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Lipopolysaccharide is a frequent contaminant of plasmid
DNA preparations and can be toxic to primary human
cells in the presence of adenovirus

Matt Cotten', Adam Baker', Mediyha Saltik', Ernst Wagner'? and Michael Buschle’
'IMP, Research Institute of Molecular Pathology, Dr Bohrgasse 7, 1030 Vienna and * Bender & Co., Ernst Boehringergasse 5-11,

1121 Vienna, Austria

Endotoxin (lipopolysaccharide, LPS) is commonly found as a
contaminant in plasmid DNA preparations. We demonstrate
here that the quantities of LPS typically contaminating DNA
preparations can generate a toxicity to primary cells (primary
human skin fibroblasts, primary human melanoma cells) in the
presence of entry-competent adenovirus particles. Toxicity

Introduction

Endotoxin (lipopolysaccharide, LPS) is a major
component of the Gram-negative bacterial cell wall. The
LPS monomer is a diglucosamine diphosphate bearing
six lipid moieties, linked to either two or three 2-keto-3-
deoxyoctonate (KDO) residues linked to an inner core of
carbohydrate residues linked to the outer (O-antigen)
carbohydrate residues (see [1, 2] for details). The LPS
molecule is an extremely potent stimulator of the
mammalian immune system and a number of
mechanisms exist to detect LPS and to respond to the
presence of either this molecule or Gram-negative
bacteria [3-12]. LPS is a common contaminant of plasmid
DNA preparations grown in Escherichia coli. Up to 40%
of the surface LPS of E. coli can be released by treating
intact bacteria with Tris/EDTA solutions [1, 13],
conditions that are normally used in the initial steps of
preparing plasmid DNA. The negative charges
associated with the lipid A and inner core of LPS cause
the LPS molecule to behave like DNA on anion
exchange chromatographic resins. The large size of the
micellar form of LPS causes the molecule to behave like
a large DNA molecule on size exclusion resins. The
density of LPS in CsCl is similar to that of plasmid-EtBr
complexes (1.37 g/ml versus 1.5 g/ml), so that CsCl-
banded DNA can be easily contaminated. We document
here a toxicity in primary human skin fibroblasts as well
as primary human melanoma cells exposed to LPS-
containing DNA or pure LPS in the presence of
adenovirus. Toxicity appears at levels of 100 ng/ml free
LPS or 100 pg/ml when the LPS is assembled into
polylysine/adenovirus complexes. Methods to remove
the contaminating LPS and eliminate the toxicity are
described.

Correspondence: Matt Cotten, IMP, Research Institute of Molecular
Pathology, Dr Bohrgasse 7, 1030 Vienna, Austria

can be observed with as little as 100 ng/ml free LPS or 100
pg/ml LPS when the LPS is assembled into polylysine/adeno-
virus complexes. Simple and effective methods of removing
the contaminating LPS using either a polymyxin B resin or
Triton X-114 extraction are described. Treatment of DNA
samples to remove LPS eliminates the toxicity to primary cells.

Results

Fractionation of CsCl gradient to show position of LPS
relative to DNA

The plasmid pCLuc was grown in E. coli DH50. in the
presence of 100 ug/ml ampicillin and a cleared lysate of
the bacteria was prepared and fractionated by CsCl
density gradient centrifugation (see Materials and
methods). The gradient was subsequently fractionated (2
ml fractions) and fractions from the gradient (2 ml) were
assayed for plasmid DNA content (A, and gel
electrophoresis) and LPS content (Limulus assay). The
results are shown in Figure 1. We find that the original
cleared lysate contains LPS at more than 500 000
endotoxin units (EU)/ml (>500 pg/ml; results not
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Figure 1 Location of LPS in CsCl density gradient purification of plasmid
DNA. A cleared lysate of E.coli bearing an ampicillin resistance plasmid was
prepared and subjected to CsCl density gradient centrifugation in the
presence of ethidium bromide as described in the Materials and methods.
After 18 lrat 200 000 x g (Beckman VTi50 rotor) the gradient was
partitioned into 22 fractions. Fractions were analyzed for plasmid DNA
content by agarose gel electrophoresis and for LPS content by limulus assay.
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shown). This is not surprising as Tris/EDTA treatment of
Gram-negative bacteria releases large amounts of LPS [1,
13]. After a single fractionation on a CsCl gradient, we
find that the plasmid DNA, as expected, bands near the
middle of the gradient (centered around fraction 14)
while the bulk of the LPS is present in fractions near the
top of the gradient. Substantial amounts of LPS,
however, are distributed throughout the interior of the
gradient so that the plasmid DNA-bearing fractions still
contain as much as 10 ug/ml LPS, accounting for the LPS
content of CsCl-purified DNA samples (see Table 1).

Table 1 LPS content of DNA preparations

Method No. Mean LPS content Range
of samples  (EU/6 ug DNA) (EU/6 ug DNA)
DNA preparahon
CsCl 13 4.3 0.6 ->25
Qiagen 5 10.3 3.8->25
Nucleobond 7 20.2 0.5->25
Treatment to remove LPS
CsCl/Triton X-114 7 0.09 0.05-0.195
Qiagen/Triton X-114 4 0.08 0.016-0.2
Nucleobond / polvmyxm 7 0.02 0.001 - 0.075

Note 1 EU (endotoxm umt) = ] ng LPS

LPS content of DNA prepared by different methods
Column chromatographic methods of purifying plasmid
DNA fractionate the DN A based largely on its charge
density. The LPS molecule possesses a high negative
charge density due to the presence of phosphate groups
on the lipid A moiety as well as phosphate and carboxyl
groups on the octolonic acid sugar groups (reviewed in
[1,2]). Because of the negative Lhar;_,e density of LPS as
well as the molecule’s ability to assemble into high
molecular weight micelles, the LPS has a structure that
shares features with the chemistry and size of plasmid
DNA. Ion-exchange resins used for purifying plasmid
DNA (e.g. Qiagen, Nucleobond) generate plasmid
preparations that contain significant quantities of LPS
(see Table 1). Like DNA, LPS precipitates from ethanol
and isopropanol solutions. Furthermore, because the
LPS is not detected by either ethidium bromide staining
in agarose electrophoresis or by absorbance at 260 nm,
the presence of LPS can be largelv undetected in DNA
preparations. Table 1 lists the LPS contents of plasmid
DNA prepared by a variety of methods.

We have subjected three types of DNA preparations to
two methods of LPS removal. A simple and effective
method of LPS removal employs the detergent Triton X-
114. At temperatures below its cloud point of 20°C, Triton
X-114 is miscible with aqueous solutions; at temperatures
above 20°C, the detergent partitions into a separate phase
[14]. This phase partitioning can be used to extract the
lipophilic LPS molecule from aqueous protein solutions
[15] as well as DNA preparations [16]. An alternative LPS
removal method employs polymyxin B, a cyclic fungal
peptide that binds the lipid A/KDO component of LPS
with high affinity [9, 17, 18]. Chromatographic resins
bearing this peptide can be used to remove LPS from
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protein or DNA solutions. We obtain similar LPS removal
success with either method (Table 1). Both the Triton
extraction method and the polymyxin resin generate
DNA preparations with comparable absence of LPS (<0.1
EU/6 ng DNA). We have occasionally encountered
difficulty using either method to remove the LPS that
contaminates CsCl purified DNA. It is possible that the
CsCl purification enriches for a form of LPS that does not
avidly bind either the detergent phase or the polymyxin.
Sodium dodecylsulfate/polyacrylamide gel
electrophoresis (SDS/PAGE) resolution of DNA samples
stained with an LPS-specific silver stain [19, 20]
demonstrates that the form of LPS most frequently found
contaminating DNA preparations is a higher molecular
weight, heterogeneous form of LPS consistent with the
smooth LPS phenotype of the E. coli strains used to
propagate the plasmid DNA (results not shown).

Toxicity of LPS to primary cells in the presence of
adenovirus

In an initial study to determine if LPS could generate a
toxicity to mammalian cells, cultures of primary human
melanoma cells were exposed to purified LPS samples
(from either E. coli 0111:B4 or Salmonella minnesota) in the
absence or presence of psoralen-inactivated adenovirus
dl1014. After 48 h, the cultures were processed to
determine surviving cells by washing the cell mono-
layers, fixing with formaldehyde and staining with
crystal violet (Figure 2) or incubating with the viability
stain MTT (3-[4,5-dimethylthiazol-2-yl1]-2,5-
diphenyltetrazolium) (Figure 3).

We find that incubation of primary cells with LPS
alone (up to 250 pug/ml) or psoralen-inactivated
adenovirus alone (up to 10° virus particles/cell) has no
toxic effect (Figure 2a). However, combined treatment of
these cells with mature adenovirus (10° virus particles/
cell) plus LPS (down to 50 ng/ml) kills these cultures, as
measured by crystal violet staining (Figure 2a).

Purified preparations of immature adenovirus
particles (with a density of 1.31 g/cm?) possess the full
complement of outer capsid proteins yet are defective at
cellular entry and cytoplasmic release of co-endocytosed
material [21, 22] (M.C. and M.S., unpublished results).
These immature adenovirus particles are an assembly
intermediate, are deficient for viral DNA (hence their
lighter density) and are inactive in the pH-dependent
membrane disruption reaction that is required for
adenovirus entry into host cells (M.C. and M.S,,
unpublished results). Exposure to LPS in the presence of
immature adenovirus particles does not result in cellular
toxicity (Figure 2b), demonstrating that cytoplasmic
entry of the adenovirus (and possibly co-entry of LPS) is
required for toxicity.

When the viability stain MTT is used to measure
toxicity in the presence of mature virus particles and
LPS, similar results are obtained (Figure 3). No toxicity
is apparent with LPS alone, a slight decline in viability is
observed with adenovirus alone (10 000 or 100 000 virus
particles per cell) but a severe decline in viability is
observed with the higher virus input in the presence of
LPS (Figure 3).

Gene Therapy



a Adenovirus LPS
di1014 0 50 ng/ml 500 ng/ml 5ug.ml
(psoralen)
0
10,000
100,000
Viral particles
per cell
b Adenovirus LPS
dinio14 0 50 ng/ml 500 ng/ml  5ug.ml
(immature)
10,000
100,000

Viral particles
per cell

Figure 2 1.PS is toxic to primary human melanoma cells in the presence of
mature but not innmature adenovirus particles. Primary human melanona
cells (isolate H 226) were plated at 40 000 cells per well of a 24-well dish. The
cells were exposed to the indicated quantitios of LPS (S. minnesota wild type)
and adenovirus [(a) dIT014, psoralen-inactivated; (b) dI1014, light, 1.31
Qe particles] in 1 ml of DMEM/2% horse seruni for 2 lvat 37°C, after
which T ml of RPMI/10% FCS were added. After 48 h, the cell samples were
washed once with HBS, fixed in formaldelyde and stained with crystal violet
(sce Materials and methods).

Similar toxicities are observed with E. coli 0111:B4
LPS (smooth), S. minnesota wild type LPS (smooth) and
S. minnesota Re 595 LPS (rough E; results not shown).
The virus and LPS must be exposed to cells
simultaneously to generate the toxicity. Exposure to
virus or LPS alone for 2 h followed by w ashing and then
exposure to the second component does not result in
toxicity (results not shown). The toxicity does not appear
to involve adenovirus gene expression. No viral gene
expression can be detected with psoralen-inactivated
adenovirus d11014 (results not shown) and similar levels
of LPS toxicity are observed with either psoralen-
inactivated adenovirus d11014 or non-inactivated d11014.
Although we have not vet performed an exhaustive
survey, the toxic response appears to be a function of
primary cell cultures and the toxic response does not
occur with established cell lines (e.g. HeLa, Vero, 3T3 or
K562). In addition, there appear to be species differences
in the response to LPS/adenovirus toxicity. We have
found that primary mouse muscle fibroblasts are

Gene Therapy
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Figure 3 Toxicity to primary human melanoma cells in the presence of free
LPS and adenovirus. Primary lnnman melanoma cells (isolate H 225) were
plated at 4000 cells per well of a 96-well dish. Triplicate samples (in 100 pl of
DMEM, 2% HS) were incubated with the indicated quantity of LPS
(S. minnesota wild type) in either the absence of virus, or the presence of 10
000 or 100 000 particles/cell of adenovirus dl1014 (psoralen inactivated).
After 2 h, 100 wl of RPMI 1640/10% FCS was added to each well; 48 h later
the medium was replaced with 100 wl of RPMI 1640/10% FCS plus 15 ul of
MTT reagent (Promega), processed according to the manufacturer’s
directions and the absorbance at 540 nm (subtracting a background at 620
nn) was measured with an ELISA plate reader. Each point in the graph
represents the average of three independent samples.

sensitive to the toxicity but primary chicken embryo
fibroblasts and primary dog muscle fibroblasts are not
sensitive.

Purification of DNA eliminates toxicity

Several preparations of pGS-hIL-2, a plasmid bearing the
human interleukin 2 (IL-2) gene driven by the CMV
promoter, were purified with a modified Nucleobond
protocol (see Materials and methods) and the LPS
content was found to range from 0.5 to >25 EU/6 ug
DNA (Figure 4). Each plasmid preparation was subjected
to polymyxin B chromatography or Triton X-114
extraction to remove LPS. After treatment, all samples
contained less than 0.1 EU/6 ug DNA. The original and
the purified DNA preparations were then assembled into
adenovirus streptavidin—-polylysine—(StrpL)—transferrin—
polylysine (TfpL) complexes and transfected into
primary human melanoma cells. The culture
supernatants at 2448 h post-transfection were harvested
and the IL-2 content was measured by enzyme-linked
immunosorbent assay (ELISA). In all cases we find that
LPS removal leads to increased gene expression (from
3-26-fold; Figure 4). From the morphology of the
transfected cultures at 48 h post-transfection, cellular
toxicity could easily account for the poor IL-2 expression
from the LPS-bearing DNA samples.

LPS assembled into polylysine complexes is more toxic
than free LPS

The observation of toxicity that initiated this
investigation was due to LPS contamination of DNA
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EU IL-2 (units/10° cells/24 hours)
LPS per 6 ug
Purification DNA 0 2000 4000 6000 8000

None s S0 T

Polymyxin B <0.1

Triton X-114 <0.1 7 7 4800
None 16 1100
| PolymyxinB <01 Z 7 4800

Triton X-114 <0.1

s

1) 5000
77} 5000

None 20
Polymyxin B <0.1
Triton X-114 <0.1

None >25 200
Polymyxin B <0.1 4000
Triton X-114 <0.1 % 5300 ‘

Figure 4 Primary human melanoma cells (isolate H 225, 2 x 10° cells/6 cm
dish) were transfected with 6 pg of various preparations of the human IL-2
construct pGS-hlL-2tet assembled into biotinylated-adenovirus—StrplL-
TfpL-DNA complexes as described in Materials and methods. The endotoxin
levels of the plasmids before purification are indicated. After passage through
polymyxin resin or extraction with Triton X-114 all preparations contained
less thain 0.1 EU/6 ng DNA. The secreted 1L-2 levels from culture
supernatants 24-48 h post-transfection were measured by ELISA and are
expressed as units/10° cells/24 h.

which was seldom more than 5-10 EU/6 ug DNA
(comparable to 5-10 ng of LPS, used in 2-5 ml of culture
medium = 1-5 ng/ml). However, the toxicity
demonstrated with the addition of pure LPS to cell
cultures requires the presence of >50 ng/ml of pure LPS
for toxicity measured by crystal violet staining (Figure 2)
or >5 g/ml LPS for toxicity by MTT reduction (Figure
3). Simple charge considerations suggest that the
negatively charged LPS molecule could interact with the
positively charged polylysine of our transfection
complexes. We considered the possibility that
polylysine-LPS complexes, bound to adenovirus might
be present in transfection complexes prepared with LPS-
contaminated DNA preparations and the loading of LPS
onto polylysine—adenovirus complexes might enhance
the cellular interactions of the LPS molecule and
increase the toxicity of the LPS molecule. We tested this
idea directly in the following experiment.

Standard biotinylated-adenovirus-StrpL-TfpL-
DNA complexes were prepared. However, the DNA
used (Triton X-114 extracted to remove LPS) was
premixed with known quantities of pure LPS prior to
the assembly of the polylysine complexes. The
complexes were then supplied to primary fibroblasts
and primary melanoma cells and the resulting toxicity
was quantitated by MTT assay (Figure 5). We begin to
observe toxicity at concentrations of LPS of 5 ng/ml],
obtained with adenovirus/polylysine/DNA complexes
containing as little as 10 ng of LPS/6 ug DNA (Figure 5).
These are concentrations comparable to those that
produce toxicity with contaminated DNA and are
toxicities at 10-1000 times lower concentrations than the
conditions that generate toxicity with free LPS and
adenovirus mixtures.
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Figure 5 Toxicity generated by premixing LPS and DNA before assembly
into polylysine—adenovirus complexes. Primary human skin fibroblasts
(passage 8) were plated at 2000 cells per well of a 96-well dish. Samples (in
100 ul of DMEM, 2% HS) were incubated with the indicated quantity of
LPS (S. minnesota wild type) in the presence of 10 000 or 30 000
particles/cell of adenovirus dl1014 (psoralen inactivated)]DNA complexes.
LPS samples were premixed with LPS-free plasmid DNA and assembled into
adenovirus-StrpL-DNA-TfpL complexes as described in Materials and
methods. After 2 It incubation with the LPS-virus—DNA complexes, an
additional 150 ul of DMEM/10% FCS was added to each well; 48 I later the
mediunt was replaced with 100 pl of DMEM/10% FCS plus 15 pl of MTT
reagent (Promega) and processed for MTT reduction as described in the
legend to Figure 3. Each point in the graph represents the average of three
independent samples.

Including purified LPS in DNA assembled into
adenovirus transfection complexes results in loss of
gene expression

We have shown that removing the LPS from
contaminated IL-2 DNA results in an improvement of
gene expression, most likely due to an elimination of
toxicity (Figure 4). Furthermore, addition of LPS at
typical contamination levels generates toxicity when the
LPS is premixed with DNA before assembly into
polylysine-adenovirus complexes (Figure 5). To
establish that addition of pure LPS can result in a
decline in gene expression, an LPS-free preparation of
the luciferase-encoding plasmid pCLuc was premixed
with known quantities of E. coli LPS and assembled into
adenovirus—polylysine complexes. Aliquots of the
complexes were then supplied to primary fibroblasts
and 48 h later extracts were prepared and luciferase
gene expression was measured (Figure 6).

We find that the inclusion of as little as 10 ng of
LPS/6 g DNA results in a substantial loss in recovered
luciferase activity (compare Figure 6, lane 1, no LPS, with
lane 2, 10 ng LPS). This quantity of LPS in the DNA
samples results in a final concentration of LPS of 240
pg/ml. Further decline in luciferase gene expression
occurs with increasing LPS concentration (Figure 6, lanes
3 and 4). Substantial toxicity was apparent in the sample
2,3 and 4 cultures and this could largely account for the
decline in gene activity. The toxicity is apparent in Figure
6 at 240 pg/ml LPS, whereas toxicity by MTT assay was

Gene Therapy
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quure 6 Dec qu in luciferase activity as a function of LPS content of pCLuc
DNA. Primary human skin fibroblasts (passage 9) were plated at 20 000 cells
per well of a 24-well dish in DMEM/2% horse serum. Transfection
complexes containing biotinylated, psoralen-inactivated dl1014
adenovirus=StrpL-pCLuc DNA-TfpL and the indicated quantity of E. coli
0111:B4 LPS were prepared as described in Materials and methods.
Complexes representing 0.6 ug of DNA and 1 x 107 virus particles were
supplied to the cells in 500 wl of DMEM/2% HS for 2 lrat 37°C. A sample of
1.5 ml of DMEM/10% FCS was then added to each sample and 48 I later the
samples were processed for luciferase activity measurement. Each value
represents the average of two independent transfections.

not observed below LPS concentrations of 5-50 ng/ml.
This difference in concentration probably reflects the
mode of assay. With the luciferase assay we are
measuring the fate of the cells that actually endocytose
the DNA-virus-LPS complex whereas with the MTT
assay we are measuring the fate of the entire culture.

The toxicity does not require the high virus:cell ratios
used in these experiments. When the delivery of a
luciferase marker gene is used to follow the fate of the
cells that ingest the DNA-LPS complex, the toxicity at
107 virus per cell is comparable to that at 10° virus per
cell. Therefore, the toxicity due to LPS contamination
appears under the same conditions employed for
efficient DNA delivery.

Discussion

Previous work has demonstrated the utility of
adenovirus particles for enhancing the delivery of DNA
to eukaryotic cells [23-28]. Most evidence suggests that
the primary function of the adenovirus particle in these
applications is to increase the cytoplasmic entry of
endocytosed material, a function that was initially
characterized in detail by the Pastan and Carrasco
groups [29, 30]. This enhanced intracellular delivery of
material applies to toxins as well as to the DNA
molecules that we seek to deliver. Endotoxin (LPS) is a
common contaminant of E. coli-grown plasmid DNA
preparations. These LPS contaminations are simple to
overlook because the molecule is not visualized either
by ethidium bromide staining or by absorbance at 260
nm, the two methods commonly used to analyze and
quantify DNA preparations. We have demonstrated
here that the levels of endotoxin contaminating DNA
preparations can be toxic to primary cells in the presence
of entry-active adenovirus particles. We have
demonstrated that DNA purified with techniques for
removing contaminating LPS molecules enhances gene
expression in primary cells and eliminates the toxicity.
It is not yet clear if the toxicity is due to physical
damage to the cell by the LPS, if the cytoplasmic
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delivery of LPS is a signal or if the combined interaction
of adenovirus particles and LPS molecules activates a
toxic signalling pathway. Experiments to clarify the
mechanism generating this toxicity are in progress.

The use of adenovirus particles to enhance receptor-
mediated gene delivery is a powerful technique,
generating high levels of transient gene expression in a
variety of cell types. However, the use of this system in
vivo for long-term expression has been hampered by the
rapid decay in gene expression [31]. Our observation that
the LPS commonly contaminating DNA preparations is
responsible for a toxicity, and the demonstration here of a
simple remedy for this problem, should increase the
utility of this transfection method for primary cells.

Materials and methods

DNA preparation

All DNA plasmids carried either the B-lactamase
ampicillin resistance gene or the tetracycline resistance
gene and were propagated in the bacterial strains HB101
or DH50. in the presence of 100 ug/ml ampicillin or 5
ug/ml tetracycline in either LB or Terrific medium [32].
Saturated overnight cultures of the plasmid-transformed
bacterial strains were prepared, collected by
centrifugation and processed for plasmid DNA
purification in the following manner.

CsCl. This procedure is described in detail [33]. Briefly,
the bacterial pellet from a 1-liter culture was suspended
in 10 ml of 20% (w/v) sucrose, 10 mm EDTA, 50 mm Tris
pH 7.5 (solution 1) incubated on ice for 10 min, 2.2 ml
lysozyme (10 mg/ml in solution 1) was added for an
additional 10 min onice, 5ml 0.2 M EDTA pH 7 was
added and the sample was incubated for 10 min on ice
and finally, 10 ml1 2% (v/v) Triton X-114, 60 mm EDTA
and 40 mm Tris pH 7.5 were added followed by
incubation for 15 min on ice. This lysate was then
centrifuged for 30 min (Sorvall 5534, 17K) and 28.5 g
CsCl and 400 pl ethidium bromide (10 mg/ml) were
added to the supernatant (26 ml initial volume). The
material was centrifuged for >18 h in a Beckman VTi50
rotor at 200 000 x ¢ at 20°C. The lower of the two
ethidium-rich bands was collected and centrifuged
again, in a Beckman VTi65 rotor for >4 h at 350 000 x ¢ at
20°C. The ethidium-rich band was again harvested,
extracted with CsCl-saturated isopropanol until the pink
ethidium color was gone, dialyzed extensively against
TE (10 mMm Tris, 0.1 mm EDTA pH 7.4), mixed with 1/10
vol. 3 M sodium acetate pH 5.0 and precipitated with

3 vol. of ethanol at -20°C. The collected DNA precipitate
was further processed with RNase A, proteinase K,
phenol/chloroform and chloroform, reprecipitated and
the final DNA pellet was suspended in TE and
quantified by optical absorbance, assuming that 0.05
mg/ml DNA has an absorbance at 260 nm of 1.

Qiagen and Nucleobond. Qiagen (Diagen GmbH, Hilden,
Germany) and Nucleobond (Macherey-Nagel, Diiren,
Germany) plasmid DNA resins were used following the
directions supplied by the manufacturers, with the
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exception that Nucleobond columns were rinsed four
times with high stringency wash buffer (rather than
twice) following binding of the DNA to the resin.

Triton X-114 extraction. Triton X-114 (Sigma) was passed
through three 0°C/30°C temperature cycles (as
described by Bordier [14]) to isolate a homogeneous
prcparation of the detergent. Extraction of LPS from
DNA s‘amp es was performed as follows, a modification
of pre\ iously publlshed methods [15, 16]. DNA samples
at 0.5-1.5 mg/ml in TE were adjusted to 0.3 M sodium
acctate pH 7.5. Triton X-114 (3 ul per 100 ul DNA
solution) was added and the samples were vortexed
thoroughly and incubated on ice for 10 min. The
samples were then transferred to 30°C for 5 min to allow
the two phases to separate, Centrifuged in a prewarmed
Eppendorf centrifuge (ca. 30°C) for 2 min at 2000 and
the aqueous phase was transferred to a fresh Eppendorf
tube. This extraction was repeated two additional times
and the DNA in the final aqueous phase was
precipitated with 0.6 vol. of isopropanol at room
temperature. The precipitate was collected by

centrifugation, washed twice with 80% ethanol (-20°C),
air-dried, resuspended in TE and quantified.

Polymyxin B chromatography

A volume of polymyxin B resin slurry (Affi-Prep poly-
myxin, BioRad) equal to the DNA sample volume was
brleﬂy exposed to 3 vol. 0.1 N NaOH, followed by three
washes of five resin volumes with TE (10 mM Tris, 0.1 mM
EDTA pH 7.4). The pelleted resin was resuspended with
the DNA samples (in TE at 0.8-1.2 mg/ml) and the
mixture was agitated by rotation overnight at 4°C. The
sample was then transferred to a disposable column
(BioRad, Poly-Prep) that had been pretreated with 0.1 N
NaOH and washed with TE. The eluate was collected, the
resin was washed with an additional bed volume of TE
and the eluate plus wash were pooled. The DNA in this
pooled sample was precipitated with 1/10 vol. 3 m
sodium acetate pH 5 and 2 vol. of ethanol. The precipitate
was collected, washed with 80% ethanol, dried, dissolved
in TE and quantified as described above.

LPS preparations

As specified in the figure legends, the pure LPS
preparations used in these studies were either a smooth
LPS from S. minnesota, extracted by the phenol/water
method and further purified by gel filtration, a similar
preparation of LPS from E. coli 0111:B4 or LPS from the
S. minnesota rough mutant Re 595 (all from Sigma). All
three LPS types yielded similar results. LPS preparations
were suspended in LPS-free water by sonication for 5 min
in a Transsonix 570/H (360 W) sonicating bath. Serial
dilutions were prepared in LPS-free water with 30 s of
vortexing between dilutions. The final dilutions were
sonicated for 5 min before use.

Virus procurement, biotinylation and psoralen
inactivation

The E4-defective adenovirus 5, d11014 [34] was grown
on the complementing cell line W162 [35]. Pellets of
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infected cells were suspended in 20 mm hydroxy-
ethylpiperazine sulfonate (HEPES) pH 7.4, 1 mm
phenvlmc thylsulfonyl fluoride (PMSF) at 2 ml per 3 x
107 cells and sub]uted to three freeze/thaw cycles
(liquid nitrogen, 37°C). The suspension was then mixed
with an equal volume of Freon and vortexed for 3 x 30-s
bursts and centrifuged 10 min at 1700 x ¢ (Heraeus
Sepatech, 2705 rotor). The aqueous phase (upper) was
saved and the Freon phase was vortexed with 1/5 vol.
20 mMm Hepes pH 7.4 and centrifuged as before. The
aqueous phases were pooled, transferred to a Beckman
VTi50 centrifuge tube (15 ml/tube) and underlayed with
15mlof 1.2 g/cm?® CsCl, 20 mm Hepes pH 7.4 and then
with 7 ml of 1.45 g/cm’ CsCl, 20 mm Hepes pH 7.4. The
samples were centrifuged at 200 000 x g in a Beckman
VT150 rotor for 40 min at 20°C. The lower opalescent
band of mature virus particles at 1.34-1.35 g/cm’ (as
measured by refractive index) and the upper band
(immature particles at 1.31-1.32 g/cm*) were collected
separately and centrifuged to equilibrium (>4 h) at

350 000 x ¢ in a VTi65 rotor. The opalescent virus bands
(cither 1.31 g/cm’ for immature or 1.34 g/cm’ for
mature) were harvested and either proce&sed directly

for biotinylation and psoralen inactivation or diluted
with an equal volume of 86% glycerol (Fluka) and stored
at -80°C.

Virus biotinylation with N-hydroxysuccinimide-
biotin (Pierce), inactivation with 8- methoxvp%oralen/
360 nm UV light and purification by gel filtration using
a Pharmacia PD10 column equlhbrated with HEPES-
buffered saline (HBS, 150 mm NaCl, 20 mm HEPES
pH7.4)/40% glycerol were performed as described
previously [21, 22]. Virus samples were quantified by
protein concentration (BioRad Bradford assay with
bovine serum albumin, BSA, as a standard) using the
relationship of 1 mg/ml protein = 3.4 x 10" adenovirus
particles/ml [36].

Cell culture

Primary human melanoma cultures were isolated and
grown in RPMI-1640 medium (GIBCO/BRL)
supplemented with 100 [U/ml penicillin, 100 pg/ml
streptomycin, 2 mMm L g,lutamme 1% sodium pyruvate
and 10% heat-inactivated (30 min, 56°C) fetal calf serum
(RPMI/10% FCS). Primary human skin fibroblasts were
isolated from skin biopsies and propagated in
Dulbecco’s modified Eagle’s medium (DMEM) plus 2
mM glutamine, 50 pg/ml gentamicin and 10% heat-
inactivated fetal calf serum (DMEM/10%FCS). The
primary fibroblast cultures were used at passage 5-10;
primary melanoma cultures were used at passage 16-25
for these experiments.

Preparation of adenovirus—-DNA complexes

StrpL and TfpL were prepared as previously described
[23, 37]. Samples of biotinylated, psoralen-inactivated
adenovirus d11014 (8 pl, 1 x 10" particles/ml) were
diluted into 150 pl HBS and mixed with 1 ug StrpL in 150
ul HBS for 30 min at room temperature. Ahquots of bug
plasmid DNA were diluted in 100 ul containing the
indicated quantities of LPS (see figure legends). The DNA
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(LPS) solutions were then mixed with the adenovirus-
StrpL solution for 30 min at room temperature. Finally, a
100-ul aliquot of HBS containing 5 ug TfpL was added to
each sample, followed by incubation for 30 min at room
temperature. Aliquots of these transfection complexes
were then supplied to cells as described in the figure
legends (generally 5-50 ul per 20 000-50 000 cells).

Cell viability assays

Crystal violet staining was performed 48-72 h after
exposure of cell samples to test agents. The culture
medium was removed, the cell layer was washed once
with HBS, fixed for 5 min with 4% formaldehyde/150
mM NaCl and then stained for 10 min with 0.1% crystal
violet in 2% ethanol. The staining solution was then
removed and the well washed once with phosphate-
buffered saline (PBS) and once with distilled water. An
alternative determination of cell viability was perfomed
using the MTT reduction assay [38] as modified by
Promega.

Endotoxin (LPS) assays

LPS was measured with the BioWhittaker QCL-1000
chromogenic Limulus assay, based on the Limulus
amoebocyte clotting reaction (reviewed in [39]). All
solutions used for DNA and virus preparations as well
as TfpL, StrpL and adenovirus preparations were
demonstrated to be LPS free (<0.1 endotoxin units/50 ul
solution) before use.

Miscellaneous

Luciferase gene expression was measured as described
previously [33]. Human IL-2 in cell culture supernatants
was determined between 24 and 48 h after transfection
by ELISA (T Cell Diagnostics Inc., Cambridge, MA,
USA). Supernatants were collected, Lontnmg.,od at about
3000 x ¢ in an Eppendorf Microfuge to remove debris
and stored at -20°C until assayed. Values reported are in
BRMP (Biological Response Modifier Program) units per
10° cells per 24 h.
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