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orderings
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Abstract

The aim of the present paper is to apply a recently developed quantile approach for

lattice-valued data to the special case of ranking data. We show how to analyze

pro�les of total orders by means of lattice-valued quantiles and thereby develop new

methods of descriptive data analysis for ranking data beyond known methods like

permutation polytopes or multidimensional scaling. We furthermore develop an ag-

gregation rule for social pro�les (, called �commonality sharing�, here,) that selects

from a given pro�le that ordering(s) that is (are) most centered in the pro�le, where

the notion of centrality and outlyingness are based on purely order-theoretic concepts.

Finally, we sketch, how one can use the quantile approach to establish tests of model

�t for statistical models of ranking data.

Keywords: complete lattice, quantile, outlyingness, descriptive data analysis, social pro-
�le, social choice theory, consensus rule, commonality sharing

1 Introduction

The descriptive analysis of ranking data comes along with some natural di�culties due to
the discrete character and the typically high dimensionality of ranking data. Most des-
criptive methods like for example multidimensional scaling (see, e.g., Kidwell et al. [2008])
are either based on a more or less geometric understanding or rely on an explicit statistical
modeling (see, e.g., Biernacki and Jacques [2013], Jacques and Biernacki [2014], Lee et al.
[2014]). Other techniques like the use of permutation polytopes (see, e.g., Thompson
[1993]) or projections thereof (like, e.g., the marginal matrix, cf., Marden [1996]) are
either limited to a small number of items ranked or captures only small parts of the high
dimensional data structure. The aim of this paper is to analyze ranking data in a purely
order-theoretic manner without the need of introducing some notion of a metric and with
a clear emphasis on the structure already inherent in the data. The basic tool we use is a
recently developed notion of quantiles and outlyingness for data points that are elements
of a complete lattice. The general notion of (lower) quantiles for arbitrary complete
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lattices and a short analysis of properties are sketched in Schollmeyer [2017]. Here we ap-
ply these notions to the complete lattice of all binary relations on a �xed �nite set of items.

The paper is structured as follows: Section 2 informally introduces the quantile concept
developed in Schollmeyer [2017] and shows, how it could be applied to ranking data. Section
3 indicates, how one can apply the outlyingness concept to get some aggregation function
for social pro�les of Social Choice Theory by mapping a social pro�le to that ordering(s)
that is (are) the most central. In Section 4 we apply the outlyingness concept to data
of the wisdom of the crowds phenomena. We use the outlyingness notion for descriptive
data analysis as well as for sketching a way for assessing the �t of two exemplary statistical
models for ranking data, namely the Insertion Sorting Rank model ([Biernacki and Jacques,
2013]) and a Thurstonian model used in Lee et al. [2014].

2 A lattice-valued conceptualization of quantiles and

outlyingness

First, let us brie�y introduce lattices and lattice-valued quantiles. A lattice L = (L,≤) is a
partially ordered set (that is, a set L with a transitive, re�exive and antisymmetric binary
relation ≤) such that for every two elements x, y ∈ L there always exists a least upper
bound (called supremum or join) and a greatest lower bound (called in�mum or meet)
of these elements. If furthermore there exists suprema and in�ma for every arbitrary set
M ⊆ L (including also the empty set) then L is called a complete lattice1. Note that
existing in�ma and suprema are always unique. For a set M ⊆ L we denote with

∧
M the

in�mum and with
∨
M the supremum of the set M , respectively.

2.1 A short informal introduction to lattice-valued quantiles

Let now (x1, . . . , xn) be a n-tupel of elements of a complete lattice L representing an i.i.d-
sample of a lattice valued random variable X. Firstly, �x some proportion α ∈ [0, 1]. Then
de�ne the set

Mα := {x ∈ L | #{y ∈ {x1, . . . .xn} | y ≤ x} ≥ α · n}
of all elements x such that at least α · 100% of the data points (x1, . . . , xn) lie below x.
If L would be totally ordered (meaning that for every x, y ∈ L we have always x ≤ y or
y ≤ x) then the setMα would have a smallest element that would be usually called a lower
α-quantile. Generally, the set Mα need not to have a smallest element, but one can choose
the unique element q :=

∧
Mα as a lower prequantile. Note that below the element q

there need not to lie α · 100% of the data points anymore. Thus, we call α the prelevel
of q and we call the proportion β of data points that actually lie below q the level of q.
Since q is furthermore generally not minimal with respect to the property of lying above

1Note, that this implies in particular, that every complete lattice necessarily has to have a greatest
element as the in�mum of the empty set and a least element as the supremum of the empty set.
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β · 100% of the data points, we �nally take q′ :=
∨{x ∈ (x1, . . . , xn} | x ≤ q} as the �nal

(lower) quantile that now lies above β · 100% of the data and is actually minimal w.r.t.
this property (see Schollmeyer [2017]). Note that the above de�nition of a lower quantile
is actually an asymmetric one. If one uses the relation ≥ instead of ≤ in the given lattice,
then generally one gets a di�erent dual notion of upper quantiles. However, in the case of
the application of lattice-valued quantiles for ranking data, the lower and upper quantile
constructions are basically isomorphic to each other if we restrict attention to the analysis
of total orders, which will be the case in this paper.

2.2 Application of lattice-valued quantiles to ranking data

We now want to apply lattice-valued quantiles to ranking data. Let C = {C1, . . . , Cq}
be a �nite set of q items. Now, assume we have data from n persons that rank these
q items. The rankings the persons supply could have di�erent meanings, for example
they could represent the persons preferences of di�erent candidates in a ballot in the
context of Social Choice Theory or the persons opinion about the chronological order of
some historical events in the context of the analysis of the wisdom of crowd phenomena
(cf., Surowiecki [2005]), etc. In this paper, we assume that the persons supply complete
orderings of the items, meaning that the relations given by persons are a total order
relations (i.e., re�exive transitive and antisymmetric relations where every two elements
are comparable). The vector R = (R1, . . . , Rn) of the n total orderings the persons supply
is called a pro�le here. To analyze a given pro�le R, we look at every ordering in this
pro�le as an element of the complete lattice L := (2C×C ,⊆) of binary relations on the
�xed item set C equipped with the set inclusion ⊆ as the underlying partial order. In this
complete lattice the in�mum is the set intersection and the supremum is the set union.
In this context, the elements of Mα are binary relations on C that, treated as subsets
of C × C, lie above the rankings of at least α · 100% of the whole population, meaning
that they are supersets of at least α · 100% of the orderings in the pro�le. The derived
quantile q of prelevel α is then the in�mum of all the elements of the set Mα, i.e., it is
simply the intersection of all binary relations on C that lie above at least α · 100% of the
rankings of the population. This intersection can be understood as the commonalities
of all binary relations that represent all sub-populations of a given minimum size α · n.
The �nally derived quantile with actual level β could be understood as the union of all
the β · n rankings of persons that are represented by this intersection. The higher the
quantile q, the bigger and thus more diverse is the sub-population that is represented by
this quantile q. Note that di�erent quantiles are always pairwise comparable and thus
form a chain. If we map the ranking R of a person to the smallest quantile Φ(R) that still
lies above this ranking R, then we have some kind of qualitative measurement mapping
that �measures� the outlyingness of the ranking R of a person: The more �extreme� the
ranking R is, the bigger a quantile needs to be, to represent this ranking in the sense
of lying above this ranking. Thus, more �extreme� rankings are tendentially mapped to
higher quantiles. So, with the mapping Φ, that maps every ranking R to the smallest
quantile above R, we have a qualitative measure of outlyingness. If we furthermore
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map this quantile Φ(R) to its associated actual level β(Φ(R)) we have additionally a
quantitative measure of outlyingness that we call level function (denoted by λ), here.
These two measures are now illustrated by an example. We use the words data set
(cf., Fligner and Verducci [1986]), collected under the auspices of the Graduate Record
Examination Board. A total amount of 98 college students were asked to rank the �ve
words �Thought� (1), �Play� (2),�Theory� (3),�Dream� (4) and �Attention� (5) according
to the strength of association with the word 'Idea'. The raw data are given in Table 1.
The rankings are given in ranking notation where e.g., the vector (1, 3, 4, 5, 2) in the �rst
column and the �rst row means that e.g., the second word �Play� got the rank 3, where
rank 1 means least associated and rank 5 means most associated with the target word idea.

Ranking f λ Ranking f λ Ranking f λ
(1 3 4 5 2) 1 0.99 (4 2 3 5 1) 2 0.96 (5 1 4 2 3) 6 0.84
(1 4 2 3 5) 1 1 (4 3 5 2 1) 1 0.98 (5 1 4 3 2) 33 0.34
(3 2 5 4 1) 2 0.96 (5 1 2 4 3) 5 0.91 (5 2 3 4 1) 8 0.72
(4 1 2 5 3) 1 0.96 (5 1 3 2 4) 2 0.91 (5 2 4 1 3) 1 0.98
(4 1 5 3 2) 5 0.84 (5 1 3 4 2) 18 0.52 (5 2 4 3 1) 12 0.72

Table 1: Rankings of the words data with their frequencies f and their associated level λ.

The �rst two rankings (1 3 4 5 2) and (1 4 3 2 5) indicate that here the students
possibly misunderstood the ranking and gave rank 5 for the least and rank 1 for the most
associated word. Since this is clearly only a guess, we decided to not exclude these two
rankings. The levels of these two rankings are 0.99 and 1, respectively, these are the two
greatest values in the pro�le, so these rankings are the most outlying as one would also
expect from the statements above. Figure 1 shows the Hasse diagram of the semi-lattice of
all arbitrary unions of the orderings in the pro�le together with the altogether 9 quantiles.
The orderings itself are colored red and the id's of the persons with the corresponding
ordering are listed below. In Figures 2 and 3 the orderings (and unions of orderings)
lying below the 9 di�erent quantiles are shaded blue. Here one can also see that the �rst
2 rankings are most outlying. The most central orderings are the 33 identical orderings
(with associated ranking (5 1 4 3 2)) that rank �Thought� before �Theory� before �Dream�
before �Attention� before �Play� and have level 0.34. These orderings coincide with the
mode of the pro�le, here.
Figure 4 shows the commonalities of the orderings below the 9 quantiles. More precisely,
for given quantile q the intersection of all orderings of the pro�le below q is represented via
its Hasse diagram. (The quantile q itself would be the union of the orderings below q but
this union is generally not transitive and is thus more di�cult to represent graphically, but
note that because we deal only with total orders, the union can also be reconstructed from
the intersection: the edge (Ci, Cj) is in the union i� (Cj, Ci) is not in the intersection.) One
can see that the lowest quantile is the 34%-quantile consisting only of the modal orderings.
The intersection of orderings below this quantile is thus still a chain. The next quantile is
the 52%-quantile that is not a chain anymore, the words �Dream� and �Theory� are now
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incomparable, meaning that the orderings below the quantile contain both orderings that
rank �Theory� before �Dream� (these are exactly the mode orderings) and also orderings
that rank �Dream� before �Theory�, but the other words are ranked identically by the 52%
of the population represented by the quantile. Here, one can speculate that these 52%
of the students are consisting both of more scienti�c-minded students that rank �Theory�
before �Dream� and more literary-minded students that rank �Dream� before �Thought�.
The red colored edges in the Hasse diagrams indicate, which edges would disappear if we
would go to the next higher quantile.



Figure 1: The semilattice of binary relations generated by all unions of the rankings of 98
students of the words dataset, including the 9 quantiles Q1, . . . , Q9.
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Figure 2: The 34%-, 52%-, 72%- and the 84%-quantile for the words dataset.
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Figure 3: The 91%-, 96%-, 98%- and the 99%-quantile for the words dataset.



Figure 4: The commonalities of the 9 subpopulations that lie below the 9 quantiles
Q1, . . . , Q9 for the words dataset.

3 Commonality sharing: An aggregation function for

Social Choice Theory based on lattice-valued quanti-

les

In Social Choice Theory one prominent problem is to aggregate the preference orderings
R1, . . . , Rn of n voters concerning di�erent candidates C1, . . . , Cq in an election to one
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consensus preference order S that re�ects in a fair way the preferences of all voters. The
most prominent aggregation rules are the Condorcet method (cf. de Condorcet [1785])
where the consensus relation S prefers candidate Ci to candidate Cj if more than the half
of the n voters prefer candidate Ci to candidate j and the Borda count (cf., de Borda
[1781]), where the ranks of the consensus order S are de�ned as the ranks of the mean of
the ranks that all persons assign to the corresponding candidates. The herein developed
concept of outlyingness for ranking data can also be used to de�ne an aggregation function
that we will call �commonality sharing� in the sequel: Given a pro�le R = (R1, . . . , Rn)
one can look at the level λ of every ordering in the pro�le and take the ordering(s) with
the smallest level, i.e. the least extreme ordering(s) in the pro�le. If there is more than
one ordering with a minimal level than one could choose either arbitrary one ordering from
the set of orderings with minimal level or one could apply another aggregation rule to
the pro�le consisting of the orderings with minimal level. (In the sequel, we will always
apply the �rst approach.) Before we try to further understand, what the so designed
aggregation rule actually does and why we call the rule �commonality sharing�, we would
like to contrast it with a standard way of treating aggregation problems, especially in the
�eld of statistics, and an aggregation rule that is more or less the immediate result of such
a way of proceeding.

3.1 A note on mathematical culture

A standard problem in statistics is to aggregate a set of n data points in some space
into one single point that in some sense represents to some extent this set. One of the
simplest cases is the univariate location problem, where one aggregates a vector of n
real numbers x = (x1, . . . , xn) to a single number, for example the mean value of all
the n real numbers. This mean value represents the data set to some extent, but there
are di�erent possibilities of motivating the use of the mean value. One possibility is to
understand the mean value x̄ as the unique value, a vector y of n equal real numbers
y1 = y2 = . . . = yn has to have such that the total sum of this numbers is the same
as the sum of the given numbers x1, . . . , xn. In this understanding, one compares a
vector x of n possibly di�erent data points with a vector y of n equal data points that
are in some sense comparable to x (i.e. having the same sum) and are more easily to
describe (because they are all equal) and thus represent to some extent the original vector x.

Another possibility of getting the mean is to �nd a real number y that is close to each
point xi in the vector x. For this one has to concretize, what the term �close� exactly
means. The usual way to proceed here is to introduce a notion of distance between
two points and then to de�ne the distance from y to the data vector x as the sum of
the squared distances from y to every point xi, i = 1, . . . , n. The usage of the squared
distances instead of the actual distances is not motivated in this understanding, the usage
of the non-squared distances would actually lead to the median, but this is not our point
here. This distance-based understanding is often used in statistics to treat more complex
situations: One introduces a notion of distance in the data space and then aggregates
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a vector x to the point y that minimizes the sum of (possibly squared) distances from
y to all xi, i = 1, . . . , n. For the simple case of univariate real valued data the distance
to use is very clear and furthermore, from the distances, almost the whole structure of
R can be reconstructed (e.g.: x = ±d(0, x), x + y = ±d(x,−y),−y = ±w with w s.t.
d(y, w) = 2 · d(y, 0), ...) and thus the use of the metric is not very problematic. In more
complex situations, the introduced distance often does not re�ect all the structure in
the original space and if only the distance is used for aggregation, useful �information�
inherent in the additional structure could possibly be lost. This aspect will now be
discussed for the case of preference aggregation functions:

A popular preference aggregation function is the Kemeny-Young rule (cf., Kemeny [1959]).

For two ordering R1, R2 a distance is introduced as d(R1, R2) = |R14R2| = q(q+1)
2
−

|R1 ∩ R2|. This distance measure is well motivated if one is willing to accept some axi-
oms of an axiomatic characterization of this distance given in Kemeny [1959]. Note that
in the original space of tuples of binary relations there is no obvious reason to under-
stand this space as a space that is equipped with some metric, so the axiom that d is a
metric and thus satis�es e.g. the triangle inequality is not necessarily intuitively appe-
aling. The Kemeny-Young aggregation rule now selects as the aggregated ordering the
total ordering that minimizes the sum of the (not squared) distances to all orderings
in the pro�le. It is important to note that the distance is introduced and not a priori
there and that at the same time, the structure of the space of binary relations that is
given more a priori, is ignored to some extent. We will concretize this with a simple ex-
ample. Consider the candidate set {C1, . . . , C6} and the pro�le R = (R1, . . . , R5) with
R1 = (6, 2, 1, 5, 4, 3); R2 = (1, 4, 3, 6, 2, 5); R3 = (1, 4, 3, 2, 5, 6); R4 = (4, 5, 1, 3, 2, 6)
and R5 = (2, 1, 3, 5, 6, 4) where the relations are given in rank notation. This means that
for example preference R1 gives candidate C6 rank 3 because the sixth entry in the repre-
senting vector for R1 is 3. The pro�le R is chosen such that there is a perfect symmetry
between R4 and R5 if one only looks at pairwise distances between the other orderings
in the pro�le and R4 or R5 respectively: As illustrated in Figure 5, the distance between
R4 and all other orderings except R5 is 6 and the distance between R5 and all other or-
derings except R4 is 6, too. So from a purely metric description one cannot distinguish
R4 and R5. But if one looks at the pro�le as a collection of binary relations than there is
a clear di�erence between R4 and R5: The distance between R4 and R1, R2 and R3 is 6
which means in particular that R4 has

6·7
2
− 6 = 15 edges in common with R1, R2 and R3,

respectively, the same for R5. But beyond the distance of pairs of orderings one can also
analyze the commonalities of more than two orderings in the pro�le. Orderings R4, R1 and
R2 share altogether 5 edges, ordering R4 shares with R1 and R3 commonly 4 edges and R4

has with R2 and R3 altogether 6 edges in common. For R5 exactly the same numbers of
common edges are obtained, so, until now, if one thinks only in terms of counting common
edges, the situation is perfectly symmetric between R4 and R5. If we look now at sets
of 4 di�erent orderings, the situation changes: R4, R1, R2 and R3 are sharing 3 common
edges whereas R5, R1, R2 and R3 have only 2 edges in common, so if one had the task of
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choosing between R4 and R5 as a representative ordering of the whole pro�le, one could
say that R4 has more in common with R1, R2 and R3 than R5 and since for other subsets of
pro�les the situation is perfectly symmetric (at least in terms of counting common edges)
one could argue that R4 should be preferred to R5. This �directed asymmetry� could not
be observed by a purely metric analysis and thus a purely distance based approach seems
to be missing something, here. If one would actually apply the Kemeny-Young rule to the
given pro�le, then if one would minimize the distance only over the orderings given in the
pro�le, then one would get R2 as the aggregated order. If one minimizes over all arbitrary
total orders than one would obtain the aggregated order S = (1, 3, 2, 6, 4, 5) which is not a
member of the pro�le and is closer to R5 than to R4 since it shares 17 edges with R5 but
only 15 edges with R4. Compared to this, the commonality sharing aggregation method
chooses the ordering R4 as the unique aggregated order. So, there seems to be a conceptual
di�erence between distance based approaches and the commonality sharing approach that
tries to use the original structure that is given more naturally when dealing with ranking
data. From the given example, distance based approaches seem to miss something of the
original structure, but what about the quantile based approach? At this point it is worth
to re-translate, what the commonality sharing method, which was based on an outlyingness
concept developed in an abstract lattice-theoretic context, actually does in the concrete
context of ranking data:

Figure 5: Illustration of the geometric understanding of a pro�le of 5 rankings.
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3.2 A reconstruction of the lattice-valued quantile approach for

the case of ranking data

To analyze, how the commonality sharing rule works, we �rst have to analyze what it
means for an order R to lie below a given prequantile q with prelevel α and actual level
β. The prequantile q was constructed as the in�mum of the set Mα of all elements with
at least a proportion α of data points below. Now, note that an element R is below the
in�mum of a set M of other elements if and only if it is below every element of this set, so
R is below q if and only if it is below all elements of Mα. Now, what are the elements in
the setMα? The elements ofMα are binary relations that lie above at least α ·100% of the
orderings in the pro�le. Lying above here means simply being a superset. The orderings of
the pro�le that lie below an element z ∈Mα have some edges in common and other edges
are not shared by all the orderings. What means this for z? For pairs Ci, Cj of alternatives
where both the edge (Ci, Cj) and the edge (Cj, Ci) are in some of the orderings below z,
the element z has to contain these both edges. If all orderings below z agree to share
e.g. the edge (Ci, Cj) and not the edge (Cj, Ci) then z also needs only to contain the edge
(Ci, Cj). Now, for every z, a further naturally associated element z′ ⊆ z is given as the
union of all relations in the pro�le that lie below z. The element z′ still lies above all these
elements and by construction consists of edges for all pairs of items except the edges that
are in none of the orderings below z. Thus, the transposed relation of the complement of
z consists exactly of the common edges of all orderings below2 z. Now, we have to look at
all elements of Mα at the same time. To analyze, what it means for an ordering R of the
pro�le to lie below all z ∈ Mα it su�ces to look only at all z′ ∈ Mα that are associated
to all z ∈ Mα, because an ordering R of the pro�le lies below z if and only if it lies below
the associated z′. Since z′ is constructed as the union of elements of the pro�le one can
directly reinterpret all possible z′ as all arbitrary unions of orderings of the pro�le of a
given minimum size α · n. (Every z′ is a union of at least α · n orderings and for every
arbitrary union z of at least α · n orderings we have z′ = z.) Lying below a prequantile of
given prelevel α then means to share all the �non-edges� with every arbitrary union of a
minimum size of α · n orderings of the pro�le. This further means exactly sharing with all
sub-populations of minimum size α · n the common edges of these sub-populations.
So, �nally, the commonality sharing ordering is the ordering with the smallest level and
therefore it lies below the maximal number of quantiles. Thus the commonality sharing
ordering can be reconstructed with the following verbalization:

�The commonality sharing ordering is (are) that ordering(s) that share with every sub-
population of minimum-size k, where k is choosen as small as possible, the commonalities
of the corresponding sub-population.�

2If one would have chosen the �⊇�-relation instead of the �⊆�-relation as the relation ≤ in the lattice,
the construction would appear more natural at this concrete point, but this would have �imperfections� at
other points, however, the resulting concepts would be equivalent because we are dealing only with total
orders in the pro�le that have for one edge (Ci, Cj) exactly one �non-edge� (Cj , Ci) and thus we have
perfect symmetry between edges and �non-edges�.
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In the concrete context of Social Choice Theory, a still more informal way of reinterpreting
the commonality sharing rule would be to state that

�In many possible subgroups, including very small and thus very speci�c ones, the
commonality sharer(s) would appear as the least extreme in the sense of sharing with the
rest of the group much edges that the rest of the group shares with each other.�

Thus, the commonality sharer(s) could also be called mediator(s).3

Since not only the commonalities of pairs of orderings but also the commonalities of larger
sets of orderings are considered in the commonality sharing rule, we in fact did account
for the conceptual subtleties of Section 3.1 to some (maybe still very marginal) extent.
Conceptually, the commonality sharing rule seems to be an appropriate pro�le aggregation
rule, at least in some contexts (this depends on the assessment, if the above verbalization
corresponds to a desirable job the commonality sharing rule would do in the concrete
substance matter context). The next section discusses the computational complexity of
computing the commonality sharing rule.

3.3 Computational Issues

From the conceptual description of the commonality sharing rule one could expect that
its actual computation is rather di�cult. However, it turns out that the computation of
the commonality sharing rule is actually simple, more precisely, it can be computed in
O(n · q2) time. To see this, we have to �rstly analyze, how the elements of the set Mα

look like. For every possible edge e = (Ci, Cj) ∈ C × C let αe denote the proportion
of orderings in the pro�le that actually contain this edge and let ze denote the special
element ze = C × C\{(Cj, Ci)}. Note that di�erent prelevels α can lead to the same
quantile with the same actual level β. Actually, it su�ces to look only at the special values
α ∈ A := {αe | e ∈ C × C} ∩ (0.5, 1]. (Note in particular that for edges e = (Ci, Cj)
with αe ≤ 0.5 there is no ordering below

∧
Mαe because both ze and ze′ with e

′ = (Cj, Ci)
are in Mαe .) For some given α ∈ A and an edge e = (Ci, Cj) with 0.5 ≤ αe < α,
all elements of Mα contain both the edge e = (Ci, Cj) and the edge e = (Cj, Ci). For
edges with αe ≥ α the associated element ze is a special element of Mα. Thus, we have
q :=

∧
Mα =

⋂{ze | e ∈ C × C, αe ≥ α}. An ordering Ri of the pro�le is then below
a prequantile q with prelevel α i� all edges e ∈ Ri satisfy αe′ � α which is equivalent to
1− αe � α or α > 1− αe. The largest prelevel α such that the associated quantile q does
not lie above R anymore can thus be calculated as α = max{1 − αe | e ∈ Ri}. Since the
ordering of the largest such prelevels α ∈ A and the corresponding actual levels is identical
it su�ces to compute these largest prelevels to determine, which ordering(s) of the pro�le

3Note also, that there is a neat relationship between the median and the least outlying data point in
classical oytlyingness concepts of multivariate analysis. Especially, for univariate data, the least outlying
data point and the median are essentially the same.
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has (have) the smallest actual level. The calculation would then consist in computing the
q2 values for the αe's and the n border-case prelevels α = max{1 − αe | e ∈ Ri} which
would take all in all O(n · q2 + n · q2) = O(n · q2) time. An interesting point is here, that
if we would not compute the ordering in the pro�le minimizing the level function, but
instead that order of the set of all possible total orders that minimizes the level function,
than this computation could still be done in polynomial time. This is a further di�erence
to the computation of the Kemeny-Young consensus ordering(s) (i.e., the ordering(s) with
the smallest sum of distances to all orderings in the pro�le), which is NP-hard still for
n ≥ 4 (cf., e.g., Bartholdi et al. [1989]).

4 Application example: Analysis of wisdom of the

crowd data

In this section we analyze a data set from the analysis of the �wisdom of the crowd�
phenomena (cf., Surowiecki [2005], Galton [1907]), analyzed in Lee et al. [2014]4. The
wisdom of the crowd phenomena is present if, roughly speaking, the aggregated judgment
of a group of individuals about a substance matter question results in an estimate that
is closer to the truth than most (or all) individual estimates from which the aggregate
estimate was based. One of the �rst instances of this phenomena was described in Galton
[1907], who surveyed English fair-goers in 1906. The estimates of the dressed weight of an
ox given by the fair-goers, when aggregated via the median, yielded an estimate of 1207 lb,
which was very close to the true weight of 1198 lb, the relative error was actually only
0.8 percent. In Lee et al. [2014] the wisdom of the crowd phenomena was studied for the
case of ranking data. Here, the participants of the experiments had to rank for example
the 44 presidents of the United States of Amerika according to their chronological order
of presidency. The analysis involved altogether 23 experiments including also prediction
tasks. An important di�erence to the aggregation of orderings in Social Choice Theory is
that in the context of the wisdom of the crowd phenomena, a ground truth is underlying
and one can compare the aggregated orderings to this ground truth.

4.1 The presidents data set

We will now analyze the experiment involving the ordering of the former 44 US presidents.
This experiment is especially di�cult to analyze, because we have a large number of q = 44
items to order and at the same time only a very small number of n = 26 participants of
the experiment. Because of this, we have only a few number of 4 quantiles compared to
a very high number of up to 226 = 67108864 elements in the semi-lattice induced by all
possible unions of orderings. The 4 obtained quantiles are depicted in Figure 8 till Figure
11. Because of the high number of 44 presidents, the corresponding Hasse graphs become
quickly hard to read out (cf., Figure 7). Thus, we decided to not represent the partial

4The data are available under http://web�les.uci.edu/mdlee/LeeSteyversMiller2014Data.zip.
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intersection of the orderings below the corresponding quantiles via its Hasse graph but
represent the strict part of the intersection (this is simply the intersection without the
diagonal ∆C := {(a, a) | a ∈ C}) with methods of formal concept analysis. Therefore we
very brie�y sketch the basics of formal concept analysis.5:

The basic structure in formal concept analysis is a formal context K = (G,M, I) consisting
of a set G of objects, a set M of attributes and a binary relation I ⊆ G ×M . For an
object g ∈ G and an attribute m ∈ M we interpret (g,m) ∈ I as object g has attribute
m. The theory of formal concept analysis formalizes the notion of a concept as a special
pair (A,B) of sets, where A ⊆ G is the extent of the concept consisting of all objects that
belong to the concept and B ⊆ M is the intent of the concept consisting of all attributes
that all objects of the concept have in common. More precisely, a formal concept is a pair
(A,B) with A ⊆ G and B ⊆M satisfying:

1. ∀g ∈ A∀m ∈ B : (g,m) ∈ I

2. ∀m ∈M : (∀g ∈ A : (g,m) ∈ I) =⇒ m ∈ B

3. ∀g ∈ G : (∀m ∈ B : (g,m) ∈ I) =⇒ g ∈ A.

On the set of all formal concepts of a given formal context one can introduce the
sub-concept relation via (A,B) v (C,D) ⇐⇒ A ⊆ C&C ⊇ B. The set of all formal
concepts together with the sub-concept relation forms a complete lattice that is called
the formal concept lattice. From the formal concept lattice one can reconstruct the given
formal context. Since the formal concept lattice is an ordered set, we can display it via its
Hasse graph. A usual way to label the formal concepts is to not write the whole extent
and intent at the concepts but to write the name of an object only at the most speci�c
concept containing it and the name of an attribute only at the most general concept with
this attribute. For a given concept displayed in the Hasse graph one can then read out
the extent as the objects written on all sub-concepts of the given concepts (including the
given concept itself) and the intent as the attributes written on all super-concepts of the
given context. The usage of the Hasse graph of the formal concept lattice will help us in
displaying the quantiles in a more readable way. In our concrete situation we take both as
the objects and as the attributes the set of the 44 presidents. The incidence is the strict
part of the intersection of the orderings below a given quantile. In the diagrams showing
the concept lattices of the corresponding quantiles, the objects are the white-boxed names
of the 44 presidents and the attributes are the gray boxed names of the presidents. In
our context, the formal concepts could be understood as some kind of vague �virtual time
cutting points�. The attributes above such a given �cutting point� are the presidents that,
due to the common opinion of the persons below the given quantile presided before this
�virtual cutting point�. Analogously, the objects below a given �cutting point� are the
presidents that are assumed to have presided after the �virtual cutting point� due to the

5A brief introduction to formal concept analysis is given, e.g., in Davey and Priestley [2002], a more
comprehensive introduction is Ganter and Wille [2012].
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common opinion of the persons below the given quantile. A president x is then commonly
ranked before another president x′ (meaning that x presided before x′) if and only if
the formal concept with a white box containing the name of president x′ is (directly or
indirectly) connected via an increasing path to the concept with the gray boxed name
of president x. For a given president x the presidents assumed to have presided before
president x are given by the gray boxed presidents above the concept with a white box
containing president x, the presidents assumed to have lived after president x are the
white-boxed presidents below the concept with a gray boxed containing president x.
Additionally, if the gray-boxed and the white-boxed label of a given president are closer
to each other, the ambiguity for the common localization of this president is more or less
smaller. Presidents that are labeled in the same (gray or white) box are incomparable
w.r.t. their common localization. The motivation for using the formal concept lattice
of the �<�-relation instead of displaying the �≤�-relation via its Hasse graph lies in the
following considerations:

One could presume that the persons rank the presidents by either directly comparing
pairs of presidents or by relating the time of presidency of presidents to external historical
events. For the latter, both the time of presidency and the related historical events are
no precise time points, but time spans whose exact start- and endpoints are often only
known imprecisely. If only the later way of ranking would be present, the underlying
orderings of the persons would actually be only partial orderings that are furthermore
so-called interval orderings. An interval order is simply an order relation (X,≤) that can
be represented by real-valued intervals via a mapping f : X −→ I(R) : x 7→ [l(x), u(x)]
satisfying x < y ⇐⇒ u(x) < l(y), where I(R) denotes the set of all real-valued compact
intervals of R.

Clearly, if in fact such an interval order is underlying, one still cannot observe it directly
because the persons are forced to give a total order. However, if for example all persons
would have the same interval order underlying and would provide a total order from the
underlying interval order by picking random points in the underlying intervals, then one
could asymptotically rediscover the interval order as the intersection of all given orders of
the persons. Of course, this is a very schematic understanding and we do not expect that
all persons have the same underlying interval order and that they pick randomly points
from the intervals. Additionally, we do expect that some parts of some of the orderings are
obtained by a direct comparison of two presidents. For example, it is expectable that the
persons could guess that Grover Cleveland 1 has to be ranked before Grover Cleveland 2
without any further knowledge (including the knowledge hat Cleveland 1 and Cleveland 2
is actually the same president), but simply because of the numbers 1 and 2. (In fact, all
persons rank Grover Cleveland 1 before Grover Cleveland 2 in this data set.)

We use the formal concept lattice approach instead of displaying directly the Hasse
graph, because if we would actually have an interval order, then the associated formal
concept lattice has a very simple structure whereas the Hasse graph could be still very
complex. More precisely, the formal concept lattice of the strict part < of an order ≤ is
a chain if and only if the order ≤ is an interval order (see, e.g., [Ganter and Wille, 2012,
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p. 237, propostion 103], where the more general notion of a Ferrers relation is used instead
of the notion of an interval order, cf., [Ganter and Wille, 2012, p. 244]). Opposed to this,
the complexity of the Hasse graph of the original ≤ relation, measured e.g. by the order
dimension, could become arbitrary high (see Bogart et al. [1976]). This is illustrated in
Figure 6, where the interval order of all intervals with endpoints in the set {0, 1, . . . , 10}
is displayed. If now the quantiles of the pro�le are not interval orders but maybe very
close to interval orders, then one could expect that the associated formal concept lattice is
still easy enough to read out and this is the reason why we decided to display the formal
context lattices that actually look easy enough to read out for the presidents data set.

Figure 6: The interval order (I({0, 1, . . . , n}),≤) of all intervals with endpoints in the set
{0, 1, . . . , 11} represented via its Hasse graph (left) and via the formal context lattice of
the strict part < (right).

Now we want to describe some aspects of the presidents data set that become visible by
the 4 quantiles:

i) The most central ordering is not unique, there are two orderings with smallest level λ =
2
26
. While the two most central orderings have some edges in common that are not in

accordance with the true chronological ordering of the presidents, the orderings below
the second smallest quantile with level λ = 27% have already no �wrong� common
edges anymore. This can be easily seen by looking at the incidence matrices of the
intersection of the orderings below the given quantiles given in Figure 12.
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ii) The strict part of the intersection of the orderings in the whole pro�le still contains
altogether 337 edges (the strict part of a total order would contain 946 edges) and all
these edges are in accordance with the true chronological order of the presidents.

iii) The already mentioned speculation that some presidents are ranked via a direct com-
parison of pairs of presidents is also suggested by the 4 formal concept lattices of the
4 quantiles: In every concept lattice there is exactly one formal concept, a �virtual
cutting point� that could be interpreted as the �time after Cleveland 1 and before Cle-
veland 2� since it has exactly only Cleveland 1 as a grey-boxed attribute and Cleveland
2 as a white-boxed object and no further attributes or objects.

iv) All partial orderings induced by the quantiles are no interval orders since the corre-
sponding concept lattices are no chains. One can characterize an interval order as
an order where there exist no quadruple of elements (x, y, u, v) with x < y, u < v
and no other comparabilities between these four elements. So, we can analyze, which
quadruples (x, y, u, v) are counterexamples that show that our orderings are no inter-
val orderings. Firstly, let us think about how such a quadruple can possibly arise.
Such a quadruple (x, y, u, v) consists of a pair of pairs of elements where within each
pair the elements are comparable and the elements of di�erent pairs are incompara-
ble. This situation can possibly arise, if we have a quadrupel (x, y, u, v) of presidents,
where both x and y, as well as u and v are simple to compare, and all other pairs
of presidents are not easy to compare. For example, it is easy to compare Cleveland
1 and Cleveland 2 because of the numbers. But it could be the case that there is
another pair of simply to compare presidents that is nevertheless di�cult to compare
to Cleveland 1 and Cleveland 2, because one possibly knows nothing about Cleveland
1 and Cleveland 2 beyond the numbers. Table 2 shows for all 4 quantiles the number
of (unordered) quadruples that are counterexamples showing that the given quantile
is not an interval order. Additionally, the number of counterexamples every president
is involved in is given for every quantile. One can see that in fact Cleveland 1 and
Cleveland 2 are involved in counterexamples for every quantile, especially for the 42%
and the 100% quantile they are actually involved in the most counterexamples.

v) All quantiles are very heterogeneous w.r.t. time: The last 5 presidents Ronald Reagon,
George H.W. Bush, William Clinton, George W. Bush and Barack Obama are iden-
tically ranked correctly by all the participants of the experiment. This is maybe due
to the fact that the participants are more aware of presidents of the immediate past.
Furthermore, all participants rank George Washington as the �rst president which may
be due to historical knowledge. Opposed to this, presidents that did preside neither
in the immediate past nor in the early phase starting with the declaration of indepen-
dence and the �rst president George Washington are ranked very di�erently by the
participants leading to vanishing edges in the intersections of orderings below the 4
quantiles. Also the deviation of the quantiles from an interval order is heterogeneous,
only for the very early and very late presidents the quantiles are interval orders.
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no. president 7.7% 27% 42% 100%
1 George Washington
2 John Adams
3 Thomas Je�erson
4 James Madison 17 12
5 James Monroe 17 2
6 John Quincy Adams 31 11
7 Andrew Jackson 6 1 25 2
8 Martin Van Buren 16 1 6
9 William Henry Harrison 14 27 4
10 John Tyler 2 1 6
11 James Knox Polk 14 4 4 2
12 Zachary Taylor 1 27 7
13 Millard Fillmore 6 36 15
14 Franklin Pierce 15 26 12 2
15 James Buchanan 1 4 2
16 Abraham Lincoln 19 2 14 2
17 Andrew Johnson 1 45 18 2
18 Ulysses S. Grant 36 24 2
19 Rutherford B. Hayes 29 14 16 2
20 James Gar�eld 31 4
21 Chester Arthur 14 21 1
22 Grover Cleveland 1 9 14 46 25
23 Benjamin Harrison 2 45 19 2
24 Grover Cleveland 2 6 49 55 25
25 William McKinley 5 78 16 8
26 Theodore Roosevelt 14 41 28
27 William Howard Taft 1 44 18 3
28 Woodrow Wilson 3 6 7 3
29 Warren Harding 19 16 2
30 Calvin Coolidge 39 1 6 25
31 Herbert Hoover 8 15 41 2
32 Franklin D. Roosevelt 17 17 25
33 Harry S. Truman 3 22 3
34 Dwight Eisenhower 4 9 11 13
35 John F. Kennedy 1 7 19
36 Lyndon B. Johnson 8 15 21 4
37 Richard Nixon 11
38 Gerald Ford 1 92 24 4
39 James Carter 1 33 24
40 Ronald Reagan 4
41 George H.W. Bush
42 William Clinton
43 George W. Bush
44 Barack Obama

overall number of counterexamples 89 230 153 38

Table 2: Overall number of counterexamples and number of counte-
rexamples in which every president is involved in for all 4 quantiles
(zeros are omitted).
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Figure 8: The 7.7% quantile for the president data, represented via the formal
concept lattice generated by the strict part of the intersection of the orderings
below the 7.7% quantile. 23



Figure 9: The 27% quantile for the president data, represented via the formal concept
lattice generated by the strict part of the intersection of the orderings below the 27%
quantile.
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Figure 10: The 42% quantile for the president data, represented via the formal concept
lattice generated by the strict part of the intersection of the orderings below the 42%
quantile.
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Figure 11: The 100% quantile for the president data, representing the commonalities of
the whole population via the formal concept lattice generated by the strict part of the
intersection all orderings.
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Figure 12: The incidence matrices of the intersection of the orderings below the 7.7%-,
27%-, 42%- and the 100%-quantile. The rows and columns are already ordered by the true
chronological order, so a lower triangular matrix of crosses corresponds to a total order
that is in full agreement with the actual true order.
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4.2 A short analysis of statistical models for ranking data

We now want to relate the results of our descriptive analysis of the presidents data set
to two selected statistical models for ranking data. We focus our analysis on the points
ii) and iv) of Section 4.1 and are interested in the question, how capable the statistical
models are in capturing the structural characteristics that were obtained in the descriptive
analysis of the presidents data set.

In the following two sections, for two statistical models we determine via simulations,
how probable it is, to observe a pro�le with speci�c characteristics like observed for the
presidents data set. We look here only at characteristics of the intersection of the whole
pro�le, speci�cally we analyze the cardinality of the intersection, which gives a rough
impression about the homogeneity of the pro�le, and the proximity of the intersection to
an interval order.

4.2.1 Insertion Sorting Rank model

The �rst statistical model we analyze is the Insertion Sorting Rank model (ISR) described
in Biernacki and Jacques [2013]. In this model, it is assumed that the participants order
the items by applying the (straight) insertion sorting algorithm to order the items. It is
furthermore assumed that every paired comparison involved in the sorting algorithm is
exposed to the possibility of making a mistake which will occur with a �xed probability ε,
independently for every paired comparison. The ISR model has two parameters: the true
ordering µ of the items and the error-probability ε. For a pro�le randomly drawn from
the ISR model we analyze the intersection of all orderings in the pro�le, we inspect the
cardinalityN∩ of (the strict part of) the intersection and the numberNc of counterexamples
in the intersection showing that it is no interval order. Figure 13 shows for di�erent values
of ε the expected values (solid), the 0.5% and the 99.5% quantile (dashed) and the 0.05%
and the 99.95% quantile (dotted) of the distribution of the cardinality N∩ (black) and
the number Nc of counterexamples (grey). Since because of symmetry the distributions
of N∩ and Nc do not depend on the true ordering µ, we only need to do the analysis in
dependence on the error probability ε. In the presidents data set we actually observed a
cardinality of N∩ = 337 and Nc = 38 counterexamples. To make Figure 13 easy to read
out, we display N∩

337
and Nc

38
in the same �gure. Thus, ε- values with corresponding values of

N∩
337

and Nc

38
near to 1 would correspond to a good �t of the model to the actually observed

data. We analyzed the distributions by simulating 50000 random pro�les consisting of 26
orderings respectively. For the simulation as well as for the estimation of the parameter ε
for the presidents data set we used the R-package Rankcluster (Jacques et al. [2014]). One
can see that the expectation of N∩ is decreasing in ε and that for ε larger than 0.005 the
expectation of Nc is also decreasing in ε which is not surprising, because for very high values
of ε it is very probable that the intersection of all orderings in the pro�le is very sparse
and thus there are not many quadruples that can provide counterexamples. Furthermore,
there is actually no parameter value for ε such that the [0.5%; 99.5%]-quantile-range of
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both statistics N∩
337

and Nc

38
simultaneously covers the value 1. In this sense, the actually

observed data do not �t very well to the ISR-model, statistically speaking, a statistical test
based on both statistics would signi�cantly reject the ISR model on a 2% signi�cance level
(, but note that we analyzed the model after a comprehensive descriptive analysis and did
not state a concrete procedure for testing the model in advance, so a frequentist compliance
of a nominal level α = 2% could clearly not be guaranteed). If we look more conservatively
at the two statistics, then for values of ε around 0.001 the model �ts the data good enough
in the sense that the [0.05%; 99.95%]-quantile-range of the both statistics covers the value
one, but note that the actually estimated6 ε̂ = 0.064 is far away from values around 0.001

5e−05 1e−04 5e−04 1e−03 5e−03 1e−02 5e−02 1e−01

1e
−

03
1e

−
02

1e
−

01
1e

+
00

1e
+

01
1e

+
02

ε

cardinality of intersection / 337
number of counterexamples / 38

ε̂ =0.064

Figure 13: The cardinality of the intersection divided by 337 and number of counterexam-
ples divided by 38 for di�erent parameters ε in the ISR model.

All in all, it seems that the ISR model is more or less unrealistic, it seems to be not
able to model situations where a high degree of homogeneity re�ected by a high value N∩
appears together with a pro�le intersection that is very close to an interval order in the
sense that Nc is relatively small.

6To get a rough impression about the statistical uncertainty associated with the estimate ε we boots-
trapped 10 times and got a bootstrap-standard deviation of around 0.01 (The computation time for the
estimation of ε was actually very long (some hours per estimate)).
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For the presidents data set, it appeared natural to look at the interval order aspect of
the pro�le, for other data examples it may be not so natural to look at this aspect and the
question arises, how one could construct some general type of a model test. One generally
applicable (but possible not always meaningful) and a little bit more �abstract� form of a
model test could be established by utilizing the lattice valued outlyingness-concept: The
level function λ can also be applied to probability distributions on a complete lattice instead
of a sample of data points in a complete lattice (cf., Schollmeyer [2017]). To test a model
for ranking data one can simply look at the distribution P of the intersection

⋂
R of a

pro�le R randomly generated by the ranking model.7 If one takes as a test statistic T
the level λP (

⋂
R) of the intersection

⋂
R of the pro�le R w.r.t. the distribution P then

T is discretely uniformly distributed in the sense that ∀c ∈ supp(T ) : P (T ≤ c) = c (cf,
Schollmeyer [2017]). A statistical model test with con�dence level γ ∈ supp(T ) can thus
be simply established by rejecting the model if the statistic for the actually observed data
is greater than γ.

Figure 14 shows for di�erent values of ε the level λε(x) of the intersection x of the
actually observed pro�le for the presidents data sets with respect to the distribution of the
intersections under the Insertion Sorting Rank model. The computation of this distribution
was made by a simulation of 40000 randomly drawn pro�les. Furthermore Additionally,
horizontal lines for critical values c = 0.95, c = 0.99 and c = 0.995 are added. For values of
ε around the estimated ε of 0.064 one can see that the intersection of the actually observed
pro�le has a level of around λε(x) ≈ 0.999 which would indicate a rejection of a model test
on a signi�cance level of around 0.1% for such ε-values.

7If the intersection is too often empty one can alternatively look at the intersection of the α · 100%
most central orderings in the pro�le, where α ∈ [0, 1] is appropriately chosen.
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Figure 14: The level λε(x) of the intersection of the presidents pro�le with respect to
the distribution of the intersections of randomly drawn pro�les from the Insertion Sorting
Rank model for di�erent parameters ε.

4.2.2 Thurstonian model

We �nally also very brie�y analyze the �t of the Thurstonian model that was used in Lee
et al. [2014]. A Thurstonian model is a latent variable model for ranking data. One has a
set of q location parameters µi, i = 1, . . . , q, in our case the location of the 44 presidents
within a latent ground truth. Every participant j, j = 1, . . . , 26 of the experiment has
some access to the ground truth that is modeled by a random draw of a random variable
zij ∼ N (µi, σ

2
j ). The ranks that person j supplies are then simply the ranks of the values

z1j, . . . , zqj. The variance σ2
j somehow models the �expertise� of person j. In our case,

the model thus has 44 + 26 = 70 parameters to estimate. Since Maximum likelihood
estimation is computationally very hard, one can use Bayesian methods like that used in
Lee et al. [2014], for a more detailed description of the Thurstonian model and the used
estimation technique, see Lee et al. [2014].

We tried to reproduce the results of Lee et al. [2014] by using the R package rjags
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(Plummer [2016]) and the JAGS model whose source code is given in the supplementary
material of Lee et al. [2014]. (For a general introduction to the implementation of Bayesian
Thurstonian models for ranking data in JAGS, see [Johnson and Kuhn, 2013].) The results
we got were very similar to the results in Lee et al. [2014]. The violin plot depicted in
Figure 15 looks roughly identical to that given in [Lee et al., 2014, p. 3]. The violin plot
shows the posterior distribution of the latent location parameters µi, i = 1, . . . , 44 for the
44 presidents.
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Figure 15: Violinplot for the reproduced Thurstonian model analyzed in Lee et al. [2014].
The violin plot shows the posterior distribution of the latent location parameters µi, i =
1, . . . , 44 for the 44 presidents.
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Since the Thurstonian model has 44 parameters of the location of the presidents in
the latent continuum and 26 parameters modeling the students �expertise�, it is very hard
to analyze the models ability to capture the speci�c properties of the president data set.
In particular, since one does not know the true parameters, one has to account for the
statistical uncertainty of estimates of the unknown true parameters to get a fair picture
of how good the model is in principal able to capture the speci�c characteristics of the
president data set: The estimated parameters di�er from the true parameters and one
has to account for the fact that the distribution of the pro�les under the estimated and
under the true parameters can be very di�erent in such a high dimensional model. For
the altogether 70 parameters of the Thurstonian model one could get at least credibility
regions, but it seems practically not manageable to analyze the distribution of the
statistics N∩ and Nc for all parameter constellations that are lying in a reasonable
credibility region, at least if one does the analysis simulation-based. (A theoretical insight
into the distribution of N∩ and Nc would be very helpful, but the author is not aware of
theoretical treatments in the context of this very special situation.)

So, we have to live here with a very sketchy analysis, where we only analyze the model
under the estimated model parameters, which is of course still of some interest, because
for example if the task is that of prediction of a future pro�le, then one would usually base
the prediction on the estimated model parameters. Of course, if the task is only that of
prediction, then it is not so important that the model is (approximately) true, it only has
to be good in prediction. However, it could be very insightful to know, in which concrete
sense the model is �not true� to get a hint how one could possibly modify the model to
get better predictions.

A simulation of 100000 pro�les under the Thurstonian model and the estimated model
parameters8 led to observed values for N∩ with a range between 279 and 436 and values
for Nc with a range between 1912 and 4410. This indicates that the Thurstonian model
may capture the homogeneity of the pro�les, quanti�ed by N∩ acceptably well, but the
interval order type character discovered in the president data set seems to be not captured
adequately with the Thurstonian model. Also for the abstract model test based on the
level function, we got a level of λε(x) ≈ 0.99956 which also indicates a bad model �t.

The bad ability of the Thurstonian model to capture interval order type characteristics
indicates, that possibly, one may get a far more appropriate model if one explicitly models
the interval structure, for example by using for every president not one precise location at
some latent continuum, but instead a latent interval.

8As estimates we used the modes of the posterior distribution of the model parameters.
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5 Conclusion

The present paper illustrated the usefulness of the lattice-valued quantile approach of
Schollmeyer [2017] for analyzing ranking data. We were able to use the quantile approach
for getting purely descriptive insights into ranking data sets, as well as for doing a statistical
analysis of model �t of statistical models for ranking data, based on seemingly descriptively
meaningful characteristics, like the proximity of pro�le intersections to interval orderings.
Furthermore, we indicated a possibility of using the order theoretic outlyingness concept
for ranking data to construct an aggregation function for social pro�les that is very similar
to Kemeny's rule in the sense that is also some kind of a generalization of the median
to ranking data: While Kemeny's rule generalizes the median understood as a minimizer
of a L1-norm, the herein developed commonality sharing rule generalizes the median in a
completely order theoretic manner as the least outlying data point(s). The usefulness of
this aggregation function has of course to be evaluated in further studies.
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