788
B, 0.5244 0.5093 0.5615 0.5481
B, 0.4295 0.4135 0.3885 0.3914
Bs 0.0041 0.0253 0.0027 0.0027
B1 0.0000 0.0000 0.0001 0.0000
B2 0.0001 0.0099 0.0004 0.0126
B3 0.0002 0.0005 0.0032 0.0001
Ba 0.0111 0.0074 0.0320 0.0011
Bs 0.0000 0.0000 0.0011 0.0053
Be 0.0004 0.0004 0.0015 0.0000
B, 0.4924 0.5362 0.4972 0.5239
B, 0.5197 0.5275 0.5669 0.5605
B, 0.3370 0.3189 0.3368 0.3273
Bs 0.0009 0.0023 0.0001 0.0003

geniibergestellt werden. In der Varianzkomponente zeigt sich in den Daten nur bei der Complete-
Case-Analysis eine Reduzierung der Streuung durch multiple Simulation von X auf. Im Durch-
schnitt liegt die Varianzkomponente pro Variabel bei der Complete-Case-Analysis demnach um
0.048 unter der Streuung beim Modell mit nur einer Simulation von X, wobei sich fiir W = 20
beim vollen Modell, bei Amelia und bei Random Forest eine um 0.010, 0.006 und 0.008 hohere
Varianzkomponente ergibt. Somit erzielt das Modell mit nur einer Variable fiir die Complete-
Case-Analysis eine im Mittel pro Variabel um 22% geringere Varianzkomponente, wihrend die
Streuungen beim vollen Modell, Amelia und Random Forest um 57%, 31% und 40% hoher sind.
Die Biaskomponente fillt allerdings im Modell mit W = 1 iiber alle Variablen gemittelt zwischen
0.48 bei der Complete-Case-Analysis und 0.591 beim vollen Modell héher aus, sodass das Modell
mit W = 20 Ziechungen von X im Durchschnitt pro Variable beim vollen Modell nur etwa 35%
und bei den iibrigen Modellen etwa die Hilfte der Streuung des Modells mit nur einer Simulation
von X annimmt. Somit wird aufgrund der 20-fachen Ausfiihrung der Simulation und der Berech-
nungen im Logit Modell die Varianzkomponente des MSE zwar nicht verbessert, allerdings sinkt
der Prazisionsfehler etwa um die Halfte, im vollen Modell wurde dieser sogar um 65% reduziert.
Im linearen Modell tritt nur bei der Complete-Case-Analysis eine im Mittel um 35% geringere
Biaskomponente bei wiederholten Ziehungen von W auf, wobei der Prizisionsfehler pro Variable
im Mittel um 0.008 sinkt. Wahrend sich im vollen Modell , bei Amelia und bei Random Forest die
absoluten Differenzen pro Variable bei Erhéhung der Simulationen von X auf W = 20 um 0.007,
0.016 und 0.018 steigt, nimmt die durchschnittliche relative Verdnderung der Biaskomponente
pro Variable im vollen Modell um Faktor 1.60, bei Amelia um Faktor 6.78 und bei Random Forest
um Faktor 1.21 zu. Im linearen Modell treten beziiglich der Biaskomponente also nur Verbes-
serungen in der Complete-Case-Analysis auf. Allerdings ergibt sich fiir die Varianzkomponente
im linearen Modell beziiglich der absoluten Unterschiede in allen Modellen fiir W = 20 eine
Reduzierung der Streuung um zwischen 0.040 und 0.065. Dennoch steigt die Varianzkomponente
im Schnitt pro Variabel im vollen Modell um 2.4% und bei Amelia und Random Forest um 12
beziehungsweise 10.5% an, wiahrend bei der Complete-Case-Analysis die Varianzkomponente im
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Modell aus nur einer Simulation im Mittel eine um 9% geringere Streuung auftritt.

Im Folgenden sollen die Imputationen beziiglich der MSE-Komponenten verglichen werden.
Der MSE wird wiederum in die zwei Komponenten aufgeteilt und wird variablenspezifisch be-
stimmt. Sei F' die Anzahl fehlende Werte in Variable j. Sei weiterhin « einer der F' fehlenden
Werte in der Variable j, und 4, mp die g-te Imputation von v der Schétzmethode imp an der
Stelle f, wobei g € {1,...,G}.. Dann ist die Varianzkomponente demnach folgendermafen defi-
niert:

Varyse = F le G Z ’Yzmpgf ’Yzmp f)

, wobei Yimp = é Egzl Nimp,g,f Die Varianzkomponente wird demnach fiir eine Imputations-
methode ¢mp und einen fehlenden Wert f bestimmt, und anschlielend iiber alle fehlenden Werte
F' einer Variable j gemittelt. Zudem wird ein Gesamt-Imputationssfehler bestimmt, indem die
Varianzkomponente nicht nur fiir eine Variable, sondern alle fehlenden Werte bestimmt wird.
Analog dazu wird auch die Biaskomponente fiir die Imputationen bestimmt:

F

G
Biasysgp = — Z Z Nimp,f —

f,

Tabelle 19: MSE-Komponenten fiir Modell mit festen Parametern, W=20

Amelia_logit Amelia_linear RF logit RF _lineaer

Varianzkomponente

Gesamt 8.0900 7.4671 2.1126 1.8144
1 78.2336 72.3596 20.6018 17.7283

T 0.5403 0.4253 0.1498 0.1059

xs3 0.1709 0.1692 0.0195 0.0230

24 0.2715 0.2364 0.0943 0.0585

x5 1.2651 1.1155 0.2959 0.2255

Zg 1.0917 1.0259 0.1637 0.1762

7 1 0.1807 0.1815 0.0241 0.0300

T7 9 0.1732 0.1713 0.0241 0.0292

T7 3 0.1880 0.1892 0.0245 0.0297
s 0.3119 0.2967 0.0363 0.0435

Biaskomponente

Gesamt 30.4925 34.2863 32.1819 34.0226
1 291.8246 328.5783  308.4359 326.7837

o 0.8465 1.0527 1.1945 1.3719

xs3 0.6580 0.6659 0.6288 0.6294

x4 0.5964 0.8414 0.6236 0.8273

T 3.6781 4.3995 4.0028 4.3843

Tg 4.0973 4.4123 4.3517 4.4323

T7 1 0.9051 0.9077 0.9605 0.9578
T7 2 0.9656 0.9683 1.0169 1.0053

T7 3 0.9625 0.9684 0.9811 0.9751
I3 1.1332 1.1680 1.0250 1.0311

Im Allgemeinen fillt zunéchst auf, in diesem Modell beziiglich der Varianzkomponente der Im-
putationen Random Forest besser abschneidet als Amelia. Sowohl bei den Gesamt-Imputationen,
als auch bei allen einzigen Variablen und sowohl beim Logit- als auch beim linearen Modell ist
die Varianzkomponente bei den Imputationen von Amelia um zwischen 187 und 774% hoher als
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die entsprechende Random Forest-Komponente. Auch bei den Normalverteilten Daten schneidet
Amelia hier also nicht besser ab. Weiterhin sind die imputierten Daten zumindest beziiglich der
Varianzkomponente bei den Logit-Modellen in den meisten Fallen (nicht fiir x7,) héher als im
linearen Modell. Beziiglich der Biaskomponente ist Amelia jedoch im Logit-Modell etwas prézi-
ser, wobei im linearen Modell wiederum Random Forest eine etwas geringere Biaskomponente
aufweist. Berechnet man allerdings das Verhiltnis der Biaskomponenten, schneidet iiber alle Va-
riablen gemittelt Amelia beim Logit-Modell um 5.3 und beim linearen Modell um 1.2% besser ab
als Random Forest. Beriicksichtigt man nur die Variablen, die einer Normalverteilung folgen, ist
die Biaskomponente bei Random Forest im Vergleich zu Amelia beim Logit-Modell um 13% und
beim linearen Modell um 10% im Schnitt hoher. Insgesamt schneidet Amelia also nur beziiglich
des Bias deutlich besser bei Normalverteilten Daten ab, bei der Varianzkomponente ist dieser
Effekt in diesem Fall nicht aufgetreten.
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4.2 Modell mit zufillig gezogenen Parametern

In folgendem Abschnitt werden, wie bereits erwéahnt, nicht mehr ausschlieklich die fiir das Grund-
modell ausgewdhlten Parameter verwendet. Stattdessen werden die Parameter aus den in den
Tabellen 3 und 2 gelisteten Ausprégungen in jeder Simulation w neu gezogen. Fiir die Varianz-
komponenten und die Biaskomponenten hinsichtlich der Koeffizientenschatzer der Regressions-
modelle ergeben sich demnach folgende Ergebnisse, die in Tabelle 20 und Tabelle 21 dargestellt
werden.

Tabelle 20: Varianzkomponente,oben: Logit, unten: Linear

Var_voll Var CC Var_ Amelia Var RF

51 0.0010 0.0064 0.0008 0.0012
B2 0.1124 4.3665 0.0880 0.1245
B3 0.2931 0.5711 0.1985 0.1970
Ba 1.0486  28.9983 0.5848 1.0544
Bs 0.1223 1.6835 0.0692 0.1159
Be 0.0313 0.2241 0.0270 0.0381
B, 0.0725 0.2961 0.0607 0.0870
B, 0.0227 0.0815 0.0193 0.0240
B, 0.0914 0.3147 0.0631 0.0776
Bs 0.1402 1.5666 0.1095 0.1459
51 0.0002 0.0004 0.0002 0.0002
B2 0.0249 0.0405 0.0278 0.0267
B3 0.0271 0.0610 0.0433 0.0334
Ba 0.0258 0.0545 0.0260 0.0270
Bs 0.0072 0.0095 0.0075 0.0069
Be 0.0068 0.0095 0.0084 0.0066
B, 0.0402 0.0584 0.0461 0.0453
B, 0.0100 0.0127 0.0105 0.0102
B, 0.0325 0.0404 0.0354 0.0348
Bs 0.0248 0.0249 0.0269 0.0274

Es ldsst sich zunéchst erkennen, dass Amelia und teilweise auch Random Forest iiber gerin-
gere Varianzkomponenten im Logit-Modell verfiigen, als das volle Modelle mit den eigentlichen
Daten. Fiir Amelia ist die Varianzkomponente in jeder Variable bei Amelia geringer, wobei das
Verhéltnis der Varianzkomponenten von Amelia zum vollen Modell zwischen 0.56 und 0.86. Im
Durchschnitt ist der Schétzfehler beziiglich Varianzkomponente somit im Logit Modell 26 % ge-
ringer als im vollen Modell. Der grofse Unterschied kénnte an der allgemeinen Verzerrung der
Schétzer im Logit-Modell liegen, was jedoch bei derart vielen wiederholten Ziehungen und Mes-
sungen der Varianz nicht zu stark ins Gewicht fallen sollte. Die Streuung der Schitzer im Random
Forest Modell liegen zwar teilweise (83) auch unter den anologen Varianzkomponeten im vollen
Modell, durchschnittlich betrégt die Streuung in Random Forest in jeder Variable jedoch ca. 2.2%
mehr als im vollen Modell, wihrend die Varianzkomponente bei der Complete-Case-Analysis im
Schnitt fast 11.8 mal so hoch ist. Im linearen Modell hingegen schneidet das volle Modell wie
erwartet in gegentiber Amelia im Mittel um 14.8%, gegeniiber der Complete Case Analysis um
45.8% und gegeniiber Random Forest um 7.4% im Mittel in jeder Variabel besser ab. Auch im
Vergleich mit dem Logit-Modell sind die Fehler deutlich geringer, die Varianzkomponenten betra-
gen im Logit-Modell im vollen Modell nur noch ungefdhr 10% , bei der Complete-Case-Analysi
nur 1%, bei Amelia noch etwa 18% und bei Random Forest noch etwa 11% gegeniiber den Va-
rianzkomponenten. Was allerdings den Bias betrifft, liegt auch im Logit-Modell eine deutlich
hohere Verzerrung bei Complete-Case-Analysis, Amelia und Random Forest vor, so dass im Mit-
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Tabelle 21: Biaskomponente,oben: Logit, unten: Linear

Bias_voll Bias CC Bias Amelia Bias RF

B1 0.0001 0.0007 0.0001 0.0003
B2 0.0605 0.4324 0.0196 0.0689
B3 0.0002 0.0293 0.0238 0.0158
Ba 0.6971 4.2576 0.0768 0.8926
Bs 0.0374 0.2523 0.0013 0.0310
Be 0.0063 0.0290 0.0057 0.0222
B, 0.6777 0.6361 0.7088 0.6296
B, 0.3082 0.2340 0.3173 0.2948
B, 0.4090 0.4061 0.4643 0.4083
Bs 0.0406 0.2840 0.0100 0.0472
B1 <0.0001  <0.0001 <0.0001  <0.0001
B2 0.0011 0.0005 0.0002 0.0002
B3 0.0008 0.0008 0.0150 0.0163
Ba 0.0003 0.0001 <0.0001 0.0171
Bs <0.0001  <0.0001 0.0005 0.0016
Be <0.0001  <0.0001 0.0016 0.0021
B, 0.7080 0.7440 0.7587 0.7299
B, 0.3596 0.3523 0.3707 0.3892
B, 0.4249 0.4355 0.3743 0.3097
Bs <0.0001 0.0008 <0.0001 0.0001

tel die Biaskomponente um die Faktoren 16.17, 10.35 und 7.84 héher sind. Im linearen Modell
liegen kaum noch Verzerrungen vor, sodass Biaskomponenten unter 0.0001 vermehrt auftreten.
Fiir Amelia treten auch bei Betrachtung des MSE durchschnittlich um 0.1324 beziehungsweise
24% geringe Fehler als beim vollen Modell auf. Somit schneidet Amelia auch im Vergleich mit
Random Forest im Logit-Modell besser ab. Die Varianzkomponente bei Random Forest nimmt
in diesem Modell durchschnittlich ca. 40% hohere Werte an und liegt im Mittel um 0.065 pro Va-
riable {iber der Varianzkomponente bei Amelia, wohingegen im linearen Modell die Streuung bei
Amelia um 5.4% beziehungsweise um 0.0014 groker ist. Beim Vergleich der Varianzkomponente
zwischen den Logit-Modellen mit wechselnden Parametern und mit festen Parametern ergibt sich
eine um den Faktor 7.4 beim vollen Modell, um den Faktor 33.6 bei der Complete-Case-Analysis,
um den Faktor 4.9 bei Amelia und um den Faktor 6.3 fach grofere Streuung bei dem Modell mit
wechselnden Parametern. Auch beziiglich der Biaskomponente schneidet das Logit-Modell im
Vergleich mit den imputierten Datensatzen und der Complete-Case-Analysis zumindest teilweise
schlechter ab. Wahrend die Biaskomponente im Durchschnitt bei der Complete-Case-Analysis
92% hoheren Prazisionsfehler aufweist, sind es bei Random Forest 682% und bei Amelia 934%.
Allerdings f&llt hier vor allem B3 ins Gewicht, bei der die Biaskomponente in der Complete-Case-
Analysis um Faktor 120, bei Amelia um Faktor 97 und bei Random Forest um Faktor 65 mal
héher ist, sodass ohne Beriicksichtigung dieser Variabel das Verhiltnis der Biaskomponente ver-
glichen mit dem vollen Modell im Mittel bei der Complete-Case-Analysis noch eine Steigerung
um 358%, bei Random Forest um 13% belduft. Fiir Amelia ergibt sich gegeniiber dem vollen
Modell eine im Durchschnitt um 37% geringere Verzerrung. Wahrend im linearen Modell Amelia
im Mittel eine um 0.003 und die Complete-Case-Analysis eine um 0.004 hohere Biaskomponen-
te als das volle Modell verfiigen, schneidet Random Forest im Schnitt um 0.003 besser als das
volle Modell ab. Falls die relativen Verdnderungen betrachtet werden, ist die Biaskomponente
im Mittel dennoch bei Random Forest um den Faktor 25.8 mal héher als beim vollen Modell,
bei Amelia ist die Verzerrung um den Faktor 10.2 und bei der Complete-Case-Analysis um den
Faktor 2 mal hoher.
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Im Folgenden sollen wiederum die MSE-Komponenten beziiglich der Imputationen untersucht
werden, welche in Tabelle 22 dargestellt sind.

Tabelle 22: MSE-Komponenten fiir Modell mit zufilligen Parametern, W=20

Amelia_logit Amelia_linear RF logit RF _lineaer

Varianzkomponente

Gesamt 10.4376 9.9299 2.9084 3.2983
1 99.7377 95.4997 27.7887 32.0251

9 0.6992 0.8331 0.2683 0.4011

T3 0.1961 0.1963 0.0247 0.0290

T4 0.2621 0.2520 0.0755 0.0886

5 1.9481 1.7422 0.4350 0.4017

6 1.0794 1.0885 0.1652 0.1783

7, 0.1904 0.1898 0.0312 0.0366

27, 0.1817 0.1749 0.0291 0.0345

T74 0.1882 0.1896 0.0266 0.0320

s 0.3265 0.3265 0.0407 0.0483

Biaskomponente

Gesamt 47.5642 47.9770 47.7981 46.7680
1 460.1865 462.4811  465.4879 453.5971

T9 2.4631 1.1032 1.9430 1.2772

3 0.7549 0.7500 0.7236 0.7176

T4 0.7509 0.7557 0.7309 0.7088

x5 6.2828 6.3640 5.1310 5.2739

g 4.2091 4.3009 4.4170 4.4291

7, 1.0287 1.0270 1.0803 1.0737

7, 0.9662 0.9630 0.9958 0.9848

74 1.0206 1.0145 1.0502 1.0380

s 1.4409 1.4483 1.3752 1.3671

Im ersten Moment fillt im Vergleich zum Modell mit festen Parametern auf, dass die impu-
tierten Daten beziiglich der Varianzkomponente bei Amelia um 15% im Logit-Modell und um
24% im linearen Modell und bei Random Forest um 25% im Logit- und um 60% beim linearen
Modell schlechter abschneiden. Allerdings treten beziiglich der Varianzkomponente &hnliche Fr-
gebnisse auf. Die Varianzkomponente der Imputationen von Amelia ist im Mittel mehr als 5 mal
so grofs wie die der Random Forest-Imputationen. Auch bei Betrachtung der Differenzen ist die
Streuung der Imputationen bei Amelia, vor allem bei z9, deutlich grofer. Im Vergleich der im
Logit- und im linearen Modell generierten Imputationen weist wiederum das Logit Modell einen
um 7% beziehungsweise einen um 0.63 hohere Varianzkomponente im Mittel bei Amelia auf,
wihrend die Streuung bei Random Forest durchschnittlich um 0.30 beziehungsweise 6% grofer
ist. Auch beziiglich des Bias schneidet das Modell mit festen Parametern besser ab, sodass bei
dem Logit-Modell und dem linearen Modell bei Amelia der Prézisionsfehler nach der Biaskom-
ponente um 24 beziehungsweise 11% besser ist, wihrend die Verzerrung bei Random Forest um
18% beim Logit- beziehungsweise 9% beim linearen Modell genauer ist. Fiir Amelia ergeben sich
im Logit-Modell gegeniiber Random Forest um im Mittel 1.75 geringere Biaskomponenten, im
linearen Modell schneidet Random Forest um eine durchschnittlich 0.166 geringere Verzerrung
ab. Bei Beriicksichtigung der relativen Unterschiede reduziert sich der Prézisionsfehler im Mittel
beim Logit Modell um 5 und beim linearen Modell um 1%.

Anschlieftend wird noch der NRMSE des Modells in Tabelle 23 der Modelle mit festen
und variierenden (zufillig gezogenen) Parametern verglichen. Zusatzlich zum MSE wird hier
auch der NRMSE hinzugezogen, welcher sowohl den durchschnittlichen aboluten Fehler, als auch
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Tabelle 23: NRMSE

logit ametia  linear amelia  logitgrr lineargp
Parameter fest 0.4775 0.3564  0.4996 0.3639
Parameter zufillig 0.4041 0.3148  0.3977 0.3176

die relativen Verbesserungen beriicksichtigt. Da durch die Standardabweichung der jeweiligen
Variable normiert wird, konnen hier, wie bereits erwihnt, alle Variablen gleichzeitig betrachtet
werden. Zunichst fallt beim Vergleich auf, das beeziiglich des NRMSE das aus den zufillig
generierten Parametern bei allen Imputationen besser abschneidet. Weiterhin ist der Fehlerterm
auch beim NRMSE im Logit-Modell héher als beim linearen Modell. Im Vergleich von Amelia
und Random Forest, liegt der NRMSE bei Amelia jeweils unter dem von Random Forest, wihrend
beim Modell mit zufdlligen Parametern im logit Modell Random Forest besser abschneidet und
im linearen Modell Amelia einen etwas geringeren NRMSE aufweist. Somit kann im Durchschnitt
iiber alle Variablen festgestellt werden, dass die Imputationen im Amelia-Datensatz zumindest im
Verhiéltnis zu deren Standardabweichung, bei den festen Parametern genauer geschétzt werden.

4.3 Modell mit multivariat-normalverteilten Daten

Bis jetzt wurden die X-Daten immer nach dem zu Beginn gewihlten Muster aus vielen verschie-
denen Verteilungen generiert. Damit ist, wie bereits erwihnt, die Voraussetzung Amelias, das
alle Variablen einer Normalverteilung folgen, bis hierhin immer verletzt gewesen. Im Folgenden
wurde noch ein Modell gerechnet, bei dem diese Annahme erfiillt ist. Der Erwartungswertvektor
p wurde wiederum zufillig gewdhlt, wihrend eine feste Kovarianz von 0.4 fiir zwei Variablen z;
und z;, i # j bestimmt Die Faktoren fiir die Konstruktion von den Responsevariablen bezie-
hungsweise die wahren § wurden weiterhin aus dem Pool der méglichen Ausprigungen gezogen.

0

= (51,0,2,0,5, 1,.5,2,10,3,5)
1 04 04 ... 04
04 1 04 ... 04

s, =04 04 1 ... 04
04 04 04 ... 1

Zunichst sollen wieder die Koeffizientenschétzer auf ihre Schétzfehler untersucht werden. Die
entsprechenden Tabellen zur Bias-und Varianzkomponente sind im Anhang zu finden. Da vor al-
lem das Abschneiden von Amelia mit Random Forest, auch im Vergleich der vorherigen Modelle,
untersucht werden soll, bietet folgende Tabelle ein Vergleich von Random Forest und Amelia.
Dafiir wurden Varianz- und Biaskomponenten von Random Forest und Amelia miteinander ver-
recnet, und sowohl das Verhéltnis als relativer Unterschied, als auch die Differenz als absoluter
Vergleich, wie auch schon in den vorherigen Analysen miteinander verglichen. Somit ergibt sich
folgendes Ergebnis:

Zunichst zeigen die Daten im Logit-Modell im Vergleich der ausschlieklich einer Normalver-
teilung folgenden Variablen sogar ein besseres Abschneiden von Random Forest auf. Wahrend
der MSE beim Modell mit festen Parametern im Schnitt um 40% und beim Modell mit zufallig
gezogenen Parametern um iiber 50% hoéher bei Random Forest als bei Amelia ist, betrigt der
MSE beim Modell fiir Random Forest aus multivariat normalverteilten Daten durchschnittlich
iiber 10% weniger. Auch bei Beriicksichtigung der Differenzen schneidet Amelia im multivariat
normalverteilten Modell schlechter ab als Random Forest, wihrend die Differenz der Schitzfehler
beziiglich der Koeffizienten in den anderen Modellen bei Random Forest hoher ausfillt. Ahnliche
Ergebnisse werden auch in den MSE-Komponenten erzielt, sodass fiir das Logit-Modell in allen
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logfest  lingest 10Gzupaut  linzupan  logyyn  linyyvn

MSE-Gesamt
Verhéltnis  1.4168  1.0390 1.5642 1.0208 0.8967 1.1443
Differenz  0.0136  0.0065 0.1428 -0.0069  -0.0037 0.8045

Varianzkomponente
Verhiltnis  1.1287  1.0734 1.3973 0.9457 0.9195 1.1525
Differenz ~ 0.0035  0.0073 0.0645 -0.0014  -0.0033 0.8167

Biaskomponente
Verhiltnis 27.8029  4.2712 5.4975 643.6043 1.2846 1.2920
Differenz  0.0101 -0.0008 0.0783 -0.0055  -0.0004 -0.0122

Messparametern der gegenteilige Effekt auftritt. Hinsichtlich der Varianzen unterschitzen die
geschitzten Modell-Varianzen den empirischen MSE eindeutig. Je héher allerdings die Schétz-
fehler sind, desto besser wird der empirische MSE geschétzt. Im linearen Model hingegen wird die
These, dass Amelia bei multivariat normalverteilten Daten besser abschneidet, bestétigt. Sowohl
beziiglich der durchschnittlichen Verhaltnisse und der durchschnittlichen Differenz weist Amelia
gegeniiber Random Forest bei multivariat normalverteilten Daten geringere Fehler auf. Auch in
der Varianzkomponente erzielt Amelia bei diesemn Modell die besten Ergebmnisse, nur beziiglich
der Biaskomponente schneidet Random Forest im linearen Modell fiir MVN-Daten besser als
Amelia ab. Trotzdem f&llt der kombinierte MSE fiir Amelia im Mittel um 14% oder 0.805 besser
aus. Ein Vergleich der imputierten Werte mit den anderen Modellen, bei denen X mehrfach ge-
zogen wird, ist aufgrund der unterschiedlichen Datengrundlage nicht sinnvoll. Allerdings betragt
der MSE der Variablen im Logit-Modell 0.811 bei Amelia und 0.832 bei Random Forest, wih-
rend im linearen Modell der MSE fiir Amelia 0.736 und bei Random Forest 0.746 betrigt. Somit
ergibt sich bei Amelia ein um 2.5 beziehungsweise 1.3% geringerer MSE der Imputationen. Das
bessere Abschneiden von Amelia kann also nur im linearen Modellen anhand diesen Resultaten
bestétigt werden, im Logit-Modell treten sogar hohere Fehler auf. Beziiglich der Imputationen
kann auch eine geringfiigig genauere Schitzung erzielt werden. Somit ergeben sich fiir den NRM-
SE beim Modell mit multivariat normalverteilten Daten fiir das Logit Modell bei Amelia 0.0748
und bei Random Forest 0.054 und im linearen Modell fiir Amelia 0.076 und fiir Random Forest
0.054. Der NRMSE ist also auch im linearen Modell geringer als beim Logit-Modell. Obwohl die
Annahme von Amelia beziiglich der Verteilung der Daten erfiillt ist, schneidet Amelia trotzdem
schlechter ab als Random Forest. Anhand der deutlich héheren Zusammenhinge der Kovariablen
kann dieser NRMSE aber nicht wirklich mit den anderen Werten verglichen werden.

5 Fazit

5.1 Zusammenfassung der Ergebnisse

In der Thesis wurde der Einfluss der Imputation fehlender Daten anhand Amelia und Random Fo-
rest untersucht. Als Messparameter wurde der MSE verwendet, der noch in eine Varianz- und eine
Biaskomponente zerlegt wurde. Beziiglich der Koeffizientenschétzer konnen nur geringe Unter-
schiede zwischen den vollstdndigen und den imputierten Datensétzen festgestellt werden. Sowohl
Amelia und auch Random Forest schitzten die fehlenden Werte ausreichend gut ein, so dass die
Schitzfehler der Koeffizientenschitzer dhnlich hoch sind wie die Fehler des auf den vollstindigen
Datensatz beruhenden Modells. Die Complete-Case-Analysis fiihrt bei einem derartig grofen An-
teilen an fehlenden Daten zu deutlich héheren Fehlerkomponenten, im Logit-Modell sind zudem
einige der Ergebnisse aufgrund Nicht-Konvergenz der Regressionsmodelle nicht mehr sinnvoll in-
terpretierbar. Generell fallt im Verlauf der Untersuchung auf, dass Amelia iiber eine geringere
Streuung in den Koeffizientenschitzern verfiigt, wihrend die Prézisionsfehler der Koeffizienten-
schitzer bei Random Forest niedriger ausfallen. Von den untersuchten Parametern beeinflusst
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vor allem o die Fehlerkomponenten. Je hoher die Streuung des Fehlereterms €, desto ungenauer
werden die Koeffizienten geschétzt. Was die Anzahl der wiederholten Ziehungen des Responsevek-
tors betrifft, weiken die Daten keinen Zusammenhang zu den Schitzfehlern hergestellt werden.
Wihrend eine Erhéhung des Stichprobenumfanges generell zu geringeren Varianzkomponenten
fithrt, beeinflusst eine Verédnderung des erwarteten Anteils von fehlenden Werten vor allem die
Prézision der Schitzungen Bei einer mehrfachen Ziehung der Daten X fithren beim Festhalten
der Parameter zu einer geringere Streuung der Koeflizientenschatzer , allerdings kénnen diese bei
Variation der Parameter mit geringerem Bias geschitzt werden. Im Vergleich zwischen Amelia
und Random Forest schneidet Amelia beziiglich der Koeffizientenschétzer vor allem bei Modellen
mit hoheren Schitzfehlern, groferen Anteilen an fehlenden Daten und gréfseren Stichprobenum-
fangen besser ab. Beziiglich der Verteilung der Variablen konnte die Annahme, dass Amelia bei
normalverteilten Daten bessere Ergebnisse im Vergleich mit Random Forest erzielt, nicht besté-
tigt werden. Allerdings kommt es bei der Untersuchung vereinzelt zu besonders hohen relativen
Verhéltnissen der Fehlerkomponente zugunsten Amelia, so dass Random Forest deutlich héhere
relative Fehler aufweist, was vermehrt bei normalverteilten Daten auftritt. Was die Imputationen
der Daten angeht, schneidet Random Forest doch recht deutlich besser ab. Fiir die aus den im-
putierten Datensitzen resultierenden Regressionsmodelle bleibt der Unterschied dennoch nicht
bestehen. Amelia biete also eine einfache und sinnvolle Losung fiir das fehlende-Daten-Problem
an. Trotz vieler Variationen von Parametern kénnen fehlende Werte akkurat geschitzt werden.
Der Einfluss der Verteilung der verwendeten Daten konnte in dieser Thesis nicht bestétigt wer-
den. Wahrend Random Forest fiir die direkten Imputationen dieser Daten noch besser geeignet
ist, gelingt Amelia beziiglich der Koeffizientenschitzer &hnlich gute Ergebnisse. Im Allgemeinen
sind die Ergebnisse sind sehr stark von den gewéhlten Parametern und Daten abhingig. Somit
koénnen keine grundsétzlichen Aussagen {iber Amelia beziehungsweise Random Forest getroffen
werden, ohne diese auf die verwendeten Daten zu bedingen. Im Modell wurde keine kategoriale
Variable verwendet, somit konnte das Abschneiden von Amelia und Random Forest auch vom
Skalenniveau der Daten betroffen sein. Weiterhin wurde das Random Forest-Modell nicht ge-
tuned, auch so kénnte noch eine bessere Performance bei Random Forest erzielt werden. Ein
weiterer Parameter, der hier nicht betrachtet wurde, ist die Rechenleistung, wobei hier Amelia
deutlich weniger Zeit bendtigt. In der Praxis gibt es natiirlich nahezu unendlich Faktoren, die
iiber den Vergleich zwischen Amelia und Random Forest entscheiden. Dennoch bietet Amelia
eine einfache und sinnvolle Losung fiir das fehlende-Daten-Problem an. Trotz vieler Variationen
von Parametern kénnen fehlende Werte akkurat geschétzt werden. Der Einfluss der Verteilung
der verwendeten Daten konnte in dieser Thesis nicht bestétigt werden. Wahrend Random Forest
fiir die direkten Imputationen dieser Daten noch besser geeignet ist, gelingt Amelia beziiglich
der Koeffizientenschitzer dhnlich gute Ergebnisse.
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6 Anhang

6.1 Tabellen

Im Folgenden ist die Bias- und Varianzkomponente Modells mit ausschliefslich multivariat nor-
malverteilten Daten gelistet. Fiir das Logit-Modell konnte die Complete-Case-Analysis wiederum
aufgrund Nicht-konvergenz nicht berticksichtigt werden.

Tabelle 24: Logit-Modell

volles Modell Amelia RF

Varianzkomponente
51 0.0010 0.0015 0.0014
B2 0.0343 0.0463 0.0432
B3 0.0268 0.0351 0.0361
B4 0.0377  0.0533 0.0485
Bs 0.0194  0.0475 0.0449
Be 0.0235 0.0388 0.0321
B, 0.0214 0.0338 0.0341
B, 0.0248  0.0399 0.0326
B, 0.0311  0.0426 0.0346
Bs 0.0312  0.0427 0.0414
Biaskomponente
b1 0.0036  0.0016 0.0013
Ba 0.0000 0.0072 0.0029
B3 0.0018  0.0042 0.0008
B4 0.0008 0.0076 0.0010
Bs 0.0010 0.0102 0.0039
Bs 0.0029  0.0078 0.0000
B, 0.8053  0.8283 0.8450
B, 0.6240 0.7872 0.8018
B, 0.2627 0.2186 0.2120

Bs 0.0006  0.0000 0.0002



Tabelle 25: Lineares Modell

volles Modell CC Amelia RF
Varianzkomponente

b1 0.1240  1.3952  0.1950 0.2195

B2 5.3346 38.0948  7.9411 7.9884

B3 2.4095 60.5614 4.4518 4.9890

B4 4.5774 45.6422 5.5112 6.7102

55 2.6246 66.5731 4.3017 4.9866

Bs 3.4696 38.8356 6.3965 7.1210

B, 3.0092 42.0746 4.8547 5.8383

B, 2.8520 52.3942 4.7173 4.9524

By 4.0933 32.1298 7.0420 9.0219

Bs 3.8739 76.5279 7.0225 8.7735

Biaskomponente

51 0.0000  0.0612 0.0013 0.0020

Ba 0.0358  0.0735 0.0831 0.1271

B3 0.0440  0.8851 0.0435 0.0595

By 0.0376  0.1436 0.2385 0.2426

Bs 0.0015  0.2063 0.0226  0.0000

Be 0.1201  1.1598 0.4349 0.4435

B, 0.1905  0.0439 0.0541 0.0327

B, 1.5378  0.0438 0.8694 0.8676

B, 1.1406  0.0787 1.1555 0.9963

Bs 0.0101  0.5003 0.0033 0.0130

6.2 R-Code

Da es sich bei der Thesis um eine Simulationsstudie handelt, wurden alle Daten in R selbst
generiert. Zur Erstellung der Thesis wurden 4 Funktionen verwendet:

1. Funktion 1
2. Funktion 2
3. Auswertung 1
4. Auswertung 2

Funktion 1 erstellt die Funktionen, bei denen nur ein X-Datensatz erstellt wurde. Die Funktion
gibt am Ende neben der Ubersicht aller iibergebenen Parameter den mittleren AIC, der Modelle,
sowie MSE, geschitzte Varianz und Bias- und Varianzkomponente der MSE-Zerlegung aus, je-
weils sowohl fiir das Logit- als auch das lineare Modell. Neben den Parametern muss der Funktion
noch iibergeben werden, ob X wie beschrieben generiert werden oder ob X einer multivariaten
Normalverteilung folgen soll. Zudem muss die Anzahl an wiederholten Ziehungen des Response-
vektors angegeben werden. Bei Funktion 2 hingegen wird X auch mehrfach simuliert. Funktion
2 gibt keine geschétzte Varianz mehr aus, dafiir aber die Fehlerkomponenten der imputierten
Daten und den NRMSE zusétzlich zu den gleichen Ausgabeparametern wie Funktion 1. Da die
Parameter zur Bestimmung von X und den Responsevektoren in der Funktion zuféllig gezogen
werden, miissen nur die Anzahl an Ziehungen von X und den Responsevektoren iibergeben wer-
den. Zur Auswertung der beiden Funktionen wurden jeweils weitere Skripte in R erstellt. Somit
werden je 3 der gespeicherten Ergebnisse aus Funktion 1 bzw. Funktion 2 aufgerufen und deren
Ergebnisse zusammengefiigt. Anschlielsend werden die Ergebnisse unter Angabe der gewiinschten
Fehlerkomponente verglichen.
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