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Abstract

In this paper we develop a descriptive concept of a (partially) ordinal joint scaling of
items and persons in the context of (dichotomous) item response analysis. The developed
method has to be understood as a purely descriptive method describing relations among
the data observed in a given item response data set, it is not intended to directly measure
some presumed underlying latent traits. We establish a hierarchy of pairs of item di�culty
and person ability orderings that empirically support each other. The ordering principles
we use for the construction are essentially related to the concept of �rst order stochastic
dominance. Our method is able to avoid a paradoxical result of multidimensional item
response theory models described in Hooker et al. [2009]. We introduce our concepts in
the language of formal concept analysis. This is due to the fact that our method has some
similarities with formal concept analysis and knowledge space theory: Both our methods
as well as descriptive techniques used in knowledge space theory (concretely, item tree
analysis) could be seen as two di�erent stochastic generalizations of formal implications
from formal concept analysis.

Keywords: stochastic dominance, empirically mutually supportive pairs, formal conept analy-
sis, knowledge space theory, cognitive diagnosis models, formal implications, item tree analysis

1 Introduction

The fruitful development of psychometric models that are empirically adequate is always
challenged by the fact that one has to deal with latent constructs that, without any
quasi metaphysical theory or vague preconceptions of involved terms, lead to a systematic
under-determination of involved concepts. A sound scienti�c theory that makes all basic
terms like that of ability or di�culty rigorously empirically criticizable is di�cult to obtain.
The exact understanding of the latent structure as a truly underlying trait or only as a
merely rough sketch or simply only an analogy about what is going on behind the observable
scene has a straight impact on how to interpret results of psychometric tests and how to deal
with a seemingly paradoxical situation, �rstly described in Hooker et al. [2009]. This paradox
is prevalent in many multidimensional models of item response theory (IRT), including
Rasch-type models that are not only statistical models for analyzing item response data, but
have some seemingly solid measurement theoretic foundation that can possibly be shattered
by such a paradox.

The aim of the present paper is to provide a more or less naive descriptive viewpoint on
the problem of obtaining some notion of person ability and item di�culty, given one simply
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has observed, how a set of persons answered a set of items in a psychometric test. Our
descriptive method avoids the above-mentioned paradox.

The paper is structured as follows: In Section 2 we recall the paradox discovered by Hooker
et al. [2009] and give a possible explanation of the paradox. In Section 3 we introduce our
descriptive method for a relational notion of person ability and item di�culty. We describe
our ideas in the language of formal concept analysis. The basics of formal concept analysis
are brie�y sketched in Appendix A for the reader unfamiliar with this topic. Actually, for
the understanding of Section 3 it is not really needed to know much about formal concept
analysis. The reason for presenting our ideas in the language of formal concept analysis is
that it has a neat relation to knowledge space theory (and also to cognitive diagnosis models),
which is a nonparametric form of item response theory where the analysis of the paradox is
also of some interest. In Section 4 we analyze the paradox in the context of knowledge space
theory. A brief introduction to the basics knowledge space theory is also given in Appendix B.
Appendix C shortly sketches the relationship between formal context analysis and knowledge
space theory. Section 5 gives a brief data example comparing the herein developed method
with a descriptive method of item tree analysis and sketches, how our method behaves under
certain unidimensional item response models. Finally, Section 6 concludes.

2 The paradox

We start by explaining the paradox we are referring to:

�Jane and Jill are fast friends who are nonetheless intensely competitive.
At the end of high school, they each take an entrance exam for a prestigious
university. After the exam, they compare notes and discover that they gave the
same answers for every question but the last. On checking their materials, it
is clear that Jane answered this question correctly, but Jill answered incorrectly.
They are therefore very surprised, when the test results are published, to �nd that
Jill passed but Jane did not.

Lawsuits ensue. The university maintains that it followed well-established sta-
tistical procedures: The questions on the test were designed to simultaneously ex-
amine both language and analytic skills, and a multiple-hurdle rule (Segall, 2000)
based on maximum likelihood estimates of each student's abilities was used to en-
sure that admitted students were pro�cient in both. The university had rechecked
its calculations many times and was satis�ed the correct decision had been made.
Jane's lawyers countered that, whatever the statistical correctness of the agency's
procedures, it is unreasonable that an examinee should be penalized for getting more
questions correct.� ([Hooker et al., 2009, p. 419])

Before coming to an explanation and discussion of this paradox we want to emphasize the
fact that the paradox is not a marginal note arising in only a few instances of multidimen-
sional IRT models and data situations, it can be shown that this sort of paradox can (and
to some extent will) arise in broad classes of multidimensional IRT models (cf. Hooker et al.
[2009], Jordan and Spiess [2012], Finkelman et al. [2010]), it is also present in some models
of knowledge space theory (see Section 4). Note further that the paradox does not arise only
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because of the need to estimate an underlying ability of a person, which is subject to statistical
error. Also if one would replace the actually observed responses patterns by true underlying
response probabilities one could get such a paradox. (Of course, for many usual models, such
paradoxical situations are somehow asymptotically avoided, given the presumed model is ac-
tually true, cf., [Jordan, 2013, Section 4.1] and [Hooker et al., 2009, Theorem 8.1]). This is
important to keep in mind to understand the next considerations. An intuitive explanation
why the paradox can appear is given in Hooker et al. [2009]:

�Suppose that each question on the test given to Jane and Jill required both
language and analytical skills to answer correctly, and Jane and Jill got some of
these correct and some incorrect. The �nal question, however, was very di�cult
in terms of analysis, but did not require strong language skills. That Jane got
this question correct suggests that her analytical skills must be very good indeed.
This being the case, the only explanation for her previous incorrect answers is
that her language skills must be quite low. By contrast, Jill, in getting the �nal
question incorrect, has demonstrated fewer analytic skills and must have relied on
stronger language skills to answer previous questions correctly. The estimate of
Jane's language ability therefore dipped below the required threshold, while Jill's
was pushed upward; both obtained satisfactory analysis scores.� ([Hooker et al.,
2009, p. 420])

The authors of Hooker et al. [2009] conclude that they �nonetheless feel that it is better not
to put students in the position of second-guessing when their best answer may be harmful to
them� ([Hooker et al., 2009, p. 420]), however, there are di�erent reactions thinkable. Three
of many possible reactions are:

i) �Everything is alright here, because given that the model is true, we have appropriately
estimated the true abilities of Jill and Jane and thus appropriately decided for Jill because
of her su�cient language skills and against Jane because her language skills were not
su�cient.

ii) Maybe everything is alright, but at least from the point of view of some notion
of �fairness� (which is a concept independent of the notions of ability and di�culty) we
should only use psychometric methods for the approval of students that do not admit this
paradox.

iii) The paradox reveals two very di�erent conceptualizations of the term ability
that should not be confused: On the one hand one can understand the term ability as an
underlying trait that one tries to measure, and thus the responses given in the exam have
to be taken only as measurements that are only indirectly related to the underlying trait.
On the other hand one can understand the ability literally as the ability to solve this or
that item and so one has to take the responses not only as measurements but as the actual
results showing exactly which items a persons was able to solve in the concrete test and
which not. In this understanding, one could alternatively use the word success instead
of the word ability. Then there would be no need in estimating abilities, but a naturally
arising question would then be, which of two persons that solved di�erent questions was
more successful.

3



The �rst reaction is problematic in the sense that one cannot assume that the model is
exactly right, because a rigorous empirical test of such an IRT model is not really possible
due to the involved latent concepts (see also the discussion in [Michell, 2008b]). Especially
the dimension of the IRT model plays an important role, here: If we could have (and one
should have) doubt about the (clearly only very roughly adequate) statement �the test items
only test the dimensions language skill and analytical skill �, then the situation may change:
In a very extreme (and of course unrealistic) opposite situation one could assume that in case
of doubt every item tests mainly its own dimension. Then, clearly the paradox should not
be present anymore, because then Jane would be more able w.r.t. every dimension that was
tested.

The second reaction is maybe confronted with the objection �Why is it unfair to base
an approval on honest estimates of abilities and not to revise a decision only because of
the fact that actually Jane did answer one more question rightly? The fact that Jane
answered one more question rightly is only revealing that she solved the items actually given
in the test better and not that she has more abilities.� If one accepts the second reaction,
then one could do for example a constrained optimization, like proposed in Hooker et al. [2009].

The third reaction is of interest in this paper, where we take the response patterns at face
value to de�ne a descriptive notion of success.

3 A descriptive method based on concepts of stochastic domi-
nance

In this section, we develop a purely descriptive and relational notion of person success and
item di�culty. We start with a motivating example to introduce our ideas:

3.1 A motivational example

Tim and Danny are companioned pole vaulters. From time to time they
discuss about the adequacy of the pole vault rules which actually made Danny
better ranked than Tim in the last three competitions, seemingly only because he
was more smart in skipping the right heights: In 2015 everything was in order,
Tim passed the 5.70m in the �rst trial and failed the following 5.75m while Danny
passed both heights in the �rst trail. In 2016 their di�erence was more tight:
While both failed the 5.70m for the �rst two trials, Tim took the 5.70m in the
third trial but Danny skipped the 5.70m and passed the 5.75m in the �rst trial.
The height of 5.80m they both did not manage. Finally, in 2017 Danny's luck
in skipping heights beggared all description: Again Tim passed the 5.70m in the
third trial and then took all heights till 5.90m in the �rst trial until he failed the
5.95m. But Danny, also passing the 5.70m in the third trial, decided to skip the
following 4 heights and luckily passed the 5.95m in the �rst trial.

In discussions between Danny and Tim, Danny usually argues that the rules
are simply the rules and thus skipping heights is of course right if the luck is with
you. But Tim objects:
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�Beside the rules, what would be a reasonable argumentation showing that in
the last three years you were actually the more capable pole vaulter?� Danny
interrupts:
�If you had force me to also jump the skipped heights between 5.75m and 5.90m
then I would probably have passed it, because I also managed the 5.95m.�
Tim: �Oh, this is wild speculation. But let us make the problem more simple:
Assume we both did jump the same heights, say only one time, and you failed all
heights from 5.75m to 5.90m while I passed all these heights. Would you still say
that you are the �better� pole vaulter only because you managed the 5.95m and I
not?�
Danny: �Of course I would say this, 5.95m is an extraordinary performance, near
to the olympic record.�
Tim: �Oh, I doubt that the di�erence between 5.90m and 5.95m is so much to
make up for four failed 5.90m′s.�
Danny: �You cannot compare one passed 5.95m with 4 failed heights of 5.90m.�

Tim: �Of course I cannot compare, but also you cannot compare, so what could
we do?...�

The situation of pole vaulting has some similarities with the situation in item response
theory, both Tim and Danny are solving items, but there are important di�erences, which
make the analysis more simple, here. Concretely, we have the following two speci�c points:

i) The items of jumping a speci�c height have some �intrinsic� properties that make them
totally ordered in di�culty. If one idealizes the situation a little bit, then one can say
that if one is able to take some height c, then one is also able to take a height d that is
lower than c. To see this, one can argue that for jumping the height d, one can put the
bar at height d and jump, as if the bar would lie on height c, and because one is able to
jump height d, one would automatically also take height c. It is important to note that
this relational property between height c and height d is an �intrinsic� property of the
items �jumping height c� and �jumping height d�, which is due to some physical relation
between the tasks. In particular, it is not dependent upon who is trying to solve the
task, so here we have no dependency of the notion of �di�culty� upon a population. This
independence is also the aim in item response theory in Rasch's understanding (speci�c
objectivity, cf., [Rasch, 1977]), but there it often seems to be more a wish than a fact.

ii) The task of jumping a given height can be repeated by the same person. The repetition
of the trials of one �xed person jumping a �xed height can be idealized as a binomial
experiment where one repeats a number of Bernoulli trials with some success probabi-
lity p. Approximately, the trials can be assumed to be independent, at least if there is
enough time for regeneration between di�erent trials and if possible learning e�ects can
be neglected. In typical situations of item response theory, it is not useful to pose the
same question twice to the same person because of the presence of strong learning e�ects.
The fact that the pole vaulting trials can be repeated makes a statement like �Tim has a
probability of taking 5.90m of around 0.9� a somehow empirically testable statement1,

1At least if one accepts Poppers methodological decision for a �practical falsi�cation�, cf., [Popper, 2005,
p. 182]
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while in typical situations of item response theory, one cannot test a comparable state-
ment for one person and one item in isolation. One would have to rely on either other
items, from which one knows (but wherefrom?) that they have the same di�culty, or on
items, from which one can somehow translate the probabilities of solving that items to
the probability of solving the envisaged item. For this one needs a model like the Rasch
model that has to be also valid to allow for such a translation. But beforehand one does
not know that the Rasch model holds. In this sense, in the spirit of the Duheme-Quine
problem one can test one single item and one single person only together with e.g. the
Rasch model.

3.2 Person ability and item di�culty in pole vaulting

So, let us now try to motivate some notion of item di�culty and person ability �rstly for the
simple situation of pole vaulting. As already said, there is some clear total order between the
di�erent items of jumping given heights that are due to physical relations. One can ask if
there is more than an ordinal scale, for example a cardinal scale of measurement underlying,
here. The heights itself clearly have a cardinal scale of measurement. But in pole vaulting,
one is not interested mainly in the heights itself, but in the question, if one is able to take,
or if one actually did take a given height. If one thinks in the probability of taking a given
height, then it is reasonable to assume that the success probability is decreasing in the height,
but there seems to be no obvious speci�c functional form describing the success probability in
dependence on the height. Actually, the reason for sometimes managing a given height and
sometimes not is due to auxiliary conditions that are not genuinely related to the height or
the experiment, but to the not explicitly stated circumstances.

Thus, practically, more than an ordinal scale of measurement seems to be not reachable,
here. Of course, in principle, if we exactly know the auxiliary conditions then we possibly
can explicitly determine the quantitative relation between the success probabilities and the
height and other auxiliary conditions. Practically, this seems unrealistic.
Compared to the auxiliary conditions that introduced the randomness of sometimes taking
a height and sometimes not, in the Rasch model, the randomness in solving an item is not
a sort of noise from which one would like to get rid of, instead it is the basic ingredient
that allows for the construction of a cardinal scale of item-di�culty. If no randomness
were present, then strangely enough one would fall back into the situation of Guttman
scaling, where one has only an ordinal scale of measurement. This counterintuitive issue is
known as the Rasch paradox (see, [Michell, 2008a,b], cf., also [Sijtsma, 2012, Humphry, 2013]).

Since we are not concerned with more than a (partially) ordinal scale in this paper, we do
not have to care about this issue, here.

To get a notion of ability of Tim and Danny seems to be hard. For the item di�culty, we
got only a relational notion of di�culty, thus we would also only expect a relational notion
for person ability. We said that some height c with c > d is more di�cult than a height of d
because if one is able to jump the height c, then one is also able to jump the height d. In a
dual manner one can say that one person p is more able than another person q, if person p is
able to take all heights that person q is able to take. Here, we face the �rst slight asymmetry
between person ability and item di�culty2. For the items, we have some physical relation

2Note that a further asymmetry consists in the fact that the ability of a person is related to which item one
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that translates to a relation about the di�culty of items. If we could analyze both Tim and
Danny as two di�erent �physical machines� then we could possibly get also a notion of which
heights Danny and Tim are physically able to take. This would be �ne, but is of course too
di�cult. A further point is here, that we spoke about the ability to solve an item, but of
course we actually meant some notion of �being in principle able to take a height�, because
sometimes one takes a height and sometimes not. For the comparison of di�culty we did
not need to rely on which heights Danny and Tim actually did take. For the comparing of
persons, it seems to be practically not circumventable to rely on which items the persons
actually did solve.

3.3 A notion of item di�culty and person success in item response theory

To get a notion of person ability, let us �rstly think about the still more simple case where
one has items that are completely comparable, say Danny and Tim did only try to take the
same height c for a number of trials. Then one can naturally say that a person who solved
more items than another person is more able than the other person. Actually, because of the
randomness of solving an item or not, we would like to be a little more cautious here and
say only that the person who solved more items is more successful than the other person.
The above notion can be mathematically expressed in di�erent ways. One way would be to
calculate the item scores (i.e., the number of solved items) and then to say that the person
with a higher score is more successful. This formulation seems to do not naturally translate
to the case where we have items with di�erent di�culties with an only ordinal scale of
measurement. Thus, another representation seems to be promising, here:

For the case of items that are clearly comparable in di�culty, one can say that person
p is more successful than person q, if for every item i that person q did solve, there exists
also an item Φ(i) that person p did solve, with the additional condition that Φ is injective
meaning that we use no item from the items that p has solved twice as an argument to show
that person p is more successful than person q. This representation with a sort of a matching
is the main idea in this paper, and this idea is closely related to the notion of stochastic
dominance, see Appendix D. Now, we can think about how we would generalize this notion
to the case of items with di�erent di�culties. The generalization is actually very intuitive:
For two persons p and q one can naturally de�ne that person p is more successful than person
q if for every item i there (bijectively) exists another item Φ(i) that is as least as di�cult as
item i and was solved by person p.

After having found a notion of successfulness for persons if the di�culties of items are
given, we can now think about how to de�ne a successfulness-relation when there is no
di�culty relation given beforehand, which is the typical case in item response theory.

Before doing so, we would �rstly like to point out that there are still very interesting
situations, in which one has at least a partial ordering of item di�culty beforehand that
is due to an understanding of the cognitive processes that are needed to solve an item. A
classical example are fraction subtraction tasks in the context of cognitive diagnosis models

considers (e.g. pole vaulting or climbing or whatever) whereas the di�culty of an item is more intrinsically
related to the item and not so much to the question about who tried to solve it.
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(CDM: Bolt [2007], de la Torre [2009], DiBello and Stout [2007], Junker and Sijtsma [2001],
Tatsuoka [1990, 2002]). If one compares for example solving the subtraction task 6/7 − 4/7
with the task 2− 1/3, then one can say that the �rst task is easier than the second, because
for solving the �rst task one has essentially only to subtract the nominators, while for
the second task, one has to �rstly convert the 2 to 6/3 and then one has to subtract the
nominators. Thus, everyone who can solve the second task usually is also able to solve the
�rst task, and in this sense the �rst task is easier, which is a relation inherent in the tasks
and not related to the person who solves the task. Apart from cognitive diagnosis models,
also in knowledge space theory ([Doignon and Falmagne, 1985, 2012, Falmagne et al., 1990,
Falmagne and Doignon, 2010]) one similarly has some relations between di�erent items.
Actually, there is a neat relation between the two areas which seemingly independently
developed very similar concepts. While in knowledge space theory one �rstly had a more
deterministic view that was generalized to probabilistic versions afterwards (e.g., the basic
local independence model.), in cognitive diagnosis modeling one came more from classical
item response theory with a clear probabilistic underpinning and had the aim of bringing
item response theory closer to cognitive psychology. For a detailed discussion of the link
between cognitive diagnosis models and knowledge space theory, see Heller et al. [2015].
Note further, that both knowledge space theory and cognitive diagnosis models are somehow
related to the theory of formal concept analysis, see Rusch and Wille [1996]. This relation
is the reason for presenting our ideas in terms of formal concept analysis. (Actually, for
the understanding of the ideas developed herein, one does not need to know much about
formal concept analysis, basically one only needs to know, what a formal context is and
what a formal implication is, see Appendix A). The paradox described in Hooker et al.
[2009] was given in the context of more classical multidimensional IRT models, but one
can also ask for the presence of the paradox in the context of knowledge space theory (or
cognitive diagnosis models). This question will thus be also discussed in Section 4 of this paper.

Coming back to the problem of de�ning a successfulness relation in a general IRT situation
where one has neither some �physical insights� into person abilities nor a relation on the
item di�culties, at �rst glance it seems to be impossible to get a reasonable successfulness
relation. However, in a �rst step, one can try to solve the problem of a missing item
di�culty relation by thinking about a dual construction that could lead to a reasonable
di�culty relation in a situation where one has knowledge about the abilities of the per-
sons. The following notion of item di�culty, given a notion person ability seems to be natural:

For two items i and j and for a set of persons with the same ability who all tried to solve
item i and item j one can say that item i is more di�cult than item j if there are less persons
who solved item i than persons who solved item j. Equivalently, one can say that item i is
more di�cult than item j if for every person p who solved item i there bijectively exists a
person Ψ(p) who solved item j. For persons with di�erent abilities, one can say that item i
is more di�cult than item j if for every person p who solved item i there bijectively exists a
person Ψ(p) who is not more able than person p and solved item j.

Now, of course one does not know beforehand the abilities of the persons and one is thus
running in circles. However, this running in circles can be made from a necessity to a virtue by
simultaneously treating item di�culty and person success relations. A di�culty relation indu-
ces a successfulness relation and vice versa, so one can think about pairs of relations that �t
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to each other. This is the idea behind the notion of empirically mutually supportive pairs that
we would like to introduce more formally in the following section. The notion of empirically
mutually supportive pairs will be closely related to the notion of �rst order stochastic domi-
nance, see Appendix D. Since there are more equivalent de�nitions of stochastic dominance,
we also give two equivalent and intuitively accessible de�nitions of associated success and ea-
siness relations in De�nition 1 which prepares the notion of empirically mutually supportive
pairs given in De�nition 2.

3.4 Empirically mutually supportive pairs

De�nition 1. Let K := (G,M, I) be a formal context which means that G and M are sets
and I ⊆ G×M is a binary relation between G and M . In our context the set G is the set of
persons participating in a dichotomous psychometric test consisting of the set M of items. A
pair (g,m) is in I if and only if person g has solved item m.

For a given person g we denote with g′ the set of all items that person g has solved.
Analogously for an item m we denote with m′ the set of all persons who solved item m. Let
furthermore S ⊆ G × G be a quasiorder on G and let E ⊆ M ×M be a quasiorder on M .
The quasiorder S is interpreted as: gSh means that person g is �more successful� than person
h according to the relation S. The quasiorder E is interpreted as: mEn means that item m
is �easier� to solve than item n according to the relation E. To the quasiorders S and E we
associate the following two relations:

SD(E) := {(g, h) ∈ G×G | ∀U ∈ U((M,E)) : |U ∩ g′| ≥ |U ∩ h′|︸ ︷︷ ︸
Person g ist more successfull than person h, if she solved more (or as
many) �non-easy� items than (as) person h, independtly from the exact
concretization of the term non-easy with the help of upsets of (M,E)
or equivalently.:
Person g is more successfull than person h, if for every item solved by
person h there bijectively exists an item at least as di�cult that was
solved by person g

}

and

SD(S) := {(m,n) ∈M ×M | ∀U ∈ U((G,S)) : |U ∩m′| ≥ |U ∩ n′|︸ ︷︷ ︸
Item m is easier (or as easy) to solve than (as) item n, if it was solved
by more �less successfull� persons than item n, independently from the
exact concretization of the term less successfull with the help of upsets
in (G,S) or equivalently:
Item m ist easier (or as easy to solve) than (as) item n, if for every per-
son that solved item n there bijectively exists a less or equally successfull
person who solved item m.

}

Here, U((M,E) denotes the set of all upsets of the quasiorder (M,E), where a set S ⊆M
is called an upset if it satis�es a ∈ S & aEb =⇒ b ∈ S. One can understand the set of
all upsets as the set of all reasonable concretions of the term non-easy: an upset A is a
concretion of the term non-easy by declaring all a ∈ A as non-easy and all a /∈ A as easy.
The concretion is reasonable in the sense that if a is termed non-easy and a is easier than b
(i.e. aEb), then also b should be termed non-easy, which is exactly the property characterizing
an upset. Analogously, U((G,S)) de�nes the upsets of the quasiorder (G,S) modeling the set
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of all reasonable concretions of the term non-successful.

Now, de�ne additionally the space S := {(S,E) | S ∈ 2G×G, E ∈ 2M×M} and endow S
with the order

≤S:= {((S,E), (S′, E′)) ∈ S×S | S ⊆ S′& E ⊆ E′},
and �nally de�ne the operator

L : (S,≤S) −→ (S,≤S) : (S,E) 7→ L((S,E)) := (SD(E) ∩ S, SD(S) ∩ E).

De�nition 2. Let K := (G,M, I) be a formal context and (S,E) ∈ S a pair of a person- and
an item-quasiorder. The pair (S,E) is called a weakly empirically mutually supportive

pair of K, if
S ⊆ SD(E) & E ⊆ SD(S)

or equivalently
(S,E) = L((S,E))

holds. If we actually have
S = SD(E) & E = SD(S),

then the pair (S,E) is called a strongly empirically mutually supportive pair of K. The
set of all weakly empirically mutually supportive pairs of K is denoted with wsupp(K) and the
set of all strongly empirically mutually supportive pairs of K is denoted with ssupp(K) .

We can interpret a given weakly empirically mutually supportive pair (S,E) as follows:
If we would have some reason to believe that E is the �truly underlying� easiness relation of
the items, then the relation S would be a reasonable relation that is somehow empirically
supported by the easiness relation E. Dually, if we have some reasons to think that S is the
truly underlying success relation, then E would be empirically supported by S as a reasonable
easiness relation. So,we can think of mutually supportive pairs as possible underlying pairs
of relations that are consistent in the sense that they support each other. There are much of
these pairs and one can think about the structure of these pairs. It will turn out that there
is a weakest and a strongest such pair. More importantly, one can explicitly compute these
both extreme pairs. Furthermore, in some sense, all empirically mutually supportive pairs
will avoid the paradox of Hooker et al. [2009] in the sense that a person, who solved all items
another person solved, plus some more, is always more successful w.r.t. the relation S than
the other person. Actually, the weakest mutually supportive pair (S,E) exactly given by

pSq ⇐⇒ person p solved all items that where solved by person q

and
iEj ⇐⇒ item i was solved by all persons that solved item j.

The still more interesting pair is the strongest pair that could be seen as the strongest
relational notion of di�culty and success one could expect to get, only based on the data. To
see, that there actually exists such a strongest pair and to see how to compute it, we only
have to analyze, what happens if we apply the operator L several times.

Lemma 1 (Lemma and De�nition). Let K = (G,M, I) be a �nite formal context (meaning
that G and M , and thus also I are �nite). The operator L has the following properties:

10



i) it is monotone: ∀p, q ∈ S : p ≤S q =⇒ L(p) ≤S .L(q)

ii) L is intensive: ∀p ∈ S : L(p) ≤S p.

iii) L is of �nite order: ∃k ∈ N : Lk+1 := L ◦ L ◦ . . . ◦ L︸ ︷︷ ︸
k+1 times

= Lk.

iv) If we de�ne L∞ as Lk with the k from iii), then L∞ is a kernel operator, that is, a
monotone, intensive and idempotent operator, where idempotent means that L2

∞ = L∞.

Proposition 1. Let K = (G,M, I) be a �nite formal context.

i) The set wsupp(K) of all weakly empirically mutually supportive pairs of K are exactly the
kernels of the kernel operator L∞. (This means that p ∈ wsupp(K) ⇐⇒ L∞(p) = p).

ii) The set ssupp(K) of all strongly empirically mutually supportive pairs of K is a subset of
S that has a smallest and a greatest element.

The smallest element (I∂G,1(K), I∂M,1(K)) of this interval consists of the dual relation of
the simple formal implications between objects

I∂G,1(K) := {(h, g) ∈ G×G | ∀m ∈M : gIm =⇒ hIm}.

and of the dual relation of the simple formal implications between attributes

I∂M,1(K) := {(n,m) ∈M ×M | ∀g ∈ G : gIm =⇒ gIn}.

The greatest element is given as

L∞((G×G,M ×M))

or equivalently as
L∞((#G,#M )),

where #G := {(g, h) | |g′| ≥ |h′|} and #M := {(m,n) | |m′| ≥ |n′|}.

4 Relation to knowledge space theory and formal concept ana-
lysis

The reason for introducing our ideas in the language of formal concept analysis lies in
the fact that the weakest empirically mutually supportive pair is build by simple formal
implications and that the construction of success-relations from easiness-relations and vice
versa can be seen as some stochastic generalization of simple implications based on ideas of
stochastic dominance. In knowledge space theory, which in its deterministic form is closely
related to formal concept analysis (see [Rusch and Wille, 1996] and Appendix C), for the
construction of the knowledge structure one sometimes uses techniques of Boolean analysis,
for example item tree analysis (cf., e.g., [Schrepp, 1999, 2002, Ünlü and Sargin, 2010]). This
descriptive technique can be also seen as some other type of a generalization of simple formal
implications:
If in an IRT data set, all persons, who solved item i did also solve item j, then the formal im-
plication i −→ j is valid and one would naturally say that item j seems to be more easy than
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item i. For our stochastic generalization, if for simplicity all persons have the same ability, we
would also say that item j is more easy than item i if only more persons solved item j than
item i, no matter, which persons exactly solved the items. Another generalization of the for-
mal implication i −→ j would be to say that item j is more easy than item i if the implication
i −→ j is not exactly true but approximately in the sense that from the population of persons
who solved item i most persons (say more than c · 100% of this population) did also solve
item j. This notion, which is very close to the notion of statistical preference3 ([De Schuy-
mer et al., 2003b,a]), is one of the underlying ideas in descriptive methods of item tree analysis.

The links between our stochastic generalization of simple implications and knowledge space
theory also motivate the question if the paradox from above can also appear in applications of
knowledge space theory. This section thus analyzes, in which situations the paradox can occur.
Firstly, because in knowledge space theory one has no ability parameters but only knowledge
states, we have to de�ne what it means that the paradox occurs. Concretely, we deal here only
with the simplest probabilistic version of knowledge space theory, namely with the basic local
independence model (BLIM, see below). There, one has some observed response patterns and
tries to estimate the true underlying knowledge states and the paradox translates into the
question about if it is possible that a person p who solved all items another person q solved,
plus some more, gets an estimated knowledge state that is not a superset of the estimated
knowledge space of person q.

De�nition 3 (Presence of the paradox in knowledge space theory). Let (Q,K) be a know-
ledge space4 and let f : 2Q −→ K be an estimator that maps every observed response pattern
to an estimated knowledge space. Then we say that the paradox is present for the two response
patterns R and S if

R ⊆ S but f(R) * f(S).

Since we sometimes have to deal with ties in the sense that for example for maximum likelihood
estimators the argmax could be non-unique we will say analogously for a set-valued estimator
f : 2Q :−→ 2K and two response patterns R and S that the paradox is present if R ⊆ S and
f(R) = {T} and f(S) = {U} with T * U .

Remark 1. In Hooker et al. [2009] the paradox was de�ned for a score that would translate
in our context to a mapping score : 2Q −→ R and the condition

R ⊆ S & score(R) > score(T ).

In our context a score could naturally be for example a linear form in the estimated knowledge
space: score(R) =

∑
q∈Qwq ·1f(R)(q) with non-negative weights wq. If we have two paradoxical

response patterns R and S, then the set A = f(R)\f(S) is not empty and we can construct a
score as score(T ) =

∑
q∈A 1f(T )(q) and thus have a paradoxical situation for this score since

score(S) = 0 < score(R).

Example 1 (Paradoxical result for a non-quasiordinal basic local independence model
(BLIM)). Consider the basic local independence model (BLIM). The BLIM is a quadrupel
(Q,K, p, r), where

3Statistical preference can be seen as a stochastic relation that is an alternative to stochastic dominance.
4See Appendix B.
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i) (Q,K) is a knowledge space with �nite Q,

ii) p is a probability function on K, meaning that p : K −→ [0, 1] with
∑

K∈K
p(K) = 1,

iii) r is a response function for (Q,K, p), meaning that r : 2Q × K −→ [0, 1] with∑
R∈2Q

r(R,K) = 1 for arbitrary K ∈ K,

iv) r satis�es the condition of local independence:

r(R,K) =
∏

q∈K\R
βq ·

∏

q∈K∩R
(1− βq) ·

∏

q∈R\K
ηq ·

∏

q∈Q\(R∪K)

(1− ηq).

Here the βq are the probabilities of a careless error and the ηq are the probabilities of a
lucky guess for each item q.

Now, take the underlying knowledge space (Q,K) as Q = {qq, . . . , q5} and K = {∅,K :=
{q1, q2, q4}, L := {q1, q2, q3, q5}, Q}. Note that K is closed under arbitrary unions but not
under arbitrary intersections because K ∩L = {q1, q2} /∈ K, thus (Q,K) is not a quasi-ordinal
knowledge space. Furthermore assume that the careless error and the lucky-guess probabilities
are known and equal for all q. Thus we will denote them with β and η respectively and
assume that 0 < η < β < 0.5 which implies in particular that (1 − η) > (1 − β) > 0.5 and
(1−x)

x > 1 for x ∈ {β, η} as well as β(1 − β) > η(1 − η). (These inequalities will be used
later.) Finally, take for simplicity for p the uniform distribution on all knowledge states
K ∈ K. For a given observed response pattern R the maximum likelihood estimator for the un-
derlying true knowledge space is simply that k in K that maximizes the response value r(R,K).

We are now ready to construct a pair of paradoxical response patterns, namely R :=
{q1, q2} and S := {q1, q2, q3, q5}. The following calculations will show that the maximum
likelihood estimate of response pattern R is L and the maximum likelihood estimate of S is K,
but L * K

q1 q2 q3 q4 q5

Q x x x x x
K x x x x
L x x x
∅
R x x
S x x x x
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r(R,L) = β1 · (1− β)2 · η0 · (1− η)2 r(S,K) = β0 · (1− β)4 · η0 · (1− η)1

r(R,Q) = β3 · (1− β)2 · η0 · (1− η)0 r(S,Q) = β1 · (1− β)4 · η0 · (1− η)0

r(R,K) = β2 · (1− β)2 · η0 · (1− η)1 r(S,L) = β1 · (1− β)2 · η2 · (1− η)0

r(R, ∅) = β0 · (1− β)0 · η2 · (1− η)3 r(S, ∅) = β0 · (1− β)0 · η4 · (1− η)1

r(R,L)

r(R,Q) =
(1− η)2
β2

=

(
1− η
η

)2

> 1
r(S,K)

r(S,Q) =
(1− η)
β

> 1

r(R,L)

r(R,K)
=

(1− η)
β

> 1
r(S,K)

r(S,L)
=

(1− β)2(1− η)
βη2

=
(1− β)
β

· (1− β)
η

· (1− η)
η

> 1

r(R,L)

r(R, ∅) =
(1− η)
β

> 1
r(S,K)

r(S,L)
=

(1− β)2(1− η)
βη2

=
(1− β)
β

· (1− β)
η

· (1− η)
η

> 1

r(R,L)

∅ =
β(1− β)2
η2(1− η) =

β(1− β)
η(1− η) ·

(1− β)
η

> 1
r(S,K)

r(S, ∅) =
(1− β)4
η4

=

(
1− β
η

)4

> 1

The following theorem shows that the paradox cannot occur if we have a �xed quasi-ordinal
knowledge space with known probabilities βq and ηq.

Theorem 1. Let (Q,K, p, r) be a basic local independence model where the underlying know-
ledge space is a quasi-ordinal knowledge space and where the careless-error and the lucky-guess
probabilities are known and lie in the interval (0, 0.5). Then, the conditioned maximum likeli-
hood estimator5

f : 2Q −→ K : R 7→ f(R) := argmaxK∈K r(R,K)

is not susceptible to the paradox, meaning that there are no two response patterns R and S
with a unique ML estimate f(R) and f(S) satisfying

R ⊆ S & f(R) * f(S).

Proof. Let R and S be two arbitrary response patterns with R ⊆ S and
with unique ML-estimates satisfying f(R) * f(S). We will �rstly de�ne
some associated sets and illustrate the situation by a small cross tab and
sketch the basic idea of the proof before actually doing the proof: De�ne:

5conditioned means here that one maximizes not the unconditional joint likelihood P(R = r & S = K)
where R is the random response pattern, r is the actually observed response pattern and S is the random
true knowledge state, but one only maximizes P(R = r | S = K) which is equivalent to maximizing the joint
likelihood under the assumption that all knowledge spaces are equally probable.
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A :=f(R) ∩ f(S) ∈ K
B :=f(R)\f(S) 6= ∅
C :=f(R) ∪ f(S) = D∪̇B ∈ K, where
D :=f(S) ⊆ C

C x x x x
B x
A x x

D=f(S) x x x
f(R) x x x

R x x x
S x x x x

.

Because A ∈ K we have r(R,A) < r(R, f(R)) = r(R,A∪̇B) which means that the addition
of the set B to the set A increases the likelihood for the observed response pattern R. In
the sequel we show that from this it follows that for a pattern S that is a superset of R the
addition of B to the set f(S) will necessarily also increase the likelihood. From B∪̇f(S) ∈ K
we can conclude that the knowledge state f(S) cannot be the maximum likelihood estimate
of the response pattern S and thus the assumption was wrong which shows that actually the
paradox cannot occur:

The fact r(R,A) < r(R, f(R)) is equivalent to

∏

q∈A\R
βq

∏

q∈A∩R
(1− βq)

∏

q∈R∩Ā∩B̄
ηq

∏

q∈R∩Ā∩B
ηq

∏

q∈R̄∩Ā∩B̄
(1− ηq)

∏

q∈R̄∩Ā∩B
(1− ηq) <

∏

q∈A\R
βq

∏

q∈B\R
βq

∏

q∈A∩R
(1− βq)

∏

q∈B∩R
(1− βq)

∏

q∈R∩Ā∩B̄
ηq

∏

q∈R̄∩Ā∩B̄
(1− ηq),

which can be reduced to

∏

q∈R∩Ā∩B
ηq

∏

q∈R̄∩Ā∩B
(1− ηq) <

∏

q∈B\R
βq

∏

q∈B∩R
(1− βq). (1)

From (1) it follows that

r(S,D) < r(S, C︸︷︷︸
=D∪̇B

) (2)
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because (2) is equivalent to

∏

q∈D\S
βq

∏

q∈D∩S
(1− βq)

∏

q∈S∩D̄∩B̄
ηq

∏

q∈S∩D̄∩B
ηq

∏

q∈S̄∩D̄∩B̄
(1− ηq)

∏

q∈S̄∩D̄∩B
(1− ηq) <

∏

q∈D\S
βq

∏

q∈B\S
βq

∏

q∈D∩S
(1− βq)

∏

q∈B∩S
(1− βq)

∏

q∈S∩D̄∩B̄
ηq

∏

q∈S̄∩D̄∩B̄
ηq,

which can be reduced to
∏

q∈S∩D̄∩B
ηq

∏

q∈S̄∩D̄∩B
(1− ηq) <

∏

q∈B\S
βq

∏

q∈B∩S
(1− βq). (3)

To see that (3) follows from (1) �rst note that D̄ ∩ B = Ā ∩ B = B and remember that S is
a superset of R. Then we can derive (3) from (1) as

∏

q∈S∩D̄∩B
ηq

∏

q∈S̄∩D̄∩B
(1− ηq) <

∏

q∈R∩Ā∩B
ηq

∏

q∈R̄∩Ā∩B
(1− ηq)

<
∏

q∈B\R
βq

∏

q∈B∩R
(1− βq)

<
∏

q∈B\S
βq

∏

q∈B∩S
(1− βq),

where the �rst and the third inequality can be recognized by observing that we have a product
of terms greater than 0.5 (the terms (1− βq) and (1− ηq)) and terms less than 0.5 (the terms
βq and ηq) and in the product of the left hand sides of the inequalities we have always a subset
of terms greater than 0.5 and a superset of terms less than 0.5 compared to the corresponding
right hand sights. The second inequality is the inequality from (1).
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Remark 2. Note that the theorem assumes that the careless error and lucky guess parameters
are known. If they are estimated jointly for all response patterns under the assumption that
they are identical for every person (which is actually assumed in the BLIM), then the paradox
still cannot occur. If, on the other hand, one estimates the lucky guess and careless error
probabilities for each person separately, then the paradox can occur. This is shown in the
following example:

Example 2. Assume the BLIM with the modi�cation that the careless error probabilities
and the lucky guess probabilities are independent from the items but that they are estimated
separately for every person via (conditioned) maximum likelihood. The conditioned likelihood
for a given response pattern R, an underlying true knowledge state K and careless error- and
lucky guess probabilities β and η is given as

β|K\R| · (1− β)|K∩R| · η|R\R| · (1− η)|R∪K|.

Assuming β, η ∈ [0, 5], the likelihood is maximal if

βML(R,K) =

{
min{0.5, |K\R|

|K\R|+|K∩R|} if |K\R|+ |K ∩R| 6= 0

∈ [0, 0.5] if |K\R|+ |K ∩R| = 0
(4)

ηML(R,K) =

{
min{0.5, |R\K|

|R\K|+|K∪R|} if |R\K|+ |K ∪R| 6= 0

∈ [0, 0.5] if |R\K|+ |K ∪R| = 0
.

For the knowledge space (Q,K) with Q = {q1, . . . , q5} and K = {∅,K := {q3, q5}, L :=
{q1, q2, q4},Q} and the two response patterns R = {q1, q4} and S = {q1, q3, q4, q5} we can
compute the likelihood of observing such a response pattern (given a certain underlying true
knowledge space) under the most likely careless error and lucky guess probabilities from (4):

q1 q2 q3 q4 q5

Q x x x x x
K x x
L x x x
∅
R x x
S x x x x
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r(R,L) = β1 · (1− β)2 · η0 · (1− η)2 r(S,K) = β0 · (1− β)2 · η2 · (1− η)1

r(R,Q) = β3 · (1− β)2 · η0 · (1− η)0 r(S,Q) = β1 · (1− β)4 · η0 · (1− η)0

r(R,K) = β2 · (1− β)0 · η2 · (1− η)1 r(S,L) = β1 · (1− β)2 · η2 · (1− η)0

r(R, ∅) = β0 · (1− β)0 · η2 · (1− η)3 r(S, ∅) = β0 · (1− β)0 · η4 · (1− η)1

βML(R,L) =
1

3
ηML(R,L) = 0 βML(S,K) = 0 ηML(S,K) = 0.5

βML(R,Q) = 0.5 ηML(S,Q) = [0, 0.5] βML(S,Q) =
1

5
ηML(S,Q) = [0, 0.5]

βML(R,K) = 0.5 ηML(R,K) = 0.5 βML(S,L) =
1

3
ηML(S,L) = 0.5

βML(R, ∅) = (0, 0.5) ηML(R, ∅) =
2

5
βML(S, ∅) = [0, 0.5] ηML(S, ∅) = 0.5

r(R,L, βML, ηML) =
4

27
= 0.148 r(S,K, βML, ηML) =

1

8
= 0.125

r(R,Q, βML, ηML) =
1

32
= 0.03125 r(S,Q, βML, ηML) =

256

3125
≈ 0.08192

r(R,K, βML, ηML) =
1

32
= 0.03125 r(S,L, βML, ηML) =

1

27
≈ 0.03703704

r(R, ∅, βML, ηML) =
108

3125
≈ 0.03456 r(S, ∅, βML, ηML) =

1

32
= 0.03125

These calculations show that the ML-estimate of pattern R is the knowledge space L and the
ML-estimate of the pattern S ⊇ R is K + L which shows that in this situation the paradox is
present.

5 Short illustration of the method

In this section, we shortly show the results of our method for a data set. The used data set is
a subsample from the general knowledge quiz Studentenpisa conducted online by the German
weekly news magazine SPIEGEL ([SPIEGEL Online, 2009]). The data contain the answers of
1075 university students from Bavaria to 45 multiple choice items concerning the 5 di�erent
topics politics, history, economy, culture and natural sciences. For every topic, 9 questions were
posed. We compare our method with the minimized corrected inductive item tree analysis
algorithm described in Sargin and Ünlü [2009]. For the minimized corrected inductive item
tree analysis we used the R package DAKS ([Ünlü and Sargin, 2010]). For the computation
of the empirically mutually supportive pairs, we used the techniques for detecting stochastic
dominance developed in Schollmeyer et al. [2017]. We show here separately for every topic
the Hasse graphs of the easiness relation E of the items both for the corrected inductive item
tree analysis algorithm as well as for our method. An item i is here more easy than and item
j if item i is depicted below item j and if item i is directly or indirectly connected to item j
though an ascending path of edges.
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topic: Politics

item analysis based on knowledge space theory (IITA algorithm of R package DAKS):

strongest empirically mutually supportive pair (item easiness relation E):
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topic: History

item analysis based on knowledge space theory (IITA algorithm of R package DAKS):

strongest empirically mutually supportive pair (item easiness relation E):
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topic: Economy

item analysis based on knowledge space theory (IITA algorithm of R package DAKS):

strongest empirically mutually supportive pair (item easiness relation E):
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topic: Culture

item analysis based on knowledge space theory (IITA algorithm of R package DAKS):

strongest empirically mutually supportive pair (item easiness relation E):
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topic: Natural sciences

item analysis based on knowledge space theory (IITA algorithm of R package DAKS):

strongest empirically mutually supportive pair (item easiness relation E):
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For our concrete data example, the item easiness relation E of the strongest empirically
mutually supportive pair seems to be tendentially stronger than the relation obtained from
the inductive item tree analysis. If this is only a coincidence or if this has some reason seems
to be not so clear. A further natural question one could ask is how our method statistically
behaves under some presumed item response model. Also this question seems to be very
di�cult to answer in the general multidimensional situation. However, for the case that
one has a �nite and �xed number of items that are uniformly strictly totally ordered w.r.t.
di�culty (meaning that for two di�erent items there is always one item which has smaller
solving probabilities, no matter, which person tries to solve it) one can show that if we
sample from a population and let the number of sampled persons tend to in�nity, then the
probability that the observed easiness relation di�ers from the true di�culty relation goes to
zero. The reason for this consistency property is the following:

For two items mi and mj where mi is easier than mj , the strongest empirically mutually
supportive pair will declare mi as easier than mj if one can �nd an appropriate matching of
persons. To see that if only n is large enough, with arbitrary high probability one will �nd
such a matching, divide the set of all observed response patterns in all di�erent classes where
the responses to all items except the responses to the item mi and mj are identical. If n
is large enough, then with high probability, in every such class the ordinal relations among
the observed frequencies of the di�erent patterns are identical to the ordinal relations among
the true probabilities. This means in particular, that with high probability, in every class
one observes more persons that solved mi and not mj than persons, who solved mj but not
mi. This means that we can �nd a matching of persons who solved answers as following: In
every class, match persons, who solved both items to itself and match persons, who solved
mj but not mi to persons who solved mi but not mj , which is possible, because there are
more persons, who solved mi but not mj than persons who solved mj but not mi. To see that
this matching is showing that mi is easier than mj due to the strongest empirically mutually
supportive pair, we have to make sure that we have matched persons only to persons who are
less successful, but this is clear, because the matched persons did solve the same items up to
item mi and mj and item mi was easier than item mj due to the easiness relation given in
the �rst step of the application of the operator L.

6 Conclusion

In this paper we have developed a purely descriptive and relational notion of item di�culty
and person success. This notion avoids the paradox described in Hooker et al. [2009]. We also
shortly indicated, how the descriptive method statistically behaves under certain univariate
presumed models of item response theory. For multidimensional models, the behavior of
the method seems to be far from clear. Furthermore, also the behavior of the method in
comparison to descriptive methods like item tree analysis has still to be further studied.
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Appendix

A Basics of formal concept analysis (FCA)

In formal concept analysis one has given a so-called formal context K = (G,M, I) where G
is a set of objects, M is a set of attributes and I ⊆ G ×M is a binary relation between the
objects and the attributes with the interpretation (g,m) ∈ I i� object g has attribute m. If
(g,m) ∈ I we also use in�x notation and write gIm. A formal concept of the context K is
a pair (A,B) of a set A ⊆ G of objects, called extent, and a set B ⊆M of attributes, called
intent, with the following properties:

1. Every object g ∈ A has every attribute m ∈ B (i.e.: ∀g ∈ A∀m ∈ B : gIm).

2. There is no further object g ∈ G\A that has also all attributes of B (i.e.: ∀g ∈ G :
(∀m ∈ B : gIm) =⇒ g ∈ A).

3. There is no further attribute m ∈ M\A that is also shared by all objects g ∈ A (i.e.
∀m ∈M : (∀g ∈ A : gIm) =⇒ m ∈ B).

Conceptually, the concept extent describes, which objects belong to the formal concept
and the intent describes, which attributes characterize the concept. The property of being a
formal concept can be characterized with the following operators

Φ : 2M −→ 2G : B 7→ {g ∈ G | ∀m ∈ B : gIm}
Ψ : 2G −→ 2M : A 7→ {m ∈M | ∀g ∈ A : gIm}

as
(A,B) is a formal concept ⇐⇒ Ψ(A) = B & Φ(B) = A.

This can be verbalized as: �The pair (A,B) is a formal concept i� B is exactly the set of
all common attributes of the objects of A and A is exactly the set of all objects having all
attributes of B.�

On the set of all formal concepts one can de�ne a sub-concept relation as

(A,B) ≤ (C,D) ⇐⇒ A ⊆ C & B ⊇ D.

(Actually, for formal concepts the equivalence A ⊆ C ⇐⇒ B ⊇ D holds.) If the concept
(A,B) is a sub-concept of (C,D) then it is a more speci�c concept containing less objects
that have more attributes in common. The set of all formal concepts of a context K together
with the sub-concept relation is called the concept lattice. (The concept lattice is in fact a
complete lattice.)

A formal (attribute) implication is a pair (Y, Z) of subsets of M , also denoted by
Y −→ Z. We say that an implication Y −→ Z is valid in a context {mathbbK if every intent
of K that contains all elements of Y also contains all elements of Z. In this case we also say
that the context K respects the implication Y −→ Z. A formal implication Y −→ Zis called
simple if Y is a singleton.
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B Basics of knowledge space theory (KST)

A knowledge structure is a tuple (Q,K) where Q is a set of questions (items) and K is a
family of subsets of Q that includes the empty set and the set Q. A set S ∈ K is called a
knowledge state and models the items a person is able to master. Since mastering an item i
may imply mastering an item j, some sets T ⊆ Q cannot occur as a knowledge state. The set
K models the set of all possible knowledge states, a person could be in. A knowledge structure
(Q,K) where K is closed under arbitrary unions is called a knowledge space. A knowledge
space where K is furthermore closed under arbitrary intersections is called a quasi ordinal
knowledge space.

C Connections between FCA and KST

The connections between formal concept analysis and knowledge space theory is described
in Rusch and Wille [1996]. For a given knowledge space (Q,K) one can associate the formal
context K := (G,Q, I), where G is a set of person that answered the set Q of questions and gIq
means that person g did not solve question q. With this association of a formal context to a
knowledge space we have a one to one correspondence between formal contexts and knowledge
spaces. While knowledge spaces are closed under unions, the concept intents of the associated
formal context are the complements of the knowledge states and are closed under intersection.
A formal implication q −→ r could be interpreted as �every person that did not solve item q
also did not solve answer r, which could also be stated as mastering item r implies mastering
item q.

D Basics of stochastic dominance

For two random variables X,Y on the same probability space (Ω,F , P ) and with values in a
partially ordered set (V,≤) one says that X is weakly stochastically dominated by Y (w.r.t.
�rst order stochastic dominance) if there exist two copies X ′ and Y ′ on another probability

space (Ω′,F ′, P ′) with X
d
= X ′, Y d

= Y ′ and P ′(X ′ ≤ Y ′) = 1. Stochastic dominance can
be characterized by the following, essentially equivalent conditions: The random variable X
is (weakly) stochastically smaller than the random variables Y if one of the three following
conditions is satis�ed6:

i) P (X ∈ A) ≤ P (Y ∈ A) for every (measurable) upset A ⊆ V

ii) E(u ◦ X) ≤ E(u ◦ Y ) for every bounded non-decreasing borel-measurable7 function u :
V −→ R

iii) It is possible to obtain the density8 fY from the density fX by transporting probability
mass from values v to greater or equal values v′ ≥ v .

6The equivalence between (ii) and (i) was shown by Lehmann [1955] and independently proved by Levhari
et al. [1975]. The equivalence between (iii) and (i) is a consequence of Strassen's Theorem ([Strassen, 1965]),
see Kamae et al. [1977].

7Here, we have to assume that (V,≤) can be equipped with an appropriate topology that makes it a partially
ordered polish space.

8This statement is of course only equivalent if the densities fX and fY actually exist.
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Characterization i) is more or less used in de�nition 1 of this paper, with the di�erence that
one does not have a normalized probability measure P , but instead, a counting measure is
underlying. Characterization iii) is very close to the idea of de�ning a person X as less
successful than person Y if one can match every item solved by person X to an item solved
by person Y that is at least as di�cult.
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