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Abstract

Classification of functional data is a fast growing area of research, driven by
a need for methods to deal with the increasing availability of functional data.
With the generation of functional data across diverse fields, research questions
requiring classification of functional data naturally arise. A large proportion of
models proposed in the literature are black box models. At best, these models
allow an indirect interpretation by means of examining their predictions (for
example, through partial prediction plots). This is unsatisfying in applications
where not only the prediction, but also the underlying mechanism of the
process are of interest. Further, interpretable models facilitate a plausibility
check because a human is able to understand their inner workings.

The focus of this thesis is interpretable ensemble approaches to functional
data classification. Ensemble methods tend to outperform individual models
due to a more robust prediction, which is achieved by aggregating over several
base models’ predictions. Two different interpretable ensemble methods, the
nearest neighbor ensemble and the random forest ensemble, are introduced
and implemented into publicly available software. A user-friendly interface
facilitates the application of these highly flexible modeling methods to new
use cases. Both ensemble methods are based on combining multiple nearest
neighbor estimators. The nearest neighbor ensemble works by creating a
weighted mean of the predictions of its base models. The random forest
ensemble creates nonlinear combinations of the base models’ predictions by
using the prediction probabilities for each class as explanatory variables. The
random forest ensemble also allows multivariate covariables to be added into
the ensemble next to the predictions of the base models. Due to the more
complex structure of the random forest ensemble, interpretation of the model
is less direct. While the base models’ weights are interpreted in the nearest
neighbor estimator, their variable importance is interpreted in the random
forest.

Practicality of the proposed models and their software implementation is
demonstrated using simulated data and real-world data from the UCR Time
Series Classification Repository. A series of benchmark experiments show that
the nearest neighbor ensemble does not generally outperform the best base
model it contains or reference classification methods. In contrast, the random
forest ensemble exhibits outstanding predictive performance in simulated and
real-world data sets.
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1 Introduction

Statistical methods for Functional Data Analysis (FDA) have become increasingly
important in recent years. FDA is a field of statistics dealing with curves, sur-
faces and any other data with continuous support (Ramsay and Silverman, 2006).
Applications span many disparate fields such as archeology, medicine, and engineer-
ing. Technical advances that allow measurements to be taken in a fully automated
manner at high frequencies have resulted in vast amounts of data with functional
features. New methods are required to cope with the peculiarities of this growing
fund of data. Classifying functional data is a common problem across disciplines,
for example using heart rhythms to classify pathological cardiovascular conditions
(Bortolan and Willems, 1993), shape curves to determine the provenance of an ar-
tifact (Thomas, 1981), or pressure measurements to evaluate the efficiency of car
assembly. Bagnall et al. (2016) provide an excellent overview of up to date meth-
ods for functional data classification using numerous data sets from a wide range of
applications.

Functional data classification problems are differentiated from traditional clas-
sification problems because the attributes are entire functions, which are generally
observed at a finite number of points. These functional features are ordered and may
contain discriminatory information in their ordering (Wang et al., 2016). For these
models with a high (theoretically infinite) number of covariables, sanity checks are
particularly important to ensure sensible modeling of actual data structures. This
thesis introduces two approaches to interpretable ensembles for functional data clas-
sification. The nearest neighbor ensemble, described in Fuchs et al. (2015), and the
random forest ensemble.

The remainder of this thesis is structured as follows: Chapter 2 introduces the
underlying concepts of classification, functional data, semimetrics, nearest neighbor
estimators, nonparametric functional kernel estimators, and random forests. Build-
ing on this, Chapter 3 presents and theoretically compares the nearest neighbor
ensemble from Fuchs et al. (2015) and the random forest ensemble. A brief overview
of the novel software implementation for the classification methods is given in Chap-
ter 4. This implementation is used for an empirical comparison of the nearest neigh-
bor ensemble and the random forest ensemble on simulated and real data, the results
of which are reported in Chapter 5. The thesis concludes in a final summary and
discussion of the results in Chapter 6.

All analysis was conducted using the software package R (R Core Team, 2016).
Figures were created using the R-package ggplot2 (Wickham, 2009).

2 Background

This chapter introduces the main concepts of functional data (Section 2.1) and
classification (Section 2.2) and gives application-oriented examples. Furthermore,
semimetrics are defined and exemplified in Section 2.3. Building on these ideas,
two classification methods for functional data are introduced, the nearest neighbor
estimator for functional data (Section 2.4), and the nonparametric functional kernel
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estimator (Section 2.5). Section 2.6 gives an informal introduction to classification
trees and random forests. The concepts introduced in this chapter form the basis
for the proposed modeling structures.

2.1 Functional Data

Ramsay and Silverman (2006) define functional data as the field of statistics dealing
with curves, surfaces and all data with continuous support. A functional data ob-
servation is a function of this support. The characteristic feature is the continuity,
meaning that the function can theoretically be evaluated at arbitrary points. There
are numerous examples for such a continuous support like time, space, wavelengths,
and angle. In real data, the underlying function is only evaluated at a discrete set
of points. If observed on a regular grid, the finite set of observed points could be
viewed as a multivariate data set, neglecting the information contained in the order-
ing of the data. The fact that the observed points are evaluations of one common
function can be exploited to create better models.

This thesis uses the Berkley growth study (Tuddenham and Snyder, 1954) as an
example for functional data classification. In this study, the height of 93 children
(39 girls and 54 boys) was recorded from 0 to 18 years, see Figure 1. In addition to
the original data, the first and second derivatives of the height are plotted. These
carry the interpretation of the growth in cm/year and the acceleration in cm / year2.
The data set is contained in the R-package fda (Ramsay et al., 2014).

2.2 Classification

Classification deals with the assignment of new observations with unknown class to a
set of predefined classes. A training data set, a set of observations with known class,
is used to define a set of rules for new observations that map them onto the classes.
Classification is useful in many fields of application. One example from medicine
is the Pima Indians Diabetes Study Smith et al. (1988), in which participants are
classified as healthy or diabetic based on a number of health indicators.

Transferring the concept of classification to functional data is straightforward.
Instead of assigning observations with one or multiple characteristics to predefined
classes, functions are assigned to predefined classes. The target variable to predict,
the unknown class of an observation, stays the same for multivariate and functional
data classification. Industrial applications for classification of functional data in-
clude the classification of cell based sensor chips (Fuchs et al., 2015) and detecting
incorrectly assembled screws based on their angle-torque trajectory.

2.3 Semimetrics

This section introduces semimetrics as a distance measure and gives examples of
useful semimetrics for functional data. Semimetrics are distance measures that de-
fine the similarity of two observations. Semimetrics are relevant to the problem at
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Figure 1: Illustration of the Berkley growth study. The growth curves of boys and
girls are shown from 0 to 18 years.
Top: Original data; Middle: First order derivative; Bottom: Second order derivative.
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hand, because they are used in nearest neighbor methods and functional kernel esti-
mators for functional data classification. Because each semimetric captures different
characteristics of the observations, using a variety of semimetrics makes it possible
to optimally adapt the model to a particular classification problem. A function
d : X × X → R is called a semimetric on a space X if:

• ∀x ∈ X : d(x, x) = 0,

• ∀x1, x2, x3 ∈ X : d(x1, x2) ≤ d(x1, x3) + d(x3, x2)

In contrast to metrics, semimetrics do not call for the additional property, that
∀x1, x2 ∈ X : d(x1, x2) = 0 => x1 = x2. In this section we will look into semimetrics
for one-dimensional regularly observed functional data, but many of them can easily
be expanded to irregularly observed or multi-dimensional functional data.

Throughout the remainder of this thesis, X will denote the space of functions
x : T → R, for which the derivative of order a exists and is quadratically integrable,
where T is an interval in R. Using this notation, observations of functional data
will be denoted by x(t) ∈ X , with t ∈ T .

Sections 2.3.1 through 2.3.9 introduce a variety of semimetrics. Each semimet-
ric captures different features of functional data observations. The Euclidean dis-
tance (Section 2.3.1) and the Manhattan distance (Section 2.3.2) are Lp metrics
that quantify the distance of entire functions. They are direct extensions of their
multivariate counterparts. The global mean distance (Section 2.3.3) and the global
minima/maxima distance (Section 2.3.4) measure the distance of the respective sum-
mary statistics of the curve. The relative areas distance (Section 2.3.5), the jump
heights distance (Section 2.3.6), and the points of interest distance (Section 2.3.7)
compare characteristics of the curves on predefined parts of the domain. Section
2.3.8 introduces the elastic semimetric, the amplitude distance, and the phase dis-
tance from the square root velocity framework as semimetrics that take warping into
account. Another distance that is based on warping the functions is the dynamic
time warping distance introduced in Section 2.3.9.

2.3.1 Euclidean Distance

The Euclidean distance of the derivatives of order a, denoted by d
(a)
eucl(·, ·), of two

observations x1(t) und x2(t) ∈ X is defined to be

d
(a)
eucl

(
x1(t), x2(t)

)
=

√
∫

T

(

x
(a)
1 (t)− x

(a)
2 (t)

)2

dt,

where x(a) denotes the derivative of order a of x. Note that for the special case
of a = 0, d

(a)
eucl(·, ·) is a metric. For a > 1, d

(a)
eucl(·, ·) is only a semimetric, as the

distance of two dissimilar observations x1(t), x2(t) with x2(t) = x1(t) + c equals 0.
Additionally, the support T can also be restricted or weighted in order to create
more concise semimetrics. This can be useful in applications, see Fuchs et al. (2015)

for possible examples. For brevity of notation, the Euclidean norm || · || = d
(0)
eucl.(·, 0)

is introduced, with 0 being the constant ≡ 0 function. This notation will be used
throughout the remainder of this thesis.
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2.3.2 Manhattan Distance

The Manhattan distance of the derivatives of order a, denoted by d
(a)
eucl(·, ·), of two

observations x1(t) und x2(t) ∈ X is defined to be

d
(a)
manh

(
x1(t), x2(t)

)
=

∫

T

∣
∣
∣x

(a)
1 (t)− x

(a)
2 (t)

∣
∣
∣ dt,

where | · | denotes the absolute value function. This semimetric is similar to the
Euclidean distance but less sensitive to large differences on small parts of the domain.
Figure 2 visualizes the Manhattan distance for the average growth curves of boys
and girls in the Berkley growth study. The Manhattan distance equates to the gray
area in the figures.
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Figure 2: Manhattan distance of the mean growth curves and their derivatives for
girls and boys in the Berkley growth study. The Manhattan distance is based on
the vertical difference between the curves (depicted in gray).
Left: Age in years vs. height in cm; Middle: Age in years vs. growth in cm / year;
Right: Age in years vs. acceleration in cm / year2.

2.3.3 Global Mean Distance

The similarity of the global mean values between two observations x1 and x1 (or
their derivatives of order a is denoted by

d(a)mean

(
x1(t), x2(t)

)
=

∣
∣
∣
∣

∫

T

x
(a)
1 (t) dt−

∫

T

x
(a)
2 (t) dt

∣
∣
∣
∣
.

This semimetric can be used to quantify overall vertical shifts between two ob-
servations. Figure 3 visualizes the global mean distance together with the global
maximum distance and the global minimum distance. The global mean distance
between the mean function of the growth curves for boys and girls appears to be
rather small.
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2.3.4 Global Minima/Maxima Distance

The similarity between global minima/maxima of the derivatives of order a or the
original curve for a = 0 is denoted by

dmin
a

(
x1(t), x2(t)

)
=

∣
∣
∣max

t

(
x
(a)
1 (t)

)
−max

t

(
x
(a)
2 (t)

)
∣
∣
∣

dmax
a

(
x1(t), x2(t)

)
=

∣
∣
∣min

t

(
x
(a)
1 (t)

)
−min

t

(
x
(a)
2 (t)

)
∣
∣
∣ .

This semimetric captures the similarity between the largest peak/valley of each ob-
servation for a = 0, the most extreme incline/decline for a = 1, and the strongest
turnaround for a = 2. Note that the choice of representation and numerical deriva-
tion method can have a considerable impact on the extreme values of higher order
derivatives. Figure 3 visualizes the global maximum distance and the global mini-
mum distance together with the global mean distance for the Berkeley growth study.
The mean height curves for boys and girls differ most in the global maximum distance
on the original data and the global minimum distance on their second derivative.
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Figure 3: Global mean distance, global maximum distance and global minimum
distance of the mean growth curves and their derivatives for girls and boys in the
Berkley growth study. These semimetrics are based on the absolute difference in
global mean (solid), global maximum (dotted), and global minimum (dashed), re-
spectively. The length of the error equates to the value of the corresponding distance.
Left: Age in years vs. height in cm; Middle: Age in years vs. growth in cm / year;
Right: Age in years vs. acceleration in cm / year2.

2.3.5 Relative Areas Distance

The difference of the relation between areas of two observations x1 and x1 (or their
derivative of order a) on two parts of the domain T1, T2 ⊂ T is denoted by

d
(a)
relAreas

(
x1(t), x2(t)

)
=

∣
∣
∣
∣
∣

∣
∣
∣

∫

T1
x
(a)
1 (t) dt

∫

T2
x
(a)
1 (t) dt

∣
∣
∣−

∣
∣
∣

∫

T1
x
(a)
1 (t) dt

∫

T2
x
(a)
1 (t) dt

∣
∣
∣

∣
∣
∣
∣
∣
.
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This semimetric quantifies the similarity of the fraction between the means on par-
titions of the domain. The choice of partitions can be challenging in application.

2.3.6 Jump Heights Distance

The similarity between jump heights of two observations x1 and x1 (or their deriva-
tive of order a) on predefined points on the domain tn, tm ∈ T is denoted by

d
(a)
jump

(
x1(t), x2(t)

)
=

∣
∣
∣

(

x
(a)
1 (tn)− x

(a)
1 (tm)

)

−
(

x
(a)
2 (tn)− x

(a)
1 (tm)

)∣
∣
∣ .

This semimetric is particularly useful if the application predetermines meaningful
points tn, tm at which to compare the jump heights, e.g., the first and last observation
of growth curves.

2.3.7 Points of Impact Distance

The differences of certain points of impacts ts, s = 1, . . . , S of two observations x1
and x2 or their the derivatives of order a,

dpointsa

(
x1(t), x2(t)

)
=

1

S

S∑

s=1

∣
∣
∣x

(a)
1 (ts)− x

(a)
2 (ts)

∣
∣
∣ ,

are semimetrics. These are useful for applications where few and known points of
the curves contain most of the information.

2.3.8 Semimetrics from Square Root Velocity Framework

This section introduces semimetrics for one-dimensional functional data based on
the square root velocity (SRV) framework (Srivastava and Klassen, 2016), namely
the elastic semimetric (which equates to the Fisher-Rao semimetric in the one di-
mensional case), the amplitude distance and the phase distance. These semimetrics
differ vastly from all other semimetrics presented in Section 2.3 so far, as they use
warping to quantify distances between functions.

Conceptual Introduction

The elastic semimetric measures the amount of bending and stretching needed to
align two curves while being invariant to simultaneous warping of the curves. The
variability between two one-dimensional functional data observations can be decom-
posed into the horizontal variability, which is measured by the phase distance, and
the vertical variability, which is measured by the amplitude distance. The phase
distance measures the amount of warping needed to align two functions. It quan-
tifies the amount of stretching and compressing of the horizontal axis needed to
minimize the vertical distance of the two functions. The amplitude distance corre-
sponds to the distance between two functions once they are optimally aligned by
warping. This distance neglects the amount of warping needed to align the functions
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but quantifies the remaining vertical dissimilarity. By comparing the classification
performance using the amplitude distance or the phase distance, conclusions can be
drawn about whether the classes are more dissimilar in their horizontal or vertical
axis.

Square Root Velocity Framework

Now, the SRV framework is formally introduced. Let xi(t) be a functional data
observation that is absolutely continuous on T . We define its square root velocity
function to be

qi(t) =

{

x
(1)
i (t)/

√

|x(1)i (t)|, if |x(1)i (t)| 6= 0

0, otherwise,

where | · | denotes the absolute value function. The square root velocity functions
for the Berkley growth study data is depicted in Figure 4.
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Figure 4: Square root velocity functions of the mean growth curves and their deriva-
tives for girls and boys in the Berkley growth study.
Left: Age in years vs. square root velocity of height; Middle: Age in years vs. square
root velocity of growth; Right: Age in years vs. square root velocity of acceleration.

Srivastava and Klassen (2016) show in Section 5.6.2 that the elastic semimetric
of two observations x1(t), x2(t) is equivalent to the Euclidean distance between their
square root velocities q1(t), q2(t)

del (x1(t), x2(t)) = ||q1 − q2|| =
√
∫

T

(q1(t)− q2(t))
2 dt, (1)

for the special case that a = 1
2
and b = 1, where the parameter a2 penalizes the

”bending” of the curve and b2 the ”stretching” needed to align the curves. Note
that this still holds for multidimensional functions. Applying this result, we use
Equation (1) as definition for the elastic semimetric. Additionally, they show in
the same section that for one-dimensional functions the Fisher-Rao metric dFR is
equivalent to the Euclidean distance of the SRV functions and thus a special case of
the elastic semimetric.

8



Warping Functions

For introducing the amplitude distance and the phase distance, the notion of warping
functions is required. Warping functions map the support of a function monotoni-
cally back onto itself, but allow for distortion. Warping is used to stretch and
compress a curve horizontally, usually to achieve a better alignment. Let Γ be the
set of all warping functions γ : T 7→ T , meaning all strictly monotonic increasing,
differentiable functions on T with γ(min(T )) = min(T ) and γ(max(T )) = max(T ).
Let (γ, qi) denote the SRV function of the warped function xi ◦ γ for i = 1, 2. The
warping function that optimally aligns x1 to x2 is denoted by

γ∗ = argmin
γ∈Γ

del(x1 ◦ γ, x2) = argmin
γ∈Γ

||(γ, q1)− q2||.

Thus x1◦γ∗ and x2◦id, with id denoting the identity function, are optimally aligned.
Let ψ∗ denote the SRV function of γ∗ and 1 (the constant ≡ 1 function) the SRV
function of the identity function.

Amplitude Distance

Now the amplitude distance and the phase distance will be formally introduced.
Both are semimetrics derived from the Square Root Velocity Framework, see Sec-
tion 4.10 of Srivastava and Klassen (2016). For any two observations x1, x2 ∈ X
and the corresponding SRV functions q1, q2, we define the amplitude distance damp

to be:

damp(x1, x2) = inf
γ1,γ2∈Γ

(||(q1, γ1)− (q2, γ2)||)

= ||(q1, γ∗)− q2||
= del(x1 ◦ γ∗, x2).

It is shown in Section 4.10.1 of Srivastava and Klassen (2016) that all properties of
a semimetric are satisfied.

Phase Distance

Then, define the phase distance dph between x1 and x2 as

dph(x1, x2) = cos−1
(
〈ψ∗, 1〉

)

= cos−1

(∫

T

ψ∗(t)dt

)

where 〈·, ·〉 denotes the Euclidean inner dot product. In Section 4.10.2 of Srivastava
and Klassen (2016) it is proved that the phase distance satisfies all properties of a
semimetric as well.
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2.3.9 Dynamic Time Warping Distance

This section gives an introduction to dynamic time warping as a distance measure.
The concept of dynamic time warping is to stretch and compress the functions
horizontally (often along time, hence the name time warping), in order to minimize
their vertical distance. This distance measure is useful in applications where the
similarity of the functions, independent of variations in the horizontal dimension,
is discriminatory. This makes it similar to the amplitude distance presented in the
previous chapter.

For dynamic time warping, an optimal warping γ∗ function between two functions
is found that minimizes the distance between the warped functions x1 and x2,

γ∗ = argmin
γ

||x1 ◦ γ − x2||.

Often a window constraint is applied to γ restricting the warping function around
the identity function. Finding an optimal warping function tends to be time con-
suming, as the running time scales quadratically with the length of the support of
the observations. The dynamic time warping distance is defined as

dDTW = ||x1 ◦ γ∗ − x2||.

The dynamic time warping distance for two functions is visualized in Figure 5. It
depicts the dynamic time warping distance of two functions next to the Euclidean
distance of the same functions. The vertical lines connect the matching point. Note
that dynamic time warping is not a semimetric, as it does not hold the triangle
inequality. For the sake of completeness, it is still listed in this section.

Figure 5: Euclidean distance and dynamic time warping distance between two func-
tions. Vertical lines between the two functions connect the points that will be
compared by the distance measure. (Source: Keogh and Ratanamahatana (2005))

2.4 Nearest Neighbor Estimator

The nearest neighbor estimator for functional data classification is the cornerstone
of the nearest neighbor ensemble and the random forest ensemble presented in Chap-
ter 3. The base models that are ensembled in these methods are nearest neighbor
estimators.
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Conceptual Introduction

The nearest neighbor estimator for functional data is a straightforward generaliza-
tion of the multivariate nearest neighbor estimator. For a new observation, the
distance to all observations in the training data is computed using a (semi-)metric.
The unknown class of the new observation is assigned to the most prevalent class
among the k nearest neighbors, where the k nearest neighbors are the observations
in the training data with the smallest distance to the new observation. This pro-
cedure is illustrated in Figure 6. It visualizes a k nearest neighbor estimator for
two-dimensional observations using the Euclidean distance.

?

Figure 6: Illustration of k nearest neighbor classification for two-dimensional ob-
servations. For k = 3 nearest neighbors the class ”red triangle” is predicted (with
probablity 2

3
), for k = 5 nearest neighbors the class ”blue square” is predicted (with

probability 3
5
).

(Source: https://en.wikipedia.org/wiki/K-nearest neighbors algorithm)

Nearest Neighbor Estimator for Functional Data

Firstly, we look at how to create a nearest neighbor estimator for one semimetric
d(·, ·) and one covariable x(t). In order to create this nearest neighbor estimator,
the observations in the training set (yi, xi(t)), i = 1, . . . , N, are ordered according
to their distance to the new observation (y∗, x∗(t)) with respect to the semimetric
d(·, ·). This results in the ordered observations (y(i), x(i)(t)), i = 1, . . . , N,, for which

d(x∗(t), x(1)(t)) ≤ . . . ≤ d(x∗(t), x(k)(t)) ≤ . . . ≤ d(x∗(t), x(N)(t))

holds. The neighborhood N (x∗(t)) of the k nearest neighbors of x∗(t) is defined as

N (x∗(t)) = {xi(t) : d(x∗(t), xi(t)) ≤ d(x∗(t), x(k)(t))}.

11



The resulting nearest neighbor estimator for the probability of the new observation
x∗(t) being in class g ∈ G is

π̂g =
1

k

∑

xi(t)∈N (x∗(t))

I(yi = g). (2)

The unknown y∗ is estimated by selecting the class with highest probability,

ŷ∗ = argmax
g∈G

(π̂g).

2.5 Nonparametric Functional Kernel Estimator

The nonparametric functional kernel estimator (Ferraty and Vieu, 2003) is a method
for functional data classification that extends the principle of the nearest neighbor
estimator. Instead of using a simple majority vote of the k nearest neighbors, a
kernel estimator weights the classes of the closest observations in the training data.

Kernel Functions

A kernel function K is a non-negative real-valued integrable function that is nor-
malized,

∫ +∞

−∞

K(u) du = 1,

and symmetric,

K(u) = K(u) ∀u ∈ R.

For every kernel function K, all functions K∗(u) = hK(hu), where h > 0 are kernel
functions as well. This allows the introduction of the bandwidth parameter h, which
can be used to scale the kernel function appropriately to the data. A kernel function
with bandwidth h = 2 is twice as wide as the same kernel function with bandwidth
h = 1. In practice, the bandwidth h is often chosen using cross validation. However,
it can be difficult to choose the best kernel function for a given dataset. A useful
set of commonly used kernel functions is depicted in Figure 7.

Kernel Estimator for Functional Data

Let (yi, xi(t)), i = 1, . . . , N, observations in the training data with known class yi ∈
1, . . . , G, and (y∗, x∗(t)) a new observation to be classified. The distances between
all curves are computed using a predetermined semimetric d(·, ·). The estimated
probability π̂g,h

(
x(t)

)
that an observation x(t) belongs to class g ∈ 1, . . . , G, given

a fixed bandwidth h and a fixed positive kernel function K(·) is

π̂g,h
(
x(t)

)
=

∑N

i=1 I(yi = g) K
(

d
(
x(t), xi(t)

)
/h

)

∑N

i=1 K
(

d
(
x(t), xi(t)

)
/h

) ,
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Figure 7: A selection of kernel functions with bandwidth h = 1. All kernel
functions depicted are available for kernel estimators in the classiFunc package.
(Source: https://commons.wikimedia.org/wiki/File%3AKernels.svg)

with xi(t), i = 1, . . . , N the observations in the training data and the indicator func-
tion I(g1 = g2) = 1 ⇔ g1 = g2 and 0 otherwise. The kernel function determines the
shape of the kernel and its width is determined by the bandwidth h. For predicting
the class of a new observation, the class with the highest probability

argmax
g∈1,...,G

π̂g,h(x(t))

is selected.

2.6 Classification Trees and Random Forests

This section provides a conceptual introduction to classification trees (Breiman et al.,
1984) and random forests (Breiman, 2001). Random Forests are one of the most
commonly used machine learning methods because they display a high computa-
tional efficiency during training and prediction of new data while achieving a com-
petitive prediction performance. Random Forests can be used for classification and
regression problems, but we will focus on random forests for classification.

Classification Trees

A classification tree is created using an algorithm that recursively splits the data
set into smaller and more homogeneous sub data sets, the nodes. The algorithm
starts with the entire data set, the root node. Then, an optimal binary split of data
set is computed, such that the observations in the two child nodes are maximally

13



heterogeneous. Those two child nodes are recursively split using the same procedure,
until final nodes called leaves are reached. These leaves satisfy a stop criterion and
will not be split any further. The resulting tree structure is depicted in the top
left of Figure 8. There are four binary splits of the data set which result in five
leaf nodes. The top right of Figure 8 is an alternative way of depicting the same
classification tree. The axes represent the two covariables used in the tree. The
background color equates to the proportions of the classes in the leaf nodes. The
class of a new observation is predicted by running it through the tree until a leaf
node is reached. Then the unknown class of the new observation is estimated by a
majority vote of the classes for the training observations in this leaf node.

Random Forests

A random forest for classification is an ensemble of classification trees. The trees in
a random forest are decorrelated by randomly choosing subsamples of covariables
and observations to be used in each tree and binary split. To predict the class of
a new observation, the random forest uses a majority vote of the classes predicted
by its individual trees. The relevance of every explanatory variable for the model
can be measured using variable importance. This measure uses the total decrease in
node impurities from splitting on the variable, averaged over all classification trees
in the random forest. The node impurity is measured by the Gini index (Gini, 1912).

A random forest cannot be depicted in one tree structure, as it generally consists
of more than 200 individual trees. Instead, by aggregating over the predictions of
the individual trees, every combination of the two covariables can be assigned to a
class probability. This results in an analogous depiction of the random forest model
(bottom of Figure 8) and the classification tree (top left of Figure 8).
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Figure 8: Classification tree for a subset of the Pima Indians Diabetes data set
(ftp.ics.uci.edu://pub/machine-learning-databases). The body mass index
and the plasma glucose are used to predict whether or not a person suffers from
diabetes in a classification tree and a random forest.
Top left: Display of the classification tree in a tree structure; Top right: The clas-
sification tree in a planar display; Bottom: The random forest in a planar display.
By combining several classification trees, ”nonlinear” splits are achieved.

3 Ensembles for Functional Data Classification

This chapter introduces two interpretable approaches to functional data classifica-
tion. The Nearest Neighbor Ensemble (Fuchs et al., 2015) is described in Section 3.1.
It uses a weighted sum of the predictions of the underlying base estimators as an
ensemble. Section 3.2 introduces an alternative ensemble based on the random for-
est model. The two modeling approaches are compared theoretically in Section 3.3.
This section also gives a short outlook onto competing methods.

3.1 Nearest Neighbor Ensemble

Fuchs et al. (2015) introduces a novel approach for classification of functional data.
It is based on an ensemble of prediction probabilities that were estimated using
nearest neighbor classification. As an ensemble method a weighted sum is used.
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The weights of the sum are estimated to minimize the Brier Score of the resulting
ensemble classifier.

Conceptual Introduction

The basic idea of this approach is to compute numerous nearest neighbor estimations
with different numbers of nearest neighbors and different semimetrics and combine
them afterwards to an ensemble estimator using a weighted sum. In addition to the
properties of a semimetric described in Section 2.3 the authors also ask that the
semimetrics to be used in their nearest neighbor ensemble be symmetric, meaning
∀x1, x2 ∈ X : d(x1, x2) = d(x2, x1).

Ensembling Nearest Neighbor Estimators

The simple 1 nearest neighbor estimator presented in Section 2.4 is a special case of
the nearest neighbor ensemble. There is only one estimator in the ensemble which
receives weight 1. The generalization to a nearest neighbor ensemble is carried out
by using p semimetrics instead of only one. For each semimetric the individual neigh-
borhood Nl(x

∗(t)) is computed. The nearest neighbor estimator for each semimetric
is defined analogously to (2) as

π̂gl =
1

k

∑

xi(t)∈Nl

(
x∗(t)

)
I(yi = g).

The ensemble estimator is defined as the weighted sum of the individual estima-
tors, with

π̂g =

p
∑

l=1

clπ̂gl, (3)

where the weights cl are subject to the restrictions:

cl ≥ 0 ∀l and
p

∑

l=1

cl = 1. (4)

The unknown weights are chosen to minimize the Brier score of the resulting pre-
diction. Instead of defining the ensemble estimator as a weighted sum of the base
estimations, it could also be interpreted their weighted mean. For an ensemble
consisting of two base estimators, Figure 9 shows the effect of different weights c1
and c2 onto the ensemble prediction. The ensemble estimation is always a linear
combination of the base estimations. This is still valid for more than two base
estimators

Brier Score

The Brier score Q is a measure how well a set of predictions π̂ig fits the actual
class affiliation of the predicted observations yi. It is a proper scoring rule, which is
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Figure 9: Effect of base estimation weightings on the ensemble estimation, for two
base estimations and three sets of weights. The figure shows how the predicted
ensemble estimation π̂g depends on its base estimations π̂g1 and π̂g2.
Left: Equal weights of the estimators in the ensemble; Center: More weight on the
first estimator; Right: All weight on the first estimator.

computed as the mean squared difference of the predictions and the truth,

Q =
1

N

N∑

i=1

G∑

g=1

(zig − π̂ig)
2 (5)

with zig = 1, if yi = g, and zig = 0 for yi 6= g. The Brier Score is used, because it
is appropriately sensitive to changes in very small probabilities (Brier, 1950). An
important result for the benchmark analysis in Chapter 5 is, that the Brier score
for random guessing is 0.5 for a two class problem and 0.9 for a 10 class problem.
Models performing worse than this upper bound are useless.

The Brier score of the ensemble can be rewritten in notation in dependence of
the ensemble weights c = (c1, . . . , cp)

T to be:

Q(c) =



 z
︸︷︷︸

N ·G×1

− P
︸︷︷︸

N ·G×p

c
︸︷︷︸

p×1





T 

 z
︸︷︷︸

N ·G×1

− P
︸︷︷︸

N ·G×p

c
︸︷︷︸

p×1



 , (6)

with z = (z1| . . . |zN)T , zi = (zi1, . . . , ziG)
T , i = 1, . . . , N , g = 1, . . . , G, and

P =
(
PT

1
| . . . |PT

N

)
, where

Pi =






π̂11i . . . π̂1pi
...

. . .
...

π̂G1i . . . π̂Gpi






contains the estimated probabilities πgli for person i. These matrices contain the
classes g = 1, . . . , G, in their rows and all present combinations of semimetric, order
derivative and number of nearest neighbors l = 1, . . . , p in their columns.

Estimation of Ensemble Weights

The πgli are estimated by leave-one-out cross validation, as otherwise every observa-
tion would be its own nearest neighbor in the training data set. Other types of cross
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validation can be used as well. Minimizing (6) with respect to the ensemble weights
c, min

c
Q(c), under restrictions (4) implies a lasso-type penalty on the estimated

weights ĉ = argmin
c

Q(c). This results in some weights cl being set to 0, eliminating

combinations of semimetrics, order of derivatives and number of nearest neighbors
in the ensemble. This allows a more sparse ensemble, an easier interpretation and
a faster prediction of new test data. By implementing this optimization problem as
a quadratic program, the ensemble weights can be computed efficiently using the
R-package limSolve (Soetaert et al., 2009).

Ensemble Interpretation

In the nearest neighbor ensemble the weights cl can be interpreted. These coeffi-
cients quantify the importance the base model in the ensemble, allowing informative
conclusions about the model and the data. High ensemble weights on a semimet-
ric are indicative of a high discriminatory power of the feature captured by this
semimetric. A weight of 0 means that a semimetric does not contribute enough
to the prediction to be included into the ensemble. When the same semimetric is
included into the model with a different number of nearest neighbors, this can be
interpreted similarly to a nonparametric kernel estimation of this semimetric. Dif-
ferent numbers of nearest neighbors of the same semimetric can be seen as a kind of
non parametric kernel function. An exemplary interpretation is given in Figure 10,
which shows the weights of the base models in the nearest neighbor ensemble for the
Berkley growth study. The global maximum distance and the amplitude distance of
the first derivative are detected as the most informative semimetrics for this task.
The large weight on the maximum distance seem surprising, as the maxima of the
mean curves of the first derivative are quite similar, see Figure 3, but looking at the
individual observations in Figure 1 shows that the maximum of the first derivative
is informative about the sex for a lot of children.
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Figure 10: Weights of the base models in the nearest neighbor ensemble for the data
of the Berkley growth study.

3.2 Random Forest Ensemble

This section introduces the random forest ensemble as an approach to classification
of functional data. Instead of using a weighted sum of the individual nearest neighbor
estimates, a nonlinear combination is used by applying a random forest. Goldsmith
and Scheipl (2014) use a similar ensemble for a scalar-on-function regression.

Conceptual Introduction

The random forest model uses the predictions of the nearest neighbor estimators
π̂gl as predictor variables and the known class membership of the observations in
the training data as a target variable. This allows more complex interactions of the
nearest neighbor estimations and thus, the distances of the underlying semimetrics.
Figure 9 shows how the weighted sum is restricted to linear combinations of the
underlying predictions. Using a random forest expands on this by allowing nonlinear
separations, see Figure 8 at the bottom.

A natural expansion is to not only use the nearest neighbor estimations as pre-
dictor variables in the random forest but also (non-functional) variables. These
could be innately non-functional covariables from the data set or features gener-
ated from a functional covariable by applying an information compression procedure
(e.g., functional principal component analysis (see Chapter 8 in Ramsay and Silver-
man (2006)), spline representation (Fahrmeir et al., 2013)), Fourier transformation

19



(Fourier, 1822) or computing meaningful features (e.g., location and value of the
maxima/minima).

Ensemble Interpretation

In the weighted sum ensemble the weights cl of the nearest neighbor estimations
are interpreted. In the random forest ensemble the variable importance of the near-
est neighbor estimations can be interpreted analogously. Analogously, the variable
importance of the base models carries over directly onto the importance of the semi-
metric used in this base model in comparison with the semimetrics of the other base
models. Figure 11 shows the relative variable importance of the base models in the
random forest ensemble for the Berkley growth study. In contrast to the nearest
neighbor ensemble, the random forest ensemble selects the original data and the first
order derivative to be most informative in combination with the Euclidean distance
for this classification task.
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Figure 11: Variable importance of the base models in the random forest ensemble
for the data of the Berkley growth study.

3.3 Theoretical Comparison and Competing Methods

This section highlights the most important commonalities and differences of the
nearest neighbor ensemble and the random forest ensemble. Subsequently the meth-
ods are compared to established functional data classification methods.
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Theoretical Comparison

Both the nearest neighbor ensemble and the random forest ensemble are inter-
pretable classification methods for functional data. This means that they allow
insights into how the prediction is carried out. Both methods are ensemble meth-
ods, that base their prediction on the predictions of base models. Fuchs et al.
(2015) suggest to use exclusively nearest neighbor estimators as base models, but
their ensemble is in no means limited to this class of base models. Any other type of
functional data classification method can be used in the nearest neighbor ensemble,
e.g., functional kernel estimators. In fact, the nearest neighbor ensemble is not even
limited to classifying functional data. There is no reason not to use multivariate
classification methods as base models. This allows the use of nearest neighbor en-
sembles for classification of multivariate data. The implementation of the nearest
neighbor ensemble into software makes these additional features available, see Chap-
ter 4 for a detailed description of the software implementation. The same is true for
the random forest ensemble. It can be used as an ensemble method for functional
data as well as multivariate data and any type of base model.

Competing Methods

In general, time series classification methods can be used on discretized functional
data and functional data classification methods can be used for functionalized time
series. A recent overview of time series classification methods is given in Bagnall
et al. (2016). A strict separation between the methods used in either field of statistics
is consequently pointless. Many methods for functional data classification are based
on preceding dimension reduction procedures which allow the use of an arbitrary
multivariate data classification algorithm by breaking the curse of (theoretically)
infinite dimensionality. Examples for dimension reduction methods are principal
component analysis (Besse et al., 1997), spline approximation (Eilers and Marx,
1996), shapelet transformation (e.g., Ye and Keogh (2011)), and computing sum-
mary statistics like mean and slope on sub-intervals of the support (e.g., Rodŕıguez
et al. (2005)). The output of these procedures can then be used in any multivari-
ate classification methods like logistic regression models (Fahrmeir et al., 1996) or
in machine learning methods like decision trees, random forests (Breiman, 2001),
and support vector machines (Suykens and Vandewalle, 1999). In a wider sense the
ensembles introduced in this thesis can be seen as another case of this approach to
functional data classification. By ignoring the fact that the base models already
deliver individual predictions by themselves, and viewing the estimated class af-
filiations merely as multivariate covariables, the base models act as a dimension
reduction technique. The second step of ensembling the base learners using either
a weighted sum or a random forest, is nothing more than fitting a model that uses
the predictions of the base estimators as multivariate covariables.
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4 Software Implementation

This chapter outlines the implementation of the ensemble estimators, proposed in
Chapter 3, in the software package R. The core functionality was implemented in
the new R-package classiFunc (Maierhofer, 2017). The mlr-package (Bischl et al.,
2016) is extended to embed the classiFunc-package and offer the proposed ensem-
bles.

4.1 Creation of R-package classiFunc

The most important semimetrics for functional data and the nearest neighbor classi-
fication algorithm are reimplemented more efficiently in the new R-package classiFunc
(Maierhofer, 2017). This easily extendable package also includes all semimetrics pro-
posed in Fuchs et al. (2015) (see Section 2.3, e.g., short Euclidean distance, global
minima/maxima distance, relative areas distance), semimetrics based on the SRV
framework (amplitude distance and phase distance, see Section 2.3.8), all semimet-
rics from the R-package proxy (Meyer and Buchta, 2017), and semimetrics based
on dynamic time warping (Giorgino et al., 2009). The re-implementation of the
nearest neighbor algorithm in the classiFunc-package is approximately 40 times
faster than the implementation of the fda.usc-package (Febrero-Bande and Oviedo
de la Fuente, 2012) for small data sets. For large data sets, the increased scal-
ability of the new implementation offers even larger improvements in speed over
the existing implementation of nearest neighbor classification for functional data in
R. This is enabled by both a more efficient calculation of the semimetrics and more
efficient implementation of the nearest neighbor algorithm. For a hands-on introduc-
tion to the newly implemented software, see the vignette of the classiFunc pack-
age in Appendix B or on CRAN https://cran.r-project.org/web/packages/

classiFunc/vignettes/classiFunc.html, where an extensive documentation is
provided. The latest development version of the package is available on github
(https://github.com/maierhofert/classiFunc). Please report all bugs that es-
caped the intense test routines there.

From its release on CRAN onMay 29th 2017 until July 19th 2017 the classiFunc-
package has been downloaded by 243 individual users from 90 countries. An overview
of daily downloads is depicted in Figure 12. Users who downloaded the development
version from github are not included. The considerable number of people who are
interested in software for functional data classification speaks for the relevance of
the topic.

4.2 Extension of R-package mlr

The existing machine learning framework of the package mlr is used to provide
a comprehensive and flexible implementation of the nearest neighbor and random
forest ensembles proposed in Chapter 3.
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Figure 12: Daily number of downloads from unique users of the
classiFunc-package between May 29th 2017 and July 19th 2017. (Data
source: http://cran-logs.rstudio.com/)

Introduction to mlr

The user-friendly interface offered by mlr makes it easy to apply the proposed mod-
eling structures to new data sets, even for beginners in R. A wide range of models
are offered that are constantly updated and extended. It is straightforward to ap-
ply and compare multiple models using the robust and reproducible framework for
conducting benchmark analysis. These attributes have made mlr a hugely popu-
lar package, see Figure 13. For an introduction to mlr see the tutorial web page
http://mlr-org.github.io/mlr-tutorial/. Currently, mlr is being extended to
contain methods for functional data. The github branch for functional data analysis
is not yet merged into the official mlr master branch. So, the software created for
this thesis will be part of the first official CRAN release with the new functionality.
For the initial release functional covariables must be regular and can not contain
missing values.

Implementation of Ensembles

By embedding the methods from the classiFunc-package and the fda.usc-package
(Febrero-Bande and Oviedo de la Fuente, 2012) as new learners into mlr, both
implementations for nearest neighbor estimators can be employed and compared in
a uniform framework.

The ensemble proposed in Fuchs et al. (2015), see Section 3.1, is implemented
as a stacked learner in mlr. This makes it available as an ensemble method for
arbitrary base models (e.g., nearest neighbor estimators, kernel estimators, classi-
fication trees and support vector machines) and arbitrary classification problems,
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Figure 13: Daily number of downloads of the mlr-package in the
same time window as the classiFunc-package in Figure 12. (Data
source: http://cran-logs.rstudio.com/)

for functional as well as for non-functional classification problems. This flexibility
is the primary motivation for choosing mlr as a container for the nearest neighbor
ensemble. The random forest is already available as an ensemble method in mlr so
the implementation of the random forest ensemble for functional data only requires
combining the newly implemented base learners for functional data with the already
existing structure for ensembling learners.

This thesis contributes a small part to functional data methods in mlr by imple-
menting functional data classification. With the official release of functional data
analysis in mlr, dimension reduction methods for functional data provided in an-
other branch can be added into the random forest ensemble. The popularity and
utilization of the classiFunc-package as a background package for functional data
classification in mlr can be expected to increase.

5 Empirical Comparison of Classification Ensem-

bles

This chapter reports the result of the systematic comparison of the functional data
classification methods described in Chapter 3. A benchmark analysis is conducted
analogously to Bagnall et al. (2016) using the Brier Score (5) to measure perfor-
mance. All data used in this chapter is either simulated or has been previously
analyzed multiple times. Conducting a benchmark analysis on these data sets is
useful nonetheless, as the aim of the benchmark analysis is to find underlying struc-
tures and mechanisms in the proposed ensemble models. This helps to decide which
classification method to use in future applications.
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Section 5.1 introduces the Friedman test and the corresponding Nemenyi post-
hoc test (Demšar, 2006). These tests are used to test for statistical significance of the
differences in classification quality. Section 5.2 lists the models that are compared
in the benchmark analysis. The benchmark analysis was run for simulated and
real-world data. Section 5.3 describes the approach to simulating data and reports
the respective results of the benchmark analysis. The results for the real-world
data sets are reported in Section 5.4. More detailed benchmarking results in the
form of boxplots showing the performance for every learner in the folds of the cross
validation can be found in the digital supplement; see Appendix A for an overview
of the contents of the digital supplement.

Main Goals

The central questions to be answered by the benchmark analysis are:

1. Which of the ensemble methods proposed in Chapter 3 performs better given
the same base models?

2. How does their performance compare with reference models?

3. How good are the ensemble methods at detecting useful semimetrics? Does
their performance change when useless semimetrics are added?

4. Are the ensemble methods proposed in Chapter 3 better than the best indi-
vidual model they contain? This question can be subdivided:

(a) Does an ensemble of classifiers using the same semimetric d but different
numbers of nearest neighbors k outperform a classifier with the same
semimetric d and an optimally chosen k, or simply k = 1?

(b) Does an ensemble of classifiers using the same number of nearest neigh-
bors k (e.g., k = 1) and the same semimetric d but different order deriva-
tives a outperform a classifier with optimally chosen order derivative a,
or simply a = 0?

(c) Does an ensemble of classifiers using a fixed number of nearest neighbors
k (e.g., k = 1) but different semimetrics d outperform a classifier with the
same number of nearest neighbors k and an optimally chosen semimetric?

(d) Does an ensemble of classifiers using different numbers of nearest neigh-
bors k, different semimetrics d and different order derivatives a outper-
form a classifier with optimally chosen number of nearest neighbors k,
semimetric d and derivative of order a?

The main goals are answered using the simulated data and real-world data sets
from the UCR Time Series Classification Repository. Within the simulation study,
only the random splines data set is used evaluate the main goals, which is simulated
to not contain any warping. This is useful in order to separate effects of the ensemble
method from effects of the semimetric/data combination.
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5.1 Statistical Inference for Benchmark Experiments

This section gives an introduction to statistical inference in benchmark experiments.
Benchmark experiments are useful for comparing multiple models over numerous
data sets. By means of cross validation, the performance of every model can be
estimated for every data set. To carry out the benchmark analysis and test for
significance, the framework of the R-package mlr is used.

Friedman Test

Demšar (2006) and Bagnall et al. (2016) suggest using the Friedman test (Friedman,
1937, 1940) for evaluating benchmark analyses. The Friedman test is a nonpara-
metric equivalent of the repeated-measures ANOVA. This test compares the perfor-
mance of the models on the scale of their rank as opposed to the numeric value of
the performance measure. This makes sense, as for most benchmark experiments
the assumptions of a repeated-measures ANOVA (particularly the gaussian distri-
bution of the residuals and the random intercepts of the models) do not hold. If
they were met, the Friedman test would have lower power in comparison to the
repeated-measures ANOVA. The Friedman test ranks the algorithms for each data
set separately, with the best performing algorithm receiving rank 1, the second best
rank 2, and so forth. In the case of ties, average ranks are assigned. Then the test
statistic is computed as follows: Let rji be the rank of the model j, j = 1, . . . , J on
data set i, i = 1, . . . , N . The Friedman test compares the average ranks Rj of the

algorithms j, Rj = 1
N

∑N

i rij. Under the null hypothesis ”All the algorithms are
equivalent,” the average ranks Rj should be equal and the Friedman statistic

χ2
F =

12N

J(J + 1)

[
J∑

j=1

R2
j −

J(J + 1)2

4

]

is χ2 distributed with J − 1 degrees of freedom, when N and J are big enough.
Demšar (2006) give N > 10 and J > 5 as a rule of thumb for when this approxima-
tion holds. This is the case for this benchmark analysis.

Nemenyi Post-Hoc Test

If the null hypothesis of the Friedman test is rejected, the Nemenyi post-hoc test
(Nemenyi, 1962) can be applied. The Nemenyi test is the counterpart to the Tukey
test for ANOVA and is used to compare all classifiers to each other. The performance
of two classifiers is different on an α level of significance if their average ranks differ
by at least the critical difference

CD = qα

√

J(J + 1)

6N
.

The critical values of qα are based on the Studentized range statistic divided by
√
2.

They are tabulated in Demšar (2006) or can be computed in R using the qtukey

function from the stats package (R Core Team, 2016).
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Model ID Description Main Goals

Eucl: k 1; nderiv 0 1 nearest neighbor estimator on origi-
nal data with Euclidean distance

2

Eucl-Kernel: h CV-opt Nonparametric functional kernel es-
timator on original data with CV-
optimal bandwidth

2

dtw: k 1; nderiv 0 1 nearest neighbor estimator on orig-
inal data with dynamic time warping
distance

2

Table 1: Model ID, description and corresponding main goals of the benchmark
analysis for the reference models.

5.2 Models in Benchmark Experiment

A benchmark analysis compares models over different data sets. The aim is to find
underlying structures, which make it possible to predict relative model performance.
This section describes which models were used to gain insights into the underlying
patterns. This is an intricate problem, as a relatively small number of models had
to be chosen due to limitations in time and computational power. Despite this
challenge, a careful selection of the models makes it possible for this benchmark
analysis to robustly characterize the most important aspects of the investigated
model classes. The benchmark experiments conducted in this thesis compare the
same set of 17 models, 3 of which are reference models included to put the classi-
fication performance of the other 12 models into perspective. The results of these
other models will be used to find answers to the main research questions posed at
the beginning of this chapter.

Reference Models

An overview of the reference models evaluated in the benchmark analysis is given
in Table 1. As reference classification methods, 1 nearest neighbor estimators with
dynamic time warping (DTW) and the Euclidean distance as a distance measure
are used. They are included in the nearest neighbor ensemble as the special case
where only one nearest neighbor estimator is used, which will automatically receive
weight 1 in the ensemble. The nonparametric functional kernel estimator proposed
in Ferraty and Vieu (2003) will be used as another benchmark classification method.
A Gaussian kernel with optimal bandwidth is used. The bandwidth h is selected
from the interval [10−1, 104] using a 5 fold cross validation.

Evaluated Models

An overview of the models evaluated in the benchmark analysis is given in Table 2.
The models evaluated in the benchmark analysis are designed to find answers the
research questions raised at the beginning of this chapter. The nearest neighbor en-
sembles are designed to systematically evaluate the gain of ensembling models with
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a different number of nearest neighbors k, order derivative a or semimetric d as op-
posed to determining these parameters using cross validation. The parameters were
limited to the set of k = {1, 5, 9, 13}, a = {0, 1, 2} and d = {deucl, dmanh, dmin, dmax}.
The full nearest neighbor ensemble, meaning the nearest neighbor ensemble con-
taining the nearest neighbor models with all possible combinations of k and a, is
further compared to a random forest ensemble containing the same base models to
assess their effectiveness for a small number of (mostly) useful base models. In order
to determine which of the ensembles is better in filtering out useless base models,
”noisy” ensembles were created by adding 100 base models without any predictive
value to the ensemble. The amplitude and phase distance were used in nearest
neighbor estimators for an exploratory valuation of their predictive power.

Color Scheme

Throughout this thesis a uniform color scheme is used for graphical representations
of the models, see for example the legend of Figure 17. Reference models are shown
in dark tones, the 1 nearest neighbor estimator with the Euclidean distance in black,
the kernel estimator in light gray, and the 1 nearest neighbor estimator with the dy-
namic time warping distance in brown. Other 1 nearest neighbor estimators with
warping distance are shown in similar sand tones, yellow for the amplitude distance
and gold for the phase distance. The CV optimal 1 nearest neighbor estimators
always have the same color as their responding nearest neighbor ensembles, but a
few shades lighter. Ensembling over different k nearest neighbors is depicted in
red; ensembling over different derivatives of order a is depicted in blue; ensembling
over different semimetrics d is depicted in coral pink; and ensembling over k and a
and d is depicted in purple. All random forest ensembles are shown in green: light
green for the ensemble exclusively based on the base models and dark green for the
ensemble also using the discretized values of the functional observation as further
explanatory variables. The ”noisy” ensembles, meaning ensembles with uninforma-
tive base models added to them are paler in color: pale green for the random forest
ensemble and pale purple for the nearest neighbor ensemble.

5.3 Benchmark Experiments on Simulated Data

A first benchmark analysis was conducted on simulated data, in order to observe
the behavior of the models for artificial and well-behaved data sets. Note that
for this case statistical tests for classification performance of the different models
are meaningless, as the data they are based on is completely artificial and can be
tweaked to achieve (basically) every possible outcome. Instead, the data simulation
procedure and its hyperparameters are linked to the classification performance using
graphical methods.

This section is divided into two parts: The simulation of functional data which
does not contain any warping in Section 5.3.1, and the simulation of warped func-
tional data in Sections 5.3.2 through Section 5.3.4. The data without warping is
used to give answers to the main research questions posed at the beginning of this
chapter concerning the properties of the competing ensemble methods. Warped
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Model ID Description Main Goal
Eucl-ensemble: k 1, 5,
9, 13; nderiv 0

Ensemble of 1, 5, 9 and 13 nearest neighbor esti-
mators on original data with Euclidean distance

4a

Eucl-ensemble: k 1;
nderiv 0, 1, 2

Ensemble of 1 nearest neighbor estimators on
derivative of order 0, 1, 2 with Euclidean distance

4b

Semimet-ensemble: k
1; nderiv 0

Ensemble of 1 nearest neighbor estimators on orig-
inal Euclidean distance with Euclidean distance,
Manhattan distance, global minima distance and
global maxima distance

4c

Semimet-ensemble: k
1, 5, 9, 13; nderiv 0,
1, 2

Ensemble of 1, 5, 9 and 13 nearest neighbor esti-
mator on derivative of order 0, 1, 2 with Euclidean
distance, Manhattan distance, global minima dis-
tance and global maxima distance

1, 3, 4d

Eucl: opt k; nderiv 0 k nearest neighbor estimator on original data
with Euclidean distance, where k is chosen from
{1, 3, 5, 7} using CV

4a

Eucl: k 1; opt nderiv 1 nearest neighbor estimator on derivative of order
a with Euclidean distance, where a is chosen from
{0, 1, 2} using CV

4b

Opt Semimetric: k 1;
nderiv 0

1 nearest neighbor estimator on original data
with semimetric d, where d is chosen from
{deucl, dmanh, dmin, dmax} using CV

4c

Opt Semimetric: opt
k; opt nderiv

k nearest neighbor estimator on derivative of or-
der a with semimetric d, where k is chosen from
{1, 3, 5, 7} and a is chosen from {0, 1, 2} and d is
chosen from {deucl, dmanh, dmin, dmax} using CV

4d

rf-ensemble: k 1, 5, 9,
13; nderiv 0, 1, 2; no
feat

Same base learners as ’Semimet-ensemble: k 1, 5,
9, 13; nderiv 0, 1, 2’, but with random forest en-
semble

1, 3

rf-ensemble: k 1, 5, 9,
13; nderiv 0, 1, 2; use
feat

Same base learners as ’Semimet-ensemble: k 1, 5,
9, 13; nderiv 0, 1, 2’, but with random forest en-
semble using the observation points of the func-
tional covariable as multivariate features

1

nn-ensemble: noisy Same as ’Eucl-ensemble: k 1, 5, 9, 13; nderiv 0, 1,
2’ with additional 100 random base learners

3

rf-ensemble: noisy Same as ’Eucl-rf: k 1, 5, 9, 13; nderiv 0, 1, 2; no
feat’ with additional 100 random base learners

3

amplitude: k 1; nderiv
0

1 nearest neighbor estimator on original data with
amplitude distance

-

phase: k 1; nderiv 0 1 nearest neighbor estimator on original data with
phase distance

-

Table 2: Model ID, description and corresponding main goals of the models evalu-
ated in the benchmark analysis.

29



functions are simulated in order to get a deeper understanding of the comparison
between methods involving warping and methods that do not include warping. Here
only the subset of relevant models is included in the benchmark analysis.

Four different types of data sets were created using different data generation
processes. For the random splines data set (Section 5.3.1), class-specific spline co-
efficients are randomly sampled to create spline functions. This data set does not
contain any warping. In the warped trigonometric data set (Section 5.3.2) cosine
functions with class-specific amplitude and phase are sampled. In the warped bi-
modal data set (Section 5.3.3), random class-specific bimodal functional observations
are created, which are warped by applying class-specific random warping functions.
For the warped splines data set (Section 5.3.4), random class-specific warping func-
tions are used to integrate warping into the data generation process of the random
splines data.

5.3.1 Random Splines Data

The random splines data set is generated by sampling class-specific random splines.
The splines can be created to be more or less similar within and between the classes,
which allows the creation of easier and more difficult classification tasks. This data
set does not contain any warping and will be used to assess the main goals of the
benchmark analysis.

Conceptual Introduction to B-Splines

B-Splines can be used to approximate smooth functions and curves. The idea of
splines is to represent a complex function f(t) through a weighted sum of K simple
basis functions Bj, j = 1, . . . , K,

f(t) =
K∑

i

ωjBj(t).

These simple basis functions are depicted in Figure 14 for cubic B-Splines. Usually
the weights of the basis function are chosen to minimize the distance of the resulting
B-Spline to a function or curve from which only noisy observations are available.
This thesis turns this concept around. By randomly sampling the spline coefficients
ωj of the basis functions Bj(t), the resulting B-Spline f(t) will be a random function.

Data Generation

Every observation is represented by a spline, which in turn is defined by the spline
coefficients/weights ωj of its basis functions. The data is simulated in a two step
procedure. The first step is to sample one set of spline coefficients per class at ran-
dom. These will be the underlying ”true” splines for each class. In the second step,
random deviations from these spline coefficients are sampled for every observation.
All spline coefficients are drawn from a normal distribution with expectation zero.
With this procedure, an arbitrary number of observations can be sampled from an
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Figure 14: Basis functions for cubic B-splines.
(Source: Fahrmeir et al. (2013))

arbitrary number of classes. The hyperparameters that define this procedure are
(with considered parameter sets in curly braces):

1. nclass {2, 10}: the number of classes.

2. var between class {1}: the variance of the spline coefficients that are sam-
pled in the first step. A higher variance will lead to more dissimilar classes
and thus an easier classification problem.

3. var within class {0.5, 2}: the variance of the spline coefficients that are
sampled in the second step. A higher variance will lead to more dissimilar
observations within the classes and thus a harder classification problem.

Note that in this simulation setup the hyperparameters var between class and
var within class can be compressed into one, as only their ratio is relevant. Mul-
tiplying them simultaneously with a constant factor leads to a rescaling of the re-
sulting data, which is irrelevant for all methods at hand. Hence the hyperparameter
var between class can be discarded by setting it to 1. For the benchmark analy-
sis all possible combinations of the hyperparameters were used to create data sets.
Figure 15 shows simulated random splines data for nclass = 2, nobs = 20 and
var within class = 0.5.

Results

All reference models (Table 1) and evaluated models (Table 2) are compared in a
benchmark analysis on the random splines data sets using 10-fold cross validation.
An in-depth result of the benchmark analysis for these simulated data sets is shown
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Figure 15: The random splines data for nclass = 2, nobs = 20 and
var within class = 0.5.

in Figure 16. It consists of one subplot per data set showing the performance of
every model as a boxplot. The individual boxplots consist of the Brier Score achieved
by this model in the 10 folds of the cross validation. As expected, the predictive
performance of all models is better, the smaller the variance within the curves (vwc),
the larger the sample size (number of observations per class, nobs) and the fewer
classes (ncl) there are in the simulated data set. It is reassuring to see that for
”easier” classification tasks, all models do well and for ”harder” classification tasks,
all models do worse.

An aggregated overview of the results of the benchmark analysis is shown in
Figure 17, mapping out the ranks of the models for every simulated data set. In
almost all cases, the random forest models (green dots) show the best performance.
The only exception is an easy data set with a low number of observations (ncl =

2, nobs = 20, vwc = 0.5), where most models achieve almost perfect prediction.
The full CV-optimal estimator (light purple dot), the k CV-optimal estimator (light
red dot), the nearest neighbor ensembles ensembling over k (dark red dot) and
a (dark blue dot), and the functional kernel estimator also perform well. The 1
nearest neighbor estimator with the Euclidean distance (black dot), the estimator
choosing the derivative of order a (light blue dot) or the semimetric d (light coral
pink dot) CV-optimal, the full nearest neighbor ensemble (dark purple dot), its noisy
counterpart (pale purple dot), and the ensemble over different semimetrics d (dark
coral pink dot) tend to perform worse. All models based on warping distances (sand
colored dots) consistently perform badly for these simulated data sets. This is not
surprising as the data is simulated to not contain any informative warping.
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Figure 16: Result of the benchmark analysis for the random splines data set. Every
subplot shows the performance of every model as a boxplot for one random splines
data set. The individual boxplots depict the Brier score achieved by this model in
the 10 folds of the cross validation.
Upper half: ncl = 2, number of classes = 2; Lower half: ncl = 10 (more difficult);
Row 1 & 3: nobs = 20, number of observations per class = 20; Row 2 & 4: nobs

= 100 (easier); Left column: vwc = 2, variance of the spline coefficients within the
observations of the same class is 2 times the variance of the splines coefficients
between the class centers; Right column: vwc = 0.5 (easier)
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Eucl: k 1; nderiv 0
Eucl−Kernel: h CV−opt
dtw: k 1; nderiv 0
amplitude: k 1; nderiv 0
phase: k 1; nderiv 0
Eucl−ens: k 1, 5, 9, 13; nderiv 0
Eucl: opt k; nderiv 0
Eucl−ens: k 1; nderiv 0, 1, 2
Eucl: k 1; opt nderiv

semimet−ens: k 1; nderiv 0
Opt semimet: k 1; nderiv 0
semimet−ens: k 1, 5, 9, 13; nderiv 0, 1, 2
Opt semimet: opt k; opt nderiv
rf−ens: k 1, 5, 9, 13; nderiv 0, 1, 2; no feat
rf−ens: k 1, 5, 9, 13; nderiv 0, 1, 2; use feat
nn−ens: noisy
rf−ens: noisy

Figure 17: Result of the benchmark analysis for the random splines data set. De-
picted is the classification task vs. the rank of the average Brier score achieved by
the models. Shared ranks are overplotted. This is a condensed depiction of the
information shown in Figure 16.

Assessment of Main Goals

Based on these results, the research questions concerning the properties of the en-
semble methods can be answered regarding the simulated data:

1. The random forest ensemble performs better than the nearest neighbor en-
semble given the same base models.

2. Both ensemble methods tend to outperform reference classification models.
For the nearest neighbor ensemble this statement has to be limited to ensem-
bles containing mostly useful base models.

3. The random forest model is better at detecting (and filtering out) uninforma-
tive base models than the nearest neighbor ensemble.

4. A nearest neighbor ensemble method as proposed in Chapter 3.1 does generally
not outperform the best individual model contained. This can be subdivided
into:

(a) An ensemble of classifiers using the same semimetric d but different num-
bers of nearest neighbors k does not outperform a classifier with the same
semimetric d and an optimally chosen k. They generally seem to perform
equally well.

(b) An ensemble of classifiers using the same numbers of nearest neighbors
k (e.g., k = 1) and the same semimetric d but different order derivatives
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a outperforms a classifier with the same number of nearest neighbors k
and optimally chosen order derivative a.

(c) An ensemble of classifiers using a fixed number of nearest neighbors k
(e.g., k = 1) but different semimetrics d is outperformed by a classifier
with the same number of nearest neighbors k and an optimally chosen
semimetric.

(d) An ensemble of classifiers using different numbers of nearest neighbors k,
different semimetrics d and different order derivatives a is outperformed
by a classifier with optimally chosen number of nearest neighbors k, semi-
metric d and derivative of order a. This should be considered carefully, as
this might change depending on the ratio of informative semimetric/order
derivative combinations in the base models.

5.3.2 Warped Trigonometric Data

The idea behind the warped trigonometric data sets is to create class specific func-
tions that differ in their amplitude and phase. For this purpose, cosine functions
with class-specific amplitude and phase are sampled. By adding random noise to
the amplitude and phase of the individual observations of the classes, the underlying
amplitude and phase differences of the classes are blurred.

Data Generation

Every observation xgi(t), i = 1, . . . , Ng, observations per class, g = 1, . . . , G, classes,
is represented by a cosine function, which is defined by its amplitude αgi and its
phase φgi,

xgi(t) = αgi cos(φgi + t),

where αgi ∼ N (αg, σα) and φgi ∼ U(φg, φg + δφ). The parameters αg and φg are set
to αg = 1 + g/G and φg = 2π · g/G. Observations from the same class are drawn
from the same distribution, as the parameters αg and φg are class specific.

With this procedure an arbitrary number of observations can be sampled from
an arbitrary number of classes. The hyperparameters that define this procedure are
(with considered parameter sets in curly braces):

1. nclass {2, 10} : G, the number of classes.

2. nobs {100}: Ng, the number of observations per class. This can theoretically
vary from class to class to create an unbalanced data set. In this thesis all
simulated data is balanced.

3. max.phase.dif {1, 1.5}: δφ/π, the range of the uniform distribution where
the phase shift is sampled from.

4. vamp {0.5, 2}: σα, the variance of the amplitude within the classes.

Figure 18 shows the warped trigonometric data for nclass = 2, nobs = 100,
max.phase.dif = 1 and vamp = 0.5.
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Figure 18: The warped trigonometric data for nclass = 2, nobs = 100,
max.phase.dif = 1 and vamp = 0.5. The class of the observations is color-coded in
red and blue.

Results

The results of the benchmark analysis are depicted in Figure 19, showing the rank
of each model for every data set. Only models relevant to analyzing the difference
between methods including warping and methods not including warping are evalu-
ated in the benchmark experiments for warped data, see Table 3. These models are
the nearest neighbor estimators for the Euclidean distance and the three warping
distances (dynamic time warping distance, amplitude distance and phase distance).
The nonparametric functional kernel estimator is included as an additional refer-
ence model. For the two class problems, the distances based on warping do not
outperform the Euclidean distance. This might be the case because the difference
in the phase of the two classes is too large. For the ten class problem, the phase
distance greatly outperforms the Euclidean distance. The warping functions needed
to align these observations seem to be informative. The amplitude distance slightly
outperforms the Euclidean distance for the case of ten classes as well, but the actual
difference between the average Brier scores is rather small (see the detailed results
in the digital supplement). Unexpectedly, the kernel estimator using the Euclidean
distance outperforms the 1 nearest neighbor estimators using warping distances.
It seems that the advantage of using a kernel estimator over a nearest neighbor
estimator outweighs the use of sophisticated semimetrics in this case.
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Model ID Description

Eucl: k 1; nderiv 0 1 nearest neighbor estimator on origi-
nal data with Euclidean distance

Eucl-Kernel: h CV-opt Nonparametric functional kernel es-
timator on original data with CV-
optimal bandwidth

dtw: k 1; nderiv 0 1 nearest neighbor estimator on orig-
inal data with dynamic time warping
distance

amplitude: k 1; nderiv 0 1 nearest neighbor estimator on origi-
nal data with amplitude distance

phase: k 1; nderiv 0 1 nearest neighbor estimator on origi-
nal data with phase distance

Table 3: Model ID and description for the models evaluated in the benchmark
experiments for simulated warped functional data.

ncl 10; vamp 0.5; max.ph.diff 1   

ncl 10; vamp 0.5; max.ph.diff 1.5

ncl 10; vamp    2; max.ph.diff 1   

ncl 10; vamp    2; max.ph.diff 1.5

ncl   2; vamp 0.5; max.ph.diff 1   

ncl   2; vamp 0.5; max.ph.diff 1.5

ncl   2; vamp    2; max.ph.diff 1   

ncl   2; vamp    2; max.ph.diff 1.5
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Eucl: k 1; nderiv 0
Eucl−Kernel: h CV−opt
dtw: k 1; nderiv 0

amplitude: k 1; nderiv 0
phase: k 1; nderiv 0

Figure 19: Ranks of the learners in the benchmark analysis for the warped trigono-
metric data set.
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5.3.3 Warped Bimodal Data

In the warped bimodal data sets (Section 5.3.3) random class-specific bimodal func-
tional observations are created, which are warped by class-specific random warping
functions. The procedure follows Example 8.1 from Srivastava and Klassen (2016).
This data generation process allows the simulation of data where the amplitude or
the amount of warping of the data is informative or completely random.

Data Generation

Every observation xgi(t) = fgi
(
γgi(t)

)
, i = 1, . . . , Ng, g = 1, . . . , G, is a bimodal

function with random location and height of its peaks. The observations are sampled
as bimodal functions

fgi(t) = z1gi exp
(
− (t− 1.5)2/2

)
+ z2gi exp

(
− (t+ 1.5)2/2

)
,

where z1gi, z2gi ∼ N (µg, σz), with µg = 1 + δg · g. These functions are warped
according to a random warping function

γgi(t) = 6
exp

(
agi(t+ 3)/6

)
− 1

exp
(
agi

)
− 1

− 3,

where agi ∼ N (ag, σa), where ag = δa ·
(
− (G + 1)/2 + g

)
. The parameters ag are

set to be symmetric around 0, as γgi(t) = t for agi = 0.
This procedure allows the sampling of an arbitrary number of observations from

an arbitrary number of classes. The hyperparameters defining this procedure are
(with considered parameter sets in curly braces):

1. nclass {2, 10} : G, the number of classes.

2. nobs {100}: Ng, the number of observations per class.

3. cl.z.diff {0, 0.1}: δz, the average vertical difference between observations
of neighboring classes g, g + 1. If set to 0, the differences in the amplitude of
the data are completely random.

4. cl.a.diff {0, 1}: δa, the average distance between the warping parameters
ag of neighboring classes. If set to 0, the differences in warping of the data are
completely random.

5. obs.z.var {0.01}: σz, the variance of the vertical difference between observa-
tions of neighboring classes g, g + 1.

6. obs.a.var {0.01}: σa, the variance of the average distance between the warp-
ing parameters ag of neighboring classes.

Figure 20 shows the warped bimodal data for nclass= 2, nobs= 100, cl.z.diff
= {0, 0.1} and cl.a.diff = {0, 1}. The data belonging to different parameter com-
binations is shown in a grid. In the top left of Figure 20, the observations do not
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Figure 20: The warped bimodal data for nclass = 2, nobs = 100, and Top left:
cl.z.diff = 0 and cl.a.diff = 0; Top right: cl.z.diff = 0 and cl.a.diff =
1; Bottom left: cl.z.diff = 0.1 and cl.a.diff = 0; Bottom right: cl.z.diff =
0.1 and cl.a.diff = 1.

contain any information about their class, as cl.z.diff = 0 and cl.a.diff = 0.
All observations are sampled from the same distribution, so all variation is com-
pletely random. The bottom right of Figure 20 shows the warped bimodal data
for cl.z.diff = 0.1 and cl.a.diff = 1. The observations in the classes differ in
amplitude as well as in their warping functions.

Results

The results of the benchmark analysis are depicted in Figure 21, showing the rank
of each learner for every data set. For this set of simulated data, the 1 nearest
neighbor estimator using the Euclidean distance outperforms the warping distances
in all cases where the observations contain information about the class. The only
exception is the data set with 10 classes and a small difference in amplitude, where
the warping distances perform slightly better. It has to be noted that, for this data
set, only the kernel estimator outperforms the threshold set by random guessing
(Brier Score = 0.9, see digital supplement).
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ncl 10; cl.z.diff    0; cl.a.diff 0

ncl 10; cl.z.diff    0; cl.a.diff 1

ncl 10; cl.z.diff 0.1; cl.a.diff 0

ncl 10; cl.z.diff 0.1; cl.a.diff 1

ncl   2; cl.z.diff    0; cl.a.diff 0

ncl   2; cl.z.diff    0; cl.a.diff 1

ncl   2; cl.z.diff 0.1; cl.a.diff 0

ncl   2; cl.z.diff 0.1; cl.a.diff 1
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Rank of Brier score
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Eucl: k 1; nderiv 0
Eucl−Kernel: h CV−opt
dtw: k 1; nderiv 0

amplitude: k 1; nderiv 0
phase: k 1; nderiv 0

Figure 21: Ranks of the learners in the benchmark analysis for the warped bimodal
data sets.

5.3.4 Warped Splines Data

In the warped splines data sets (Section 5.3.4), random class-specific warping func-
tions are used warp data generated by the same process as the random splines data.

Data Generation

The data consists of random splines f(t) that are drawn to have expectation t. This
is useful to still have effects of different warping functions if the variance of the spline
coefficients is very small. The warping functions γgi are sampled using the following
procedure: The support T = [0, 1] is separated in M intervals of equal length
[0, t1 = 1/M ], [t1, t2 = 2/M ], . . . , [tM−1, tM = 1], on which the warping function is
piece-wise linear. At the endpoints of these intervals, the warping function γgi takes
the values

γgi(tj) =
1

∑M

m=1 ǫgm(tm)

j
∑

m=1

ǫgm(tm),

where ǫgm(tm) ∼ Exp(λg(tm)), with time dependent rate λg(t) = 0.1 + φ · g2(t−0.5).
For g = 1 the rate λ1(t) is constant and the warping function is the identity function
in expectation. The higher g is, the higher the expectation function of γgi, as the
expectation of the ǫgm(tm) is more dissimilar for small and large tm. With increasing
g, the warping functions of observations of class g and class g + 1 are more similar.

With this procedure, an arbitrary number of observations from an arbitrary
number of classes can be sampled. The hyperparameters that define this procedure
are (with considered parameter sets in curly braces):

1. nclass {2, 10} : G, the number of classes.
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Figure 22: The warped splines for nclass = 2, nobs = 100, var between class =
1 and phase factor = 1

2. nobs {100}: Ng, the number of observations per class.

3. var between class {0, 1}: the variance of the spline coefficients sampled for
the class centers. If 0, the class centers are the same across all classes.

4. var within class {1}: the variance of the spline coefficients within the classes.

5. phase factor {0, 1}: φ, a binary indicator for un-/informative warping.

Figure 22 shows the warped splines for nclass= 2, nobs= 100, var between class

= 1 and phase factor = 1.

Results

The results of the benchmark analysis are depicted in Figure 23, showing the rank
of each learner for every data set. The 1 nearest neighbor estimator using the
Euclidean distance outperforms the estimators using warping distances if the ob-
servations contain any information about their class. For the only data set where
this is not the case (ncl = 2, vbc = 1, ph.f = 0), it performs basically equally
well to the amplitude distance (see digital supplement). The kernel estimator vastly
outperforms the 1 nearest neighbor estimators.
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Figure 23: Ranks of the learners in the benchmark analysis for the warped splines
data set.

5.4 Benchmark Experiment on Real-world Data

In addition to using simulated data in order to verify theoretical characteristics of
the methods, real data sets are used in order to compare the performance of the
methods in real-world problems. The data sets are taken from the UCR Time Series
Classification Repository (Chen et al., 2015). The same set of models is used as in
Section 5.3 (see Table 1 and Table 2). This benchmark experiment will be used to
answer the main research questions.

Results

For the benchmark analysis, 17 models are compared over 34 data sets in a 10-fold
cross validation. The 34 smallest data sets (number of observations times length per
observation) were used in order to reduce the run-time. The total run-time of this
benchmark is about 800 CPU hours. For this large number of data sets, a graphical
display showing summarized information is provided in Figure 25. Individual box-
plots for the performance of every model for every data set can be found in the digital
supplement. In addition to showing individual ranks of the model performance per
data set, the distribution of the models per rank are visualized in Figure 24. For
more than two thirds of the data sets, the random forest ensembles obtain the first
and/or the second rank in prediction performance. The nearest neighbor estimator
based on the phase distance shows the best performance for a few data sets, but
also the worst performance for many others, indicating that the semimetric should
be carefully chosen for the individual classification task at hand. The other warp-
ing based models also show a wide range of ranks, supporting this theory. A data
set where the warping distances greatly outperform the Euclidean distance is the
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”Beetle-Fly” data set, see Figure 26. This data set encodes the outlines of 20 beetles
and 20 flies as MPEG-7 shape descriptors. It is plausible that warping distances
lead to a good classification in this application, as warping may superimpose the
same anatomical structures of individual insects. The kernel based model and the
nearest neighbor ensembles show performance in the middle ranks. The random for-
est ensemble appears to be rather unaffected by adding useless semimetrics, whereas
the prediction of the nearest neighbor estimator worsens considerably.
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rf−ens: noisy

Figure 24: Result of the benchmark analysis for the real-world data sets from the
UCR Time Series Classification Repository. For every rank on the x-axis, the dis-
tribution of the models is plotted. The more often a model achieves a high rank,
the better the model.
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Figure 25: Result of the benchmark analysis for the real-world data sets from the
UCR Time Series Classification Repository. Depicted is the classification task vs.
the ranks of the models.
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Figure 26: Random sample of 5 observations from the ”Beetle-Fly” data set.
(Source: http://www.dabi.temple.edu/~shape/MPEG7/dataset.html)

Statistical Inference

These findings are supported by the Friedman test and the Nemenyi post-hoc test
(see Section 5.1). With the Friedman test showing significant results (see digital
supplement), the Nemenyi post-hoc test was calculated for the ranks the models
achieved for each data sets in the benchmark analysis. The critical difference dia-
grams in Figure 27 and Figure 28 are a visual representation of the Nemenyi post-hoc
test. Critical difference diagrams show the average rank for every model on the x-
axis. The critical difference, meaning the minimal difference in average rank of two
models for them to be significantly different, is plotted on top. The gray bars at
the bottom connect groups of models that are not significantly different in their
ranks. Figure 27 shows that choosing the number of nearest neighbors k, the order
of derivative a, and the semimetric d using cross validation outperforms ensembling
over these parameters on average. All CV optimal nearest neighbor estimators out-
perform their respective nearest neighbor ensemble. In the case of ensembling over
a, k, and d, the difference in average rank is significant. Figure 28 shows that the
random forest ensemble significantly outperforms the nearest neighbor estimator and
reference models. Even the nearest neighbor estimator with CV optimal number of
nearest neighbors k, derivative of order a, and semimetric d, which is the best of all
nearest neighbor ensembles, is vastly outperformed.

Figure 29 shows that the nearest neighbor estimators do not outperform the
reference models significantly, if at all. The amplitude and phase distance perform
slightly worse than the Euclidean distance. The kernel estimator using the Euclidean
distance is on average one rank better that the nearest neighbor ensemble using dif-
ferent numbers of nearest neighbors k. This is an interesting finding, as ensembling
over different nearest neighbors k is very similar to a bandwidth optimized kernel
estimator.
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Figure 27: Critical difference diagram (α = 0.05) for the benchmark analysis for the
real-world data sets from the UCR Time Series Classification Repository. Depicted
are nearest neighbor ensembles and their respective one nearest neighbor estimator
with CV optimal parameters.

Assessment of Main Goals

Based on these results, the main research questions can be answered regarding the
real-world data:

1. The random forest ensemble performs better than the nearest neighbor en-
semble given the same base models.

2. The random forest ensemble tends to outperform reference classification mod-
els. For the nearest neighbor ensemble this is not necessarily the case.

3. The random forest model is better at detecting (and expelling) useless base
models than the nearest neighbor ensemble. It proves to be much more robust
to adding uninformative base models into the ensemble.

4. A nearest neighbor ensemble method as proposed in Chapter 3.1 is generally
outperformed by the best individual model contained. This is true for en-
sembling over different numbers of nearest neighbors k, different derivatives of
order a, and different semimetrics d. The difference is strikingly large when a
large number of rather uninformative base models are added into the ensemble
or chosen from using cross validation.
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Figure 28: Critical difference diagram (α = 0.05) for the benchmark analysis for the
real-world data sets. Depicted are the full nearest neighbor ensemble, the random
forest ensemble, their noisy counterparts, their CV optimal counterpart, and the
reference models.
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Figure 29: Critical difference diagram (α = 0.05) for the benchmark analysis for the
real-world data sets. Depicted are the full nearest neighbor ensemble, the random
forest ensemble, their CV optimal counterpart, the reference models and the nearest
neighbor estimators using warping distances.
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6 Discussion

This thesis introduces and implements two functional data classification methods,
the nearest neighbor ensemble of Fuchs et al. (2015) and the random forest ensemble.
Both classification methods are based on ensembling nearest neighbor estimators for
functional data. The random forest model creates more flexible nonlinear combina-
tions of the estimations of the base models and can additionally include multivariate
covariables into the model. Both methods are comprehensively implemented in the
new R-package classiFunc (Maierhofer, 2017). This package can be used through
the user friendly interface of the mlr-package (Bischl et al., 2016), which increases
its versatility.

This thesis thoroughly examines the nearest neighbor ensemble and the random
forest ensemble in a set of benchmark experiments. This empirical comparison allows
drawing conclusions about underlying structures in the modeling approaches. The
random forest model outperforms the nearest neighbor ensemble by a large margin.
The nearest neighbor ensemble has problems detecting useful base models from a
large number of uninformative base models. When the majority of base models is
uninformative, the nearest neighbor ensemble completely fails; its prediction accu-
racy drops below random guessing. The random forest ensemble is more robust to
uninformative base models. It filters out useless base models and achieves a similar
predictive performance. In contrast to the nearest neighbor ensemble, the random
forest ensemble clearly outperforms the reference models used in the benchmark
analysis. Ensembling over numbers of nearest neighbors k, derivative order and
semimetrics in the nearest neighbor ensemble does not improve performance. Op-
timizing these parameters using cross validation, instead of ensembling over them,
leads to better results and easier interpretation with only slightly inflated variance.

In conclusion, the random forest ensemble is a superior alternative to the nearest
neighbor ensemble. It boasts a better predictive performance given the same base
models and allows additional multivariate covariables.

Outlook

In future research, the unlimited possibilities for ensemble methods should be fur-
ther investigated. For example, Fuchs et al. (2016) show that using a restricted
multinomial logit model is one promising alternative to the weighted sum in the
nearest neighbor ensemble. To improve predictive performance in the random forest
ensemble, it could be built with an optimized set of semimetrics and explanatory
variables created by dimension reduction techniques such as functional principal
component analysis. It will be important for future research to directly compare
new ensembles against existing classification methods. Bagnall et al. (2016) provide
an inspiring example of direct model comparisons, which should be followed as the
field evolves. To keep up with the explosion of available functional data in a prin-
cipled way, continued research into methods for funtional data classification will be
essential.
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Rodŕıguez, J. J., C. J. Alonso, and J. A. Maestro (2005). Support vector ma-
chines of interval-based features for time series classification. Knowledge-Based
Systems 18 (4), 171–178.

Smith, J. W., J. Everhart, W. Dickson, W. Knowler, and R. Johannes (1988).
Using the ADAP learning algorithm to forecast the onset of diabetes mellitus. In
Proceedings of the Annual Symposium on Computer Application in Medical Care,
pp. 261. American Medical Informatics Association.

Soetaert, K., K. Van den Meersche, and D. van Oevelen (2009). limSolve: Solving
Linear Inverse Models. R package 1.5.1.

Srivastava, A. and E. P. Klassen (2016). Functional and Shape Data Analysis.
Springer.

Suykens, J. A. and J. Vandewalle (1999). Least squares support vector machine
classifiers. Neural Processing Letters 9 (3), 293–300.

Thomas, D. H. (1981). How to classify the projectile points from monitor valley,
nevada. Journal of California and Great Basin Anthropology 3 (1), 7–43.

Tuddenham, R. D. and M. M. Snyder (1954). Physical growth of California boys and
girls from birth to eighteen years. Publications in Child Development. University
of California, Berkeley 1 (2), 183.

Wang, J.-L., J.-M. Chiou, and H.-G. Müller (2016). Functional data analysis. Annual
Review of Statistics and Its Application 3, 257–295.

Wickham, H. (2009). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag
New York.

52



Ye, L. and E. Keogh (2011). Time series shapelets: a novel technique that allows
accurate, interpretable and fast classification. Data mining and knowledge discov-
ery 22 (1), 149–182.

Appendix

A Digital Supplement

Part of this thesis is a digital supplement. It consists of the folder Master Thesis,
which contains the code to reproduce all analysis and figures reported in this thesis
as additional figures for the benchmark analysis. Further details are in the contained
README.txt file.

B Vignette for classiFunc-package



classiFunc: Classification of 
Functional Data
Thomas Maierhofer

2017-05-29

This vignette gives a quick introduction to the key features and functions included in the 
classiFunc package. Please use the Project Page to suggest new features or report bugs. This 
package offers an extensible and efficient implementation of k nearest neighbor classification for 
functional data.

The following chunk gives a quick introduction to the usage of the classiFunc package.

library("classiFunc") 

# classification of the ArrowHead data set
data("ArrowHead", package = "classiFunc") 

  classes = ArrowHead[,"target"] 

set.seed(123) 
# use 80% of data as training set and 20% as test set

  train_inds = sample(1:nrow(ArrowHead), size = 0.8 * nrow(ArrowHead), replace = FALSE) 
  test_inds = (1:nrow(ArrowHead))[!(1:nrow(ArrowHead)) %in% train_inds] 

# create functional data as matrix with observations as rows
  fdata = ArrowHead[,!colnames(ArrowHead) == "target"] 

# create a k = 3 nearest neighbor classifier with Euclidean distance (default) of the
# first order derivative of the data

  mod = classiKnn(classes = classes[train_inds], fdata = fdata[train_inds,], 
nderiv = 1L, knn = 3L) 
# or create a kernel estimator

  mod2 = classiKernel(classes = classes[train_inds], fdata = fdata[train_inds,]) 

# predict the model for the test set
# matrix with the prediction probabilities for the three classes

  pred = predict(mod, newdata =  fdata[test_inds,], predict.type = "prob")

All functionality of this package can also be accessed through the mlr package Project Page. For 
an introduction on how to use mlr check out the Online Tutorial. Currently, the learners are not 
merged into the Master branch of mlr. If you want to use the development version, please 
download the package from the Project Page. The following chunck gives a quick introduction on 
how to use the classiFunc learners in mlr.

# download and install the mlr branch containing the classiFunc learners
# devtools::install_github("maierhofert/mlr", 
#                          ref = "fda_pull1_task")



library("mlr") 

# classification of the ArrowHead data set
data("ArrowHead", package = "classiFunc") 

# create the classiKnn learner for classification of functional data
lrn = makeLearner("fdaclassif.classiKnn") 
# create a task from the training data set
task = makeFDAClassifTask(data = ArrowHead[train_inds,], target = "target") 
# train the model on the training data task
m.mlr = train(lrn, task) 

# predict the test data set
pred = predict(m.mlr, newdata = ArrowHead[test_inds,])

By using the mlr interface for this package, a multitude of new possibilities are available. One of 
the key features to be added by the mlr package is automatic hyperparameter tuning. In the 
following chunk a kernel estimator is created that automatically chooses its band width by cross 
validation.

# create the classiKernel learner for classification of functional data
lrn.kernel = makeLearner("fdaclassif.classiKernel", predict.type = "prob") 

# create parameter set
parSet.bandwidth = makeParamSet( 
makeNumericParam(id = "h", lower = 0, upper = 10) 

) 

# control for tuning hyper parameters
# Use higher resolution in application
ctrl = makeTuneControlGrid(resolution = 11L) 

# tuned learners
lrn.bandwidth.tuned = makeTuneWrapper(learner = lrn.kernel,  

resampling = makeResampleDesc("CV", iters = 5), 
measures = mmce, 
par.set = parSet.bandwidth, 
control = ctrl) 

# train the model on the training data task
m = train(lrn.bandwidth.tuned, task) 

# predict the test data set
pred = predict(m, newdata = ArrowHead[test_inds,])

The Brier score optimal ensemble proposed in Fuchs et al. (2015), Nearest neighbor ensembles 
for functional data with interpretable feature selection, can also be reproduced using the 
implementation in mlr. A newly implemented stacked learner aggregates the individual base 
learners to an ensemble learner by creating a weighted mean of their individual predictions. 
Other ensemble learners can easily be created.



# create the base learners
b.lrn1 = makeLearner("fdaclassif.classiKnn",  

id = "Manhattan.lrn", 
par.vals = list(metric = "Manhattan"),  
predict.type = "prob") 

b.lrn2 = makeLearner("fdaclassif.classiKnn",  
id = "mean.lrn", 
par.vals = list(metric = "mean"),  
predict.type = "prob") 

b.lrn3 = makeLearner("fdaclassif.classiKnn", 
id = "globMax.lrn", 
par.vals = list(metric = "globMax"),  
predict.type = "prob") 

# create an ensemble learner as porposed in Fuchs et al. (2015)
# the default uses leave-one-out CV to estimate the weights of the base learners as 
proposed in the original paper
# set resampling to CV for faster run time
ensemble.lrn = makeStackedLearner(base.learners = list(b.lrn1, b.lrn2, b.lrn3),  

predict.type = "prob",  
resampling = makeResampleDesc("CV", iters = 5L), 
method = "classif.bs.optimal") 

# create another ensemble learner
ensemble.rf.lrn = makeStackedLearner(base.learners = list(b.lrn1, b.lrn2, b.lrn3),  

super.learner = "classif.randomForest", 
predict.type = "prob",  
method = "stack.cv") 

# train the model on the training data task
ensemble.m = train(ensemble.lrn, task) 

# predict the test data set
pred = predict(ensemble.m, newdata = ArrowHead[test_inds,])
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