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Abstract

With the immense popularity of the internet and the much lower
cost for online surveys compared to in-person interviews, many sur-
veys are now conducted online. One approach to identify whether
respondents are having difficulty answering a question is by analysing
cursor trajectory data. There are many different input devices, for
example computer mouses and touchpads. Respondents’ behaviour
and thus their cursor trajectories might vary depending on which de-
vice is used. As a first step toward tackling this issue, this thesis tries
to differentiate between trajectories produced by using a mouse and
those made by a touchpad.

There are two classification methods used here; one is using a
simple logistic regression model to try and classify the input device,
the other is a tree-based approach, more specifically, a Random Forest
model. Furthermore, two models with different features are being
fitted to the data: a baseline model using features based on previous
research as well as a full model utilising several other, new features.

Both methods and models offer a very limited capability to classify
respondents’ input devices. A comparison between them shows that
the full Random Forest model exhibits the best performance of the
methods used.

Finally, measures to improve the classification performance and
the question whether a differentiation between the input devices is
necessary at all, are discussed.
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1 Introduction

Doing online surveys as opposed to collecting information by conventional
methods, for example by questioning respondents in person, offers a number
of advantages. Firstly and maybe most importantly, online surveys offer a
very large reduction in cost by not requiring any manpower once set up.
They are also quite adaptable - it is possible to utilise different elements,
such as automated skips, text fills or edit messages, to help guide respondents
through the questionnaire (Horwitz et al., 2017).

However, because the person asking the questions is a machine and not
a human being, additional measures are necessary to detect if and when a
respondent is having trouble with the survey. One measure proposed by
Horwitz et al. (2017) is tracking cursor trajectories to identify whether a
respondent needs assistance. The premise is that cursor movements are dif-
ferent in case a respondent experiences difficulty with a question.

In the study, respondents completed a “typical questionnaire” (Horwitz
et al., 2017) utilising a variety of response formats, such as sliders and but-
tons. Cursor trajectories were recorded using JavaScript. Respondents were
also asked to specify the input device they used while completing the survey.

However, the paper only analysed trajectories of respondents who used
a computer mouse, as the behaviour might differ depending on which input
device was used. The goal of this thesis is to try and identify any possible
differences between cursor trajectories of different input devices and subse-
quently predict the input device, so that further analyses can be adapted
accordingly. Different statistical classification methods will be used to try
and get as good a classification as possible.

The remainder of this thesis is structured as follows. Section 2 introduces
the available data and outlines the steps taken to preprocess the data. Section
3 then goes into detail about the statistical methods and procedures used in
this paper. Classification results are presented in section 4 and discussed in
section 5. Finally, section 6 provides some ideas on how to progress further
with this analysis.



2 Cursor trajectories

The following section will first give some information about the survey that
was conducted in general and then focus on the data that was collected (the
cursor trajectories), which steps were taken to preprocess the data as well as
give a description of the trajectories.

2.1 Online survey

The online survey was conducted by the Institute for Employment Research
(IAB) in Nuremberg, Germany. The data were collected in September and
October of 2016. The questionnaire consists of four major parts: questions
about employment, numeracy, social value orientation and demographic. All
in all, respondents were able to answer a maximum of 36 questions; depending
on their answers some may have been skipped (Horwitz et al., 2017).

In this thesis, a sample of two questions using different response elements
will be analysed.
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Figure 1: Question about the respondent’s perception of the economic situ-
ation

Figure 1 shows a screenshot of the first question to be analysed. It is
a question about the respondent’s perception of the economic situation in
Germany. The response options range from wvery bad to wvery good. The
respondent checks exactly one of the radio buttons before moving on to the
next question by clicking the submit button titled “Weiter”. This question
will be referred to as question 1 from this point forward.
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Figure 2: Question about the respondent’s salary

Figure 2 shows the second question, in which the respondent is asked
about their gross income in the year 2015. It features a slider that ranges
from €0 to €100 000 as well as a checkbox indicating that the respondent did
not receive any earnings from the particular activity the question refers to
(which is defined in an earlier question) in 2015. Here, the respondent either
moves the slider to the appropriate position or clicks the checkbox before
moving on. This question will be referred to as question 2 going forward.



2.2 Data preprocessing

The data are available in the form of two data sets — one for each question —
containing userid, input device, positions of the area of the input-form and
submit button as well as cursor position with corresponding timestamps and
the position of clicks with the respective timestamps. Using the package
mousetrap (Kieslich et al., 2017) the data were imported into R (R Core
Team, 2016) and some features were calculated (see section 4.2). Respon-
dents were also asked to specify the input device they used.

Subsequently, cases in which respondents took longer than 7 minutes to
respond were removed from the data. In total, none were removed for ques-
tion 1 and less than 2% of cases for question 2 (see also figure 3). Generally,
respondents were able to answer question 1 more quickly than question 2.
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Figure 3: Scatterplot of response times for all respondents. The solid line
shows the 99% quantile and the dashed line the cut-off value at 7 minutes.
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Furthermore, cases with extremely low total distance travelled by the
cursor were also removed from the data, because either the cursor did not
move at all or the movement was miniscule, hindering or making impossible
any attempt of classification. For question 1, all cases with a total distance
of less than 400 pixels were excluded, while for question 2, the threshold was
200 pixels. In total, 61 cases were removed for question 1 and 43 cases for
question 2. Trajectories of all cases removed by this measure can be found
in the appendix (Figures A.1 and A.2).

A data point was only created when a change in the cursor’s position was
detected. This resulted in unevenly spaced timestamps. To ensure tempo-
rally equidistant timestamps, trajectories were then modified so that there is
a difference of 10ms between each timestamp. It was assumed that the cursor
remained in the same position in case of timestamps that are more than 8ms
apart (constant interpolation). For timestamps less than 8ms apart, linear
interpolation was used to determine the position of the cursor.
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Figure 4: x and y trajectories for one respondent for question 1. The black
points are the raw data; red points show the interpolated data points.

Figure 4 illustrates this procedure. The black points show the raw data
for one respondent answering question 1. They are unevenly spaced, because
independent of the sampling rate a data point was only created in case the
cursor moved. The red points show the resulting observations after interpo-
lation.
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2.3 Data description

After preprocessing, a total of 1059 cases remained for question 1, while for
the second question 915 cases were left. Table 1 shows the distribution of
input devices for each of the two questions. NA denotes a missing value, while
the category Other contains any specified input devices that do not fit in the
previous categories.

Input device Question 1 Question 2

Mouse 804 687

Touchpad 213 194
Touchscreen 26 25
TrackPoint 8 5!
Other 5 1
NA 3 3
Total 1059 915

Table 1: Number of devices used for each of the two questions

For this thesis, only the two devices mouse and touchpad are relevant. For
a plot of all trajectories using a touchscreen, see Figure A.3 in the appendix.
Figure 5 shows a random selection of mouse and touchpad trajectories for
each of the two questions.

For these plots, the coordinates were standardised to the area of the form
(the blue area). The bottom left of the form has the coordinates (0,0) for
each trajectory, while the top right coordinates are (1,1). Mouse trajectories
are shown in orange, touchpad trajectories in blue. The numbers on top are
the respondents’ IDs.

For question 1, some erratic cursor behaviour can be observed, though
it is much more prevalent for mouse users here. For many of the sampled
respondents using a touchpad, the trajectory looks similar: they move their
cursor to one of the five radio buttons (and click on it, presumably), before
moving the cursor to the submit button.

In the samples for question 2, on the other hand, some quite dissimilar
trajectories can be seen. This might have to do with the different response
elements used, or maybe with the difficulty of the question in general. Some
respondents might have just checked the box and might not have moved the
slider at all. Again, mouse trajectories seem to show more erratic movements
than touchpad trajectories.

Note: The standardisation was not performed for any of the calculated
features (see section 4.2), because respondents might have been using differ-
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ent screens and resolutions, making it very difficult to generalise. Ideally,
this study would have to be performed under laboratory conditions, where a
given amount of pixels would always correspond to a fixed length in cm for
all respondents.
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Figure 5: A random sample of standardised trajectories for both questions.
The symbols x and A denote the starting and ending points, respectively.
The blue area represents the form, while the green rectangle shows the submit
button of the form.
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3 Methodology

Before going into specifics on the methodology used in this paper, it is nec-
essary to make some notational definitions.

The outcome or the measurement we are interested in is called the re-
sponse Y. Variables that (might) be correlated with the response are also
called features, denoted as x;. This is consistent with the notation in Hastie
et al. (2009). Regression coefficients are referred to as 3;, with §y denoting
the intercept.

The question this thesis tries to answer can be interpreted as a classifica-
tion problem with two classes (mouse and touchpad, respectively). Different
methods exist to tackle such a problem, two of which were used here: logistic
regression (see section 3.2) and Random Forests (see section 3.4).

Validation of models is frequently done using cross-validation, which is
explained in section 3.1 and can be applied to logistic regression models as
well as Random Forests. One of the problems that can occur when using
logistic regression is multicollinearity, which is addressed in section 3.3. Fi-
nally, measures to gauge model performance are detailed in section 3.5.
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3.1 Cross-validation

In order to assess prediction accuracy of a model, it is often useful to fit it
to only part of the data (a training set) and get predictions on a different,
independent subset (validation set) to reduce overfitting and get an idea of
how well the out-of-sample prediction works. Because data are scarce, it is
usually not viable to use part of the data just for validation.

Cross-validation (CV) is a simple and widely used method to estimate
prediction error. In this thesis, K-fold cross-validation is used to accomplish
this. Algorithm 1 details this procedure.

Algorithm 1 K-Fold cross-validation

1. Split the data set into K roughly equal-sized parts
2. Repeat K times, for k € {1,..., K}:

(a) Keep sample k as validation/test data and the other K —1 samples
as training data

(b) Fit the model to the training data

(c) Make predictions on the test data and calculate the prediction

error

3. Calculate the average prediction error

For repeated cross-validation, this algorithm can be repeated several
times, each time choosing different subsets.

16



3.2 Logistic regression

The first classification method used in this paper is logistic regression. It can
be applied to a classification problem with two classes. A logistic regression
model requires a binary response Y that can take values 0 and 1. In this case
the two classes are mapped to the values 0 and 1, respectively. They will be
referred to as class 0 and class 1. What is modelled, then, is the posterior
probability 7 for class 1 given the various features z;. Similarly to the simple
linear model, the linear predictor is defined as:

n= 0o+ bix1+ -+ Bpap. (1)

This modelling strategy has the obvious flaw that fitted values can be outside
the permissible range for probabilities, [0,1]. To ensure fitted values are
within this interval, the linear predictor is linked to the probability using the
logistic response function

_exp(n)
i) = 1+exp(n) @

Inverting this function yields the logistic link function

o) = 17 (m) =g (7 ) = ®)

also called logit-link. Thus, the linear predictor 1 equals the logarithm of the
odds or, in short, the log-odds.

So for any given set of features z;, the probability for class 1 is 7 and
subsequently, the probability for class 0 is 1 — w. Selecting a threshold value
for 7 (often set to 0.5 or determined using ROC, see also section 3.5) makes
it possible to predict the class of a new observation.

One of the advantages of logistic regression is that is quite simple to
interpret. For any given feature x;, the corresponding coefficient f; is the
change in log-odds, should z; increase by 1, other features held constant. Or,
on the odds scale: an increase in z; of 1 yields an increase in the odds for
Y =1 by exp(f3;), other features held constant.

Logistic regression models are fitted using a maximum likelihood ap-
proach. For further information about fitting logistic regression models, see
also Fahrmeir et al. (2009) and Hastie et al. (2009).

In case of nonlinear effects on the response, an extension to this model
is possible. Using generalized additive models (GAMs), smooth functions of
the features can be used to replace parts of the linear predictor:

n=Po+ frxr+ -+ Bpxr + [r(@pg) + -+ foor(@p). (4)
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There are many different ways to model these smooth functions, some of
which are detailed in Wood (2006) and implemented in the R package mgcv
(Wood, 2011). The idea behind the concept is to estimate a smooth function
as a linear combination of weighted base functions, for example for B-Splines
one has

d
f(z) = Z%Bj(w)a (5)

where d is the number of bases B, which are identical but for a shift along
the x-axis and +; are the respective weights. A detailed explanation about
how to construct B-Splines as well as the definition of the B-Spline bases is
given in Fahrmeir et al. (2009), p. 303-307. High variance and overfitting
can be reduced by penalisation. This can be achieved by adding a penalty
term to the equation that will be minimised. For P-Splines (penalised B-
Splines, Eilers and Marx, 1996), large differences in neighbouring weights ~;
are penalised to get a smoother function. This process is also detailed further
in Fahrmeir et al. (2009).

3.3 Multicollinearity

One of the problems that can arise while using regression models is multi-
collinearity. This is best demonstrated by a small example:
Consider the simple linear model

E(Y) = Bo + Bizy + Bawa + B3 (6)

with three features xy, o and x3 and perfect collinearity between x; and x5,
i.e. 1 = a-xo. This can happen if two features measure the same thing or
something very similar, for example let x; be the weight in kilogrammes and
2o the weight in tons. In this extreme case, the only difference between the
two features is the unit of scale and there is a perfect linear association. This
means that the two regression coefficients 5; and [ cannot be estimated
uniquely:

E(Y) = Bo + Brx1 + Boxa + Bsxs = fo + (b1 - a+ B2)xa + Baxs.  (7)

In practical applications, there are usually no perfectly linearly dependent
features, but rather highly correlated ones (as is the case for this analysis, see
section 4.2). This is called multicollinearity and can cause imprecise (high
variance) estimates of the regression coefficients (Fahrmeir et al., 2009, p.
170 - 171). One of the most widely used solutions is to simply omit some of
the affected features — this is also the approach utilised in this analysis.
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3.4 Random Forests

Another modelling strategy that does not suffer from problems with mul-
ticollinearity is a tree based approach, more specifically a Random Forest
model. Random Forests were first introduced by Breiman (2001) as a mod-
ification to bagging (Breiman, 1996), a technique for reducing the variance
of a predictor.

Before going into specifics about Random Forests, a short introduction
of tree-based methods: Figure 6 shows two binary decision trees using two
features of the cursor data, total_dist and RT. Such decision trees can be
used to make class predictions, such as which input device a respondent is
using. To classify a new observation z, at each node (except the leaf nodes at
the bottom), a threshold decision (binary split) is made, determining which
way to go down the tree.

Consider, for example, Figure 6a and a fictional new observation x with
total_dist = 900 and RT = 7000. The first thing to check when applying
this decision tree to a new observation is the feature total_dist. In this
case, the threshold value is 1101.22. As the value of the new observation
(900) is less than this threshold, move down the tree to the left (otherwise
you would move down one level to the right of the tree). At this node, again
the decision is based on the total distance and again, the value is smaller
than the threshold, thus moving down to the left. Now, the decision will be
made by looking at the value of RT. As in this example, the value (7000) is
greater than the threshold (6045), move down to the right, reaching a leaf
node of the tree. This particular leaf node is labelled touchpad, thus the new
observation will be classified as such according to this particular decision
tree.

Using binary decision thresholds is the preferred method, as using multi-
way splits would fragment the data too quickly, leaving insufficient data for
the lower levels of the tree. Furthermore, multiway splits can be achieved
by using multiple binary decision thresholds, rendering them unnecessary
(Hastie et al., 2009).

A major problem of decision trees is their instability. Due to the hierar-
chical structure, an error in one of the upper levels of the tree is subsequently
propagated down to the lower levels. This results in a high variance — a small
change in the data can have large effects on the tree (Hastie et al., 2009).
One possibility of reducing this variance is by bagging (Breiman, 1996), which
grows several trees based on bootstrap samples of the data and averages them
(for classification, the averaging is done by taking the majority vote of all the
trees). Bootstrap samples are generated by randomly drawing a sample with
replacement of the same size as the original data from the training data.
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total dist
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(a) A decision tree

RT

(b) Another decision tree with different splits

Figure 6: Sample decision trees using the cursor trajectory data and the two
variables total distance (total dist) and response time (RT).

However, in the case of correlated trees, the benefits of bagging on vari-
ance reduction are limited: Consider B identically distributed trees, each
with variance 0% and with positive pairwise correlation p. Then, the vari-
ance of the average is

1—
po’ + Tpag, (8)
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see also Hastie et al. (2009), p. 588. Increasing B will make the second term
disappear, but the first will not.

Random Forests seek to reduce that first term by generating uncorrelated
trees. This is achieved by randomly selecting a subset of features to use at
each split.

Algorithm 2, taken from Hastie et al. (2009), outlines the process of
growing a Random Forest.

Algorithm 2 Random Forest for Classification (Hastie et al., 2009, p. 588)
1. For b=1 to B:

(a) Draw a bootstrap sample Z* of size N from the training data.

(b) Grow a random-forest tree T}, to the bootstrapped data, by recur-
sively repeating the following steps for each terminal node of the
tree, until the minimum node size n,,;, is reached.

i. Select m variables at random from the p variables.
ii. Pick the best variable/split-point among the m.
iii. Split the node into two daughter nodes.

2. Output the ensemble of trees {T3}5.

To make a prediction at a new point z:
Let Cy(x) be the class prediction of the bth random-forest tree. Then
CE(z) = majority vote{Cy(z)}7.

N is the number of observations in the training data. Typical default
values are L\/m for m, where p is the total number of features and a minimum
node size Ny, of one (Hastie et al., 2009). For B, a value of 500 is often
chosen. Figure 6 shows a couple of trees from an ensemble. These parameters
are also called hyperparameters as they need to be selected before the model
is fitted. There are methods for tuning these hyperparameters provided by
the mlr R-package (Bischl et al., 2016).

A subject still not touched upon is how the feature and value for a split
at each node is determined. The decision on which feature and value to use
for the split is made based on a node impurity measure. In the R-Package
randomForest (Liaw and Wiener, 2002), which is used here, a weighted Gini
index can be utilised to measure node impurity. Since this is a two class
problem, the formula for the Gini index is simplified somewhat.
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Let p,, be the proportion of observations in the second class of node m.
Then, the Gini index is given as

0.5
0.4-
0.3-
=
5
0.2-
0.1-
0.0-
0.00 0.25 0.50 0.75 1.00
p

Figure 7: Gini index as a measure of node impurity for two classes as a
function of the proportion p in the second class.

Figure 7 shows the Gini index as a function of the proportion p. It has its
highest value at p = 0.5, i.e. when both classes have the same proportion in a
node (node impurity is at its highest), and is 0 if a node contains observations
from one class exclusively.

This index is then weighted by the number of observations in the two
child nodes generated by splitting node m (Hastie et al., 2009). So, for each
split, the feature and value that yield the largest decrease in node impurity
are chosen.

Another feature of Random Forests is that the node impurity measure
can be used to construct variable importance plots. The improvement in
the split-criterion at each split in each of the trees is accumulated over all
trees separately for each feature and is attributed to the respective splitting
feature. The values are then averaged for each feature. Features with the
highest values (highest mean decrease in node impurity) are then considered
the most important ones according to this split criterion.
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3.5 Classification performance measures

Different measures exist to quantify the performance of classifiers. The ones
used in this thesis are the receiver operating characteristic (ROC) curve and
corresponding area under the curve (AUC) as well as the mean misclassifi-
cation error (MMCE) and are discussed in this section.

Predicted
Mouse | Touchpad
True Mouse 783 21
Touchpad | 169 44

Table 2: Confusion matrix, a cross table of the true input devices and those
predicted by the model.

Table 2 shows a confusion matrix for a sample model predicting respon-
dents’ input devices. The columns show what was predicted, while the rows
show what the actual device was. The values on the main diagonal show
what was predicted correctly, while anything else is an incorrect classifica-
tion. Thus, for a perfect classifier, all cells not on the main diagonal would
be 0.

In conjunction with the confusion matrix, sensitivity (or true positive
rate) and specificity (true negative rate) are often mentioned. In order to
get those, one has to specify a class corresponding to positive and negative,
respectively. In medicine, for example, this is often intuitively possible (pres-
ence of a particular disease) (Hastie et al., 2009). In this case, however, it is
not immediately clear which input device should be considered as positive,
the choice is arbitrary. For this thesis, touchpad has been chosen as the pos-
itive class. Furthermore, the absolute values have to be converted to relative
frequencies: In this example, one gets the following sensitivity and specificity

Sensitivity = ——+_ ~0.21 (10)
67’LSZZ’UZy—44+169N .

783
Speci ficity = ————— ~ 0.97. 11
peciicity =z o1 (11)

These values can also be put into a table (see Table 3), showing true
negative rate (tnr), false positive rate (fpr), false negative rate (fnr) and true
positive rate (tpr), where fpr =1 —tnr and fnr =1 —tpr.

As mentioned previously, one can choose the threshold value (the pos-
terior probability threshold controlling when to predict the positive class),
yielding different values for sensitivity and specificity for each threshold value.
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Predicted

Mouse | Touchpad
Trie Mouse 0.97 (tur) | 0.03 (fpr)
Touchpad | 0.79 (for) | 0.21 (tpr)

Table 3: Confusion matrix with relative values, a cross table of the true input

devices and those predicted by the model.

The values calculated for all possible threshold values [0, 1] can be com-
bined to form a ROC curve by plotting sensitivity (true positive rate) against
1— specificity (false positive rate). This procedure makes it impossible to see

the threshold values in the plot, however.

1.00+

0.75+

0.50 1

True positive rate

0.25+

0.00 1

0.00 0.25 0.50

0.75

False positive rate

Figure 8: ROC curve showing sensitivity and 1— specificity for all threshold

values. The dashed line represents a random classifier.

Figure 8 shows the ROC curve corresponding to the same model used to
calculate the confusion matrix in Table 2 (with a threshold value of 0.5). The
dashed line shows the performance of a random classifier, that is, of random

guessing. The farther out the ROC curve is, the better.
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An ideal classifier would jump from the lower left corner to the top left
corner and then move to the top right corner. This would imply a true
positive rate of 1 and a false positive rate of 0. The area under the ROC
curve is called AUC (area under the curve) and is also a measure of clas-
sification performance. It ranges from 0.5 (random classifier) to 1 (perfect
classifier) and can be calculated by integrating the ROC curve. In this ex-
ample, AUC' = 0.82.

Another typical performance measure for classification tasks is the mean
misclassification error, or MMCE. This is the amount of misclassified obser-
vations over all observations. Continuing the example:

169 + 21 N
169 + 21 + 783 + 44

In the same manner as for sensitivity and specificity, the MMCE can also
be calculated for different threshold values. There is also a measure called
accuracy, which is the inverse of MMCE (accuracy = 1-MMCE). In this
thesis, the MMCE is used.

There are a couple of other measures that can be calculated. Because
these are calculated using the same basis, for the sake of brevity and to
avoid being bloated and confusing, in this thesis, only the aforementioned
ones are used.

MMCE =

0.19. (12)

False positive rate True positive rate Mean misclassification error
1.001 1.001 081
0.754 0.754
0.6
[0
o
c
©
£ 0.50 0.50
o
b=
[
[oR
0.4
0.254 0.25+
0.2
0.004 0.001

0.00 025 050 0.75 1.00 0.00 O.I25 0.I50 0.I75 1.00 0.00 025 050 0.75 1.00
threshold

Figure 9: 1— specificity, sensitivity and MMCE for different threshold values
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Figure 9 shows 1— specificity (false positive rate), sensitivity (true pos-
itive rate) as well as the mean misclassification error for different threshold
values. False positive and true positive rate always start at 1 for a threshold
value of 0 and end at 0 for a threshold value of 1, while the MMCE equals
the relative frequency of the negative class for a threshold value of 0 and the
positive class for a threshold value of 1. In section 4, only the ROC curve
and the MMCE plot will be shown.
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4 Results

Classification was performed using the R-Package mlr (Bischl et al., 2016),
which provides a unified interface for classification tasks and utilises several
other R-Packages, such as the randomForest package (Liaw and Wiener,
2002), as well as mgev (Wood, 2006) for fitting GAMs. Furthermore, separate
models were fitted for each of the two questions. This is because there might
be similar trajectories for questions answered by the same respondent. To
ensure comparability, the benchmark function of the mlr R-Package was used
for the cross-validated models. It guarantees that the same training and test
data sets are used for each model.

4.1 Baseline models

Going at this from a very naive perspective, as a first step to this analysis,
baseline models were established to investigate any potential correlations
with the input device used by the respondent.

Early work involving cursor trajectories used mainly the total distance
travelled, for example to show a connection with data quality (Stieger and
Reips, 2010). Furthermore, response time was identified as an indicator of
respondents having trouble with a question in an online survey (Horwitz
et al., 2016).

These two features were then used in the baseline models to try and pre-
dict respondents’ input devices. A Random Forest model (1f) and a logistic
regression model (logitreg) were fitted using repeated (ten times) tenfold
cross-validation, using total distance and response time as features and the
input device as the response.

Table 4 shows the average MMCE over all CV iterations for both ques-
tions and models at threshold 0.5, while Figure 10 shows the MMCE for all
thresholds.

Model | MMCE | AUC

. logitreg | 0.209 | 0.763
Question 1| = 0.232 | 0.693
. logitreg | 0.214 | 0.738
Question 21 2 -2 1 0010 | 0.700

Table 4: Performance of the baseline models. MMCE at threshold 0.5 as well
as AUC values.
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Figure 10: MMCE for all thresholds.

The dashed line shows the proportion of the smaller class (touchpad) in
the data (0.209 for question 1 and 0.220 for question 2). Any MMCE above
this value indicates that classifying all observations as belonging to the ma-
jority class (mouse, in this case) would yield a better classification result.
The logistic regression model performs slightly better than the Random For-
est model in both cases here (for reasonable threshold values), though its
performance is still quite meagre, shortly dipping below the dashed line by
an extremely small margin.
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Figure 11: ROC Curves for both baseline models and questions.

Figure 11 shows the ROC curves for both models and questions. The
corresponding AUC values can be found in Table 4. Again, in both cases, the
logistic regression model performs slightly better than the Random Forest.

Overall, the performance of the baseline models is not much or at all bet-
ter than classifying everything as the larger class, making them impractical
to use.
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4.2 Key features

Considering the very poor performance of the baseline models, it might be
beneficial to glean additional information from the data. The mousetrap
R-Package (Kieslich et al., 2017) provides the means to compute a number
of additional features using the cursor trajectory data.

Feature ‘ Description

Xpos_max Maximum x-position

Xpos_min Minimum x-position

ypos_max Maximum y-position

ypos_min Minimum y-position

xpos_flips Number of directional changes along the x-axis
ypos_flips Number of directional changes along the y-axis
RT The total response time in milliseconds
initiation_time | Time at which first mouse movement was initiated
idle_time Total time without mouse movement

hover_time Total time of all periods > 2000ms without movement
hovers Number of periods > 2000ms without movement
total_dist Total distance covered by the trajectory

vel_max Maximum velocity

vel_max_time | Time at which maximum velocity occurred
acc_max Maximum acceleration

acc_max_time | Time at which maximum acceleration occurred
acc_min Minimum acceleration

acc_min_time | Time at which minimum acceleration occurred

Table 5: Overview and short description of potentially relevant features

Table 5 lists all features calculated by the mousetrap R-Package that
might be relevant. Considerations such as the correlation between features
(see also section 3.3) as well as variable importance need to be taken into
account when deciding which features to include in the model.

To reduce correlation between features (for example, the time spent be-
ing idle is extremely dependent on the overall response time) and to reduce
the overall number of features, a couple of new features were calculated, as
detailed in table 6.

The ranges were calculated by subtracting the maximum from the min-
imum values, respectively. The relative time values were determined by di-
viding by the total response time. Redundant features were subsequently
removed. To alleviate problems with outliers (this only pertains to the logis-
tic regression models), observations with extreme values were truncated to
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Feature ‘ Description

xXrange Total range in x-direction

yrange Total range in y-direction

accrange Total range in acceleration
rel_idle_time Relative idle time

rel_hover_time Relative hover time

rel_init_time Relative initiation time
rel_vel_max_time | Relative time of maximum velocity
rel_acc_min_time | Relative time of minimum acceleration
rel_acc_max_time | Relative time of maximum acceleration

Table 6: New features calculated by transforming other features

the 1%- and 99%-quantiles, respectively (windsorisation). Figure 12 shows
a scatterplot matrix of all remaining features for question 1 (the one for
question 2 can be found in the appendix). What becomes very obvious is
the extremely high correlation of the velocity features with the acceleration
features. Thus, features concerning the velocity were omitted. What might
look unusual as well is the rather large quantity of observations that have a
relative hover time of 0. This is simply due to the definition of this feature
(see table 5). Time spent hovering is only recognised as such if the cursor
does not move for at least 2000ms at a time.

This still leaves a considerable number of features. Using a single fit of
a Random Forest, the variable importance plot pictured in Figure 13 was
constructed. It is worth noting that this plot only reflects the importance
values of a single fit. Thus, the resulting values might vary a little across
multiple iterations. However, over 100 iterations, the top 6 features remained
largely the same across both questions. Because of this, these 6 features were
then used for subsequent models.

The two most important features were relative initiation time and the to-
tal distance travelled by the cursor. The other features selected were relative
idle time as well as the ranges in acceleration and x-position and lastly the
number of flips in x-direction. Perhaps as a bit of a surprise, response time
was not included in the most important features.
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Figure 12: Scatterplotmatrix for remaining features for question 1. Note
the high correlation of velocity and acceleration related features. The up-
per triangle shows the correlations, the lower triangle shows the respective
scatterplots. The main diagonal consists of density estimates.
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Figure 13: Variable importance plot based on GINI impurity and a single
Random Forest fit.
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4.3 Logistic GAM

To get a better overview of the correlation of the features with the response, a
logistic GAM using P-Splines was fitted. This model is based on a single fit to
the whole data set and was not cross-validated, thus calculating performance
measures such as MMCE is not applicable here.
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Figure 14: Estimated smooths for all features for both questions with log-
odds on the y-axis.

Figure 14 shows the estimated smooth effects for each of the features
and both questions. They are centred around 0. The dashed lines show the
pointwise confidence intervals. The estimated effects look similar for both
of the questions, though the ranges of the feature values vary between the
two questions. All of the estimated smooths can only be interpreted while
holding all of the remaining features constant (ceteris paribus).

The odds for the input device touchpad generally increase with increasing
relative initiation time, reaching the maximum at around 0.3 before decreas-
ing again for question 1. There is some more variability for question 2, but
the general shape remains the same. With increasing total distance, the
odds for touchpad increase as well, taking a parabolic form that is more pro-
nounced for question 2. There is some difference in the estimated smooths
for the correlation of relative idle time with the response. In both cases, the
odds of the respondent using a touchpad increase with increasing relative
idle time, though for question 1 the increase is linear, while for question 2,
the estimate has a very high variance and thus, large confidence intervals
in the lower ranges. The same is true for the smooth of the acceleration
range. An increase in the odds of a touchpad being used is followed by a
slight decrease and then a levelling-off for question 2, while the shape is more
of a parabola for question 2, but again with an extremely large confidence
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interval for higher values of the acceleration range, not allowing any interpre-
tation in this range. An increase in the range in x-position and the number
of flips in x-direction both decrease the odds for a touchpad. For question 1,
the estimated smooth effects are slightly parabolic, while for question 2 the
correlation is linear.

Again, all of the above can only be interpreted while holding the other
features constant.

4.4 Full models

Using the features determined in section 4.2, both the logistic regression
model and the Random Forest were fitted again, analogously to the models
in section 4.1. Again, Table 7 shows the average MMCE over all CV iterations
for both questions and models at threshold 0.5, while Figure 15 shows the
MMCE for all thresholds.

Model | MMCE | AUC

. logitreg | 0.196 | 0.837
Question 1|7 -2 1 hor | 0848
. logitreg | 0.215 | 0.773
Question 2| = 0.201 | 0.812

Table 7: Performance of the full models. MMCE at threshold 0.5 as well as
AUC values.
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threshold threshold

(a) Question 1 (b) Question 2

Figure 15: MMCE for all thresholds.

This time, the Random Forest performs better than the logistic regression
question 1 and is outperformed for very few threshold values for question 2.
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The dip below the dashed line (proportion of the smaller class) is much more
noticeable than in the baseline models, though the MMCE values are still

rather high.

Figure 16 shows the ROC curves for both full models, with corresponding
AUC values in Table 7. Here, the Random Forest performs better than the
logistic regression model, as well.
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Figure 16: ROC Curves for both full models and questions.
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5 Discussion

All in all, both models and both methods did not perform particularly well
and were unable to make a clear distinction between mouse and touchpad
trajectories. Using Figure 17, a comparison between logistic regression and
Random Forest as well as between the baseline and full models can be made.

learner.id : learner.id
logreg : logreg
'
o rf 1 o ff

'
Full model{ o ' Full model+ ®

Baseline Baseline - ! °
'

L L
0.18 0.20 0.22 0.20 0.21 0.22 0.23 0.24
mmce.test. mean mmce.test. mean

(a) Question 1 (b) Question 2

Figure 17: Comparison of the MMCE at threshold 0.5 for both questions
and models. The dashed line shows the proportion of the smaller class.

For both questions, using a larger number of features determined by vari-
able importance offered only a slight increase or no increase at all for the
logistic regression model, while the change in performance for the Random
Forest was noticeably larger. It can also be noted that the logistic regression
model performed better than the Random Forest using the baseline features
for both questions but was surpassed when using the features of the full
model. Any MMCE values to the right of the dashed line can be improved
by simply predicting the larger class (mouse) all of the time.

The poor performance might indicate several things. Firstly, there might
not be a very large difference in the trajectories of touchpad and mouse users
at all, making a differentiation between the two unnecessary in further anal-
yses. On the other hand, the features used in this thesis might be insufficient
to detect the differences between mouse and touchpad trajectories. Lastly,
the classification methods used here might not be ideal for this specific task.

36



6 Outlook

The methods and models used in this thesis were unable to make a clear dis-
tinction between mouse and touchpad trajectories. This raises the question
what else could be done to improve classification.

Other methods, such as boosting or support vector machines could be
used to try and get a better classification performance. One could take an
over-/undersampling approach to try and get an improvement by choosing
an equal number of observations from each input devices for each sample.
Hyperparameter tuning could be used to find the optimal hyperparameters
for the Random Forest model.

Additionally, some new features could be computed. For example, the
difference in length of the most direct path(s), that is, from the start to the
radio button (for instance) and then to the submit button, to the actual path
taken might provide some additional useful information.

Another option that might yield some additional information is to use
functional features, for example velocity curves over time and include these
in a functional classification approach.

Finally, the study could be conducted again under laboratory conditions,
guaranteeing that all respondents are using the same resolution on the same
computer screens with the same computer mouses and touchpads as well as
guaranteeing correct information with regards to the input devices used.
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7 Supplementary Material

All statistical analyses were performed using R 3.3.3 (R Core Team, 2016)
and the R-Packages mlr 2.10 (Bischl et al., 2016), mousetrap 3.0.0 (Kieslich
et al., 2017) as well as mgev 1.8.17 (Wood, 2011), randomForest 4.6.12 (Liaw
and Wiener, 2002) and many of the functions provided by “the tidyverse”
(Wickham, 2017).

The supplementary material provided contains the data in . /data/, some
documentation in ./doc/ as well as the R code in ./code/ and all of the
plots shown in this thesis can be found in ./img/.
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Figure A.1: Trajectories for question 1 with a total distance of less than 400
pixels
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Figure A.2: Trajectories for question 2 with a total distance of less than 200
pixels
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Figure A.3: Trajectories for respondents using a touchscreen for each of the
two questions. The symbols x and A denote the starting and ending points,
respectively. The blue area represents the form, while the green rectangle
shows the submit button of the form.
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Figure A.4: Scatterplotmatrix for features of question 2. The upper triangle
shows the correlations, the lower triangle shows the respective scatterplots.
The main diagonal consists of density estimates.
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