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1. Introduction 

 

A standard proposal of aggregating the degree-of-belief functions or subjective probability 

measures of subjects S1,..., Sk into a joint “group probability measure” P is linear pooling (or 

averaging):1 let α1,…, αk be real numbers in the closed interval [0,1], such that α1 + … + αk 

= 1.  If Pi is the probability measure of subject Si, then the result of applying linear pooling to 

P1,…, Pk with respect to α1,…, αk is the probability measure P, such that for all propositions  

A: 

P(A) = α1 P1(A) + … + αk Pk(A). 

 

Intuitively, and geometrically, such a social probability measure P lies “between” the 

individual probability measures P1(A),…, Pk(A), where the exact “position” of P depends on 

the degree of influence that is exerted on the prospective social measure by the individual 

subjects, as expressed by their corresponding coefficients or weights α1,…, αk (which might 

reflect their expertise or the social respect that they enjoy in the group). Mathematically 

speaking, P is simply a convex combination of P1,…, Pk. 

 

In spite of its simplicity, naturalness, and various other virtues (as discussed in the 

corresponding literature), it is well known that linear pooling is also subject to a concern 

																																																								
1 For a standard overview of probabilistic pooling in general (that is, the combining or aggregating or 
amalgamating of probability measures), see Genest and Zidek (1986), where also linear pooling is 
discussed in detail (see e.g. p.117), and Dietrich and List (forthcoming), in which Sections 4 and 5 are 
devoted especially to linear pooling. For the discussion and criticism of linear pooling in particular, 
see e.g. Wagner (1985) and Steele (2012). Dietrich (2010) includes a recent criticism of all classical 
pooling methods, including linear pooling. 



regarding update or learning: 2  other than trivial cases, conditionalization on evidence 

followed by linear pooling differs in outcome from linear pooling followed by 

conditionalization on evidence. So it will make a difference whether, at first, each individual 

in the group updates in the standard Bayesian manner, after which their posterior beliefs are 

linearly aggregated, or whether first their prior beliefs are linearly aggregated, and only then 

the emerging group belief is updated by the standard Bayesian method of learning. (I am 

going to simplify the discussion by assuming, for the sake of the argument, that we are 

dealing with a situation in which such combinations of update and aggregation would be 

desirable.) 

More formally: let some numbers α1,…, αk be given as stated above, and let us assume 

that the subjects S1,..., Sk  are confronted with a new piece of evidence E that they are 

supposed to accommodate as a group, and to which they all assign positive probability 

individually; so, for all i, Pi(E)>0. Then, except for trivial cases (e.g., where α1 = 1 and α2,…, 

αk = 0, or where P1,…, Pk are identical), the outcomes of the following two natural sequences 

of epistemic actions will differ: (i) each individual subject follows the standard diachronic 

norm of Bayesian rationality of first updating his or her degree-of-belief function Pi by 

conditionalizing on E, after which the resulting individual probability measures Pi(⋅/E) (that 

are given by Pi(A/E) = Pi(A & E)/Pi(E)) are aggregated by linear pooling with respect to 

α1,…, αk. (ii) First, linear pooling is applied to P1,…, Pk with respect to α1,…, αk, after which 

the resulting social probability measure P is updated to P(⋅/E) by conditionalization. 

For instance, for two subjects (k = 2), it is generally not the case that 

 (i) α1 P1(A/E) + α2 P2(A/E) = 

(ii) [α1 P1 + α2 P2](A/E) 

																																																								
2 See Genest and Zidek (1986), p.117, and Dalkey (1975). 



where ‘[α1 P1 + α2 P2]’ denotes the linear pool of P1, P2 with respect to α1, α2. In 

mathematical terms: the underlying diagram does not commute. Or in terms of the literature 

on probabilistic aggregation: linear pooling is not “externally Bayesian”.3 

Clearly, this leads any group of Bayesian subjects who insist on linear pooling as their 

favored method of aggregation into a normative dilemma: how should they update qua 

group? For there seem to be equally good reasons for them to update by means of (i) as there 

are for (ii). But the group cannot do both (except for trivial cases), since the resulting group 

measures in the two cases will differ. Various reactions to this dilemma can be found in the 

relevant literature,4 such as: dropping linear pooling in favor of some alternative pooling 

mechanism; changing the coefficients α1,…, αk in the course of the update; and more. 

In the following, we want to suggest a different kind of response, which, to the best of our 

knowledge, has not been discussed before: keeping both linear pooling and the coefficients 

intact but dropping conditionalization in favor of an alternative rational update mechanism. 

As we are going to see, this can be done so that the new updating scheme is itself well-known, 

natural, and well-behaved; if each individual learns by means of it, then linearly pooling the 

so-updated probability measures indeed leads to the same outcome as linearly pooling their 

prior probability measures and then applying this alternative update scheme to the group 

probability measure; and all of that is going to follow from a result that has already been 

established in a different area (the study of conditionals) but which, it seems, has not been 

applied before in the area of probabilistic aggregation. This alternative probabilistic updating 

mechanism is: (general) imaging.  

Section 2 will explain the essentials of this alternative learning scheme. Section 3 will 

show, based on an existing formal result by Gärdenfors (1982), that general imaging 

																																																								
3 External Bayesianity was studied first by Madansky (1964). Genest et al. (1986) provide a 
characterization of External Bayesianity in terms of properties that are closely related to so-called 
logarithmic pooling methods. 
4 See Genest and Zidek (1986), pp.117-120. 



commutes with linear pooling, and therefore the dilemma from above does not apply to that 

alternative update method. In Section 4 we will interpret this result in less abstract terms, and 

we will illustrate our findings in terms of a concrete toy example. The final Section 5 will 

summarize what has been achieved, and it will point to a consequence that these findings may 

have for rational group decision-making. 

 

2. General Imaging 

 

Let W = {w1,…, wn} be a sample space of finitely many possible worlds (for simplicity). 

Different interpretations of the members of W are permissible, but for our purposes it will be 

most convenient to regard them not so much as full metaphysical specifications of what the 

actual world might have been like in the past, present, and future, but rather as merely 

synchronous specifications of what the present state of the actual world might be like. For 

instance, grabbing a banana at a world and eating it will correspond to a change from that 

world (in which, say, there is precisely one banana in the fruit basket) to another one (in 

which no banana is in the basket). Such an interpretation of worlds is often employed in 

decision theory or in deontic logic, and it will be presupposed in what follows. 

As usual, we are going to identify propositions with subsets of W. The probability 

measures that we will consider will always be defined on all, and only, the subsets of our 

given, finite set W. 

 

In his famous article on “Probabilities of Conditionals and Conditional Probabilities”, David 

Lewis (1976) suggested a novel kind of probabilistic update method called ‘Imaging’ which 

works like this: when imaging a probability measure P on a non-empty or consistent 



proposition E,5 the probability of each possible world w’ is being transferred to a uniquely 

determined “image” world w in E that may be interpreted as the unique world in E that is 

closest or most similar to w’ (assuming, with Robert Stalnaker’s classical semantics for 

conditionals, that such a uniquely determined world exists). Once all such transfers have 

taken place, the result of imaging P on E is the image function P(⋅\E) that is given by defining 

P(A\E) to be the sum of all these new probabilities of the worlds w that are members of A.6 As 

Lewis argued, both conditionalizing P on E (which results in P(⋅/E)) and imaging P on E 

(which results in P(⋅\E)) may be regarded as “minimal” revisions of P by E, it is just that the 

term ‘minimal’ must be assigned different meaning in each case. Lewis also showed that 

Stalnaker’s thesis on conditionals (a version of the Ramsey test for conditionals) holds if it is 

formulated for imaging, while famously it fails if formulated for conditionalization. In the 

literature on conditionals, both conditionalization and imaging have been studied as 

probabilistic methods of supposing E rather than learning E, but in what follows their 

learning interpretation will be more salient.  

Not much later both Gärdenfors (1982) and Lewis (1981)7 proposed a generalization of 

imaging in which it is no longer assumed that for each “source” world w’ there will be a 

unique “image” world w to which all of the probabilistic mass of w’ is being transferred. 

Instead, the probabilistic mass of w’ may be distributed over various “image” worlds, where 

each such world w will only receive TE(w’, w) ⋅ 100 percent of the original probability 

P({w’}) of w’, as being determined by what we are going to call a transition or transfer 

function T. Lewis’ (1976) original “sharp” version of general imaging is then given by the 

																																																								
5 Updating on the empty (contradictory) set of worlds will not play a role in what follows. 
6 We borrow the notation ‘\’ from Joyce (1999). 
7 Lewis (1981) refers to an unpublished manuscript by Gärdenfors (which turned later into Gärdenfors 
1982); Lewis’ paper also includes references to further formalisms in the literature that coincide with, 
or are closely related to, general imaging. We should note that our own presentation will in some 
respects be closer to Lewis’ than to Gärdenfors’; in particular, Lewis presents general imaging in a 
possible worlds framework just as we do, while Gärdenfors aims to avoid reference to possible worlds 
in his presentation. 



special case in which for every world w’ the quantity TE(w’, w) is equal to 1 for precisely one 

world w (and equal to 0 for all other worlds). 

Stated more formally, general imaging amounts to this: let T be a mapping which takes as 

arguments an arbitrary non-empty proposition E, a world w’ in W, and another world w in W, 

and which maps them to a number TE(w’, w) in the closed interval [0,1], such that for all w’ in 

W it holds that ∑w in W TE(w’, w) = 1.8 The probability measure P(⋅\\T E) that results from 

general imaging of a given probability measure P on a proposition E (relative to the transfer 

function T) can then be defined on worlds w in W in this manner:  

 

P({w}\\T E) = ∑w’ in W P({w’}) ⋅ TE(w’, w). 

 

Once the updated probability for each world w has been determined as such, one can define 

for all propositions A: P(A\\T E) = ∑w in A P({w}\\T E). By the assumption that for all w’ in W, 

∑w in W TE(w’, w) = 1, it follows that P(⋅\\T E) is a probability measure again, since the 

fractions TE(w’, w) for fixed w’ sum up to 1 (or 100 percent), and hence in the course of 

transferring probabilities no probabilistic mass is destroyed or created.9 The measure P(⋅\\T E) 

																																																								
8 In fact, one might want to impose the more stringent requirement that ∑w in E TE(w’, w) = 1 where the 
sum in question is taken just over the members of E instead of all worlds whatsoever: assuming that 
requirement (e.g. with Lewis 1981) has the natural consequence that general imaging of P on E 
(relative to T) will determine a probability measure that assigns probability 1 to E. Since this feature of 
updating on E will not play a role, however, for any of the arguments later in the paper, we will not 
take up this requirement here. 
9 Since for fixed E and w’, TE(w’, w) gives rise to a probability measure TE, w’   that is both evidence-
relative and world-relative (by setting TE, w’(A) = ∑w in A TE(w', w)), the result of imaging P on E relative 
to T can also be expressed in the following alternative manner, 
 

P(A\\E) = ∑w in A P({w}\\E) 
= ∑w in A ∑w’ in W P({w’}) ⋅ TE(w’, w) 
= ∑w’ in W ∑w in A P({w’}) ⋅ TE(w’, w) 
= ∑w’ in W [P({w’}) ⋅ ∑w in A TE(w’, w)] 
= ∑w’ in W P({w’}) ⋅ TE, w’(A), 

 
in the last line of which P(A\\E) may be interpreted as a convex combination of these 
evidence&world-relative probabilities TE, w’(A) of A, or, if one likes to, as the “expected chance” of A 



is then called the result of general imaging of P on E (relative to the given transfer function 

T), and the mapping \\T  that sends a probability measure P and a non-empty proposition E to 

P(⋅\\T E) is the very update procedure of general imaging (relative to T).  Clearly, given W, 

any such update function \\T is determined completely by its underlying transfer function T.  

Since its introduction, general imaging has been applied and explored in different areas. In 

particular, Joyce (1999, chapters 5 and 6) suggests general imaging to express, in probabilistic 

terms, subjunctive or counter-to-the-facts supposition, just as conditionalization expresses 

supposition as a matter of fact. Accordingly, he uses general imaging as a means of making 

the tenets of Causal Decision Theory precise, much as conditionalization is employed in 

Evidential Decision Theory. More recently, Baratgin and Politzer (2011) defend the thesis 

that general imaging is a plausible description of actual human belief revision processes in 

dynamic environments, based on a series of empirical findings. 

One of the crucial features of general imaging, if compared to conditionalization, is this:10 

what the fraction TE(w’, w) (⋅ 100 percent) that a world w’ transfers to a world w is like 

depends only on w’, w, and E; in particular, it does not depend on the probability measure P 

that is to be updated. Whatever one’s degree-of-belief function P may be, it is solely a matter 

of the evidence (that is, E) and the world(s) in question (that is, w’, w) what fraction of the 

probabilistic mass  that P supplies to w’ will be moved to w. 

This contrasts with conditionalization: if conditionalization is presented in a similarly 

additive format, that is, 

P({w}/E) = ∑w’ in W P({w’}) ⋅ TE, P(w’, w), 

the underlying transition function will have to be defined so that TE, P(w’, w) = P({w}/E). In 

other words: T will also depend on P (while it will not actually depend on w’ at all).11 In the 

																																																																																																																																																																													
where the corresponding “chances” are determined by TE, w’(A)  relative to worlds w’ and the  evidence 
E. We will return to this point later in this section. 
10 This feature is emphasized, discussed, and ultimately criticized by Joyce (2010), pp.149f. 
11 The same point is discussed by Pearl (1994), p.205. 



case of conditionalization, each degree-of-belief function will thus determine its “own” 

corresponding transfer function, unlike the case of general imaging in which one and the same 

probability-independent transition function is used for all probability measures on W 

whatsoever. 

 For instance: the transfer function T that determines uniquely the corresponding general 

imaging function \\T might be defined such that the set of worlds w for which TE(w’, w)>0 

holds coincides with the set of worlds in E that are most similar or close to w’, and TE(w’, w) 

might be chosen to be uniform over these worlds, in which case T would be determined solely 

by something like world-relative similarity orderings (along the lines of the Stalnaker-Lewis 

semantics for counterfactuals). Or TE(w’, w) might be identified with the conditional objective 

chance at w’ of the proposition {w} given the proposition E, in which case T would be fully 

determined by worldly conditional chance measures.12 Or TE(w’, w) might be defined as the 

objective chance of ending up in w given that one acts in w’ such that E becomes true (if that 

proposal differs at all from the conditional chance ascription in the previous case);13 and so 

on. In each of these cases, T would be given in a manner that is independent of P, and the 

corresponding instance \\T  of general imaging would inherit this feature, unlike the case of 

conditionalization. If spelled out in terms of learning: while conditionalizing on the evidence 

corresponds to learning something new about the present state of the actual world (where each 

world w counts as a candidate of what the actual world might be like), general imaging \\T 

corresponds to learning that the previously present state of the world (w’) has changed, or has 

been changed by someone or something, into a new one (w), to an extent that is measured by 

TE(w’, w). 

																																																								
12 Compare footnote 8. This choice corresponds to Skyrms’ (1980a, 1980b, 1984) proposal of 
determining degrees of acceptability for counterfactuals in terms of their corresponding expected 
conditional chances. 
13 Pearl (1994), p.205, discusses imaging as a possible method of transforming a probability measure 
by means of actions. 



While this point is not discussed very much in the philosophical literature on (generalized) 

imaging itself—as most of that literature is concerned with subjunctive supposition rather 

than with, as it were, subjunctive learning—theoretical computer scientists have been 

discussing this difference between learning about properties of the present state of the world 

vs. learning of the world being changed into another one having certain properties a lot:14 in 

that area of research, learning is studied primarily in the context of qualitative or all-or-

nothing belief, and consequently probabilities do not necessarily play a role; however, 

analogous points apply to the opposition between learning in terms of belief revision—in the 

well-known “AGM sense” of Alchourron et al. (1985), which may be viewed as the 

qualitative counterpart of conditionalization—and learning in terms of so-called belief 

update—as introduced by Katsuno and Mendelzon (1992), which may be viewed as a 

qualitative counterpart of (generalized) imaging. In belief update, a given belief state is 

modified along a similarity ordering of worlds much in the way in which general imaging 

modifies a probability measure along a transition function, and indeed Katsuno and 

Mendelzon (1992) discuss the analogy between belief update and imaging explicitly. And 

belief update has been proposed to be the right form of learning if, and only if, what is at 

stake is learning of change: “We make a fundamental distinction between two kinds of 

modifications to a knowledge base. The first one, update, consists of bringing the knowledge 

base up to date when the world described by it changes… The second type of modification, 

revision, is used when we are obtaining new information about a static world” (see Katsuno 

and Mendelzon 1992, Introduction). 

If translated back into our discussion of general imaging, the corresponding suggestion 

would be: general imaging might be a subject’s adequate response to evidence if, and only if, 

the evidence expresses a change of the actual world (say, from the actual world w’ to another 

world w), where the extent TE(w’, w) to which w can be expected to be the outcome of that 

																																																								
14 Katsuno and Mendelzon (1992) is the standard reference, which triggered this debate. 



kind of change only depends on w’, w and E, while it does not depend on the agent’s degree-

of-belief function P. So the change in question must be one in which the actual world changes 

independently of the subject’s beliefs, which means it must be some kind of “worldly” (and 

perhaps evidence-related) change. And since the subject does not necessarily know which 

world w’ is the actual one, she will have distributed her degrees of beliefs initially over 

possible candidates w’ for being the actual world, and she will start from these initial degrees 

of beliefs in {w’} when transferring them to the worlds w into which w' is being changed. In 

other words: her new degree-of-belief in w will be given by ∑w’ in W P({w’}) ⋅ TE, P(w’, w), 

which is nothing but the definition of general imaging. For similar reasons, and as mentioned 

before, general imaging has been applied in accounts of causal decision theory in which the 

required probabilities of ‘if action E, then state S’ are determined by imagining on the 

proposition that action E is carried out. (Obviously, actions constitute the standard manner of 

bringing about change.) 

 

The relevance of these differences between general imaging and conditionalization to our 

intended context of rational belief aggregation will follow from a formal result by Gärdenfors 

(1982) on general imaging, to which we will turn in the next section. 

 

 

3. General Imaging Commutes with Linear Pooling 

 

Here is the crucial result:15 

																																																								
15 Unlike Gärdenfors, we formulate the theorem relative to a (fixed finite) set W of possible worlds. 
Our presentation of the theorem will also differ from Gärdenfors’ insofar as we suppress his original 
reference to “belief systems”. See Joyce (2010), p.149, and Pearl (1994), p.205, for reformulations of 
Gärdenfors’ theorem that are similar to ours. 



Theorem (Gärdenfors 1982): Let U be an arbitrary update function that takes a probability 

measure and a non-empty proposition as input and which maps them to another probability 

measure. The probability measure that results from applying U to P and E is denoted by:  

P(⋅\U E); accordingly, the probability of A after any such an update will be denoted by:        

P(A \U E). 

Then for every such U, the following two statements are equivalent: 

(I) U preserves mixing (in Gärdenfors’ terminology) or preserves convex combinations 

(in our terminology), that is: 

For all natural numbers k, for all probability measures P, P1,…, Pk, if there are real 

numbers α1,…, αk be in the closed interval [0,1], such that α1 + … + αk = 1, and 

where for all propositions  A, 

P(A) = α1 P1(A) + … + αk Pk(A), 

then it also holds for propositions  A that 

P(A\U E) = α1 P1(A\U E) + … + αk Pk(A\U E). 

(II) There is a transfer function T, such that U is determined by applying general 

imaging of probability measures on non-empty propositions relative to T in the 

sense explained before; that is: for all probability measures P and for all non-empty 

propositions E, it holds that for all worlds w, 

P({w}\U E) = ∑w’ in W P({w'}) ⋅ TE(w', w), 

and for all propositions A, 

P(A\U E) = ∑w in A P({w}\U E). 

Or more briefly: there is a T, such that \U is identical to \\ as determined by T. 

 

We will not state the proof of this theorem here, which can be found in the appendix of 

Gärdenfors (1982). But its underlying thought is simple enough: general imaging is itself 



defined in terms of a convex combination of a fixed family of probability measures (given by 

T—recall our footnote 8), which is also why general imaging commutes with any form of 

linear pooling in the intended manner. And if an update function commutes with any form of 

linear pooling in the intended manner, then one can show that it must be given by a convex 

combination of a fixed family of probability measures, which means that it must coincide 

with the instance of general imaging that corresponds to (the fixed T function given by) this 

family of probability measures. 

 

While Gärdenfors’ theorem was motivated by Lewis’ triviality results on probabilities of 

conditionals, what it tells us in our present context of social epistemology is: update by 

general imaging (with respect to fixed transfer function T) is the unique update mechanism 

that commutes with linear pooling with respect to arbitrary coefficients. For, by the theorem 

above, the result of first updating given individual degree-of-belief functions Pi by general 

imaging and then linearly pooling them with respect to numbers α1,…, αk, that is, 

determining for each proposition A the number 

α1 P1(A\\E) + … + αk Pk(A\\E), 

leads to the same result as first linearly pooling the given individual degree-of-belief 

functions Pi with respect to numbers α1,…, αk, which gives P(A) = α1 P1(A) + … + αk Pk(A), 

and then updating the so determined social probability measure P by general imaging: 

P(A\\E) = [α1 P1 + α2 P2](A\\E). 

That is, by Gärdenfors’ theorem, it holds that 

α1 P1(A\\E) + α2 P2(A\\E) = 

[α1 P1 + α2 P2](A\\E). 

 



As promised initially, we have thus determined a natural mechanism of probabilistic update 

other than conditionalization that is not affected by the dilemma concerning group update that 

had been explained in the introductory section. 

 

In the next section we will interpret this finding, we will at least partially determine a class of 

situations for which it will be highly relevant, and we will illustrate it by means of a concrete 

toy example. 

 

 

4. Interpreting the Result and a Toy Example 

 

What are the consequences of the formal result from the last section for rational group 

learning? Will subjects S1,...,Sk ever rationally employ general imaging so that Gärdenfors’ 

theorem becomes applicable to them?  

In the following, we will give a partial answer to these questions by focusing just on the 

(II)->(I) direction of the theorem from the last section.16 If our subjects find themselves in a 

situation in which update by general imaging is the appropriate response to evidence, and 

indeed—what is more—update by general imaging with respect to a joint or socially shared 

transfer function T is the right response (in the sense that the transfer function that is 

underlying \\ as denoted in the k expressions ‘P1(A\\E)’,…, ‘Pk(A\\E)’ from the last section is 

always one and the same), then the (II)->(I) direction will guarantee that linear pooling of the 

individual beliefs will not be subject to the initial concern regarding update; which is clearly a 

																																																								
16 The other direction (I)->(II) is interesting, too, but probably less salient: it expresses that if one and 
the same learning method is supposed to commute with linear pooling whatever the group of subjects 
and whatever the subjects’ weights α1,…, αk of social influence are like, then that learning method 
must coincide with an instance of general imaging that is determined by some fixed transfer function. 
So if a learning method is meant to be stable across groups and across changes in the social weights of 
the members of a group, and if linear pooling is the preferred method of aggregation, then general 
imaging is the only update scheme that is up for the job. 



good feature. The remaining question is: what are such situations like in which general 

imaging with respect to a joint transfer function delivers the right group method of 

accommodating evidence? 

 

So let us suppose that our k subjects do in fact learn that the state of the actual world has 

changed in a particular manner, so that updating by means of general imaging does seem to be 

the appropriate response. While being a first step into the right direction, if just taken by 

itself, this is still not quite what we are looking for: because, as explained before, we need to 

characterize a type of situation in which additionally our subjects’ updating by general 

imaging ought to be given with respect to one and the same joint transfer function T. So when 

will that be plausibly the case? 

Returning to our previous discussion of probability-independent transition functions, let us 

thus additionally assume T to express inferential commitments that reflect solely world-

related knowledge (given the evidence) about, say, objective similarities between worlds, or 

conditional chances at worlds, or the chances of bringing about certain worlds (or states), or 

the like; then our group of subjects will apply imaging with respect to a joint such T, if, and 

only if, they rely on the same such information (whether implicitly or explicitly) concerning 

similarity or chances or the like when updating by general imaging. We might summarize 

what these types of information have in common in the following rough (and admittedly 

vague) terms: all of them derive from relevant bits of causal (and perhaps statistical) 

information that our subjects must share, where the reasons why they share them might be 

manifold: perhaps because they had all acquired the relevant bits of commonsense experience 

concerning causal and statistical relationships before (as would be sufficient for many 

everyday contexts); or because they had all been presented with the same set of causal data 

before (as would be the case, e.g., for jury members in a legal trial); or because before 

updating on the new piece of evidence they had already exchanged and discussed the relevant 



causal data on which their update would be based (as would be the case maybe in scientific 

panels of experts); and so on. 

In approximate terms, therefore, we have: if subjects S1,..., Sk receive a piece of evidence E 

concerning some worldly change (and hence ought to apply general imaging), if additionally 

they are in possession of the same causal and statistical background knowledge that is 

relevant for the facts in question, and if they also put the same pragmatic-epistemic emphasis 

on the same features of these facts when accommodating E, then also the similarity orderings 

on which their resulting applications of general imaging might be based should be the same, 

the conditional chance measures that might feed into their applications of general imaging 

should be the same, and so forth. In which case, they should also invoke one and the same 

transition mapping T in the course of updating by general imaging.  

 

Summing up: if a group of subjects finds itself in a situation that is characterized by 

• The relevant evidence being about changes (of the state) of the actual world, 

in combination with 

• the subjects sharing the relevant inferential dispositions that derive from sharing the 

same causal-statistical background knowledge on which their updates will be be 

based, 

then update by general imaging with respect to a shared transfer function T will seem to be 

the normatively right thing for them to do. And by the right-to-left direction of the theorem 

from the last section, general imaging with respect to such a joint transfer function will not be 

subject to the commutativity dilemma concerning group update with linear pooling. 

Therefore, in circumstances as described above, the commutativity dilemma loses its bite, and 

‘group update’ has indeed a unique referent. The claim is not at all that linear averaging and 

general imaging would be anything like the “universally valid” methods of aggregation and 

update. They are certainly more ideally targeted to some problems of belief aggregation and 



updating than others (e.g., they are more plausible in cases where several subjects are learning 

how the world is changing, rather than learning new information about how the world once 

was). The claim is merely that there exist problems to which it is reasonable to apply linear 

averaging and general imaging, and that in such cases the commutativity dilemma will not 

arise.17 

 

Let me illustrate this now in terms of a very simple toy example18.  

Say, we are dealing with two subjects S1, S2 who have different information about the 

contents of a basket with fruit. Both of them can rule out all possibilities except for these three 

worlds (distributions of fruit in the basket): 

w1, in which there are precisely one apple and one banana in the basket, 

w2, in which there is precisely one pear in the basket, 

w3, in which there is precisely one apple in the basket. 

 

So all worlds other than these three have prior probability 0 according to both subjects. 

However, S1, S2 differ in terms of the degrees of belief that they assign to w1, w2, w3: 

S1’s degree-of-belief function is such that 

P1({w1}) = 1/6, P1({w2}) = 2/3, P1({w3}) = 1/6, 

which means that S1 is pretty sure that there is just one pear in the basket and nothing else, 

while S2’s degree-of-belief function satisfies 

P2({w1}) = 1/3, P2({w2}) = 1/3, P2({w3}) = 1/3 

and hence S2 is completely impartial concerning the three possibilities. 

																																																								
17 I am grateful to an anonymous reviewer and to an editor of this journal for very helpful comments 
on this point. 
18 The example is similar to one discussed by Baratgin and Politzer (2011), though some of the formal 
details differ.  



Next we can determine the group belief for our two subjects as recommended by linear 

pooling. For that purpose, we need to choose the coefficients or weights that correspond to the 

subjects: let us assume that the two of them are peers with equal influence on the intended 

social outcome; so α1 = 1/2, α2 = 1/2. With that in place, we can determine the social 

probability measure P for S1 and S2 viewed as a group, which is given by 

for all propositions A:  P(A) = α1 P1(A) + α2 P2(A), 

and in particular, 

P({w1}) = 1/12 + 1/6 = 1/12 + 2/12 = 3/12 = 1/4, 

P({w2}) = 2/6 + 1/6 = 3/6 = 1/2, 

P({w3}) = 1/12 + 1/6 = 1/12 + 2/12 = 3/12 = 1/4. 

 

The outcome reflects S1’s preference for w2, although the preference is weakened from 2/3 to 

1/2 in view of S2’s indifference. 

Accordingly, for instance, the corresponding degrees of belief for there being an apple in 

the basket are: P1(apple in basket) = 1/3, P2(apple in basket) = 2/3, P(apple in basket) = 1/2. 

So linear pooling makes it more likely for S1 but less likely for S2 that there is an apple in the 

basket. 

 

Now let us assume that some new piece of evidence comes along: there is actually no banana 

in the basket. How should the subjects update on this new available information qua group? 

In line with our previous discussion, this depends on whether the evidence is meant to 

express some additional information about an unchanged world (the banana is not in the 

basket, i.e., it has not been there) or rather information about how the world has changed (the 

banana is not in the basket, i.e., it was removed if it had been there at all). And as explained 

before, we are going to analyze this in the way that two different kinds of update functions 

will be applied to one and the same piece of evidence, that is, to the proposition the banana is 



not in the basket (or the set {w2, w3} of worlds): in the first case standard Bayesian update on 

this proposition will be the rational response, while in the other case general imaging on the 

proposition will be called for.19 

Let us consider the Bayesian option first: for instance, the new piece of evidence might 

have been communicated to S1 and S2 by someone whom they know to be precise, 

epistemically trustworthy, and uninterested in eating or stealing fruit; and there is no other 

reason either for thinking that anyone was causally interfering with the situation. Hence 

conditionalization seems to be the appropriate update mechanism. 

(i) Conditionalizing first and linearly pooling afterwards leads to: Each of our two subjects 

updates individually on the evidence by means of conditionalization, which yields 

P1({w1} / banana not in basket [i.e., it has not been there]) = 0, 

P1({w2} / banana not in basket [i.e., it has not been there]) = 4/5, 

P1({w3} / banana not in basket [i.e., it has not been there]) = 1/5. 

P2({w1} / banana not in basket [i.e., it has not been there]) = 0, 

P2({w2} / banana not in basket [i.e., it has not been there]) = 1/2, 

P2({w3} / banana not in basket [i.e., it has not been there]) = 1/2. 

 

Linear pooling of these degree-of-belief functions after conditionalization gives then: 

α1 P1({w1} / banana not in basket [i.e., it has not been there]) + α2 P2({w1} / banana not 

in basket, i.e., it has not been there) = 0. 

																																																								
19  It is an interesting question whether one might instead analyze the propositional evidence 
differently in the two cases and then apply the same update mechanism to the two corresponding 
distinct propositions, rather than applying two distinct update mechanisms to one and the same 
proposition. We cannot explore this any further here, but there would be at least two downsides to any 
such alternative analysis: It might be that semantically indeed the same message is delivered to the 
two subjects in the two situations and that it is only the pragmatic connotations of the respective acts 
of delivery that make it clear to them how they ought to react to the message; in which case applying 
two distinct update functions to the same proposition would seem to be the more appropriate 
reconstruction. And: the underlying space of possibilities would need to be much more sophisticated if 
the differences between the banana has not been there and the banana was removed if it had been 
there at all ought to be captured in terms of propositional content. 



α1 P1({w2} / banana not in basket [i.e., it has not been there]) + α2 P2({w2} / banana not 

in basket, i.e., it has not been there) = 4/10 + 1/4 = 8/20 + 5/20 = 13/20. 

α1 P1({w3} / banana not in basket [i.e., it has not been there]) + α2 P2({w3} / banana not 

in basket, i.e., it has not been there) = 1/10 + 1/4 = 2/20 + 5/20 = 7/20. 

 

In particular, as far as the proposition an apple is in the basket (the set {w1, w3}) is concerned, 

the outcome will be: 

α1 P1(apple in basket / banana not in basket [i.e., it has not been there]) + α2 P2(apple in 

basket / banana not in basket [i.e., it has not been there]) = 7/20, 

which is less than the prior P(apple in basket) = α1 P1(apple in basket) + α2 P2(apple in 

basket) = 1/2. So this first kind of Bayesian group update disconfirms the thesis that the apple 

is in the basket. 

 

On the other hand, (ii) first applying linear pooling and then conditionalizing leads to: as the 

group probability measure P has been determined above already, it only remains to update P 

by conditionalizing it on the evidence, which yields 

P(apple in basket / banana not in basket [i.e., it has not been there]) = 1/3, 

which is also less than the prior P(apple in basket) = α1 P1(apple in basket) + α2 P2(apple in 

basket) = 1/2. However, 1/3 is distinct from the 7/20 that had been calculated in (i). As 

expected, conditionalization and linear pooling do not commute: 

α1 P1(apple in basket/banana not in basket) + α2 P2(apple in basket/banana not in basket) ≠ 

[α1 P1 + α2 P2](apple in basket / banana not in basket), 

and it is not clear anymore whether ‘Bayesian group update’ ought to refer to (i) or (ii) (if to 

either of them at all). 

 



Now let us turn to the other type of situation: for instance, the new piece of evidence might 

have been communicated to S1 and S2 by someone whom they know to be precise, 

epistemically trustworthy, but also highly interested in eating banana. They interpret this 

person’s message therefore as conveying that the person would have removed the banana 

from the fruit basket had it been there initially. So they ought to apply general imaging 

instead of conditionalization (or so I am going to assume). 

Based on their shared everyday knowledge of causal relationships—as in: taking the 

banana out of a fruit basket does not change the basket and its contents except for the banana 

being gone—the underlying transfer function T will be one and the same for both subjects: in 

particular, if ‘E’ denotes the proposition the banana is not in the basket [i.e., it was removed if 

it had been there at all], then TE(w1, w1) = 0, TE(w1, w2) = 0, and TE(w1, w3) = 1, since 

removing the banana from the basket will change w1 into w3, whilst TE(w2, w1) = 0, TE(w2, w2) 

= 1, TE(w2, w3) = 0, TE(w3, w1) = 0, TE(w3, w2) = 0, TE(w3, w3) = 1, as there had not been any 

banana in the basket at either of w2 and w3 in the first place. Because the values of TE are 

crisp, it is clear that we will be dealing with a case of imaging simpliciter here instead of 

general imaging proper. For instance, in more complex circumstances, grabbing the banana 

from the basket might come just with a high chance of succeeding in its removal (say, TE(w1, 

w3) = 0.9) so that failing to remove the banana from the basket could not be ruled out 

completely (TE(w1, w1) = 0.1), in which case plain imaging would not be sufficient anymore. 

However, for the sake of simplicity, let us stick to the binary TE values from before. 

Let \\ (or, if we like to, \) be the update by (generalized) imaging that is given by T, where 

we will only be interested in the context in which the proposition the banana is not in the 

basket is the relevant piece of evidence. 

(iii) First applying imaging and only then linear pooling leads to: Each of our two subjects 

updates individually on the evidence by means of imaging, which yields (by “moving” 

probabilities from w1 to w3) 



P1({w1} \\ banana not in basket [i.e., it was removed if there at all]) = 0, 

P1({w2} \\ banana not in basket [i.e., it was removed if there at all]) = 2/3, 

P1({w3} \\ banana not in basket [i.e., it is removed if there at all]) = 1/3. 

P2({w1} \\ banana not in basket [i.e., it was removed if there at all]) = 0, 

P2({w2} \\ banana not in basket [i.e., it was removed if there at all]) = 1/3, 

P2({w3} \\ banana not in basket [i.e., it was removed if there at all]) = 2/3. 

 

Linear pooling of these individual probability measures after imaging gives then: 

α1 P1({w1} \\ banana not in basket [i.e., it was removed if there at all]) + α2 P2({w1} \\ 

banana not in basket, i.e., it is removed if there at all) = 0. 

α1 P1({w2} \\ banana not in basket [i.e., it was removed if there at all]) + α2 P2({w2} \\ 

banana not in basket, i.e., it is removed if there at all) = 2/6 + 1/6 = 3/6 = 1/2. 

α1 P1({w3} \\ banana not in basket [i.e., it was removed if there at all]) + α2 P2({w3} \\ 

banana not in basket, i.e., it is removed if there at all) = 1/6 + 2/6 = 3/6 = 1/2. 

 

In particular, as far as the proposition an apple is in the basket (the set {w1, w3}) is concerned, 

the outcome is: 

α1 P1(apple in basket \\ banana not in basket [i.e., it was removed if there at all]) + α2 

P2(apple in basket \\ banana not in basket [i.e., it was removed if there at all]) = 1/2. 

 

On the other hand, (iv) first applying linear pooling and then imaging leads to: as the group 

probability measure P has been determined already, it only remains to update P by imaging 

on the evidence, which yields 

P(apple in basket \\ banana not in basket [i.e., it was removed if there at all]) = 1/2, 

which coincides in value with the 1/2 that had been calculated in (iii) before. (Generalized) 

imaging and linear pooling commute: 



α1 P1(apple in basket \\ banana not in basket) + 

α2 P2(apple in basket \\ banana not in basket)  

= 

[α1 P1 + α2 P2](apple in basket \\ banana not in basket). 

 

Furthermore, the value of both of these expressions coincides with the original group 

probability P(apple in basket) = 1/2, and it does so for good reasons: after all, the apple’s 

lying in the basket is causally independent of removing the banana, which is why the 

probability of the apple being in the basket should remain unaffected by the corresponding 

instance of imaging, and that is indeed the case. 

Accordingly, our subjects S1 and S2 do not face a commutativity dilemma concerning 

group update with linear pooling in this kind of situation in which they learn about change (in 

the present case, change caused by an action), and in which their updates will be based on a 

shared set of relevant pieces of causal-statistical background knowledge. Whether ‘group 

update’ refers to (iii) or (iv) above simply does not matter, as the outcomes of the two 

strategies of group update are guaranteed to coincide. 

 

 

5. Summary and Consequences 

 

We started with the familiar observation that conditionalization or standard Bayesian update 

does not commute with the linear pooling of subjective probability measures. This led to a 

dilemma: How should a group of subjects update? The response to that dilemma that we were 

exploring in this paper was to replace conditionalization by an alternative updating scheme: 

general imaging. We explained that method of update in some detail, we stated Gärdenfors’ 

characterization result for it, and we derived from that result that general imaging was not 



subject to a similar kind of dilemma with respect to linear pooling as conditionalization was. 

Afterwards we argued that in a situation in which a group of subjects is meant to learn about a 

changing world and in which their update captures a common set of relevant pieces of causal-

statistical background knowledge, general imaging might actually constitute the right method 

of group learning. Therefore, by the previous finding, no variant of the original commutativity 

dilemma concerning group update with linear pooling is going to affect the right method of 

group update in these situations. 

 

Various extensions of these findings come to mind. Most importantly, it should be possible to 

extend both the original dilemma and our way out of it to the case of group decision-making 

with linear pooling: e.g., assume two subjects trying to determine as a group the expected 

utility of carrying out an action E. Let us assume that the intended social utility measure is the 

function u. Finally, for simplicity, let us assume that their focus is just on two possible 

outcomes O1 and O2 that the relevant possible courses of action might have. By first 

individually supposing the proposition that E is carried out and then linearly pooling the 

resulting probability measures (assuming that linear pooling is their preferred method of 

aggregation again), they might determine 

 [α1 P1(O1 if E) + α2 P2(O1 if E)] u(O1 & E) + [α1 P1(O2 if E) + α2 P2(O2 if E)] u(O2 & E). 

Alternatively, our two subjects might first linearly pool their individual probability measures 

and only then suppose E to be carried out, which gives an expected utility of the form 

[α1 P1 + α2 P2](O1 if E) u(O1 & E) + [α1 P1 + α2 P2](O2 if E) u(O2 & E), 

or more briefly, where P is the linear pool of P1 and P2, 

P(O1 if E) u(O1 & E) + P(O2 if E) u(O2 & E). 

The ensuing questions should be familiar by now: Will these two procedures lead to the same 

outcome? If not, how should these subjects determine expected utilities as a group: in the first 

manner or in the second one? Now we are facing a potential commutativity dilemma 



concerning group decision-making and linear pooling. Unsurprisingly, it should be possible to 

answer these questions and to reply to the potential dilemma in ways that should be familiar 

by now, and the answers and the reply will be sensitive to the mode of supposition again 

(matter of fact vs subjunctive). In particular, if causal decision theory formulated by means of 

generalized imagining were to be valid (at least in a certain type of situations),20 and hence 

expressions of the form ‘P(O if E)’ were to be analyzed by means of general imaging, then 

group decision-making with linear pooling could be shown in the very same manner not to be 

affected by the corresponding commutativity dilemma. There would be, extensionally, a 

unique method for a group to determine socially expected utilities of actions by means of 

averaging. But we leave such applications to social (causal) decision theory to another 

paper.21 
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