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1 Abstract

The aim of this thesis is to develop a multivariate method for identifying mediators

in high dimensional survival data and to compare this approach with a univariate

mediation analysis method, which is proposed by Lange and Hansen (2011). Zhang

et al. (2016) published a paper addressing a three step multivariate high dimensional

mediation analysis for continuous response variables which is the basis for this thesis.

However, the main difference between the method of Zhang et al. (2016) and this work

is that the developed method is embedded in a survival data setting, in contrast to

Zhang et al. (2016), who are working with a continuous outcome.

Building a new package for R containing both, the univariate and the multivariate

approach is also a part of this thesis.

The comparison of the multivariate and the univariate method is performed with a

simulation which consists of three different dependency settings with 500 simulated

data sets each. After checking the simulation design, every setting was analyzed using

the univariate and the developed multivariate method.
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Ziel dieser Arbeit ist es, eine multivariate Methode zur Identifizierung von Mediatoren

im Falle hochdimensionaler survival Daten zu entwickeln und diesen Ansatz mit einer

univariaten Mediatorenanalyse, welche von Lange and Hansen (2011) entwickelt wurde,

zu vergleichen.

Die Veröffentlichung von Zhang et al. (2016), welches die Basis für diese Arbeit darstellt,

beschäftigt sich mit einer multivariaten hochdimensionalen Mediatorenanalyse, die aus

drei Schritten besteht. Die Methode von Zhang et al. (2016) und die Methode, welche

im Rahmen dieser Arbeit entwickelt wird, unterscheiden sich in erster Linie darin,

dass in dieser Arbeit mit survival Daten gearbeitet wird, im Gegensatz zu Zhang et al.

(2016), welche von einem stetigen outcome ausgehen.

Ein weiteres Ziel dieser Thesis ist es, ein neues Packet für R zu entwickeln, welches

sowohl den univariaten als auch den multivariaten Ansatz beinhaltet.

Um die multivariate und die univariate Methode miteinander vergleichen zu können wird

eine Simulation durchgeführt, welche aus drei verschiedenen Abhängigkeitsstrukturen

(3 Settings) mit jeweils 500 simulierten Datensätzen besteht. Nach einer Prüfung

des Simulationsdesigns wird jedes Setting sowohl mit der univariaten als auch der

entwickelten multivariaten Methode analysiert.
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2 Introduction

The aim of this thesis is to develop a multivariate method for identifying mediators

in high dimensional survival data and to compare this multivariate approach with a

univariate mediation analysis method. Zhang et al. (2016) published a paper addressing

the multivariate mediation analysis of high dimensional survival data for continuous

response variables, which is the basis of this thesis.

Before explaining some basic terms of this work and how it is structured, the main

terms and definitions used all throughout this thesis are explained. The mediating

variables are denoted as M , X is called exposure and Y represents the outcome variable.

In this work the exposure X is binary, which means taking the value 1 if the exposure

is present and 0 otherwise. The mediators M are continuous and the response Y is

considered to be survival times. A variable is called a mediating variable M if it “is

intermediate in the causal chain relating X and Y ” (MacKinnon, 2008, p.8). That

means the exposure X does have an effect on the outcome Y , but there also exists an

effect from X to the mediator M , and an effect from M to Y . The structure and a

detailed description of mediators is included in section 3.1.

Mediation analysis can be performed with a univariate or multivariate approach.

One possibility for a univariate analysis method by Lange and Hansen (2011) is pro-

posed in section 4.1, which analyzes each mediator separately. The approach in Zhang

et al. (2016) as well as the method developed in this work is a multivariate analysis,

which means that the mediation effects are not analyzed separately, but including the

consideration of other variables. One advantage of multivariate regression is that it

can adjust confounding variables.

A major topic of this thesis is the concept of high dimensional data. Hastie et al.

(2015) put the matter of high dimensional data in a nutshell: “There is a crucial need to

sort through this mass of information, and pare it down to its bare essentials. For this

3



process to be successful, we need to hope that the world is not as complex as it might

be. For example, we hope that not all of the 30,000 or so genes in the human body are

directly involved in the process that leads to the development of cancer” (Hastie et al.,

2015, p.1). Data are considered as high dimensional if the amount of observed units n

is smaller than the number of potential influences p, thus n < p. Standard regression

methods usually cannot handle such type of data and the interpretation in case of a

large number of predictors would not be meaningful. Such problems can be solved by

using a regularization method like Lasso or Ridge.

The main difference between the work of Zhang et al. (2016) and this thesis is that

the mediator analysis developed in this work is embedded in a survival data setting, in

contrast to a continuous outcome in Zhang et al. (2016). Survival data own special

characteristics and are usually collected during survival studies in which individuals,

who for example experienced a disease, are observed until an event of interest occurs,

such as death or recurrence of the disease. Individuals “are followed from the time

they experience a particular event such as the diagnosis of disease, and the time to

recurrence of the disease or death is recorded” (Kirkwood and Sterne, 2003, p.225).

The characteristics of survival data and possible methods for an analysis are further

described in section 3.2.

Before taking a look at the ideas and methods of high dimensional mediation analysis

used in this work, chapter 3 clarifies some basic concepts and essential methods needed.

These concepts include an explanation of different kinds of two- and three-variable

effects, including mediators in section 3.1, as well as survival data and methods for

survival analysis (Cox Regression) in section 3.2. The idea of high dimensional data

and penalized regression is described in section 3.3.

Since multivariate analysis adjusts for confounding variables the method developed

in this thesis contain a multivariate analysis combined with the MCP technique for

variable selection, which is described in section 3.4. Chapter 4 contains an approach

for univariate mediator analysis by Lange and Hansen (2011) in section 4.1, a general

description of multivariate mediator analysis in section 4.2, as well as the detailed

description of the multivariate method developed by Zhang et al. (2016) in section

4.3. Zhang et al. (2016) use a three step analysis with a pre-selection of variables

using sure independence screening (SIS), estimating and selecting variables with a

minimax concave penalty regression and a joint significance test to finally identify

4



the mediators, The multivariate mediation analysis for high dimensional survival

data developed in this thesis is described in section 4.4 and contains three steps as

well. However, compared to Zhang et al. (2016) the pre-selection is not performed

using SIS, some minor changes were made and the method was adapted to survival data.

Within the framework of this thesis a package for R, names himasurv, containing

both, the univariate and the multivariate approach was built. The implementation of

the univariate and multivariate methods, named metest() and himasurv() respectively,

is described in section 4.5. To compare metest() and himasurv(), a simulation is

performed. Section 4.6 displays the simulation design and results.

The analysis and simulation in this work were performed with R-3.4.0 for (Mac) OS

X/R-Studio Version 1.0.143. The thesis itself was created with TeXstudio 2.12.4.
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3 Essentials and methods

3.1 Two- and three-variable effects

Basically the main interest in analyzing data is to identify relations and how strong

influences are. The simplest relation between variables is the one shown in Figures

3.1 and 3.2. The relation between X and Y can be asymmetric, where one variable X

causes another variable Y (see Figure 3.1), or the relation can be symmetric, where X

and Y cause each other (see Figure 3.2). If a third variable Z is added to the system, an

interpretation of possible relations between the three variables becomes more complex.

Some concepts of relationships among three variables are those of confounder, covariate,

mediator and moderator variables, which will be explained in the following sections.

(MacKinnon, 2008, p.6)

Independent Variable: X Dependent Variable: Y

Figure 3.1: Two-variable effect: asymmetric
(based on MacKinnon (2008))

Independent Variable: X Dependent Variable: Y

Figure 3.2: Two-variable effect: symmetric
(based on MacKinnon (2008))
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The first concept is Z being considered a confounding variable. This relationship is

shown in Figure 3.3. Accounting for the confounder leads to a meaningfully different

interpretation of the relationship between the independent variableX and the dependent

variable Y (Aparasu and Bentley, 2015, p.180). If Z is not included in the analysis this

relation may wrongly be considered as a causal relationship between X and Y . If one

is interested in the effect of X on Y and is not considering the confounding variable Z,

the result may be biased.

(Kirkwood and Sterne, 2003, p.179; MacKinnon, 2008, p.7)

X

Z

Y

Figure 3.3: Three-variable effect: Confounder
(based on Kirkwood and Sterne (2003))

Another concept is that the third variable Z being considered as a covariate, which

is shown in Figure 3.4. In case of Z being a covariate, the prediction of Y will be more

accurate considering Z, as it explains variability within Y . It is possible that covariates

are related to the dependent Y and independent variable X. However, the difference

between a confounder and a covariate is that considering the “confounder leads to

a meaningfully different interpretation of the relationship between the independent

variable X and the dependent variable Y ” (Aparasu and Bentley, 2015, p.180) and

considering a covariate does not.

(MacKinnon, 2008, p.7)

X

Z

Y

Figure 3.4: Three-variable effect: Covariate
(based on MacKinnon (2008))
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The next concept within three variable effects is a moderator variable. Figure 3.5

shows such a relationship between X, Z and Y . In this case Z changes the sign

or strength of the effect of n X and Y because it moderates the relation between

them. Therefore the relation between X and Y changes depending on the level of the

moderator variable. In literature (cf. Jaccard and Turrisi (2003)) the moderator effect

is often referred to as the interaction effect.

(MacKinnon, 2008, p.11)

X

Z

effect Y

Figure 3.5: Three-variable effect: Moderator
(based on Küster-Rohde (2010))

The main interest of this thesis focuses on mediating variables. In case of mediation

the third variable Z “is intermediate in the causal chain relating X and Y ” (MacKinnon,

2008, p.8). That means the exposure X does have a direct effect on the outcome Y ,

but there also exists an effect from X to the mediator M , and an effect from M to

Y . This relationship is shown in Figure 3.6. Chapter 4 contains a detailed description

about each path and different ways of mediator analysis.

(MacKinnon, 2008, p.8)

X

Z

Y

Figure 3.6: Three-variable effect: Mediator
(based on Baron and Kenny (1986))
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3.2 Survival data and survival analysis

The first section of this chapter (3.2.1) introduces the concept of survival data, what

such data looks like, what characteristics they have and when they are needed. Since

survival data need particular methods for analysis, caused by their special structure,

section 3.2.2 and 3.2.3 address some ideas on how to analyze survival data.

3.2.1 Survival data

Survival data are usually collected during survival studies in which individuals are

for example “followed from the time they experience a particular event such as the

diagnosis of a disease, and the time to recurrence of the disease or death is recorded“

(Kirkwood and Sterne, 2003, p.225). An observation of survival time consists of a

starting point, denoted as t = 0 and an endpoint which is reached when the event of

interest occurs. The survival time is the distance between the starting point (t = 0)

and the time a subject reaches the event of interest, for example dies from the observed

disease, or the time a subject experiences “some other non-fatal, well-defined, condition

such as meeting clinical criteria for remission” (Hosmer et al., 2008, p.3) of a disease.

Incomplete observations due to censoring and truncation are one characteristic of

survival data. An observation is considered as censored if it is incomplete due to

random factors and a truncated observation is incomplete due to a selection process.

Censoring can occur in different ways. The most common censored data is right

censored. This type of observed survival time starts at the beginning point t = 0 and

ends before the event of interest occurs. If the event of interest has already occurred

when the observation begins, the survival time data is considered left censored. Interval

censoring occurs if the particular event times are unknown, but it is known between

what points of time they are located. Details about different types of censored and

truncated data are explained in detail by Liu (2012). Left censoring, interval censoring

and truncation are mentioned for the sake of completeness, the most common type

of censoring is right censoring which can be included in the estimation of a survival

model.

(Hosmer et al., 2008, p.3ff.)

9



3.2.2 Survival analysis

A descriptive data analysis should be the beginning of every statistical analysis. As

survival data includes censored or truncated observations, common methods for the

estimation of mean, variance etc. cannot be applied. In this case an estimated

cumulative distribution provides parameter estimates.

Let T be the random variable (the survival time), then the cumulative function of T

(F (t)) is the probability that a subject selected at random will have a survival time

less than or equal to time t and is denoted as

F (t) = P (T ≤ t)

The survival function or survival curve S(t) is the probability of observing a survival

time greater than a time t:

S(t) = P (T > t) = 1− F (t)

(Hosmer et al., 2008, p.16)

The survival curve can be estimated with the Kaplan-Meier method, which is

calculated considering all risk sets of the individuals that are still in the study at each

time at which an event occurs (t). The calculation of the survival probability at time t

(st), with nt being the number of individuals in the risk set and dt being the number

of events that occur at exactly that time t, can be performed with

st = 1− rt =
nt − dt

nt

Thus the risk rt of time t is equal to
dt
nt

. Based on this it is possible to estimate the

survivor function via the Kaplan-Meier estimator with

S(tj) = S(tj−1)× stj = st1 × st2 × ...× stj

(Kirkwood and Sterne, 2003, p.277)

10



3.2.3 Regression analysis for survival data

The most common regression analysis for survival data is the Cox method, or propor-

tional hazards regression.

Let yi be the observed survival time with i = 1, ..., n. The vector of predictors is

denoted as xi = (xi1, xi2, ..., xip) and δi as the censoring indicator, with δi = 1 if the

survival time yi is the time of failure or δi = 0 if yi is right censored. Then the Cox

proportional hazards model can be written as

log(h(t)) = log(h0(t)) + β1xi1 + β2xi2 + ...+ βpxip

with h(t) being the hazard at time t.

The shared baseline hazard is denoted as h0(t) and hi(t) is the hazard for patient

i at time t. β is a vector of the predictive effects of length p. Then the hazard for

patient i can be written as

hi(t) = h0(t)e
xi

Tβ

The assumption used by the Cox regression is called proportional hazard assumption,

which means that the ratio of the hazards comparing different exposure groups remains

constant over time. Considering xi1 being a binary variable with xi1 = 1 if unit i

is exposed and xi1 = 0 if it is unexposed. Then the hazard ratio HR(t) compares

individuals who are exposed to them who are not exposed at time t and can be written

as

HR(t) =
h0(t)e

(β1)

h0(t)
= e(β1)

11



Suppose Ri being the set of indices j with yi ≥ ti, which includes those at risk at

time ti. Therefore the indices included in Ri did not experience the event of interest

and are uncensored right before ti. The inference of the Cox model can be calculated

with the partial likelihood

L(β) =
n∏

i=1

[

exi
Tβ

∑

j∈Ri

exj
Tβ

]δi

By maximizing this partial likelihood it is possible to estimate the parameter vector

βββ. This is equivalent to maximizing a log partial likelihood of the form

l(β) =
n∑

i=1

δi

[

xi
Tβ − log(

∑

j∈Ri

exj
Tβ)

]

(Simon et al., 2011, p.1ff.; Verweij and Van Houwelingen, 1994, p.2428; Kirkwood and

Sterne, 2003, p.287f.)

Further reading about survival data and survival analysis can be found in Kirkwood

and Sterne (2003) and Hosmer et al. (2008).
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3.3 High-dimensional data and penalized regression

In the age of digitalization and scientific progress, the volume of data grows every day

and high-dimensional data is more common in a multitude of research areas than ever

before, one example being the medical field which is increasingly delving into the world

of genetics. For this reason, scientists have to handle a large number of variables and

quite often with a comparably small number of observed units (e.g. observed patients).

Hastie et al. (2015) refer to the assumption of simplicity, or more precisely of sparsity:

“Loosely speaking, a sparse statistical model is one in which only a relatively small

number of parameters (or predictors) play an important role” (Hastie et al., 2015, p.1).

Before introducing penalized regression, a way to analyze high-dimensional data, it

is necessary to start explaining how estimation with linear regression works. Linear

Regression is a popular and easy way to analyze data as it can be used to form a model

for prediction as well as for measuring the predictor’s importance. For the following

section suppose yi is the outcome of unit i, with i = 1, ..., n, xi = (xi1, ..., xip)
T are

the p predictor variables, β0 and β = (β1, ..., βp) are unknown parameters and ǫi is an

error term. Then the linear model can be written as

yi = β0 +

p
∑

j=1

xijβj + ǫi

The unknown parameters β0 and β = (β1, ..., βp) can be estimated with the least

squares estimator RSS(β):

RSS(β) =
n∑

i=1

(yi − β0 −

p
∑

j=1

xijβj)
2

which can then be obtained by minimizing the least squares objective function

min
β0,β

n∑

i=1

(yi − β0 −

p
∑

j=1

xijβj)
2

The least squares estimator is a common estimator and easy to use, but it has some

drawbacks. The first is the prediction accuracy because “the least squares estimates

often have low bias but large variance” (Hastie et al., 2009, p.57). Using shrinkage or

variable selection methods may improve the prediction accuracy by increasing the bias

a bit to gain a lower variance of the predicted values.
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The second drawback to consider is the case of a large p. It is difficult to provide

a reasonable interpretation in case of a large number of predictors. Therefore it is

desirable to select a smaller subset of variables with the strongest effects, as an inter-

pretation will be easier.

At last in case of p > n there will be an infinite set of solutions for the estimated

parameters, which set the objective function equal to zero. Therefore, if p > n the

least squares estimates for β are not unique and will overfit the data (Bühlmann and

van de Geer, 2011, p.9). Such problems can be solved by using a regularization method.

In general, a regularized (or penalized) regression problem can be written as

β̂ = min
β0,β

n∑

i=1

(yi − β0 −

p
∑

j=1

xijβj)
2 +

p
∑

j=1

p(βj)

where p(βj) is called penalty term and β̂ is the estimated parameter vector.

(Hastie et al., 2009, p.44; Zhang et al., 2016, p.3151; Hastie et al., 2015, p.1f.)

The most popular regularization methods are the least absolute shrinkage and

selection operator (Lasso) and Ridge. In the Lasso regression the parameters are

estimated by solving the following problem

β̂
lasso

= min
β0,β

n∑

i=1

(yi − β0 −

p
∑

j=1

xijβj)
2 + λ

p
∑

j=1

|βj|

with the penalization parameter λ, which controls the shrinkage of the parameter βj.

The Ridge regression uses a different penalization term and minimizes the following

penalized regression problem

β̂
ridge

= min
β0,β

n∑

i=1

(yi − β0 −

p
∑

j=1

xijβj)
2 + λ

p
∑

j=1

β2
j

Lasso and Ridge show that regularization processes differ depending on the penal-

ization term p(βj) they use. The regularization process used in this thesis is called

minimax concave penalty and will be explained in chapter 3.4.

(Hastie et al., 2015, p.1f.; Tibshirani, 1996, p.268)
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3.4 Minimax concave penalty techniques (MCP)

Some of the problems of estimation in case of high dimensional data were addressed

in section 3.3. As described, these problems can be solved by using a regularization

method like Lasso or Ridge. Nevertheless both methods do have drawbacks. Performing

Ridge regression will not result in a variable selection, as this method shrinks the

coefficients towards 0 but does not set any of them to 0 (Tibshirani, 1996, p.267). Lasso

solves that problem because it performs a variable selection by setting coefficients equal

to 0. However, in case of p > n, which means that the analysis includes more covariates

than observed units, Lasso selects a maximum of n variables for the model. Besides

that Zhang (2010) pointed out that it is biased. Therefore a penalty is used, containing

a second threshold level, like the minimax concave penalty (MCP), as proposed by Fan

and Li (2001).

(Zhang et al., 2016, p.3151; Breheny and Huang, 2011, p.235f.)

The MCP term, defined on [0,∞), with the regularization parameters λ > 0 and

γ > 0 which determines the concavity of MCP, is written as follows

pλ,γ(βk) =







λβk −
β2

k

2γ
, if 0 ≤ βk < γλ

1
2
γλ2 , if βk ≥ γλ

The estimation of the predictors covariance matrix in section 4.4 requires the

derivative of that penalty term, which is

p′λ,γ(βk) =







λ− βk

γ
, if 0 ≤ βk < γλ

0 , if βk ≥ γλ

Looking at the penalty’s derivative p′λ,γ(βk) helps to understand the concept of MCP.

Figure 3.7 shows the penalty terms for Lasso and MCP and Figure 3.8 displays the

derivative of those penalty terms. The MCP starts with the same rate as Lasso and

continuously eases the penalization until the rate drops to 0 when βk > γλ.

(Zhang et al., 2016, p.3151; Breheny and Huang, 2011, p.235f.)
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Figure 3.7: Penalization terms with λ = 0.5 and γ = 3
(based on Breheny and Huang (2011))

Figure 3.8: Derivative of penalization terms with λ = 0.5 and γ = 3
(based on Breheny and Huang (2011))
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Since the data analyzed in this work are survival data (cf. section 3.2), the MCP

method has to be adapted to the Cox proportional hazards model. As mentioned in

section 3.2.3 the parameter β can be estimated by maximizing the log partial likelihood

of the Cox proportional hazards model. Therefore the penalized log partial likelihood,

with pλ,δ(βk) being the penalty term of the MCP and l(β) being the partial likelihood,

reads as follows

lpen(β) = l(β)− pλ,δ(β)

Considering the Lagrangian formulation, the vector β can be estimated with

β̂ = argmaxβ

[

δi[
n∑

i=1

xT
i β − log(

∑

j∈Ri

ex
T
j β)− pλ,δ(β)]

]

The paper of Breheny and Huang (2011) covers the minimax concave penalty in

detail. The function ncvsurv() in the package ncvreg, which is used in this work, uses

a coordinate descent algorithm for the estimation. An explanation of that algorithm

can be found in Simon et al. (2011).

(Simon et al., 2011, p.3; Verweij and Van Houwelingen, 1994, p.2428; Breheny, 2017)

3.4.1 The choice of λ

The recently introduced minimax concave penalty technique (MCP) (cf. section 3.4)

needs a regularization parameter λ and a tuning parameter γ to perform a variable

selection and estimation of the parameters. The package ncvreg contains functions

performing an MCP regression for continuous, binary and survival variables. The

methods for the selection of λ offered in those functions are the information criteria

Akaike’s Informations Criterion (AIC) and the Bayesian Information Criterion (BIC),

as well as cross-validation (CV ). Those are common criteria for model comparison

and selection. The values of the chosen criterion are calculated for each model and

compared with each other. The model corresponding to the lowest value of AIC, BIC

or CV is considered to be the best. Considering the MCP regression, the compared

models differ in their value of the regularization parameter λ. The model with the

smallest value for the chosen criterion yields the ideal value for λ, which will then

be used for further analysis. The following passage addresses the calculation of AIC,

BIC and CV .

(Breheny, 2017)
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Let β̂ be the vector of p estimated parameters, l(β̂) is the corresponding log-likelihood

and n is the total number of observed units. Then the value for the AIC can be

calculated with

AIC = −2l(β̂) + 2p

The BIC can be obtained by using

BIC = −2l(β̂) + log(n)p

(Fahrmeir et al., 2009, p.488)

The third measurement CV used for model comparison is generated using cross-

validation. Verweij and Van Houwelingen (1993) displayed a cross-validation method

for survival analysis and denoted the resulting value cvl. The cvl is used as a measure

of prediction accuracy because is represents how well the prediction for unit k is

when using the remaining observations. Before displaying how cvl is calculated some

notations and terms are explained first.

Suppose there are n observed units, the log-likelihood is denoted by l(β) and β is

the coefficient vector. With l(−k)(β) being the log-likelihood when the observed unit k

is left out then lk(β) is defined as the contribution of unit k to the log-likelihood l(β)

and can be written as follows

lk(β) = l(β)− l(−k)(β)

The adaption of the method to the Cox model starts with the partial likelihood,

already introduced in section 3.2.3

L(β) =
n∏

i=1

[

exi
Tβ

∑

j∈Ri

exj
Tβ

]δi

Next, it is necessary to derive the partial likelihood L(k)(β) to calculate the partial

log-likelihood lk(β). This can be achieved by using

Lk(β) =
L(β)

L(−k)(β)
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Let wi = exi
Tβ, then L(−k)(β) can be derived by leaving out unit k, which means

that unit k is removed from all risk sets before time tk. Therefore, with ti < tk for

i < k, it holds that

L(−k)(β) =
∏

i<k

(
wi

∑

k∈Ri

wj − wk

)δi
∏

i>k

(
wi

∑

j∈Ri

wj

)δi

Now it is possible to get Lk(β), which can be interpreted as the conditional probability

that unit k survives until time tk−1 or in case of δk = 1, experiences the event of interest

at time tk. With pki =
wk

∑

j∈Ri

wj

being the probability that individual k dies at time ti,

Lk(β), can be written as

Lk(β) =
∏

i<k

(1− pki)
δipδikk

Therefore the log-likelihood is

lk(β) =
∑

i<k

δilog(1− pki) + δilog(pkk)

Finally the cross-validated log-likelihood cvl is defined by

cvl =
n∑

k=1

lk(β̂(−k))

with the parameter β̂(−k) representing the value of β that maximizes l(−k)(β) and is

called leave-one-out regression coefficient. “The determination of these coefficients

involves the fitting of n Cox models, each with n − 1 observations” (Verweij and

Van Houwelingen, 1993, p.2307). Four ways for the approximation of β̂(−k) are de-

scribed in Verweij and Van Houwelingen (1993).

Analogously to the criteria AIC and BIC, the model containing the value of λ with

the smallest value of CV is considered the best. Thus the λ of this specific model will

be used for further analysis.

(Verweij and Van Houwelingen, 1993, p.2306f.)
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3.4.2 The choice of γ

However, an estimation using MCP models not only depends on the choice of λ but

also on the choice of γ. Breheny and Huang (2011) suggest an approach using a

combination of AIC or BIC, cross-validation and convexity diagnostics to determine λ

as well as γ containing the following steps:

1. Start by using a given γ (e.g. the default 3) and select λ using AIC or BIC

with that given γ.

2. Look at the coefficient paths produced using MCP regression (in case of survival

data with ncvsurv()) with the λ which was selected in the first step. Figure 3.9

shows an exemplary coefficient path, which is created by applying ncvsurv() on

a simulated data set, which is described in section 4.6 (setting 1 data set 1).

Each colored line represents the path of one penalized coefficient β̂j and how it

changes with different values of λ. “The shaded region is the region in which

the objective function is not locally convex” (Breheny and Huang, 2011, p.244).

The chosen value for γ is the one producing a coefficient path where the recently

chosen λ lies outside the shaded region (ideally near to the edge) and therefore

produces a balance of sparsity and convexity.

3. Finally, use the γ which was selected in the last step to choose the final λ using

cross-validation.

20



Figure 3.9: Coefficient path using ncvsurv() with γ = 3
(based on Breheny and Huang (2011))

The selection of γ is just displayed for the sake of completeness as further analysis

in this work use the default value γ = 3 in ncvsurv(). A more detailed explanation of

convexity diagnostics and analysis can be found in Breheny and Huang (2011).

(Breheny and Huang, 2011, p.243ff.)
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4 Mediator analysis

The main interest of this work is mediation analysis. “Mediation analysis plays an

important role in biomedical, behavioral and psycho-social research studies, typically

to understand the mechanism whereby change in one variable causes change in another”

(Zhang et al., 2016, p.3150).

Exposure: X

Mediator: M

Outcome: Yγ

α β

Figure 4.1: Detailed paths of mediation
(based on Baron and Kenny (1986))

A lot of different methods for mediation analysis have been developed and published

and some of them are listed in Zhang et al. (2016). Mediator analysis can be explained

using Figure 4.1, which shows the simplest scenario containing just one mediator

(univariate). This mechanism contains different paths: γ displays the direct impact of

the independent variable (the exposure X) on the dependent variable (the outcome

Y ), the impact of the mediator M on the outcome is β and α shows the path from the

exposure to M .

One way of univariate mediation analysis will be explained in section 4.1.

(Zhang et al., 2016, p.3151)
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4.1 Univariate mediator analysis

Lange and Hansen (2011) proposed a univariate method for mediation analysis in

a survival context. The model framework contains T , the survival time, either the

time of interest or the time of censoring and a binary exposure X, equal to 1 if the

exposure is present and 0 otherwise. The potential mediators are represented by M

and Z represents other baseline covariates.

Before introducing the proposed measure or mediation it is necessary to introduce

the model framework, some definitions, terms and assumptions.

“Recall that the rate at time t measures the probability of experiencing an event

within the next unit of time, given that a person has not experienced an event before

time t” (Lange and Hansen, 2011, p.576). Using Cox regression it is possible to estimate

how many times greater the rate is, in case the exposure X is present relative to the

reference X = 0 (hazard ratio). However, Lange and Hansen (2011) suggest using

an Aalen additive hazard model for estimating the rate as the ratio modeled by Cox

cannot be related to an absolute number of events. The Aalen additive hazard model

though “yields an estimate of the absolute change in the rate when comparing a given”

(Lange and Hansen, 2011, p.576) exposure group to the reference group. It is not

assuming the hazard to be proportional and it can include time-varying covariate

effects. Those are huge advantages compared to the Cox model. With λj(t) being

potentially time-dependent coefficient functions the Aalen additive hazard model can

be written as

λ0(t) + λ1(t)x+ λ2(t)z + λ3(t)m

Next, assume that the mediator M is normally distributed and can be modeled by

a linear regression, with e being the normally distributed error with variance σ2 and

mean zero, x represents the exposure and z another baseline covariate. The linear

model for the mediator can be written as

M = α0 + α1x+ α2z + e

(Lange and Hansen, 2011, p.576, Abadi et al., 2011, p.3113f.)
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Suppose the observations are independent, then standard techniques (like the pack-

age timereg) can be used to estimate the parameters α0, α1, α2, σ
2 and the functions

λ0(t), ..., λ3(t).

Lange and Hansen (2011) model causal effects and therefore define the following

variables describing what would have happened if the exposure and the mediator were

set to specific values. Those variables are called counterfactual variables:

• T x,m: time to event with exposure set to x and the mediator set to m

• Mx: value of mediator when exposure is set to x

• T x,Mx∗

: “event time when the exposure is set to x, bu the mediator is set to the

value it would have had if the exposure had been set to x∗” (Lange and Hansen,

2011, p.576)

• γ(t; x,m): counterfactual rate for the event in case the exposure is set to x and

the mediator takes the value m, which is the rate for the counterfactual variable

T x,m

Besides the already introduces notations and definitions, some assumptions are

necessary when drawing a causal conclusion. The assumptions are defined as follows:

• A1: There are no unmeasured confounders for the exposure-outcome relationship.

• A2: There are no unmeasured confounders for the mediator-outcome relationship.

• A3: There are no unmeasured confounders for the exposure-mediator relationship.

• A4: Mx∗

⊥ T x,m|Z: The identifiability condition, which ensures that the effect

of the exposure has its effect through a distinct and a non-intertwined causal

pathway. In case a variable is affected by the exposure and affects the mediator

and the outcome, this assumption is violated.

• A5: The consistency assumption as shown in VanderWeele and Vansteelandt

(2009), which ensures that the outcome is not affected if the exposure and

mediator are set to the values they would naturally take. According to this

assumption, the observed outcome Y is equal to the potential outcome Y (a)

for subjects with an observed exposure level equal to a. Y (a) is defined as the

counterfactual outcome which would be the observed outcome if the exposure is

set to a, for example through manipulation.
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For more details about causality and causal and counterfactual effects refer to Pearl

(2009) who published a book called “Causality”.

(Lange and Hansen, 2011, p.576f.; VanderWeele and Vansteelandt, 2009, p.457f.)

The proposed measure of mediation from Lange and Hansen (2011) takes into account

“how much of the effect of the exposure is mediated through the mediator” and “how

these proportions change over time” (Lange and Hansen, 2011, p.577). This is why

they suggest the counterfactual rate difference being calculated as the effect measure

of the exposure change from x to x∗.

Theorem 1. Given the assumptions A1-A5, “it holds that the total causal effect of

changing the exposure from x∗ to x, measured on the rate difference scale at time t

can be expressed as” (Lange and Hansen, 2011, p.577):

γ(t; x,Mx)− γ(t; x∗,Mx∗

)
︸ ︷︷ ︸

TE(t)

= γ(t; x,Mx)− γ(t; x∗,Mx) + γ(t; x∗,Mx)− γ(t; x∗,Mx∗

)

= λ1(t)(x− x∗)
︸ ︷︷ ︸

DE(t)

+λ3(t)α1(x− x∗)
︸ ︷︷ ︸

IE(t)

with TE(t) being the total effect, DE(t) the natural direct effect and IE(t) the natural

indirect effect. Thus the indirect effect corresponds to the number of deaths due to

the mediator. The direct effect is the number of events caused by the direct path and

the total effect represents the number of deaths, which are caused by changing the

exposure X and is equal to the sum of the direct effect and the indirect effect.

In case the effects in the Aalen model are not time-dependent, which means that

λ1(t) and λ3(t)) are both constant, Theorem 1 simplifies to

γ(t; x,Mx)− γ(t; x∗,Mx∗

)
︸ ︷︷ ︸

TE(t)/total effect

= λ1(x− x∗)
︸ ︷︷ ︸

DE(t)/natural direct effect

+ λ3α1(x− x∗)
︸ ︷︷ ︸

IE(t)/natural indirect effect
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The computation of the total, direct and indirect effects can be performed with

standard statistical software which calculates the estimates λ̂1, λ̂3 and α̂1. Under mild

conditions, “it holds that the 3 estimators are asymptotically normally distributed and

that (λ̂1, λ̂3) is uncorrelated with α̂1” (Lange and Hansen, 2011, p.577). The output

of the used software provides the covariance matrices for λ̂1, λ̂3 and α̂1. Confidence

intervals, and therefore p-values and tests, can be computed using the delta rule or

using a simulation.

(Lange and Hansen, 2011, p.577f.)

A method for the calculation via simulation is provided by Lange and Hansen (2011)

and the delta rule was implemented by Dr. Roman Hornung. The implementation in

R and how the univariate mediation analysis is included in the package himasurv is

explained in section 4.5.

A univariate perspective of mediator analysis is easy to use and the interpretation is

straight forward, but if considering the different relations three variables can have (cf.

section 3.1) it may not be the best way to identify and interpret mediating relationships

(Wakkee et al., 2014, p.1). Therefore the following section introduces multivariate

mediation analysis.
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4.2 Multivariate mediation analysis

After displaying a way for a univariate mediation analysis, the following section will

introduce the basic idea for a multivariate analysis of mediators. This theory is

especially useful considering possible confounding. Figure 4.2 shows a multivariate

view of mediators.

X

M1

M2

...

Y

...

Mp

Mp−1

γ

α1

α2

αp−1

αp

β1

β2

βp−1

βp

Figure 4.2: High dimensional mediators
(based on Zhang et al. (2016))

Zhang et al. (2016) consider three equations shown in 4.1, 4.2 and 4.3 for identifying

mediators (see Figure 4.2). The equations include the following notations:

• Mk with k = 1, ..., p: potential mediators

• γ∗: total effect of the independent variable X on the dependent variable Y

• γ: parameter relating X and Y via the direct effect, after adjusting for all

mediators of interest

• α = (α1, ...αp)
T : parameter vector relating the independent variable to the

mediating variables

• β = (β1, ..., βp)
T : parameter vector relating the mediators to the dependent

variable adjusting for the effect of the independent variable
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• c∗, c, ck with k = 1, ..., p: intercept terms

• ǫ1, ǫ2, ǫk with k = 1, ..., p: residuals

To access the total effect γ∗ of X on Y regress the dependent variable on the

independent variable

Y = c∗ + γ∗X + ǫ∗1 (4.1)

Afterwards regress the mediator on the independent variable

Mk = ck + αkX + ǫk (4.2)

Performing this regression for all mediators results in α = (α1, ..., αp)
T , the parameter

vector relating X to the mediators Mk.

Finally use the following regression for Y with both, the independent variable and

the mediators to receive the parameter vector containing the effects of the mediators

to the dependent variable Y , β = (β1, ..., βp)
T

Y = c+ γX + β1M1 + ...+ βpMp + ǫ2 (4.3)

“These three regression equations provide the tests of the linkages of the mediation

model. To establish mediation, the following conditions must hold” (Baron and Kenny,

1986, p.1177): the independent variable must affect the dependent variable (cf. equation

4.1), the independent variable must affect the mediator (cf. equation 4.2) and the

mediator must have an effect on the dependent variable in a multivariate setting (cf.

equation 4.3).

(Baron and Kenny, 1986, p.1176f.; Judd and Kenny, 1981; Zhang et al., 2016, p.3151)
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4.3 Paper Zhang et al. (2016)

A lot of different methods for mediation analysis have been developed and published.

Some of them are listed in Zhang et al. (2016). However none of these methods deal

with high dimensional mediation in case of survival data. The idea of high-dimensional

data is addressed in section 3.3, where the number of predictors, or in case of mediation

analysis potential mediators, is larger than the number of observed units (p > n).

Zhang et al. (2016) developed a multivariate method to estimate high-dimensional

mediation effects for continuous outcomes and built an R package named hima. Based

on the three regression models described in section 4.2 (cf. equations 4.1 - 4.3), they

identify mediators in three steps: Screening, MCP estimation and a joint significance

test. Those steps are described in the following sections 4.3.1, 4.3.2 and 4.3.3.

4.3.1 Step 1: Screening

For the first step, the pre-selection of potential mediators, Zhang et al. (2016) use the

sure independence screening (SIS) method based on Fan and Lv (2008). Suppose the

data contains a continuous outcome y, an exposure X and p potential mediators Mj,

with j = 1, ...,m. The SIS identifies the following subset:

I = {1 ≤ s ≤ p : Ms is among the top d largest effects for the response Y }.

The value of d symbolizes the amount of the top n variables, and will further also

be denoted as topn. With the outcome y being continuous d is equal to [2n/log(n)],

Zhang et al. (2016) fit one linear model for each potential mediator Mj of the form

Y = c+ γMj
X + βMj

M+ǫMj

Afterwards the topn potential mediators, with the lowest p-values are selected. and

are further analyzed in step 2.

(Zhang et al., 2016, p.3151; Zheng et al., 2017)
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4.3.2 Step 2: MCP estimate

The topn remaining potential mediators, which were selected in step 1, and the exposure

X are used for step 2, the MCP estimate. This step selects and estimates the parameters

βs = (β1, ...., βtopn)
T , with s = 1, ..., topn, corresponding to the regression:

Y = c+ γX + β1M1 + ...+ βtopnMtopn + ǫ2

The minimax concave penalization (MCP) method is described in chapter 3.4. The

R-package ncvreg (Breheny, 2017) contains a function for the MCP which Zhang et al.

(2016) use to compute {β̂s, s ∈ I}. However it is important to note that they defined

a penalization term which excludes the exposure X from the penalization.

In hima the regularization parameter λ is selected via BIC (cf. section 3.4.1) and

the tuning parameter γ is set to 3, which is the default value of the function nvcreg().

The MCP performs a variable selection of the potential mediators as well as an

estimation of the remaining effects, similar to the least absolute shrinkage and selection

operator (Lasso) (cf. Tibshirani (1996) and Hastie et al. (2009)). Using the MCP

procedure results in a set of selected potential mediators Mk with k = 1, ..., p and the

corresponding estimated effects β̂k.

(Zhang et al., 2016, p.3151; Zheng et al., 2017)
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4.3.3 Step 3: Joint significance test

The last step of the mediation analysis is the joint significance test. A variable Mk

is considered a mediator if the effects αk and βk are significant. The purpose of the

joint significance test is to identify those mediators. The MCP has the model selection

consistency “which ensures the validity of the joint significance test procedure” (Zhang

et al., 2016, p.3152).

Let S = {k : β̂k 6= 0} be the set of remaining potential mediators based on the MCP

estimation in step 2. To assess whether the effect βk is significant, the hypothesis

H0 : βk = 0 is tested, for every coefficient selected by the MCP. Suppose k ∈ S, Φ(·) is

the cumulative distribution of N(0, 1) and the estimated standard error for β̂k is σ̂1k,

then the raw p-value for this test is

Praw,1k = 2{1− Φ(
|β̂k|

σ̂1k

)}

In case of testing for only one hypothesis, the p-value is considered as significant if

it is lower than α = 0.05, with α being the probability of rejecting the null hypothesis

(Type 1 error), although it is true. Therefore the hypothesis cannot be rejected if

p < 0.05. However, when testing for multiple hypotheses, in case all are true, the

probability of at least one being wrongly rejected is higher than the desired value of

α = 0.05. Therefore, since multiple parameters are tested, it is reasonable to adjust for

multiple testing. This can be done by controlling the family wise error rate (FWER),

which is the probability of rejecting at least one true hypothesis. This can be done

by using the Bonferroni method, which assures that in case of multiple testing n hy-

potheses, the FWER is not higher than 0.05 if each hypothesis is tested at the level 0.05
n
.

Thus the corrected p-value, with k ∈ S and the cardinality |S| (number of elements

in set S) is

Pcorr,1k = min(Praw,1k · |S|, 1)
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The estimates β̂k are already available from step 2. According to Zhang et al. (2016)

σ̂1k, the estimated standard errors for βk are estimated using the oracle property of

the MCP technique (cf. Fan and Li (2001) and Zhang (2010)). However, looking into

function hima() (in package hima), those estimates σ̂1k were calculated using a linear

model of the form

Y = c+ γX + β1M1 + ...+ βkMk + ǫ2

Accordingly, the hypothesis for αk is H0 : αk = 0. With k ∈ S and the estimated

standard error σ̂2k for α̂k, the raw p-value is

Praw,2k = 2{1− Φ(
|α̂k|

σ̂2k

)}

and, analogous to the Bonferroni corrected p-value for βk, the corrected p-value for αk

is

Pcorr,2k = min(Praw,2k · |S|, 1)

Zhang et al. (2016) estimate the values of αk and the corresponding raw p-values

using a linear model of the form

Mk = ck + αkX + ǫk

The corrected p-value for the joint significance test is the maximum of Pcorr,1k and

Pcorr,2k:

Pcorr,k = max(Pcorr,1k, Pcorr,2k)

If Pcorr,k < 0.05 one can conclude that Mk is a mediator.

(Zhang et al., 2016, p.3152; Zhang, 2010; Darlington and Hayes, 2016, p.315ff.; Zheng

et al., 2017)
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4.4 Mediator analysis in high dimensional survival data

The mediation analysis for survival data developed in this thesis is based on the work

of Zhang et al. (2016). Some changes were made and the method was adapted to

analyze survival data. The following sections describe the procedure in detail. The

terms and notations used in this section are:

• Mj with j = 1, ...,m: potential mediators

• X: binary exposure

• γ∗: total effect of the independent variable X on the dependent variable Y

• γ: parameter relating X and Y via the direct effect, after adjusting for all

mediators of interest

• α = (α1, ...αm)
T : parameter vector relating the independent variable to the

mediating variables

• β = (β1, ..., βm)
T : parameter vector relating the mediators to the dependent

variable, adjusting for the effect of the independent variable

4.4.1 Step 1: Pre-selection

The first step of the mediator analysis is the pre-selection of the potential mediators

Mj with j = 1, ...,m. Zhang et al. (2016) use the SIS, a supervised method, for a

pre-selection of those variables. However, the method developed in this thesis does

not include a supervised selection method in step 1, because step 2 already includes a

supervised selection process. Therefore, the pre-selection chooses the topn = [2n/log(n)]

potential mediators based on their variance, so the topn variables with the highest

empirical variances are chosen for the next step. All variables are selected, if the

number of potential mediators m is smaller than topn which meanstopn = m. The

result are the pre-selected mediators Ms with s = 1, ..., topn.
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4.4.2 Step 2: MCP-penalized estimate

Even though a possible pre-selection of variables was performed in step 1 of the analysis,

step 2 will perform another variable selection to receive a reasonable and interpretable

model. Because p > n it may be considered using a Lasso regression. However, step 2

uses the MCP as proposed by Zhang et al. (2016) to perform a penalized regression

and variable selection. That is not only because of the bias Zhang (2010) points out,

but especially because of the drawback described in section 3.4, as the selection should

not be restricted to n variables when using Lasso regression. Therefore in step 2 the

MCP method is used to estimate β̂s and to perform another variable selection. The

method of the minimax concave penalization (MCP) method is described in chapter 3.4.

The R-package ncvreg (Breheny and Huang, 2011) contains the function ncvsurv()

for the MCP procedure using survival data which is used to compute β̂s by minimizing

the MCP criterion, analogous to Zhang et al. (2016). The regularization parameter

λ can be selected via cross-validation (CV ), Akaike information criterion (AIC ) or

Bayesian information criterion (BIC ). The tuning parameter γ takes the value 3 per

default.

The result of step 2 is a set of selected potential mediators Mk and the corresponding

estimated effects β̂k, with k = 1, ..., p. However, ncvsurv() does not give the parameters’

β̂k variances or p-values. Fan and Li (2001) display a way to estimate a covariance

matrix using the oracle property of the MCP technique. They assume that all included

covariates are penalized, that is why in contrast to Zhang et al. (2016) the developed

method does not exclude the exposure X from the penalization in step 2.

The covariance of the estimates β̂k can be estimated using the sandwich formula

ˆcov(β̂k) = {∇2l(β̂k) + nΣλ(β̂k)}
−1 ˆcov{∇l(β̂k)} × {∇2l(β̂k) + nΣλ(β̂k)}

−1

with β̂k = (β̂1, β̂2, ..., β̂p)
T 6= 0 , being a vector of the remaining estimated effects

calculated in step 2 (effects not set to zero).
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For an easier display of the calculation, let further β̂k be β.

∇2l(β) is the second derivative of the Cox regression partial likelihood

L(β) =
n∏

i=1

[

ex
T
i β

∑

j∈Ri

ex
T
j β

]δi

The result of l(β) is a matrix with inputs corresponding to the entries of β used for

the derivation and is displayed as

∇2l(β) =
δl(β)

δ2β
=









δl(β)

δβ1δβ1

...
δl(β)

δβ1δβm
...

. . .
...

δl(β)

δβmδβ1

...
δl(β)

δβmδβm









The general representation, depending on the combination of k and n, of the second

derivative is

δl(β)

δβkδβn

=
n∑

i=1

δi

[

−

[

[
∑

j∈Ri
exp(xT

j β)][
∑

j∈Ri
xj,kxj,nexp(x

T
j β)]−

[
∑

j∈Ri
exp(xT

j β)]
2

[
∑

j∈Ri
xj,kexp(x

T
j β)][

∑

j∈Ri
xj,nexp(x

T
j β)]

...

]]

The exact development of this second derivative (and how it is implemented in R) is

displayed in the file derivative covariance.pdf in the digital appendix.

The estimation of ˆcov(β) also includes the term ˆcov{∇l(β)}, which can be written

as the second derivative

∇2l(β) =
δl(β)

δ2β
= ˆcov{∇l(β)}
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The last term Σλ(β) needed to estimate the covariance matrix ˆcov(βk) is

Σλ(β) = diag

{
p′λ(|β1|)

|β1|
, ...,

p′λ(|βp|)

|βp|

}

=


















p′λ(|β1|)

|β1|
0 ... 0 0

0
p′λ(|β2|)

|β2|
... 0 0

...
...

. . .
...

...

0 0 ...
p′λ(|βp−1|)

|βp−1|
0

0 0 ... 0
p′λ(|βp|)

|βp|


















This procedure is implemented in the R package himasurv (inner function covest()).

(Fan and Li, 2001, p.1354)
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4.4.3 Step 3: Joint significance test

The last step of the mediation analysis for survival data is the joint significance test,

which is performed similarly to Zhang et al. (2016).

The hypothesis for αk is H0 : αk = 0. The values of αk and the corresponding

raw p-values (Praw,2k) are calculated using a linear model for each mediator Mk with

k = 1, ..., p of the form

Mk = ck + αkX + ǫk

The Bonferroni corrected p-values for testing αk are defined as Pcorr,2k = min(Praw,2k ·

|S|, 1) (cf. Zhang et al. (2016) in section 4.3.3).

Analogously to Zhang et al. (2016) the raw p-values of βk are calculated using

Praw,1k = 2{1− Φ(
|β̂k|

σ̂1k

)}

with k ∈ S, Φ(·) being the cumulative distribution of N(0, 1) and the estimated

standard error for β̂k is σ̂1k, obtained by the estimate covariance matrix using the ora-

cle property of the MCP technique (cf. Fan and Li (2001)), as displayed in section 4.4.2.

The corrected p-values for testing βk are Pcorr,1k = min(Praw,1k · |S|, 1).

Accordingly, as shown in section 4.3.3 the p-value for the joint significance test is

defined as

Pcorr,k = max(Pcorr,1k, Pcorr,2k)

Analogous to Zhang et al. (2016), if Pcorr,k < 0.05 one can conclude that Mk is a

mediator.

(Zhang et al., 2016, p.3152)
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4.5 Implementation in R

Building a new package for R is part of this work. It contains the univariate mediation

analysis for survival data, described in section 4.1 and the multivariate analysis for

high dimensional mediators in survival data which was developed in the context of this

work (cf. section 4.4).

The name himasurv is chosen based on the high dimensional mediation analysis for

survival data. It is built using the packages devtools and roxygen2 by Hadley Wickham

(cf. Wickham and Chang (2017) and Wickham et al. (2017)).

Section 4.6 displays a simulation which was performed not only to verify the developed

method for high dimensional mediation analysis in survival data (cf. section 4.4) but

also to compare it to the univariate mediation analysis explained in section 4.1. The

implementation of both methods for the R package himasurv is explained in the

following sections.

4.5.1 Univariate mediator analysis

First, the implementation of the univariate mediation analysis (cf. section 4.1) will be

described. This method is implemented in metest() by Dr. Roman Hornung using R

code provided in Lange and Hansen (2011) and is included in himasurv. The function

metest() provides a univariate test for mediation in a survival data setting. It is possible

to analyze one or more mediators at a time and the results are p-values, one for each

mediator.

One important parameter included in this function is y, describing the survival times

and the corresponding censoring indicator which takes value 1 if the survival time is a

time of failure and 0 if it is a censoring time. It is either a survival object or a matrix

with two columns, with the first column representing the survival times and the second

one consisting of the censoring indicator. The exposure is denoted as X, which is a

binary vector (0/1) and M is a data frame or matrix of high-dimensional continuous

mediators. Furthermore, it is important to choose the right entry for riskincr, which is

set to TRUE if it is assumed that the presence of the exposure leads to an increase in

risk, and FALSE otherwise. The parameters exposinflc and minflc indicate whether

the exposure or the mediator should be modeled as constant over time (TRUE) or time-

variying (FALSE). If the estimation of the p-values is calculated with a simulation,
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the parameter simul is set to TRUE and using FALSE leads to an estimation with

the delta rule. More parameters can be looked up in the description of package himasurv.

The calculations performed in metest() are based on the method developed by Lange

and Hansen (2011), which is explained in section 4.1. First, depending on the selection

of exposinflc and minflc an Aalen additive hazard model (aalen(), from package

timereg) of the form Surv(y, delta) ∼ X+m is used to fit λ1, λ3 and the corresponding

covariance for each mediator separately. Surv(y, delta) represents the survival object

of the survival times y and the censoring indicator delta, created with the function

Surv() in the package survival. X is the vector of exposure and m represents one single

mediator. Afterwards a linear model (lm()) with the formula m ∼ X, leads to an

estimation of α and the corresponding variance. Based on those solutions it is possible

to calculate the requested p-values via a simulation approach or the delta rule.

4.5.2 Multivariate mediator analysis

This section describes the implementation of the function himasurv(), based on the three

steps in section 4.4, which are used for the multivariate mediation analysis in the case of

survival data. Besides the parameters X, y and M , which have already been described

in section 4.5.1, it is important to choose an option for the parameter method.lambda,

which describes how the regularization parameter λ is selected. One of the following

three possibilities can be chosen: cross-validation (CV ), Akaike information criterion

(AIC ) or Bayesian information criterion (BIC ) (cf. section 3.4.1). himasurv() imports

the functions ncvsurv() and cv.ncvsurv() from the package ncvreg to perform the MCP

regression. In case of cross-validation cv.ncvsurv() in ncvsurv detects the best value of

λ. Here the cross-validation error is based on the work of Verweij and Van Houwelingen

(1993), which is described in section 3.4.1. The function cv.ncvsurv() calls ncvsurv()

nfolds times (the default of the parameter nfolds is 10) and leaves out 1
nfolds

of the

data each time. The default for the tuning parameter γ is set to value 3 and the

maximum number of topn variables which are selected in step 1 is [2n/log(n)] per

default (cf. section 4.4.1). The joint significance test can be performed using the

raw (set parameter test=“raw“) or the Bonferroni corrected (set parameter test=

“adjusted“) p-values (cf. section 4.4.3). The result of himasurv() is a table of the

remaining potential mediators which were selected by MCP, containing the effects and

the corresponding p-values. The variable can be considered a mediator, if the p-value

is lower than 0.05.
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4.6 Simulation

To test and compare the methods covered in this thesis, various simulations are

performed which make it possible to compare the univariate mediator analysis (described

in section 4.1) with the multivariate mediator analysis (described in section 4.4). The

simulation consists of three different settings with 500 simulated data sets each. Setting 1

includes data with no dependency structure between the variables (potential mediators).

The data in setting 2 contain a dependency between the variables that affect the survival

and in setting 3 the dependency exists between all potential mediators. Each data set

consists of n = 50 observed units, 100 potential continuous mediators and an exposure

X, which takes value 1 if the observed unit is exposed and 0 otherwise. 25 observations

of X are 1, the other 25 are equal to 0 and the assignment is random. Furthermore,

the following notations and terms are applied for the structure of the simulation:

• X: binary exposure, with βX being the direct effect of X on survival y

• MV 1: 10 mediators affected by the exposure and with effect on the survival

• MV 2: 10 variables affected by exposure, but with no effect on the survival

• MV 3: 10 variables with effect on the survival but they are not affected by the

exposure

• Mnoise: 70 noise variables, which are not affected by the exposure and have no

effect on the survival

The allocation of the indices is performed in a straightforward manner, as MV 1 repre-

sents the first ten variables (1− 10), MV 2 the next ten (11− 20), MV 3 the variables

21− 30 and Mnoise the remaining seventy (31− 100). The variables M originate from a

multivariate normal distribution using the function mvrnorm() from the package MASS.

If a variable M is affected by the exposure X, a constant value v is added to that

variable if X = 1. This is the case for the variables with index V 1 and V 2. The effects

of the variables on survival are βV 1, βV 2, βV 3 and βnoise, with βV 1 = βV 3 6= 0 and

βV 2 = βnoise = 0. The value of v represents the strength of the correlation depending

on the simulation setting. The variance of all potential mediators is constant 1
100

. The

sections 4.6.4, 4.6.5 and 4.6.6 describe the characteristics and choices of the parameters

βV 1 and βV 3, v and c (constant covariance between variables) for each setting.
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4.6.1 Simulation of survival time

The simulation of the survival time y consists of two parts: the simulation of the time

of failure T and the simulation of the censoring times C.

The times of failure T are simulated based on Bender et al. (2005) using

T =
−log(u)

λexp(xTβ)

with u ∈ uniform distribution on [0, 1] (runif()).

The continuous, non-negative random variable X is exponentially distributed with

λ > 0. This characteristic is denoted as X ∼ Expo(λ) with the exponential distribution

denoted as

f(x) = λexp(−λx)

(Fahrmeir et al., 2009, p.460)

The censoring times C originate from an exponential distribution and can be sim-

ulated using rexp(n,rate), with length n and rate λC . Before explaining how λC is

selected, some characteristics of the censoring time C need to be clarified. If the

censoring time C is lower than the time of failure T , which means the observed unit

was censored before the event of interest occurred, the survival time y takes this

specific value of C. In this case, the censoring indicator δ is equal to 1. If C ≥ T ,

then y = T and δ = 0. In this simulation the rate of δ = 1 should be approximately

20%, which means that approximately 20% of the observations are censored. To fulfill

this condition, it is important to choose an appropriate rate λC for the exponential

distribution (rexp()) when simulating the survival times y.

The selection of λC is made by looking at the mean rate of censored observations in

the survival time y of 1000 data sets with a specific value for λC . For this, T and C

are simulated 1000 times and comparisons drawn on how often C < T . If the mean

rate of C < T and therefore δ = 1 for the corresponding cases is approximately equal

to 20%, the used value of λC used for simulating C.
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4.6.2 Methods used for the simulation design

Before describing how the parameters of the simulations are correctly selected, some

methods need to be introduced. Those methods are needed for the checks that are

performed to control each simulation design after choosing the parameters. One of

those measurements is called the concordance index (C index), which is a way to

estimate the prediction error, in this case of a random survival forest. The C index is

described in section 4.6.2.2, but first the idea of random forests and random survival

forests is explained in the following section 4.6.2.1.

4.6.2.1 Random survival forest

Random forests can be used to construct a prediction rule for a supervised learning

problem and it ranks the predicting variables with respect to their importance in

predicting the response. This ranking of predictors is performed with respect to the

variable importance measure (VIM), which is calculated for each predicting variable.

It is a classification and regression method, aggregating a large number of decision

trees which are built from a training data set and validated internally. A well known

kind of random forest was submitted by Breiman (2001), which builds the decision

trees based on bootstrap samples of the whole data. Afterwards randomly selected

covariates are chosen as candidate variables for splitting at each node for each tree.

Finally the predictions of all trees are aggregated. Different kinds of random forests

exist which vary in the way the trees are constructed, the method used to build the

data sets on which each tree is constructed and in the way the predictions are aggregated.

Decision trees are built based on the idea of recursive partitioning, which means,

that the observed units at a node are divided recursively into two daughter nodes,

each containing the observations with most similar responses. The different kinds of

decision trees mostly differ in their splitting criterion. The most common kind of a

decision tree is the classification and regression tree (CART) proposed by Breiman

et al. (1984). The CART uses the Decrease of Giny Impurity (DGI) as a splitting

criterion, that means that the splitting is guided by the impurity of the nodes. This

means that the splitting causes the daughter nodes to be divided more precisely with

respect to their classification of the response than their parent node.
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More about different kinds of decision trees, splitting criteria and more detailed

information about random forests can, for example, be found in Breiman et al. (1984),

Breiman (2001) and Tutz (2012).

Random forests do have a special characteristic, the out-of-bag (OOB) error. An

observation is called out-of-bag observation for a tree if it is not used to build that

tree. Thus those observations can be used as a validation data set for those trees. The

OOB error describes the average error when predicting the OOB observations with the

corresponding tree.

(Tutz, 2012, p.317ff.; Boulesteix et al., 2012, p.494)

Ishawaran et al. (2008) extended the classical random forest idea by Breiman (2001)

to survival data. This method is implemented in the R package randomForestSRC

(function rfsrc()), which is used in this thesis. The decision tree used for the random

survival forest (RSF) is called binary survival tree, which is similar to CART. The

splitting at each node is performed by maximizing the survival difference between the

resulting daughter nodes, which means that the cases have a similar survival to the

other cases in their group. With an increasing number of nodes, those become more

homogeneous and the cases each node contains have a similar survival. The splitting

criterion used by rfsrc() per default is the log-rank splitting (Ishwaran and Kogalur,

2017). LeBlanc and Crowley (1993) describe this criterion as a weighted difference

between the estimated hazard functions.

A decision tree is called saturated if no new daughter nodes can be formed “because

of the criterion that each node must contain a minimum of d0 > 0 unique deaths”

(Ishawaran et al., 2008, p.844). Those nodes are called terminal nodes.

The prediction error calculated for the random survival forest by Ishawaran et al. (2008)

is based on the ensemble cumulative hazard function (CHF), which is computed as an

average of the CHF of the B survival trees. The CHF of each tree is calculated based

on the Nelson-Aalen estimator and with respect to the terminal nodes.

As the random survival forest being just a small part of this work it will not be covered

in detail. For the sake of completeness however, the formulas needed for the calculation

of the CHF and ensemble CHF are displayed in the appendix section 7.1. Further

reading and details can be found in Ishawaran et al. (2008).
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Nevertheless the theory of a random survival forest is easier to understand considering

the algorithm, used to built a RSF. The algorithm proceeds as follows:

1. Draw B bootstrap samples from data. Each sample excludes on average 38% of

the original data. This is called out-of-bag data.

2. Grow a survival tree for each bootstrap sample, which randomly chooses p

variables as candidates for splitting at each node. The splitting is performed

depending on which candidate variable maximizes the survival difference between

the daughter nodes.

3. “Grow the tree to full size under the constraint that a terminal node should have

no less than d0 > 0 unique deaths” (Ishawaran et al., 2008, p.843).

4. For each tree the cumulative hazard function (CHF) is calculated and the average

over all CHFs (ensemble CHF) is obtained by using their average.

5. The prediction error for the ensemble CHF is calculated using OOB data.

The last step of the algorithm is talking about calculating the prediction error. In

case of the RSF this is done with the so called Concordance index (C index) based

on Harrell et al. (1982). The theory of the C index which is used in this analysis is

explained in the following section 4.6.2.2.

(Ishawaran et al., 2008, p.841ff.)

4.6.2.2 Concordance index

The concordance index, or C index, is a common measure of predictive discrimination.

It “is defined as the proportion of all usable patient pairs in which the predictions and

outcomes are concordant” (Harrell Jr. et al., 1996, p.370). Pencina and D’Agostino

(2004) generalized the method of the Receiver operating characteristic (ROC) curve

area, a measure of discrimination for logistic regression, for survival data. They start

by looking at a logistic regression setting, observing two classes of individuals, one

developing the event of interest and one which does not.

Assume Y being a random variable describing the predicted probabilities of having

the event for those observed units who actually had an event of interest and V be-

ing a random variable describing the predicted probabilities of having the event for
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those who did not. In case Y and V are continuous the area under the ROC curve,

denoted by C, is P (Y ≥ V ). If Y and V are discrete, the C value is calculated as

C = P (Y > V ) + 0.5 · P (Y = V ). The C Index “can be interpreted as the probability

that a subject from the event group has a higher predicted probability of having an

event than a subject from the non-event group” (Pencina and D’Agostino, 2004, p.2110).

Hanley and McNeil (1982) linked the ROC curve (C index) to the Mann-Whitney

statistic WV Y which is defined as follows: With Y1, Y2, ..., Yk being the predicted

probabilities of having an event in the event group and V1, V2, ..., Vn being the predicted

probabilities of having an event in the non event group. Each pair of subjects (i, j),

with the first subject not having an event and the second belonging to the event

group, can be associated to a number which takes value 1 if Yi > Vi, 0.5 if Yi = Vi

and is equal to 0 otherwise. Summing up the results of all possible pairs leads to the

Mann-Whitney statistic WV Y . Thus the C index, or the area under the ROC curve,

for logistic regression can be written as

C =
1

k · n
WV Y

(Harrell Jr. et al., 1996, p.370; Pencina and D’Agostino, 2004, p.2110f.)

Pencina and D’Agostino (2004) adapt this theory to survival data and assume that

nobody leaves the study for reasons other than the event of interest. The following

notations are necessary for the calculation of the C index:

• n: number of observed units

• X1, X2, ..., Xn: the actual survival times of the observed units

• T1, T2, ..., Tn: the corresponding predicted survival times

• Y1, Y2, ..., Yn: predicted probabilities of survival

Two types of observed units exist at time point T , those who experienced the event

of interest and those who did not. Looking at all possible pairs of observed units (i, j),

with i < j one can say, that a pair is concordant if Xi < Xj and Ti < Tj or Xi > Xj

and Ti > Tj.

The “predicted probabilities of surviving until any fixed time point can be used

instead of the predicted survival times” (Pencina and D’Agostino, 2004, p.2111).

45



Therefore a pair (i, j) is considered concordant if Xi < Xj and Yi < Yj or Xi > Xj

and Yi > Yj. A pair is considered discordant if Xi < Xj and Yi > Yj or Xi > Xj and

Yi < Yj. Some pairs are called unusable, because they are neither concordant nor

discordant.

The unconditional probability of concordance (πc ) of the entire population is denoted

as

πc = P (Xi < Xj and Yi < Yj) + P (Xi > Xj and Yi > Yj)

and πd is the corresponding probability of discordance

πd = P (Xi < Xj and Yi > Yj) + P (Xi > Xj and Yi < Yj)

Then πt = 1− πc − πd defines the proportion of unusable pairs.

Assuming that the distribution of Y is continuous and that the pairs considered are

usable, the C index is defined as

C = P (Xi < Xj and Yi < Yj or Xi > Xj and Yi > Yj) =
πc

πc + πd

One way of estimating the C index is given by Nam and D’Agostino (2002). Assuming

a sample of n observed units, X1, X2, ..., Xn being the survival times, Y1, Y2, ..., Yn the

predicted probabilities of survival and Xi 6= Xj, the C index can be calculated with

Ĉ =
1

Q

∑

(i,j)∈U

cij

with U being a set of all usable pairs (i, j) and Q is the number of all comparisons

made. The term cij is equal to 1 if the pair is concordant, and equal to 0 if the pair is

discordant. More details are given in Harrell Jr. et al. (1996), Pencina and D’Agostino

(2004) and Nam and D’Agostino (2002).

(Harrell Jr. et al., 1996, p.370; Pencina and D’Agostino, 2004, p.2110f.)
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4.6.3 Simulation design

Several checks are performed to control each simulation design after choosing the

parameters βX , βV 1, βV 3, v and c (the corresponding covariance in setting 2 and 3)

for each setting separately. Table 4.1 shows the general structure of the parameters. A

table like this table shown in every description of each setting to illustrate how the

simulation is performed. To find a good fit the check will be performed for two different

simulations in each setting.

Parameter Description Value

v constant value added to MV 1 & MV 2 if X = 1 numeric value
c constant covariance depending on the setting numeric value
βX effect of X on survival time y numeric value
βV 1 effect of MV 1 on survival constant numeric value
βV 2 effect of MV 2 on survival = 0
βV 3 effect of MV 3 on survival constant numeric value
βnoise effect of noise variables on survival = 0

Table 4.1: Parameters of the simulation

The testing phase contains four checks of the simulated data sets. The purpose of

those tests is to make sure that the chosen parameters create simulated data sets which

describe realistic situations with particular characteristics. These characteristics differ

depending on the setting (cf. section 4.6.4, 4.6.5 and 4.6.6).

The results of the tests are shown for each setting in each section separately.

1. Check: Calculate the concordance index (C index), based on Harrell Jr. et al.

(1996) and Pencina and D’Agostino (2004) (cf. section 4.6.2.2).

• Calculate the C index using out-of-bag prediction of a random survival

forest, rfsrc() in package randomForestSRC(), which is based on the method

of Ishawaran et al. (2008), described in section 4.6.2.1, including all potential

mediatorsM and the exposureX using concordance.index() from the package

survcomp. For more information about the random forest see section 4.6.2.1.

• The C index should take a value around 0.7− 0.8.

2. Check: Take a look at the influence of variables (V 1, V 3) on survival time.

• For each potential mediation fit a Cox Regression for the survival time y

and look at the corresponding p-values (coxph()).
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• Take a look at the box plots of those calculated p-values. One plot shows

the variables with the effect on the survival time (V 1, V 3) and the other the

remaining variables (V 2, noise). The box plot corresponding to the variables

with an effect on the survival time (V 1, V 3) should have appropriately smaller

p-values.

3. Check: Take a look at the influence of exposure on variables (V 1, V 2).

• Take a look at the box plots for each potential mediator with index V 1 and

V 2 by the exposure. The box plot for X = 1 should show higher values for

each potential mediator.

• Perform a t-test (t.test()) for each mediator of V 1 and V 2 with the exposure

and look at the p-values. If p < 0.05 the hypotheses H0 : µ(X=0) = µ(X=1)

can be rejected and the mean of the mediators differs significantly depending

on the presence of the exposure X.

4. Check: Take a look at the influence of the exposure on the survival times.

• Take a look at the box plot of the survival time with the exposure.

• Check if the corresponding survival curves (Kaplan-Meier estimator) show

realistic results using survfit().
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4.6.4 Setting 1: No dependency structure between variables

In the first setting no dependency structure exists between the variables. The potential

variables are simulated with mvrnorm() including the the vector mean = 0 and the

corresponding covariance matrix Σ:

Σ100×100 =









1
100

0 ... 0

0 1
100

... 0
... ...

. . .
...

0 0 ... 1
100









The diagonal describes the variables’ variances, which is constant and takes the

value 1
100

. The simulation is performed as described in section 4.6.3 with two resulting

different data sets simulated with two seeds, the first is 2017 (data set 1) and the

second 1234 (data set 2). The chosen parameters (cf. section 4.6.3) are displayed in

table 4.2. As setting 1 has no dependency structure between the variables c is equal

to 0. The variables MV 2 and Mnoise do not have an effect on the survival times y,

therefore βV 2 and βnoise take the value 0. MV 1 and MV 2 are affected by the exposure,

hence v = 0.01 is added to their entries. The direct effect of X on y denoted by βX

is set to 0.6. As the variables MV 1 and MV 3 have an effect on the survival times,

βV 1 = βV 3 take the value 3.5.

Parameter Value

v 0.1
c 0
βX 0.6
βV 1 = βV 3 3.5
βV 2 0
βnoise 0

Table 4.2: Parameters of simulation setting 1

Afterwards, the checks displayed in section 4.6.3 are performed on both data sets.

All corresponding Figures are attached in appendix section 7.2.1 - 7.2.3.
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The C index for data set 1 is C = 0.8081 and C = 0.7917 for data set 2, therefore

they fit the requirements.

Figure 7.1 and 7.2 show the influence of the variables on the survival time. The

identifier takes value 1 if the variables are real mediators (MV1
) or if they have an effect

on y (MV3
) and 0 otherwise. The p-values, displayed in those box plots, are much

lower for MV 1 and MV 3 compared to MV 2 and the median lies below p = 0.05 (red

line). Therefore the second test for the simulation is successful as well.

The variables influenced by the exposure X are M1 −M20 (MV 1 or MV 2) and the

corresponding box plots in appendix section 7.2.2 for data set 1 are Figure 7.3 - 7.6 and

Figure 7.7 - 7.10 for data set 2. In data set 1, most of the medians of M1 −MV 20 are

higher in case the exposure is present. Only M5 shows medians of the same dimension,

however the values are a bit higher if X = 1. The Figures for data set 2 all show higher

values for M1 −MV 20 in case the exposure is present. Nevertheless the corresponding

box plot to M18 shows, that there is not a huge difference between X = 0 or X = 1

even though the median for X = 1 is a bit higher.

Additional to box plots showing the influence of the exposure on the variables of

interest, table 4.3 displays the corresponding t-test p-values for each variable in MV 1

or MV 2 of each data set. The p-values show a similar situation like the box plots

discussed before. In data set 1 the mediators M5 and M15 do not have significantly

different means for X = 0 and X = 1 and in data set 2 this is the case for M18.
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Variable p-value

data set 1

p-value

data set 2

M1 0.00046 0.03165
M2 0.00208 0.00157
M3 0.00045 0.00020
M4 0.00000 0.00223
M5 0.13418 0.00001
M6 0.01309 0.00000
M7 0.00006 0.00031
M8 0.00004 0.00101
M9 0.00017 0.00527
M10 0.01391 0.00039
M11 0.02881 0.01130
M12 0.00375 0.00145
M13 0.00049 0.00268
M14 0.00505 0.00001
M15 0.05529 0.00053
M16 0.00155 0.00611
M17 0.00026 0.00024
M18 0.00003 0.35823

M19 0.00070 0.01227
M20 0.00010 0.00143

Table 4.3: P-values of t-test for each variable in MV 1 or MV 2, setting 1

In a final check the influence of the exposure on the survival times is displayed. The

corresponding box plots are shown in section 7.2.3, Figure 7.11 and 7.12. The survival

curves, estimated with Kaplan Meier are fully displayed in Figure 7.13 and 7.15, as

well as in a cutout form in Figure 7.14 and 7.16. The survival times showed have some

extreme values and therefore are a bit skewed. However this should not be an issue for

the analysis.
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4.6.5 Setting 2: Dependency between variables that affect survival

In setting 2 the variables affecting survival, thus those with index V 1 and V 3, depend

on each other. Therefore the dependency structure, determined by Σ, differs compared

to setting 1. The covariance matrix for setting 2 is

Σ100x100 =









1
100

d1,2 ... d1,100

d2,1
1

100
... d2,100

... ...
. . .

...

d100,1 d100,2 ... 1
100









The simulation is performed analogously to setting 1 (cf. section 4.6.4) and table

4.4 lists the selected parameters. The parameter d takes a constant value c = 0.07
100

describing the dependency between two variables if both affect the survival y (those

with index V 1 and V 3), it is equal to zero otherwise. Analogous to the first setting

βV 2 and βnoise are set to 0. The constant value v added to the variables affected by

X, MV 1 and MV 2, is 0.11. The parameters βX , βV 1 and βV 3 take the same values as

in setting 1.

Parameter Value

v 0.11
c 0.07

100

βX 0.6
βV 1 = βV 3 3.5
βV 2 0
βnoise 0

Table 4.4: Parameters of simulation setting 2

All Figures needed for the following checks of the simulation are displayed in appendix

section 7.2.4 - 7.2.6.
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The C index values with C = 0.8491 for data set 1 and C = 0.7183 for data set 2 fit

the requirements.

Figure 7.17 and 7.18 show the influence of the variables on the survival time. The

p-values, displayed in those box plots, are much lower for MV 1 and MV 3, those variables

influencing the survival time, compared to MV 2. Additionally the median is placed be-

low p = 0.05 (red line). Therefore the second test for the simulation is successful as well.

The variables influenced by the exposure X are M1 −M20. The corresponding box

plots are shown in section 7.2.5, Figure 7.19 - 7.22 for data set 1, and Figure 7.23 -

7.26 for data set 2. In data set 1 and data set 2, all of the medians of M1 −M20 are

higher in case the exposure is present. Furthermore the p-values for t-tests of each

variable in MV 1 or MV 2 are displayed in table 4.5 for each data set. The variables M11

and M15 in data set 2, are the only ones with a p-value higher than 0.05.

Variable p-value

data set 1

p-value

data set 2

M1 0.00196 0.00081
M2 0.00022 0.00658
M3 0.00000 0.00004
M4 0.00002 0.00456
M5 0.00691 0.00009
M6 0.00019 0.00003
M7 0.02663 0.00009
M8 0.00348 0.00000
M9 0.00000 0.00282
M10 0.00038 0.00964
M11 0.01064 0.30721

M12 0.00023 0.00019
M13 0.00233 0.00000
M14 0.00018 0.00001
M15 0.00000 0.06314

M16 0.00937 0.00043
M17 0.00029 0.00015
M18 0.00133 0.00004
M19 0.00575 0.00061
M20 0.00000 0.00001

Table 4.5: P-values of t-test for each variable in MV 1 or MV 2, setting 2
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In a final check the influence of the exposure on the survival times is displayed. The

corresponding box plots are shown in section 7.2.6, Figure 7.27 and 7.28. The survival

curves, estimated with Kaplan Meier are fully displayed in Figure 7.29 and 7.31, as

well as in a cutout form in Figure 7.30 and 7.32. The survival times showed have some

extreme values and therefore are a bit skewed. However, as before in setting 1, this

should not be an issue for the analysis.

4.6.6 Setting 3: Dependency between all variables

In setting 3 all variables depend on each other, with c being a constant value. The

corresponding covariance matrix is

Σ100x100 =









1
100

c ... c

c 1
100

... c
... ...

. . .
...

c c ... 1
100









The simulation is performed analogously to setting 1 and 2 (cf. section 4.6.4 and

4.6.5). The selected parameters for setting 3 are listed in table 4.6. The constant

covariance c between all variables is set to 0.05
100

. As before βV 2 and βnoise are set to 0,

βX = 0.6 and βV 1 = βV 3 = 3.5. The constant value added to the variables affected by

X, MV 1 and MV 2, is v = 0.12.

Parameter Value

v 0.12
c 0.05

100

βX 0.6
βV 1 = βV 3 3.5
βV 2 0
βnoise 0

Table 4.6: Parameters of simulation setting 3

All Figures needed for the checks are displayed in appendix section 7.2.7-7.2.9 .

With C = 0.8064 and C = 0.8166, the C index values for data set 1 and data set 2,

the simulations pass the first check.
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The influence of MV 1 and MV 3, the variables affecting y, is shown in Figure 7.33 and

7.34. The box plots displaying the corresponding p-values, reveal lower p-values for

MV 1 and MV 3 compared to MV 2. The medians are below p = 0.05 as well. Figure 7.35

- 7.38 and Figure 7.39 - 7.42 are the box plots for the variables, which are influenced by

X (M1−M20). Most of the medians are higher in case of X = 1. However, for data set

1 the difference between X = 0 and X = 1 is not that obvious for variable M5. This

is the case for variable M19 in data set 2 as well. Table 4.7 shows the corresponding

p-values resulting from t-tests for each variable in MV 1 or MV 2. The variable M18 in

data set 2, is the only one with a p value higher than 0.05.

Variable p-value

data set 1

p-value

data set 2

M1 0.00004 0.00566
M2 0.00028 0.00013
M3 0.00004 0.00001
M4 0.00000 0.00021
M5 0.03560 0.00000
M6 0.00225 0.00000
M7 0.00001 0.00003
M8 0.00000 0.00012
M9 0.00001 0.00067
M10 0.00197 0.00004
M11 0.00781 0.00129
M12 0.00052 0.00015
M13 0.00052 0.00046
M14 0.00066 0.00000
M15 0.01065 0.00047
M16 0.00016 0.00087
M17 0.00023 0.00002
M18 0.00000 0.11177

M19 0.00006 0.00103
M20 0.00001 0.00018

Table 4.7: P-values of t-test for each variable in MV 1 or MV 2, setting 3

Finally the box plots in section 7.2.9, Figure 7.43 and 7.44, display the influence of

the exposure on the survival times. The survival curves, estimated with Kaplan Meier

are fully displayed in Figure 7.45 and 7.47, as well as in a cutout form in Figure 7.46

and 7.48. Similar to the first two settings, the survival times have some extreme values

and therefore are a bit skewed.
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4.6.7 Results of simulation

The univariate and multivariate mediation analyses are compared based on the analysis

of 500 simulated data sets. The simulation for each setting is performed in R using the

package simulation which was built only for the purpose of this analysis. The functions

sim1, sim2 and sim3 create m data sets of each setting using the simulation designs

displayed in section 4.6.4 - 4.6.6.

The first two data sets of each setting are performed using the seed 2017 and 1234.

The remaining 498 data sets are simulated based on a random seed resulting from

a sample of full numbers from the interval [100; 10000]. The detailed simulation is

performed as described in section 4.6. Each data set includes 10 mediators and 90

not mediating variables, thus 500× 10 = 5000 mediators and 500× 90 = 45000 not

mediating variables altogether.

Each single data set is analyzed using himasurv() and metest(). When using hima-

surv() with adjusted p-values in step 3, the joint significance test does not identify a

reasonable amount of mediators. Therefore it is not useful to compare the multivariate

analysis with adjusted p-values to the univariate analysis.

However, it is possible to compare himasurv() to metest() when using the raw

p-values in himasurv(). The results are displayed in table 4.8.

The identified mediators can be divided in two groups. One is the true positive

group, which means that the selected variables are really mediators and therefore

identified correctly. The false positive group contains the variables wrongly selected

to be mediators. The rate for the true positive group is calculated as the number of

detected variables (TP ) divided by the number of all existing mediators: TP
5000

. The

rate of false positive (FP ) selections are obtained analogously with FP
45000

.
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himasurv metest

AIC BIC CV
Setting 1

True positive 1273 (25.46%) 757 (15.14%) 151 (3.02%) 1836 (36.72%)
False positive 818 (1.82%) 355 (0.79%) 33 (0.07%) 887 (1.97%)

Setting 2

True positive 1815 (36.30%) 1508 (30.16%) 732 (14.64%) 3085 (61.70%)
False positive 1016 (2.26%) 514 (1.14%) 81 (0.18%) 1134 (2.52%)

Setting 3

True positive 1548 (30.96%) 1006 (20.12%) 297 (5.94%) 1977 (36.54%)
False positive 966 (2.15%) 453 (1.01%) 64 (0.14%) 949 (2.11%)

Table 4.8: Identifying mediators in 500 simulated data sets with raw p-values

The performance of himasurv() with the selection criterion CV for λ is the worst.

Using BIC gives better results in this simulation, especially the false positive identifi-

cations are low in all simulation settings for BIC. The rate of true positive selections

are 15.14%, 30.16% and 20.12% for data set 1, data set 2 and data set 3 respectively

and the false positive rates are very low.

Selecting λ with AIC gives the best results for himasurv(). It results in true positive

rates of 25.46%, 36.30% and 30.96% and false positive rates of 1.82%, 2.26% and 2.15%.

Compared to himasurv() the univariate method metest() is a bit better at detecting

true positive mediators, because the rates are higher. The false positive rates of AIC

and metest() are similar.
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5 Conclusion

The aim of this thesis was to develop a multivariate method for identifying mediators in

high dimensional survival data, based on the work of Zhang et al. (2016) and compare

this method to a univariate approach proposed by Lange and Hansen (2011).

After explaining some basic ideas and concepts like different kinds of two- and

three-variable effects, including mediators in section 3.1 as well as survival data and

methods for survival analysis (Cox regression) in section 3.2, section 3.3 describes the

concept of high dimensional data and how regularization methods like Lasso and Ridge

can deal with them.

Chapter 4 addressed different methods for mediator analysis and contains an approach

for univariate mediator analysis in section 4.1, a general description of multivariate

mediator analysis in section 4.2, as well as the detailed description of the multivariate

method developed by Zhang et al. (2016) in section 4.3.

Based on this three step analysis proposed by Zhang et al. (2016) section 4.4 showed

an adjusted adaption of this theory to survival data. This multivariate analysis for

high dimensional mediation analysis in case of survival data is made of three steps: a

pre-selection, a MCP regression and a joint significance test. The result of the method

is a list of variables identified as mediators.

Within the framework of this thesis a package for R, named himasurv, containing

both, the univariate and the multivariate approach was built. The implementation of

the univariate and multivariate methods, named metest() and himasurv() respectively,

were described in section 4.5.
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The comparison of both methods was performed with a simulation, consisting of

three different dependency settings with 500 simulated data sets each (cf. section 4.6).

After checking the simulation design, every setting was analyzed using the developed

method and the univariate method.

The simulation revealed that selecting λ using the criterion AIC for the multivariate

analysis approach gives the best results for himasurv(). Compared to himasurv() the

univariate method metest() is a bit better at detecting true positive mediators, because

the rates are higher. The false positive rates of AIC and metest() are similar.

Mediation analysis is a very important field in statistics, especially in combination

with high-dimensional data, as it is more common in a multitude of research areas

than ever before. The more data available, the more important it gets to consider the

different relationships variables can have with each other (cf. section 3.1). Therefore

multivariate analysis in case of high dimensional mediators is an important topic, not

only for continuous or binary outcomes, but also in case of survival data. This thesis

covers a first approach for this kind of analysis.

Nevertheless, more research on this topic is recommended. For example, it is in-

teresting how the selection of γ in the MCP regression, as proposed by Breheny and

Huang (2011) (cf. section 3.4.2), changes the results.

Furthermore, the multivariate method contains three steps and all of those steps

can be changed. One possibility is to observe how the results differ when changing

some components of the original analysis. For example it is possible to change the

pre-selection method and use e.g. SIS like in Zhang et al. (2016). An alternative to

MCP in step 2 are methods like Lasso or elastic net. Therefore, this topic offers a lot

of new research approaches.
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7 Appendix

7.1 Random survival forest: cumulative hazard function (CHF)

Section 4.6.2.1 addresses the random survival forest, an adaption of a random forest

for survival data, developed by Ishawaran et al. (2008).

The prediction error calculated for the random survival forest is based on the en-

semble cumulative hazard function (CHF), which is computed as an average of the

CHF of the B survival trees. The CHF of each tree is calculated with respect to the

terminal nodes and based on the Nelson-Aalen estimator.

The following notations are important for the explanation and calculation of the

CHF estimate.

• J : set of terminal nodes in a saturated tree

• h ∈ J : a terminal node

• (T1,h, δ1,h), ..., (Tn(h),h, δn(h),h): the survival times and the censoring indicator for

the cases included in node h, with n(h) being the number of individuals in this

node

• dl,h: number of deaths at time tl,h

• Yl,h: number of individuals at risk at time tl,h

• t1,h < t2,h < ... < tN(h),h: distinct event times

• xi: vector of covariates corresponding to case i, with x representing one single

covariate

61



The Nelson-Aalen estimator is used to estimate the CHF for one tree with the

terminal node h and all cases i within that node have the same CHF

Ĥh(t) =
∑

tl,h≤t

dl,h
Yl,h

(7.1)

Let xxxi be all possible covariates and H(t|xxxi) be the CHF for case i which is the

Nelson-Aalen estimator (cf. equation 7.1) for the terminal node of xxxi and defines the

CHF for all cases and therefore for the tree

H(t|xxxi) = Ĥh(t)

The prediction error for the random forest uses the so called ensemble CHF, which

is computed as an average of the CHF of the B survival trees the RSF is built of.

The package randomForestSRC uses the prediction error based on the C index (cf.

Ishawaran et al. (2008)).

The ensemble CHF can be calculated, with Ii,b identifying if i is an OOB case for

bootstrap sample b (= 1 if it is, and = 0 otherwise) and H∗
b (t|xi) being the CHF shown

in equation 7.1 for sample b as follows

H∗∗
e (t|xi) =

∑B
b=1 Ii,bH

∗
b (t|xi)

∑B
b=1 Ii,b

The bootstrap ensemble CHF for i is calculated as follows

H∗
e (t|xi) =

1

B

B∑

b=1

H∗
b (t|xi)

Further reading and details can be found in Ishawaran et al. (2008).

(Ishawaran et al., 2008, p.841ff.)
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7.2 Simulation

7.2.1 Setting 1: Influence of variables on survival time (check 2)

Figure 7.1: Influence on the survival time for MV 1 and MV 3 (p-values), setting 1.1

Figure 7.2: Influence on the survival time for MV 1 and MV 3 (p-values), setting 1.2
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7.2.2 Setting 1: Influence of exposure on variables (check 3)

Figure 7.3: Box plot for exposure and Mediators M1 - M6 (V1), setting 1.1

Figure 7.4: Box plots for exposure and Mediators M7 - M10 (V1), setting 1.1
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Figure 7.5: Box plots for exposure and Mediators M11 - M16 (V2), setting 1.1

Figure 7.6: Box plots for exposure and Mediators M17 - M20 (V2), setting 1.1

65



Figure 7.7: Box plots for exposure and Mediators M1 - M6 (V1), setting 1.2

Figure 7.8: Box plots for exposure and Mediators M7 - M10 (V1), setting 1.2
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Figure 7.9: Box plots for exposure and Mediators M11 - M16 (V2), setting 1.2

Figure 7.10: Box plots for exposure and Mediators M17 - M20 (V2), setting 1.2

67



7.2.3 Setting 1: Influence of exposure on survival time (check 4)

Figure 7.11: Box plot for influence of exposure X on survival times y, setting 1.1

Figure 7.12: Box plot for influence of exposure X on survival times y, setting 1.2
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Figure 7.13: Survival curve, influence of exposure X on survival times y, setting 1.1

Figure 7.14: Survival curve, cut at t = 10, influence of exposure X on survival times y,
setting 1.1
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Figure 7.15: Survival curve, influence of exposure X on survival times y, setting 1.2

Figure 7.16: Survival curve, cut at t = 60, influence of exposure X on survival times y,
setting 1.2
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7.2.4 Setting 2: Influence of variables on survival time (check 2)

Figure 7.17: Influence on the survival time for MV 1 and MV 3 (p-values), setting 2.1

Figure 7.18: Influence on the survival time for MV 1 and MV 3 (p-values), setting 2.2
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7.2.5 Setting 2: Influence of exposure on variables (check 3)

Figure 7.19: Box plots for exposure and Mediators M1 - M6 (V1), setting 2.1

Figure 7.20: Box plots for exposure and Mediators M7 - M10 (V1), setting 2.1
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Figure 7.21: Box plots for exposure and Mediators M11 - M16 (V2), setting 2.1

Figure 7.22: Box plots for exposure and Mediators M17 - M20 (V2), setting 2.1
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Figure 7.23: Box plots for exposure and Mediators M1 - M6 (V1), setting 2.2

Figure 7.24: Box plots for exposure and Mediators M7 - M10 (V1), setting 2.2
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Figure 7.25: Box plots for exposure and Mediators M11 - M16 (V2), setting 2.2

Figure 7.26: Box plots for exposure and Mediators M17 - M20 (V2), setting 2.2
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7.2.6 Setting 2: Influence of exposure on survival time (check 4)

Figure 7.27: Box plot for influence of exposure X on survival times y, setting 2.1

Figure 7.28: Box plot for influence of exposure X on survival times y, setting 2.2
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Figure 7.29: Survival curve, influence of exposure X on survival times y, setting 2.1

Figure 7.30: Survival curve, cut at t = 50, influence of exposure X on survival times y,
setting 2.1
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Figure 7.31: Survival curve, influence of exposure X on survival times y, setting 2.2

Figure 7.32: Survival curve, cut at t = 30, influence of exposure X on survival times y,
setting 2.2
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7.2.7 Setting 3: Influence of variables on survival time (check 2)

Figure 7.33: Influence on the survival time for MV 1 and MV 3 (p-values), setting 3.1

Figure 7.34: Influence on the survival time for MV 1 and MV 3 (p-values), setting 3.2
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7.2.8 Setting 3: Influence of exposure on variables (check 3)

Figure 7.35: Box plots for exposure and Mediators M1 - M6 (V1), setting 3.1

Figure 7.36: Box plots for exposure and Mediators M7 - M10 (V1), setting 3.1
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Figure 7.37: Box plots for exposure and Mediators M11 - M16 (V2), setting 3.1

Figure 7.38: Box plots for exposure and Mediators M17 - M20 (V2), setting 3.1
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Figure 7.39: Box plots for exposure and Mediators M1 - M6 (V1), setting 3.2

Figure 7.40: Box plots for exposure and Mediators M7 - M10 (V1), setting 3.2
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Figure 7.41: Box plots for exposure and Mediators M11 - M16 (V2), setting 3.2

Figure 7.42: Box plots for exposure and Mediators M17 - M20 (V2), setting 3.2
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7.2.9 Setting 3: Influence of exposure on survival time (check 4)

Figure 7.43: Box plot for influence of exposure X on survival times y, setting 3.1

Figure 7.44: Box plot for influence of exposure X on survival times y, setting 3.2
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Figure 7.45: Survival curve, influence of exposure X on survival times y, setting 3.1

Figure 7.46: Survival curve, cut at t = 20, influence of exposure X on survival times y,
setting 3.1
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Figure 7.47: Survival curve, influence of exposure X on survival times y, setting 3.2

Figure 7.48: Survival curve, cut at t = 30, influence of exposure X on survival times y,
setting 3.2
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8 Digital appendix

The USB stick contains the following digital appendix:

• masters thesis Carina Rein.pdf

A digital version of this thesis.

• derivative covariance.pdf

Contains the detailed description if the second derivative for the estimation of

the covariance matrix using the oracle property of the MCP technique (cf. Fan

and Li (2001)) and displays the idea of the implementation in R for function

covest() in the package himasurv.

• read me.pdf

A guidance for the R codes used in this thesis.

• install dependencies.R

Install and load required packages.

• The folder figures thesis includes:

– plots penalization MCP.R

Code to produce Figures 3.7 and 3.8 in section 3.4.

– plot convexity MCP.R

Code to produce Figure 3.9 in section 3.4.2.

• The folder packages includes:

– Package himasurv

Mediation Analysis in High-dimensional survival data

including:

∗ Function himasurv(): High-dimensional mediation analysis with survival

data.
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∗ Function metest(): Univariate test for mediation effect with respect to

one or several numerical variables in a survival setting.

– Package simulations

Simulation for 3 different dependency settings

including:

∗ Function sim1(), sim2() and sim3()

Perform a simulation for high dimensional survival data with mediators

for setting 1, 2 or 3.

• The folder simulation includes:

– simulation 1 1.R & simulation 1 2.R

Code to simulate data set 1 and data set 2 of setting 1 and to perform the

required checks (cf. section 4.6.4).

– simulation 2 1.R & simulation 2 2.R

Code to simulate data set 1 and data set 2 of setting 2 and to perform the

required checks (cf. section 4.6.5).

– simulation 3 1.R & simulation 3 2.R

Code to simulate data set 1 and data set 2 of setting 3 and to perform the

required checks (cf. section 4.6.6).

– sim set1 500.R and ws sim set1 500.RData

Code to simulate and analyze 500 data sets of setting 1 (cf. section 4.6.7).

and the corresponding workingspace

– sim set2 500.R and ws sim set2 500.RData

Code to simulate and analyze 500 data sets of setting 2 (cf. section 4.6.7).

and the corresponding workingspace

– sim set3 500.R and ws sim set3 500.RData

Code to simulate and analyze 500 data sets of setting 3 (cf. section 4.6.7).

and the corresponding workingspace

88



Bibliography

Alireza Abadi, Saeed Saadat, Parvin Yavari, Chris Bajdik, and Parvin Jalili. Com-

parison of aalen’s additive and cox proportional hazards models for breast cancer

survival: Analysis of population-based data from british columbia, canada. Asian

Pacific Journal of Cancer Prevention, 12(11):3113–3116, 2011.

Rajender R. Aparasu and John P. Bentley. Principles of Research Design and Drug

Literature Evaluation. Jones & Bartlett Learning, 2015.

Reuben M. Baron and David A. Kenny. The moderator-mediator variable distinction

in social psychological research: conceptual, strategic, and statistical considerations.

Journal of Personality and Social Psychology, 51(6):1173–1182, 1986.

Ralf Bender, Tomas Augustin, and Maria Blettner. Generating survival times to

simulate cox proportional hazards models. Statistics in Medicine, 24:1713–1723,

2005.

Anne-Laure Boulesteix, Silke Janitza, Jochen Kruppa, and Inke R. König. Overview of

random forest methodology and practical guidance with emphasis on computational

biology and bioinformatics. Wiley Interdisciplinary Reviews: Data Mining and

Knowledge Discovery, 2:437–507, 2012.

Patrick Breheny. ncvreg: Regularization Paths for SCAD and MCP Penalized Regression

Models, 2017. R package version 3.9-1.

Patrick Breheny and Jian Huang. Coordinate descent algorithms for nonconvex

penalized regression, with applications to biological feature selection. The Annals of

Applied Statistics, 5(1):231–253, 2011.

L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and

Regression Trees. Chapman & Hall, New York, 1984.

Leo Breiman. Random forests. Machine Learning, 45:5–32, 2001.

89
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