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Abstract

The Human Connectome Project (HCP) utilizes an eight factorial multi-band gra-

dient-echo echo-planar-imaging sequence together with a right-to-left (RL) or left-to-

right (LR) phase encoding direction in their resting-state (rs) functional magnetic re-

sonance imaging (fMRI) acquisition setting, which is accompanied by signal dropouts,

i.e. signal loss in certain brain areas. These dropouts differ in location between

rs fMRI data of both phase encoding directions and their impact on rs functional

connectivity (FC) as well as coping strategies suggest by the HCP are assessed in

this thesis. Results indicate systematic FC differences between RL and LR data and

the existence of brain regions with extraordinary dropout based impairment in FC. A

relationship between signal loss and FC-impairment could be found, unless a coarse

brain parcellation (AAL) was utilized and brain areas with strong FC-impairment

were excluded. Accordingly, caution should be applied on rs fMRI (FC) results based

on the HCP, if detailed parcellations are used or dropout areas are not accounted for.

In order to reduce the spatial heterogeneity of the influence of these dropouts on

FC results, either FC matrices of both phase encoding directions can be averaged or

time-series of both phase encoding directions can be concatenated. With respect to

the latter, however, it is crucial to implement the concatenation of time-series after

and not before (or during) preprocessing of the data.
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1. Introduction

1.1. Human Connectome Project (HCP)

The Human Connectome Project (HCP, www.humanconnectome.org/, [1, 2]) by the

WU-Minn Consortium is an extensive initiative to advance our understanding of

human brain connectivity. Its main tasks are both to develop improved neuroimaging

methods as well as to provide “a data set of unprecedented size and quality“ [2,

p.1175] and by now this project includes data of about 1200 subjects, different

acquisition methods and various tasks. A considerable part of this data (about one

hour per subject) is gathered using functional magnetic resonance imaging (fMRI)

and based on the resting-state (rs) paradigm, in which participants are supposed

to let their mind wander and not perform any specific task while being scanned.

Although, usually fMRI data suffers under a trade-off between temporal and spatial

resolution (as described below), the HCP managed to achieve high characteristics in

both of these resolution types (repetition time TR = 0.72s, 2mm isotropic voxels)

by using an eight factorial multi-band echo-planar imaging (EPI) sequence. This

acquisition protocol as well as its drawbacks will be described in the next sections.

1.2. Multi-band EPI

In MRI hydrogen protons are first excited by an electromagnetic pulse, which is in

the radio-frequency range (RF-pulse), and subsequently emitted electromagnetic

signals are recorded (readout). Unfortunately, signals - having amplitude, phase

and frequency - originate from multiple locations simultaneously and overlap. Their

amplitude is of interest, as it is said to reflect neural activation [4] (using the blood

oxygenation level dependent (BOLD-)contrast in fMRI [3]), so the other two pro-

perties can be used in encoding the origin of the signal, which is done as follows

[5]:

Slice Encoding: Because of a magnetic gradient applied along the z-axis during

excitation, only one slice of tissue perpendicular to this axis is excited by

the RF-pulse. Accordingly, signals resulting from this pulse have the same

z position and all different slices have to be sampled subsequently in order to

acquire a 3D image of the brain.

Encoding: Applying a magnetic gradient after excitation and before readout

along the y-axis will induce a gradient in the phase of the signals along this

axis. Consequently, the phase of the signals within a slice differs along the
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y-axis. This is usually along the anterior-posterior direction of the brain, but

changed to the right-left (or left-right) direction in the HCP [6].

Frequency Encoding: Using another magnetic gradient during readout along

the x-axis affects the frequency of the signal in an analogous manner.

Therefore, every signal in one slice has a different combination of phase and frequency

respective to its location, which allows to disentangle these overlapping signals. The

repetition time TR is the time between two consecutive RF-pulses. As in (structural)

MRI each slice is excited by its own RF-pulse, TR gives the time to acquire one

brain slice. However, fMRI typically employs the echo-planar-imaging (EPI) pulse

sequence, in which the whole brain is excited by just one RF-pulse, and all slices are

sampled consecutively after this single excitation pulse. Consequently, TR in the EPI

sequence is the time to acquire the whole brain image, which is dependent on the

number of slices. Sampling at a higher spatial resolution will increase the number of

slices and accordingly TR as well, decreasing the temporal resolution of subsequent

brain volumes (i.e. 3D brain images in fMRI). This is the trade-off between spatial

and temporal resolution in fMRI (see also [7]).

In order to increase the temporal resolution - for a given spatial resolution - signals

of multiple slices within one EPI sequence can be sampled simultaneously. This

procedure is called multi-band EPI, in which the original signal needs to be recon-

structed, for example by the SENSE algorithm [8]. The number of slices sampled

simultaneously is referred to as multi-band factor M , which is M = 8 in the HCP

rs-fMRI data [6, 9]. However, the use of multi-band EPI is associated with signal

artifacts, which are described in the following section.

1.3. Signal Dropouts in HCP

The HCP’s core tenets include acquiring data at both high temporal and spatial

resolution [2], which was accomplished by the eight factorial multi-band gradient-echo

EPI sequence described in the previous section. Although increasing acquisition

speed, this imaging sequence is accompanied with signal dropouts, i.e. a reduced

signal amplitude at certain locations in the brain. These locations are determined by

the phase encoding direction, which has a right-to-left (or left-to-right) orientation

in the HCP, resulting in a signal loss being strongest in the area around the orbito-

frontal cortex (see Figure 1, top-left). To deal with this issue, rs-fMRI data was

sampled using both a left-to-right (LR) phase-encoding setting and a right-to-left

(RL) phase-encoding setting. Accordingly, locations of signal dropouts differed

between these two phase encoding directions, which allows their investigation.
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Figure 1: Mean signal over 20 subjects. Top-left: Avergae over all volumes of all
subjects. Bottom-left: Only LR volumes. Bottom-right: Only RL volumes. Top-right:
Relative mean differnce between LR and RL. Adapted from [6], Figure 4.

In a preliminary analysis by the HCP [6] resting-state data of 20 subjects (each

with 2400 RL and 2400 LR volumes) was averaged and clearly showed dropout areas

(see Figure 1, top-left). By considering each phase encoding direction separately,

dropouts appear to be stronger in just one hemisphere: LR phase encoding data is

characterized by a higher signal loss in the right hemisphere (see Figure 1, bottom-left)

and RL phase encoding data shows more pronounced dropouts in the left hemisphere

(see Figure 1, bottom-right). There are differences between the mean signal of both

phase encoding directions of up to 60% (see Figure 1, top-right).

Smith et al. [6] report a lack of methods for combining analyses across LR and RL

data and they simply suggest averaging LR and RL (functional) connectivity matrices

or just concatenating time-series of both phase-encoding directions. However, for

the latter they did not specify whether to concatenate voxel-wise time-series before

preprocessing or region-wise time-series after preprocessing, so all three methods will

be considered in this thesis.

1.4. Aims

As a basic understanding of signal dropouts in the HCP is missing, the aim of this

master thesis is to investigate the influence of these signal dropouts on rs functional

connectivity (FC). In addition, methods to cope with signal dropouts suggested by

the HCP [6] should be assessed of how strong they are affected by signal dropouts.
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2. Methods

2.1. Data

The basis of this investigation is rs-fMRI data of 100 subjects (43 males; 20 - 35 years,

one subject older than 36 years; for a list of subject ids, see Appendix A) by the Human

Connectome Project (HCP, by WU-Minn Consortium, www.humanconnectome.org/,

[1, 2]) S500 release. This part of the data was collected for every subject i ∈

{1, ..., N = 100} in two rs-fMRI sessions j ∈ {1, 2} on separate days, each with

two runs k ∈ {LR,RL} of resting-state data of different phase encoding directions.

During a run T = 1200 (functional) brain volumes were obtained in 14 minutes

24 seconds (one every TR = 0.72s) with a multi-band (factor 8) gradient-echo EPI

imaging sequence resulting in 2mm isotropic voxels. Participants were instructed to

look at a fixation cross in front of a dark background and to let their mind wander.

All participants were scanned at the same 3T Siemens Connectome Skyra MRI

scanner. A complete acquisition protocol can be found in [6].

2.2. Preprocessing

Rs-fMRI data was partly preprocessed by the HCP. Further preprocessing was

performed using nilearn (version: 0.2.6 [10, 11]) based on python (version: 2.7.131).

It follows a description of the HCP based preprocessing as well as of the single

preprocessing steps and in the end of this section an overview of all different pipelines

in this thesis will be given. Preprocessing was performed in each run of each subject.

Preprocessing by HCP. Rs-fMRI data preprocessing by the HCP includes correc-

tion for (gradient) distortions and subject movement, bias field removal, registration

of functional images to individual structural images, transformation to MNI152 atlas

(by Montreal Neurological Institute) and intensity normalization to the global mean.

No slice time correction was employed due to the short repetition time TR = 720ms

and the use of the multi-band technique. All these transformations preserve the

isotropic voxel size of 2mm. A more detailed description of these preprocessing steps

is provided by Glasser et al. [12].

Concatenation (Voxel). Because Smith et al. [6] suggest averaging LR and RL

FC-matrices or just concatenating time-series of different phase encoding directions

to cope with signal dropouts, these procedures were evaluated for differences in

1Python Software Foundation. Python Language Reference, version 2.7. Available at
http://www.python.org
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their FC-matrices. For the latter (concatenation), RL and LR data of one session

(preprocessed by HCP) were concatenated to get a long run of 2400 volumes (28

minutes 48 seconds) per session, which contains both RL and LR measurements.

In pipelines with this preprocessing step (pipelines: MS444-concat-voxel and AAL-

concat-voxel) further preprocessing and analyses were performed on this long run.

Certainly, regressors for the nuisance regression were concatenated in these pipelines

as well.

Spatial Smoothing. Data was smoothed spatially with a gaussian kernel of 4mm

Full Width at Half Maximum (FWHM) to increase the signal-to-noise ratio, as it

is assumed that signal is reflected by low and noise by high spatial frequencies [13].

However, with spatial smoothing boundaries between brain regions blur in a way

that a region is influenced by measurements originating in other regions. In order

to check the robustness of this investigation against the choice of kernel width, a

separate analysis will be performed using a preprocessing pipeline without spatial

smoothing (pipeline: MS444-no-smooth).

Parcellation. As this work aims to investigate, if signal dropouts affect FC, a brain

parcellation is necessary, in which regions are small enough to be fully covered by

signal dropouts. Utilizing coarser parcellations, it might be possible that even the

brain areas being most affected by signal dropouts contain enough preserved signal,

so that a possible effect of signal dropouts on FC cannot be detected. Accordingly,

the Multiscale 444 parcellation (MS444, [14]) is used, consisting of RMS = 444

distinct regions. Of course, results in this thesis should be generalized to rs-fMRI

analyses of the HCP with coarser parcellations as well, so the investigation will

be repeated with the widely used Automated Anatomical Labeling (AAL) brain

atlas [15], which divides the brain into RAAL = 116 disjoint regions (pipeline: AAL).

Signals were averaged within each region, resulting in 444 or 116 time-series for each

run, respectively.

Nuisance Regression. A lot of noise is present in fMRI data due to head move-

ments as well as pulmonary and cardiovascular activity, which could be regressed

out. To account for noise induced by head movements, 24 motion parameters can be

included as independent variables in this regression on the mean activity time-series

in each brain area [16]. Six motion parameters can be taken from the registration

preprocessing step performed by the HCP, in which each volume is transformed to

match a structural image via six parameter rigid body transformation [17]. Together

with these six parameters, those of the previous time point as well as their squared

values form those 24 motion variables in the regression. Note, that Power et al.

[18] showed a better removal of motion related artifacts with a 36 motion param-

5



eter regression, but they also decided to use the 24 parameter model for a better

comparison to other studies. Analogue considerations apply to this investigation.

In order to cope with pulmonary and cardiovascular activity, the average signal of,

respectively, white matter (WM) and cerebro-spinal-fluid (CSF) was also included in

the nuisance regression, because they are supposed to contain influences of non-neural

activity on the fMRI signal. Therefore, it is said that WM and CSF signal regression

improve specicity of FC maps [19]. Regression of the global signal (mean signal per

volume), however, was found to produce spurious negative correlations, which should

be avoided [20, 21]. Jo et al. [22] argued that signal changes relevant for rs-fMRI in

gray matter should only be reflected slightly in WM signals due to the propagation

direction of the BOLD signal along the venous vasculature.

Temporal Filtering. Spontaneous fluctuations in the BOLD signal, which are rele-

vant in rs-fMRI, are found to be strongest in the frequency range of 0.009Hz−0.08Hz

[23, 24], so a corresponding bandpass filter was applied. Note, that temporal filtering

should be applied after nuisance regression in order to prevent the reintroduction of

unwanted frequencies [25].

Concatenation (Region). Another possibility to concatenate time-series as a

method of coping with signal dropouts would be for region-specific preprocessed

time-series. Therefore, in additional pipelines each run was preprocessed separately

and then both RL and LR time-series per region were concatenated before FC

extraction (pipelines: MS444-concat-region and AAL-concat-region).

FC Extraction. For each pair of regions (r, r′) with r, r′ ∈ {1, 2, ..., R}, r 6= r′

and R ∈ {RMS, RAAL} the Pearson correlation (FC-value) between their activity

time-series is calculated, resulting in a symmetric 444 × 444 or 116 × 116 matrix

specifying the functional connectivity (FC) for the MS444 or AAL parcellation,

respectively.

Final Pipelines. Altogether the following preprocessing pipelines were used. Note,

that all pipelines started with the data being already preprocessed by the HCP.

MS444: Spatial smoothing with 4mm FWHM, parcellation using Multiscale

444 atlas, nuisance regression, temporal filtering, FC extraction.

MS444-no-smooth: Parcellation using Multiscale 444 atlas, nuisance regression,

temporal filtering, FC extraction.

AAL: Spatial smoothing with 4mm FWHM, parcellation using AAL atlas,

nuisance regression, temporal filtering, FC extraction.

MS444-concat-voxel: Concatenation (voxel), spatial smoothing with 4mm
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FWHM, parcellation using Multiscale 444 atlas, nuisance regression, temporal

filtering, FC extraction.

MS444-concat-region: Spatial smoothing with 4mm FWHM, parcellation

using Multiscale 444 atlas, nuisance regression, temporal filtering, concatenation

(region), FC extraction.

AAL-concat-voxel: Concatenation (voxel), spatial smoothing with 4mm

FWHM, parcellation using AAL atlas, nuisance regression, temporal filtering,

FC extraction.

AAL-concat-region: Spatial smoothing with 4mm FWHM, parcellation using

AAL atlas, nuisance regression, temporal filtering, concatenation (region), FC

extraction.

2.3. Measures

FC-Impairment. For every region r ∈ {1, 2, ..., R} a measure of FC-impairment2

fr,drop between acquisition runs RL and LR was calculated:

fr,drop =
1

R− 1

∑

r′,r′ 6=r

∣

∣

∣

∣

∣

1

2N

∑

i,j

(fcRLi,j,r,r′ − fcLRi,j,r,r′)

∣

∣

∣

∣

∣

(1)

with R ∈ {RMS, RAAL} regions and fcki,j,r,r′ being the FC-value (Pearson correlation)

of subject i in session j between regions r and r′ in run k. The terms inside the

absolute value of equation 1 considering all possible pairs of regions (r, r′)

FCRL−LR
a =

[

1

2N

∑

i,j

(fcRLi,j,r,r′ − fcLRi,j,r,r′)

]

r,r′

(2)

constitute the average difference matrix using atlas a ∈ {MS,AAL}: FCRL−LR
MS (see

Figure 5, top-left) and FCRL−LR
AAL (see Figure 5, bottom-left).

Signal Loss. A measure3 lr,drop of how strong a region r ∈ {1, 2, ..., R} is affected

by signal dropouts is calculated as absolute relative signal loss between acquisitions

RL and LR:

lr,drop =

∣

∣

∣

∣

sRLr − sLRr
max{sRLr , sLRr }

∣

∣

∣

∣

(3)

2The index drop indicates that this measures is based on the RL - LR comparison, as opposed to
the control measure (see below).

3Again, the index drop refers to the comparison between RL and LR.
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with

skr =
1

2NT

1

#voxels

∑

i,j,t,vr

si,j,k,t,vr (4)

being the average signal si,j,k,t,vr in a region r consisting of voxels vr over all time-

points t (T = 1200), all sessions j and all subjects i (N = 100) for run k. #voxels is

the number of voxels vr in region r.

Control Measures. As a control, both signal loss and FC-impairment measures

were calculated comparing between session j = 1 and j = 2 using the same notation

as above:

lr,cont =

∣

∣

∣

∣

s1r − s2r
max{s1r, s

2
r}

∣

∣

∣

∣

(5)

with

sjr =
1

2NT

1

#voxels

∑

i,k,t,vr

si,j,k,t,vr (6)

and

fr,cont =
1

R− 1

∑

r′,r′ 6=r

∣

∣

∣

∣

∣

1

2N

∑

i,k

(fc1i,k,r,r′ − fc2i,k,r,r′)

∣

∣

∣

∣

∣

(7)

with fcji,k,r,r′ being the FC-value of subject i in session j, run k and connection (r, r′).

Again, the terms inside the absolute value of equation 7 for all pairs of regions (r, r′)

define the average difference matrix analogue to equation 2: FCs1−s2
MS (see Figure 5,

top-right) and FCs1−s2
AAL (see Figure 5, bottom-right).

Method Difference. As mentioned above, the HCP [6] suggests two strategies

for coping with signal dropouts in rs-fMRI investigations: averaging of FC-matrices

s = ave or concatenation of time-series over runs of both phase encoding directions.

For latter, it was not specified whether this concatenation should be done with

voxel-based time-series before preprocessing s = concat(voxel) or with region-based

time-series after preprocessing s = concat(region), so both approaches are being

investigated in this thesis.

In the averaging method FC values are calculated by

fcavei,j,r,r′ =
1

2
(fcRLi,j,r,r′ + fcLRi,j,r,r′) (8)

utilizing the notation as above and in the concatenation methods FC values

fc
concat(voxel)
i,j,r,r′ and fc

concat(region)
i,j,r,r′ are extracted by the respective preprocessing pipeline

(MS444-concat-voxel or AAL-concat-voxel vs. MS444-concat-region or AAL-concat-

region).

If there is no difference between these methods, either of them can be applied
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without concern, but if a difference exists, its relationship with signal dropouts can

be assessed. To do this, a measure dr,voxel of difference in FC between both averaging

and voxel-wise concatenation methods is calculated for each region r ∈ {1, 2, ..., R}:

dr,voxel =
1

R− 1

∑

r′,r′ 6=r

∣

∣

∣

∣

∣

1

2N

∑

i,j

(fcavei,j,r,r′ − fc
concat(voxel)
i,j,r,r′ )

∣

∣

∣

∣

∣

(9)

with R ∈ {RMS, RAAL} regions and fcsi,j,r,r′ being the FC-value (Pearson correlation)

of subject i in session j between regions r and r′ using strategy

s ∈ {ave, concat(voxel)}. The analogue measure dr,region was calculated for compar-

ing the averaging method with the second version of the concatenation method as

dr,region =
1

R− 1

∑

r′,r′ 6=r

∣

∣

∣

∣

∣

1

2N

∑

i,j

(fcavei,j,r,r′ − fc
concat(region)
i,j,r,r′ )

∣

∣

∣

∣

∣

(10)

with notation as above and s ∈ {ave, concat(region)}.
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3. Analyses and Results

Analysis were performed using R (version: 3.3.2, [26]): Weighted least squares

regressions were calculated with the package “nlme“ (version: 3.1.128) and for the

algorithm of [27] to find the closest positive-definite matrix to a given matrix the

package “corpcor“ (version: 1.6.9) was used.

3.1. Regions with impaired FC

In order to find MS444 brain regions with impaired FC due to differences between

RL and LR acquisition settings, outliers concerning the FC-impairment measure

are detected based on a threshold criterion of mean + 2.5sd. A histogram for

FC-impairment values (mean±sd: 4.18%± 1.02%) of MS444 regions is depicted in

Figure 2 (top) showing the existence of outlier values. Regions with the highest

FC-impairment are listed in Table 1 and their location can be seen in Figure 3. Out

of the 9 areas with a FC-impairment of more than 2.5 standard deviations above

the mean, there are 4 regions (349, 197, 379, 243), which coincide with the parts

of the brain suffering the highest signal dropouts reported by [6] (see Figure 1).

Based on the MS444-no-smooth pipeline for preprocessing, 9 outlier regions with

a FC-impairment value above the threshold could be detected, of which 7 coincide

with those listed in Table 1 (indicated with *; the other regions are 119 and 161),

demonstrating the robustness of these results with respect to spatial smoothing.

Table 1: MS444 brain regions with highest FC-impairment values. Areas indicated
with * are also found to be outliers (i.e. a FC-impairment value of > mean+ 2.5sd)
based on data from the MS-444-no-smooth pipeline.

Area
FC-impairment

(in percentage points)
standard deviations

above mean
signal loss
(in %)

349 * 9.45 5.16 13.0
197 * 8.80 4.52 29.6
383 * 7.55 3.30 4.5
379 * 7.21 2.97 3.3
223 * 7.10 2.86 9.7
243 * 6.92 2.68 7.3
311 6.87 2.63 4.6
426 * 6.77 2.54 10.6
359 6.74 2.51 18.0
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Figure 2: Histograms of FC-impairment values: MS444 and AAL. Top: The his-
togram is based on 444 FC-impairment values using the MS444 atlas. Black lines
indicate the mean value and the values being 2.5 as well as 3 standard deviations
above the mean. Utilizing the lower value (2.5sd) as threshold criterion results in 9
MS444 outlier regions. Bottom: The histogram addresses the AAL parcellation and
is based on 116 FC-impairment values. Black lines indicate mean and values being
2 and 2.5 standard deviations above the mean. With the 2sd criterion, 6 outlier
regions are defined in the AAL parcellation.
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Figure 3: MS444 brain regions with strongest FC-impairment. These regions have
a FC-impairment value of more than 2.5 standard deviations above the mean and
refer to those listed in Table 1. There are 5 regions located in the left hemisphere
(197, 383, 379, 223, 426), 3 regions in the right hemisphere (349, 243, 359) and one
region in both hemispheres (311).
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In the AAL brain parcellation, a threshold criterion of mean + 2.5sd for the FC-

impairment value (mean±sd: 4.61% ± 1.01%, see Figure 2, bottom) yields only

three outlier regions, so regions with a FC-impairment higher than mean + 2sd

are considered as well. These regions are listed in Table 2 and depicted in Figure

4. Among them are also regions (21, 5, 22) corresponding to the strongest signal

dropout regions described by [6].

Interestingly, most of the AAL (5/6) and many MS444 (5/8, as area 311 is located

in both hemispheres) outlier regions are located in the left hemisphere. Possible

explanations for this finding might be a difference in signal dropout strength or in

FC between hemispheres (see e.g. [28]). However, the exact causes of this finding

are unclear and demand further exploration.

Table 2: AAL brain regions with highest FC-impairment values.

Area Location
FC-impairment

(in percentage points)

standard
deviations
above mean

signal loss
(in %)

21 Olfactory L 7.45 2.81 12.9
5 Frontal Sup Orb L 3.30 2.65 7.4
87 Temporal Pole Mid L 7.27 2.63 12.0
77 Thalamus L 7.04 2.40 1.98
22 Olfactory R 6.81 2.17 8.56
33 Cingulum Mid L 6.65 2.02 3.59

This analysis is based on outliers detected by a FC-impairment value of more than

2.5 (or 2 in the AAL analysis) standard deviations above the mean. Another common

criterion for defining outliers is a value higher than 1.5 interquartile ranges above

the 75th percentile [29]. In the MS444 analysis, this criterion would yield an outlier

threshold of 6.46%, resulting in 14 outlier areas. Accordingly, the method applied in

this work is more conservative. In the AAL analysis, however, the outlier threshold

would be 7.27% with the interquartile range criterion, resulting in just 1 outlier

region. An assessment of how this outlier criterion would have influenced other

results in this thesis, is given at the end of the following section.

3.2. Influence of Signal Dropouts on FC

MS444. Furthermore, it is interesting to not only detect outlier regions characterized

by a high FC-impairment value, but also to assess the influence of signal loss on

FC-impairment considering all regions. To do this, a weighted least squares regression

of signal loss on FC-impairment is calculated, including control measures to assess the
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Figure 4: AAL brain regions with strongest FC-impairment. These regions have a
FC-impairment value of more than 2 standard deviations above the mean and refer
to those listed in Table 2. There are 5 regions located in the left hemisphere (21, 5,
87, 77, 33) and one regions in the right hemisphere (22).

baseline behaviour of the measures in use. In a preliminary assessment (see Appendix

B), it appears that the distribution of FC-impairment values has a pronounced

right-sided tail, which corresponds to the skewness in the histogram above (see

Figure 2). Therefore, a log-linear model with a log-transformation of FC-impairment

is deployed [30]. Another aspect revealed by this preliminary analysis (see Appendix

B), is a heteroscedastic behaviour of FC-impairment values with respect to signal

loss, which is modelled by specifying weights in the variance structure (see [31]).

In addition, FC-impairment values are related to each other by construction: The

value of a region is the mean of all its absolute FC-difference values (see equations

1 and 7). So, this region has one of its FC-difference values in common with every

other area, respectively. Therefore, each FC-difference value states how strong the

FC-impairment measure of both areas constituting this connection are related to

each other. Consequently, the relationship between all 444 FC-impairment values

in the MS444 atlas is expressed by the FC-difference matrix FCRL−LR
MS depicted in

Figure 5 (top-left). Similar considerations hold for the relationship among control

FC-impairment values, which is characterized by the control FC-difference matrix

FCs1−s2
MS (see Figure 5, top-right).

Taking all FC-impairment values of both dropout and control investigation together,
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Figure 5: FC-difference matrices. Top-left: FCRL−LR
MS . Top-right: FCs1−s2

MS . Bottom-
left: FCRL−LR

AAL . Bottom-right: FCs1−s2
AAL .
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their relationship is expressed by the block diagonal matrix of both FC-difference

matrices:

FC∆
MS =

[

FCRL−LR
MS 0

0 FCs1−s2
MS

]

(11)

with 0 being a 444 x 444 zero-matrix.

The matrix being positive-definite and closest to FC∆
MS was computed by the algo-

rithm of Higham [27] and can be used as correlation matrix cor(f(r,m), f(r,m)′) with

(r,m) 6= (r,m)′ for modelling the dependencies within the FC-impairment measure.

Accordingly, with the type of measure indicated by m ∈ {drop, cont}, the overall

log-linear model is

log(fr,m) = β0 + lr,mβl +mβm +mlr,mβl,m + ǫr,m (12)

where ǫr,m is the normal distributed error with mean 0, cor(f(r,m), f(r,m)′) is the

correlation matrix specified theoretically (as described above) and variance weights

are induced by the exponential variance structure V ar(ǫr,m) = σ2exp(2δmlr,m) [31],

in which δm is estimated to be δ̂drop = 3.66 and δ̂cont = −15.51. This relationship

of signal loss to FC-impairment based on the MS444 pipeline can be seen in Figure

6 (top). All β-estimates are listed in Table 3 (top) and differ significantly from 0.

As can be seen in the QQ-plot of the residuals (see Figure 7, top-left) and in the

“Fitted vs. Residuals“-plot (see Figure 7, middle) the model fit was good.

Table 3: MS444 regression results.

All Data

Coefficient Value Standard Error t-value p-value
β0 −3.46 0.018 −193.46 < 0.0001
βl −4.06 1.111 −3.65 0.0003
βm 0.17 0.025 6.86 < 0.0001
βl,m 6.54 1.182 5.53 < 0.0001
βd
0 −3.30 0.018 −185.53 < 0.0001

βd
l 2.57 0.380 6.75 < 0.0001

Outliers Excluded

Coefficient Value Standard Error t-value p-value
β0 −3.46 0.018 −192.76 < 0.0001
βl −4.06 1.111 −3.64 0.0003
βm 0.17 0.025 7.18 < 0.0001
βl,m 5.97 1.169 5.11 < 0.0001
βd
0 −3.29 0.018 −187.16 < 0.0001

βd
l 2.01 0.338 5.96 < 0.0001
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Figure 6: Influence of signal loss on FC-impairment. Scatterplots show the rela-
tionship between signal loss (x-axis) and the log-transformation of FC-impairment
(y-axis) in the MS444 parcellation (top) and the ALL parcellation (bottom). Black
solid lines indicate the prediction according to the weighted least squares regression
using the model in equation 12. Labelled points refer to the regions defined as
outlier regions listed in Tables 1 and 2. Dashed lines indicate the prediction of the
weighted least squares regression, in which outlier regions (labelled) were excluded
in the dropout-data. The dashed line in the AAL parcellation (bottom) is almost
horizontal, reflecting a non-significant slope (see Table 4).
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Figure 7: Model Fit: MS444 and AAL analyses. Top-left: QQ-plot in the MS444
analysis. Top-right: QQ-plot in the AAL analysis. Middle: “Fitted vs. Residuals“ in
the MS444 analysis. Bottom: “Fitted vs. Residuals“ in the AAL analysis. All these
plots refer to the models (MS444 or AAL) in equation 12.
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Interpreting these results, the mean FC-impairment value is stated to be

exp(β̂m) = 1.185 times the mean of the control FC-impairment values and the influ-

ence of signal loss on FC-impairment is different in both types of measures (dropouts

vs control), as βl,m differs significantly from 0.

The nature of this effect is examined in a subsequent weighted least squares regression

based on dropout data m = drop only. Using the notation as above, the model is as

follows:

log(fr,drop) = βd
0 + lr,dropβ

d
l + ǫr,drop (13)

In this subsequent analysis, ǫr,drop is the normal distributed error with mean 0,

cor(fr,drop, fr′,drop) is the upper left part of cor(f(r,m), f(r,m)′) (i.e. the positive-definite

matrix being closest to FCRL−LR
MS , see Figure 5, top-left) and the exponential variance

structure is V ar(ǫr,drop) = σ2exp(2δddroplr,drop) [31], with the estimation δ̂ddrop = 2.50.

Results of this subsequent analysis are listed in Table 3 (top). βd
l constitutes a signifi-

cant effect stating a multiplication of the FC-impairment value with

exp(β̂d
l · 0.01) = 1.026 for each signal loss increase of 0.01.

Typically, outliers have a strong influence on regression estimates, which might be

responsible for a positive relationships detected in this regression analysis. In order

to make sure that a positive relationship between signal loss and FC-impairment is

valid with respect to all regions (in contrast to just outlier regions), this analysis is

redone on data excluding outlier regions (see Table 1 and labels in Figure 6, top) in

the “dropouts“ comparison type. The correlation matrix was adapted accordingly.

Weighted least squares regression results are depicted as dashed line in Figure 6 (top)

and are listed in Table 3 (bottom), still showing significant effects.

As both βd
l and βl,m represent significant effects, an impairment of FC due to signal

dropouts in rs-data of the HCP is plausible, which does affect at least the Multiscale

444 brain parcellation [14].

Repeating these analyses on rs-data without spatial smoothing (MS444-no-smooth

pipeline) yield a similar pattern of results (see Appendix C) and show a robust-

ness of these findings against different kernel widths in spatial smoothing during

preprocessing.

As discussed in section 3.1, different threshold criterions for defining outlier regions

are possible. With the interquartile range criterion, there would have been 14 instead

of 9 outlier regions in the MS444 analysis. These 5 extra regions have various different

- not solely high - signal loss values (0.009, 0.005, 0.173, 0.041 and 0.044; see Figure
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6, top), so that similar results in the analysis without these 14 outlier regions could

be expected based on this more liberal threshold criterion for defining outliers.

AAL. The influence of signal loss on FC-impairment is also assessed for the AAL

parcellation (see Figure 6, bottom). The analysis is analogue to the analysis of

the MS444 atlas described above. Certainly, in the overall model the correlation

structure of FC-values is now specified by the positive-definite matrix being closest

[27] to the block-diagonal matrix of FC-difference matrices in the AAL parcellation

(see Figure 5, left)

FC∆
AAL =

[

FCRL−LR
AAL 0

0 FCs1−s2
AAL

]

(14)

with 0 being a 116 x 116 zero-matrix. Estimates in the exponential variance structure

[31] were estimated to be δ̂drop = 3.66 and δ̂cont = −26.35 in the overall model and

δ̂ddrop = 4.09 in the model restricted to “dropout“ data only. As can be seen in

Figure 7 (top-right, bottom) the model fit in this log-linear weighted least squares

regression was good as well. Without excluding outlier regions (as listed in Table

2 and labelled in Figure 6, bottom), all β-estimates are significant (see Table 4,

top), showing an impairment of FC in AAL brain regions associated with signal loss.

However, excluding these outlier regions (see Table 4, bottom), βd
l is not significant

(p = 0.238). Accordingly, the dashed line in Figure 6 (bottom) is close to horizontal.

Table 4: AAL regression results.

All Data

Coefficient Value Standard Error t-value p-value
β0 −3.54 0.029 −122.35 < 0.0001
βl −7.77 2.220 −3.50 0.0006
βm 0.37 0.042 8.78 < 0.0001
βl,m 10.47 2.375 4.41 < 0.0001
βd
0 −3.17 0.030 −106.58 < 0.0001

βd
l 2.66 0.851 3.12 0.0023

Outliers Excluded

Coefficient Value Standard Error t-value p-value
β0 −3.54 0.029 −123.26 < 0.0001
βl −7.80 2.225 −3.50 0.0006
βm 0.36 0.042 8.70 < 0.0001
βl,m 8.92 2.400 3.72 0.0003
βd
0 −3.17 0.030 −107.00 < 0.0001

βd
l 1.08 0.913 1.19 0.238

Taken together, results state that there are AAL regions with impaired FC-values

(see Table 2), however, for the remaining AAL regions an influence of signal loss on
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FC-impairment cannot be assumed.

With outlier regions in the AAL parcellation defined by the interquartile range

criterion described in section 3.1, there would have been only one outlier area. A

regression, based on the data set with this single area being excluded, would have

had a significant βd
l -value (p = 0.0089). Consequently, it would have been reasonable

to assume regions with impaired FC due to signal loss among non-outlier regions,

which - together with this single outlier area - could resemble the 6 outlier regions

detected with the threshold criterion used in this thesis.

3.3. Coping Strategies

MS444. The HCP suggests different methods (averaging and concatenation) to

cope with signal dropouts [6]. Systematic differences between two methods can be

evaluated by examining the average difference of their FC matrices (over all subjects

and sessions). If no systematic differences between two methods exist, this matrix is

supposed to be a zero-matrix.

The comparison of the voxel-wise concatenation method with the averaging method,

results in the FC-difference matrix4

FC
ave−concat(voxel)
MS =

[

1

2N

∑

i,j

(fcavei,j,r,r′ − fc
concat(voxel)
i,j,r,r′ )

]

r,r′

(15)

as depicted in Figure 8 (top-left) with notation from section 2.3. This matrix has

values between −1.308 and 0.891, which are extremely high, given that the data

in both methods is the same. Accordingly, there is a big difference between the

voxel-wise concatenation method and the averaging method.

The matrix describing the difference between the region-wise concatenation method

and the averaging method is calculated as

FC
ave−concat(region)
MS =

[

1

2N

∑

i,j

(fcavei,j,r,r′ − fc
concat(region)
i,j,r,r′ )

]

r,r′

(16)

and shown in Figure 8 (top-right) with notation from section 2.3. Values of

this matrix range from −0.077 to 0.062 and are much smaller than values of

FC
ave−concat(voxel)
MS . Therefore, the region-wise concatenation method and the aver-

4Note, that this FC-difference matrix is based on a comparison of different coping strategies, in
contrast to the FC-difference matrix in section 3.2 which is based on the comparison of RL and
LR runs.
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Figure 8: FC-difference matrices across different coping strategies. Top-left:
FC

ave−concat(voxel)
MS (see equation 15). Top-right: FC

ave−concat(region)
MS (see equation

16). Bottom-left: FC
ave−concat(voxel)
AAL (analogue to equation 15). Bottom-right:

FC
ave−concat(region)
AAL (analogue to equation 16).
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aging method appear to be more similar to each other compared to the voxel-wise

concatenation method. Nevertheless, there are difference between these (more similar)

methods of up to 0.077, which are not negligible, given the context of FC-values,

which are correlations and range between −1 and +1.

To investigate how these differences in methods are related to signal dropouts,

the method-difference measure, as described in section 2.3, is evaluated for their

relationship to the signal loss measure.

With respect to voxel-wise concatenation, this relationship (see green dots in Figure

9, top) was found to be non-linear, as method difference values seem to be bounded

from above. This is plausible, because the method difference measure is constituted

of differences of correlation values. In order to cope with this upper limit of method

difference values, a logistic relationship is assumed.

In addition, considerations about dependencies within the method-difference measures

(due to the way these measures are calculated) are analogue to those concerning

the FC-impairment measure, so a correlation structure within a weighted least

squares regression is specified by the positive-definite matrix which is closest [27] to

FC
ave−concat(voxel)
MS (see Figure 8, top-left).

To implement the logistic relationship into the context of the weighted least squares

regression, signal loss lr is transformed into a logistic signal loss measure

l∗r =
a

a+ exp(−b(lr − c))
(17)

where a, b and c are parameters for the maximum value, the slope and the point of

inflection, respectively, which were estimated as â = 0.265, b̂ = 48.43 and ĉ = 0.019

to model the logistic relationship between signal loss and the method difference using

(non-linear) least squares. This logistic curve is shown in Figure 9 (top: black line).

With this transformed signal loss measures, the model under investigation is

dr = βd,0 + l∗rβd,l∗ + ǫd,r (18)

with ǫd,r being the normal distributed error with mean 0, cor(dr, dr′) the positive-

definite matrix, which is closest [27] to FC
ave−concat(voxel)
MS (see Figure 8, top-left), and

variance weights being induced by the exponential variance structure

V ar(ǫd,r) = σ2exp(2δdl
∗
r) [31], in which δd is estimated to be δ̂d = 8.49. The latter

accounts for heteroscedasticity in the data, which can be seen in Figure 9 (middle).

β-estimates are listed in Table 5 (top) and βd,l∗ is found to be significant. Accord-
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Figure 9: Regression on method differences (voxel) in the MS444 atlas. Scatterplots
show the relationship of signal loss (x-axis, top), logistic signal loss (x-axis, middle,
see equation 17) and FC-impairment (x-axis, bottom) to the method difference
(voxel) measure (y-axis), respectively. Black lines display the estimated logistic curve
with parameters â = 0.265, b̂ = 48.43, ĉ = 0.019 (top), the prediction of the model
in equation 18 (middle) and the prediction of the model in equation 19 (bottom).
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ingly, the difference between the voxel-wise concatenation method and the averaging

method seems to be influenced by signal dropouts.

Table 5: MS444 method comparison results.

Voxel-wise Concatenation - Averaging

Coefficient Value Standard Error t-value p-value
βd,0 −0.003 0.003 −0.90 0.370
βd,l∗ 1.043 0.030 34.43 < 0.0001
βd2,0 0.082 0.011 7.50 < 0.0001
βd2,f 1.730 0.243 7.13 < 0.0001

Region-wise Concatenation - Averaging

Coefficient Value Standard Error t-value p-value
βd,0 0.0085 0.0001 57.09 < 0.0001
βd,l 0.0170 0.0029 5.95 < 0.0001
βd2,0 0.0045 0.0004 10.76 < 0.0001
βd2,f 0.1027 0.0093 11.06 < 0.0001

Furthermore, it is of interest, which of these methods is more strongly affected by

signal dropouts. This can be assessed by the association between the FC-impairment

measure and the method-difference measure: Given an association of the signal

loss measure to both FC-impairment and method difference, no (or just a weak)

correlation of the latter measures among each other, point to a stronger impact of

the signal dropouts in the (voxel-wise) concatenation method (for a more detailed

formulation of this reasoning see Appendix D).

This association between FC-impairment and method difference does not seem to be

heteroscedastic (see Figure 9, bottom), so its model is

dr = βd2,0 + frβd2,f + ǫd2,r (19)

with ǫd,r being the normal distributed error with mean 0, the correlation matrix as

above and without specifying variance weights. Both β-estimates are significant (see

Table 5, top).

However, this association does not seem to be as strong as the one between signal

loss and the method difference measure (compare variation in Figure 9). In order to

investigate the explained variance in these three models with each other, adjusted

R2 values are calculated between the predicted and the actual dependent values:

R2
f,l = 0.63 in the association of signal loss with FC-impairment (using model

from equation 12), R2
d,l = 0.80 in the association of signal loss with the method

difference measure and R2
d,f = 0.06 in the association of FC-impairment with the
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method difference measure. Certainly, the three underlying models contain a different

number of parameters due to the non-linear modelling of the relationship between

signal loss and method difference, so these values need to be interpreted with caution,

especially as issues with R2 values in the context of weigthe least squares were raised

[32]. Nevertheless, without interpreting the exact value of these R2 estimates, it can

be said that the difference between R2
d,f to both R2

d,l and R2
f,l is very high, so it is

reasonable to assume a low coefficient of determination in the former case and a high

coefficient in the latter cases, even in a cautious interpretation.

Altogether, it seems that there is a difference between the voxel-wise concatenation

method and the averaging method. This difference is related to signal dropouts, but

can hardly be explained by the FC-impairment measure. As the latter measure is

associated with the impairment of FC in the averaging method, it is plausible to

assume another impact of signal dropouts in the voxel-wise concatenation method

(see Appendix D).

These analyses are repeated for the comparison between the region-wise concate-

nation method and the averaging method. The relationship between signal loss

and method difference measure (see Figure 10, top) does not seem to be non-linear

as in the previous case, so the logistic transformation is not necessary. However,

heteroscedasticity seems to be present, so variance weights are specified, resulting in

the model

dr = βd,0 + lrβd,l + ǫd,r (20)

with ǫd,r being the normal distributed error with mean 0, cor(dr, dr′) being the positive-

definite matrix as above and variance weights induced by

V ar(ǫd,r) = σ2exp(2δdlr), in which δd is estimated as δ̂d = 1.034. Concerning the

association between FC-impairment and method differences, the same model as above

was used (see Figure 10, bottom). Results of both weighted least squares regressions

are listed in Table 5 (bottom) and all effects are significant.

Considering the strength of these associations in an analogous manner, adjusted R2

values are R2
d,l = 0.09 and R2

d,f = 0.24 (R2
f,l = 0.63 is the same as above). As R2

d,l is

quite small (and it might be an optimistic estimate, see [32]), it cannot be assumed

that the difference between the region-wise concatenation method and the averaging

method is constituted by signal dropouts. Therefore, although these methods differ

to some extent, with respect to signal dropouts there is no clear guidance, which

method to prefer.
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Figure 10: Regression on method differences (region) in the MS444 atlas. Scatterplots
show the relationship of signal loss (x-axis, top) and FC-impairment (x-axis, bottom)
to the method difference (region) measure (y-axis), respectively. Black lines display
the prediction of the model in equation 20 (top) and the prediction of the weighted
least squares regression of FC-impairment on the difference (region) measure which
is analogue to equation 18 (bottom).

27



AAL. In order to evaluate the generalisability of the results in the previous section

based on the MS444 atlas to other parcellations, analogue analyses are performed

with the AAL parcellation. FC-difference matrices FC
ave−concat(voxel)
AAL (see Figure 8,

bottom-left) and FC
ave−concat(voxel)
AAL (see Figure 8, bottom-right) are now 116 x 116

matrices and range from −1.220 to 0.711 and from −0.061 to 0.069, respectively.

This is similar to the MS444 atlas and states that there is a big difference of the

averaging method to the voxel-wise concatenation method and a small difference of

the averaging method to the region-wise concatenation method.

The relationship between signal loss and the method difference measure dr,voxel is

non-linear (see Figure 11, top) and modelled by a logistic curve (see equation 17)

with estimated parameters â = 0.288, b̂ = 67.38 and ĉ = 0.016. Applying the model

in equation 18 in this context for the association between the transformed signal

loss measure and the method difference measure (see Figure 11, middle) yields an

estimate of δ̂d = 4.42 for the variance parameter and β-estimates as listed in Table

6 (top), of which βd,l∗ is significant. Therefore, signal loss seems to influence the

difference between the voxel-wise concatenation method and the averaging method

in the AAL parcellation as well. The association between FC-impairment and the

method difference measure (using the model in equation 19, see Figure 11, bottom)

is significant (see Table 6, top). Respective adjusted R2 values are R2
f,l = 0.71,

R2
d,l = 0.86 and R2

d,f = 0.03, expressing a similar pattern as in the MS444 analysis.

Hence, an additional influence of signal dropouts in the voxel-wise concatenation

method can be expected in the AAL parcellation as well.

Comparing the region-wise concatenation method to the averaging method, the

influence of signal loss on their difference (see Figure 12, top) is modelled by equation

20, with δ̂d = −0.712 and β-estimates are significant (see Table 6, bottom). Adjusted

R2 values are R2
d,l = 0.12 and R2

d,f = 0.12. Again, it is not reasonable to assume

that signal dropouts constitute the difference between the region-wise concatenation

method and the averaging method.
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Figure 11: Regression on method differences (voxel) in the AAL atlas. Scatterplots
show the relationship of signal loss (x-axis, top), logistic signal loss (x-axis, middle,
see equation 17) and FC-impairment (x-axis, bottom) to the method difference
(voxel) measure (y-axis), respectively. Black lines display the estimated logistic
curve with parameters â = 0.288, b̂ = 67.38, ĉ = 0.016 (top) and the predictions of
the respective weighted least squares regressions (middle: analogue to equation 18;
bottom: analogue to equation 19).
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Figure 12: Regression on method differences (region) in the AAL atlas. Scatterplots
show the relationship of signal loss (x-axis, top) and FC-impairment (x-axis, bottom)
to the method difference (region) measure (y-axis), respectively. Black lines display
the predictions of the respective weighted least squares regressions (top: analogue to
equation 20; bottom: analogue to equation 18).
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Table 6: AAL method comparison results.

Voxel-wise Concatenation - Averaging

Coefficient Value Standard Error t-value p-value
βd,0 0.001 0.006 0.19 0.852
βd,l∗ 1.021 0.043 23.50 < 0.0001
βd2,0 0.100 0.032 3.16 0.0020
βd2,f 1.741 0.661 2.63 0.0096

Region-wise Concatenation - Averaging

Coefficient Value Standard Error t-value p-value
βd,0 0.0093 0.0003 28.55 < 0.0001
βd,l 0.0322 0.0090 3.59 0.0005
βd2,0 0.0058 0.0011 5.42 < 0.0001
βd2,f 0.0918 0.0224 4.10 0.0001

31



4. Discussion

4.1. Summary of Results

The fMRI acquisition protocol in the HCP utilizes an eight-factorial multi-band EPI

sequence and a phase encoding direction along the left-to-right (or right-to-left) axis.

These settings are accompanied by signal dropouts at specific locations within the

brain (see Figure 1). HCP rs-fMRI data comprises runs with RL phase encoding

and runs with LR phase encoding, which have different signal dropout locations. By

comparing FC matrices between these runs, brain regions with an abnormal high

systematic difference in FC values can be found. Apparently, these regions suffer

the strongest impairment in FC between different phase encoding directions and

are located in the ventral parts of the frontal cortex as well as in the left anterior

temporal cortex (see Figures 3 and 4).

The (region-specific) measure of how strong a regions FC is altered across different

phase encoding directions (equation 1) is significantly higher (see Tables 3 and 4, βl,m)

than a control measure, which is calculated across different acquisition sessions using

the same phase encoding direction (equation 7). This suggests that - considering all

brain regions in general - the change in phase encoding direction is characterized by

a systematic change in FC-values, which does not resemble pure noise.

Concerning Multiscale 444 brain regions, a positive association between the strength of

signal dropouts and the impairment in FC values was found, even though regions with

the strongest FC-impairment were excluded. Using the AAL atlas, this association

was only observable, if all 116 regions were examined.

As a method of dealing with these signal dropouts, the HCP suggested to either

concatenate time series or average FC values of both runs [6]. With respect to the

former, a voxel-wise concatenation before preprocessing and a region-wise concatena-

tion after preprocessing of time-series was investigated in this thesis. A comparison

between the averaging method and the voxel-wise concatenation method reveals

strong differences in FC-values, which are highly associated with signal dropouts, but

hardly related to the FC-impairment measure. Contrasting the averaging method

with the region-wise concatenation method, only small differences are found, being

barely associated with signal dropouts.
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4.2. Guidelines

Based on these results, guidelines about handling signal dropouts in the HCP can be

inferred.

In order to deal with signal dropouts, the voxel-wise concatenation method seems

to be highly affected by those and should not be employed. Although a difference

between the region-wise concatenation method and the averaging method exists, this

difference is hardly related to signal loss, so either method might be utilized with

respect to the dropouts.

For each brain connection there are two different FC values: one in the RL run and

one in the LR run. Under the assumption that FC can only be impaired and not

improved by signal dropouts, the higher of these values is closer to the true FC value

of this connection. Therefore, by averaging LR and RL FC matrices (in the averaging

method), the difference of the resulting FC value from the true FC value is at least

half the difference of the RL and LR FC value. So the minimum FC-impairment

in the averaging FC-matrix is 1
2
|FCRL−LR

a | (see Figure 5, left). As there is hardly

any difference to the region-wise concatenation matrix, which is related to signal

dropouts, a minimum FC-impairment of similar magnitude can be assumed for the

region-wise concatenation FC-matrix.

However, if no coping method is applied and FC is calculated on a single (RL

or LR) run, the impairment in FC is supposed to have a different structure: For

some connections FC is less impaired and for other connections FC is more strongly

impaired in the chosen run compared to the run with the other phase encoding

direction. The minimal FC-impairment of the former is the FC-difference value and

of the latter it is 0.

Therefore, by utilizing coping strategies the influence of FC-impairment is supposed

to be more homogeneous across all connections, than by considering only a single

run.

As a consequence of these findings, it is advised to be cautious in dealing with results

based on rs FC in the HCP, especially, if regions with a high FC-impairment (listed

in Table 1 for MS444 and Table 2 for AAL) are involved in generating these results.

In case strategies to cope with signal dropouts are utilized, the AAL atlas seems

to exhibit a FC-impairment pattern for non-outlier regions, which is not associated

with signal dropouts. FC-impairment in the MS444 parcellation, however, appears

to be more prone to signal dropouts, so it is recommended to take dropout based

signal loss into account when dealing with FC in the MS444 atlas. Furthermore, it
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seems appropriate to do this for all brain parcellations being more detailed, or in all

analyses, which involve FC based on time-series of small areas.

If no coping strategies are employed and only one single fMRI run is analysed, a

considerable amount of heterogeneity of FC-impairment across regions is present.

Consequently, a closer look at the regions being most relevant for results and a

robustness evaluation using a run with the other phase encoding direction is advised

in general (not only in detailed parcellations).

4.3. Studies being potentially affected by HCP Signal Dropouts

Among studies based on the HCP rs-fMRI data, two different types of impairment

due to signal dropouts could found:

First, by defining regions or components based on FC or rs time-series, the spatial

extent of these regions might not be accurate in dropout areas. Therefore, further

analyses performed with these newly defined regions could provide results, being

erroneous in dropout areas. In an investigation within the HCP rs-fMRI data, these

results are likely to contain inaccuracies in the signal dropout areas anyway, however,

if HCP rs-fMRI (FC) based atlases are applied in other data sets, results might be

influenced by HCP signal dropouts. Examples of theses atlases are found in [33] and

[34], which should be treated with caution, especially, as each study considers only

one single run, i.e. one single phase encoding direction.

Second, FC results in the HCP rs-fRMI data might not be found equally well in all

areas of the brain.

A study in the field of dynamic FC by [35] focussed on the temporal variability of

the local functional connectivity density (lFCD) and reports a pronounced lFCD

metric within most cortical regions, except for inferior ventral, orbito-frontal, anterior

temporal and insular cortices. As explanation the authors attribute this to a reduced

coil sensitivity of the utilized 32-channel head coil in deep brain regions and refer

to [36]. This investigation, however, reports benefits of the 32-channel coil over a

12-channel coil, and mentions limited spatial resolutions and coil sensitivity only

with respect to subcortical networks. As the regions of attenuated lFCD reported by

[35] show a strong overlap with dropout regions (see Figure 1) as well as with other

(mainly temporal) regions showing a high FC-impairment in this thesis (see Table 1

and 2), signal dropouts in the HCP would serve as a more plausible explanation for

these lower lFDC values than a reduced coil sensitivity.

A FC examination of the habenula [37] based on HCP rs-fMRI data of concatenated
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time-series (after main preprocessing, before temporal filtering) reports functional

connections of the habenula to other brain areas, which are associated with subclinical

depression. By using a seed-based approach, target areas to which FC was calculated

are small and might be affected by signal dropouts. Accordingly, the possibility of

missed connections to areas being affected by signal dropout cannot be excluded.

In addition to these types of impairment in HCP based rs-fMRI results, special

caution should be applied to those studies, which utilize the concatenation method

before preprocessing, as this might induces strong artifacts (see Figure 8, left). This

might apply e.g. to [38] and possibly to [39]. In the latter study, no clear statement

was given of when the concatenation step was applied during preprocessing.

4.4. Limitations

The ground truth of FC values is not known. Accordingly, the true impairment in

FC due to signal dropouts cannot be assessed and results of this thesis represent

only estimates of FC-impairment, which arise in the comparison between LR and RL

runs. As can be seen in Figure 1 (from [6]), areas being affected by signal dropouts

in one run, might contain signal loss in a run with the other phase encoding direction

as well (see e.g. the orbitofrontal cortex). Therefore, it seems plausible that the

actual strength of FC-impairment due to signal dropouts is stronger than indicated

by estimates in this work.

On the one hand, the amount of FC-impairment of a region depends on its involvement

in the brain connectivity. A region being hardly functionally connected to the rest

of the brain will express a low value in the FC-impairment measure independent

of its signal loss, which could be an explanation for the presence of brain regions

with a high signal loss and a low FC-impairment value (see Figure 6, dots in the

bottom-right of each plot). On the other hand, a region being strongly connected to

the rest of the brain, might express a high FC-impairment even if the signal loss is

small. Accordingly, FC-impairment due to signal dropouts might not be restricted

to areas with a high signal loss value.

Furthermore, in addition to the signal dropout areas considered in this thesis, there

are other areas with phase encoding dependent signal strengths (e.g. in the occipital

region) [6], whose distortions were corrected by the HCP. As FC values seem to be

impaired by signal dropouts, it is questionable, if these corrections are able to restore

the FC structure within these regions properly. If not, further impairments in FC

exist in regions, which could not be observed in this work.

The HCP decided to utilize a multi-band factor of M = 8 to increase acquisition
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speed [6], which has a profound effect on the detection sensitivity of resting state

networks [40, 41]. Altogether, this benefit in temporal resolution might be worth

taking signal dropouts into account and for most parts of the brain these benefits

could be crucial in generating novel insides, as e.g. with the detection of dynamic

FC patterns [42]. With respect to the dropout regions, however, results might be

erroneous and caution is advised.

In this investigation, only the impairment in FC values was considered. Certainly, the

impact of signal dropouts on other rs measures, such as amplitude of low frequency

fluctuations (ALFF), regional homogeneity (ReHo) (see [7]) or graph specific measures

[43], in the HCP rs-fMRI data is not assessed and needs to be addressed in subsequent

analyses.

4.5. Conclusion

Signal dropouts in the HCP rs-fMRI data due to the use of a multi-band EPI

sequence, whose locations are dependent on the phase encoding direction, seem to

affect FC values. Some brain regions appear to be more strongly affected be these

dropouts and show a higher degree of FC impairment than others. These regions

are predominantly located bilaterally in the orbito-frontal and unilaterally in the

anterior parts of the left temporal cortex. This issue should be considered by all

researchers working with the HCP rs-fMRI data. In order to reduce the spatial

heterogeneity of the influence of these dropouts on FC results, either the averaging

or the concatenation method could be applied. With respect to the latter, however,

it is crucial to implement the concatenation of time-series after and not before (or

during) preprocessing of the data.
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A. Subject IDs

Analyses in this thesis are based on 100 subjects of the HCP with the following IDs:

100307, 100408, 101006, 101107, 101309, 101915, 102008, 102311, 102816, 103111,

103414, 103515, 103818, 104820, 105014, 105115, 105216, 106016, 106319, 106521,

107321, 107422, 108121, 108323, 108525, 108828, 109123, 109325, 110411, 111312,

111413, 111716, 113215, 113619, 113922, 114419, 114924, 115320, 116524, 117122,

117324, 118528, 118730, 118932, 120111, 120212, 120515, 121618, 122317, 122620,

123117, 123420, 123925, 124220, 124422, 124826, 125525, 126325, 126628, 127630,

127933, 128127, 128632, 129028, 130013, 130316, 130922, 131217, 131722, 131924,

132118, 133019, 133625, 133827, 133928, 134324, 135225, 135528, 135932, 136227,

136833, 137027, 137128, 137633, 137936, 138231, 138534, 139233, 139637, 140117,

140824, 140925, 141422, 141826, 142828, 143325, 144226, 144832, 146432, 147030.

B. Preliminary Assessment

In a preliminary analysis data characteristics were evaluated with respect to their fit

of the model. Using the terminology from section 3.2, a simple first model M1 was

M1 : fr,m = β0 + lr,mβl +mβm +mlr,mβl,m + ǫr,m (21)

without specifying either correlation structure nor variance weights. A QQ-plot of

the residuals (see Figure 13, top-left) reveals that their distribution is tailed and

rather right-skewed. This behaviour can be stabilised by a log-transformation of the

dependent variable. This was evaluated in a second preliminary log-linear model M2

(without modelling correlation structure and variance weights)

M2 : log(fr,m) = β0 + lr,mβl +mβm +mlr,mβl,m + ǫr,m (22)

yielding a QQ-plot as depicted in Figure 13 (top-right), which shows a better model

fit with respect to skewness. In addition, plotting residuals against fitted values

in M2 (see Figure 13, bottom) displays heteroscedasticity of the FC-impairment

measure with respect to signal loss.
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Figure 13: Model fit in preliminary assessment. Top-left: The QQ-plot of a first
preliminary model M1 (see equation 21) shows a right-skewness with a pronounced
right-sided tail. Top-right: The QQ-plot of the second preliminary model M2

(see equation 22) displays a less pronounced right-sided tail. Accordingly, the log-
transformation of the dependent variable copes with the right-skewness in the data.
Bottom: The “Fitted vs. Residuals“-plot of model M2 reveals heteroscedasticity.
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C. Investigation using the MS444-no-smooth

preprocessing pipeline

The weighted least squares analyses as described in section 3.2 for MS444 data, are

repeated on data without spatial smoothing during preprocessing (MS444-no-smooth

pipeline). The relationship between signal loss and FC-impairment is depicted in

Figure 14 and β-estimates are listed in Table 7. Again, all effects are significant,

yielding a similar pattern of results, which expresses a robustness of these analyses

against the choice of kernel width for spatial smoothing.

Figure 14: MS444-no-smooth: Influence of signal loss on FC-impairment. The scatter-
plot shows the relationship between signal loss (x-axis) and the log-transformation of
FC-impairment (y-axis) in the MS444 parcellation using pipeline MS444-no-smooth.
Black solid lines indicate the prediction according to the weighted least squares
regression. Labelled points refer to the regions defined as outlier regions, which are
349, 197, 383, 379, 223, 243, 426, 119 and 161 using the MS444-no-smooth pipeline.
The dashed line indicates the prediction of the weighted least squares regression, in
which outlier regions (labelled) were excluded in the dropout-data.
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Table 7: MS444-no-smooth regression results.

All Data

Coefficient Value Standard Error t-value p-value
β0 −3.49 0.017 −201.09 < 0.0001
βl −3.61 1.095 −3.30 0.001
βm 0.16 0.024 6.90 < 0.0001
βl,m 6.11 1.167 5.24 < 0.0001
βd
0 −3.33 0.017 −194.44 < 0.0001

βd
l 2.56 0.380 6.73 < 0.0001

Outliers Excluded

Coefficient Value Standard Error t-value p-value
β0 −3.49 0.017 −201.03 < 0.0001
βl −3.61 1.095 −3.29 0.001
βm 0.18 0.024 7.48 < 0.0001
βl,m 5.45 1.149 4.74 < 0.0001
βd
0 −3.31 0.017 −198.41 < 0.0001

βd
l 1.88 0.329 5.73 < 0.0001

D. Considerations on Coping Strategies

Apparently, there is a difference between the FC-matrices of the averaging method

and the voxel-wise concatenation method that reflect signal dropouts (see Figures 9

and 11 in section 3.3). Regarding of how these methods are affected by dropouts,

there are possible options:

1 Averaging-method not impaired - Concatenation-method impaired.

2 Averaging-method impaired - Concatenation-method more strongly impaired.

3 Averaging-method impaired - Concatenation-method not impaired.

4 Averaging-method more strongly impaired - Concatenation-method impaired.

The FC-matrix in the averaging-method is constituted by both RL FC-matrix and

LR FC-matrix. Under the assumption that signal dropouts do not systematically

improve FC strengths, for each connection (i.e. matrix entry) the higher absolute

FC-value of both matrices can be expected to be (on average) closer to the true

FC-value. Utilizing the averaging-method, its FC-values are further apart from the

one FC-value of a separate run, which is considered to be closer to the true FC-value.

For connection (r, r′) this distance of the FC-values (between averaging-method and
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the better of separate runs) is estimated as
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using the notation of section 2.3.

Accordingly, for quantifying how far the FC-values of a region r are apart from the

best FC-values of the separate runs, the following measure can be used:
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Except for the factor 1/2, these values are the same as the measure of FC-impairment.

As these values differ from those of the control comparison (see Tables 3 and 4, βm),

one can assume that there is an impairment in FC-values in the averaging-method.

So, option 1 is not plausible.

It is not possible, to compare FC-values of the concatenation-method to the true

FC-values, as latter are not known. Thus, option 3 is not assessable. However, the

recommendation of this option would be to use the concatenation-method, which

is the same as in option 4. So, it remains to assess, which of these methods is

accompanied with a stronger dropout based impairment of FC-values.

The difference measure between these two methods, represent the region-specific

absolute difference in FC-values between these methods averaged over all connections.

Apparently, this difference is closely related to the signal dropouts (see section 3.3).

So, the impact of signal dropouts on FC-values is stronger in one of the methods

compared to the other.

Based on the theoretical considerations described above, the FC-impairment measure

can be used as an estimate for the FC-impairment in the averaging-method.

If this impairment in FC-values in the averaging-method is to account for the

difference in FC-values between both methods, then this impairment is not present

in the concatenation-method, else there would not be such a pronounced difference

between these methods. In this case there would be a clear relationship between the

FC-impairment measure and the difference measure (option 4).

If this impairment in FC-values in the averaging-method is not to account for the

differences in FC-values between both methods, there must be another effect of

signal dropouts on FC-values for only one of the methods, which results in the clear

difference of these methods.
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If there would be an additional effect of signal dropouts on FC-values in the aver-

aging-method, it would have affected the FC-impairment measure. However, it is not

plausible to assume another impact of signal dropouts that does affect the difference

of the averaged FC-matrix to the concatenated FC-matrix, but does not affect the

RL and LR FC-matrix, which constitute the averaged FC-matrix.

If this additional effect of signal dropouts on FC-values is present in the concatenation

method, this effect would not be related to the FC-impairment in the averaging

method. Accordingly, there would not be a clear relationship between the FC-

impairment measure and the difference measure (option 2).

The latter is found in this investigation, so it is reasonable to assume a stronger effect

of signal dropouts in the voxel-wise concatenation method than in the averaging

method.
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