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Abstract

Support Vector Machines (SVMs) are a supervised machine learning

algorithm, which is widely used for classification of real-valued input

data. The aim of this thesis is to adapt SVMs for classification to convex

data, which is seen as a generalisation of interval data.

This work first presents the classical theory for empirical SVMs, which

is slightly enhanced by considering a general input space. In the third

chapter, convex sets as an input space are considered and a suitable ker-

nel function for those sets is proposed. It is shown that the computation

of evaluations can be simplified for interval data. Furthermore, the cor-

responding Gaussian kernel is shown to be universal, hence adapts well

for arbitrary data structure.

A decision theoretical approach is discussed in the fourth chapter. In

particular, several counterexamples are developed to reveal the inherent

difficulties of this approach. Lastly, a classifier based on the minimax rule

is compared to the kernel based approach present in the third section.

The R-package ’convexdatasvm’, included in the electronic appendix,

is developed to illustrate the computation of solutions for both ap-

proaches.
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1. Attempting to Capture Reality:

Convex Data as Precise or as Imprecise Data

[W]e have an intuitive knowledge of our own existence, and a

demonstrative knowledge of the existence of God; of the existence of

anything else, we have no other but a sensitive knowledge; which

extends not beyond the objects present to our senses.

John Locke [8, page 173]

Like many philosophers, Locke argues that to a certain extent, reality does not

exist independently of its observer. On the one hand it depends on the observer’s

concept of the world, on the other hand it is influenced by his perception. To under-

stand what this point of view means for common statistical practice, we firstly notice

that most statistical models assume that properties of objects can be measured in

real numbers; for example things have a precise height, age and weight.

In practice this underlying assumption, of real values as observable variables,

does not guarantee that the perception of these quantities is precise. Consider, for

instance a metalworker who needs to measure the length of an iron bar. Using a ruler,

he might obtain the length as an interval, with a length of one millimetre. When he

uses a calliper instead, he may be able to get a more precise result. Nevertheless,

he still observes the length as an interval. Hence, even if the length of an iron bar

is a precise real value, we will not be able to detect it.

In common statistical language these observed intervals are classified as imprecise

data. This type of data is assumed to consist of subsets of R
d which include the "true"

values (which are themselves real vectors). Imprecise data is seen as an alternative

to precise data, which itself consists of real vectors. In the majority of cases a

metalworker would not note the length of an iron bar as an interval. He would

compare the length of the iron bar to the tick marks on his calliper and write down

the closest one. Standard statistical models would then assume the measurement

error, the difference between the observed value and the "true" value, to be randomly
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distributed according to some distribution. This kind of uncertainty should not be

confused with the notion of imprecision.

Below we will see that the concept of real values as properties of objects is it-

self questionable. Coming back to the example of the iron bar again, we notice that

physicists generally do not assume objects such as iron bars to have a precise length.

In thermodynamics it is postulated that the length of objects changes with temper-

ature. Similarly, the theory of Brownian motion expects length to change with time

on small time scales, even when the temperature is constant. If we consider general

relativity the length even depends on the motion of the observer compared to the

iron bar. These physical theories provide sufficient reasons to assume that the length

of an iron bar is rather an interval than a precise real number.

However, if we believe the length of an object to be an interval and we measure

it as an interval, it might be misleading to call this observed interval "imprecise".

In particular when both intervals, the assumed "true" one and the observed one,

are of about the same size. In this case it is natural to see the observed value as a

precise measurement of the actual interval valued length. Analogously to standard

procedures for real valued data, the observed interval could be modelled as a random

variable. This point of view can also be useful when it is not clear that the assumed

"true" value lies within the observed interval. For instance, if the length of the iron

bar was close to a tick mark on the calliper, the iron worker might assign it to the

wrong interval.

Based on these considerations, there are two meaningful ways to handle convex

sets as input data. Either they are seen as imprecise data, hence we assume there

is a "true" value within that set, or it is seen as precise data, measuring relevant

properties directly up to some randomly distributed noise. The method one chooses

mainly depends on the individual’s opinion of the character of the observed variables.

Nevertheless, when considering Support Vector Machines (SVMs) as a classifica-

tion algorithm, there is some reason to see convex data as precise data measured

up to some noise. Since the SVM approach neither tries to model the conditional

distribution of the label given the input data nor the joint distribution of the input

data and the labels, it is often referred to as a "black box method". This means

SVMs can be regarded as a flexible model of the relationship between input data

and labels. Hence, regardless of the mechanism that led to convex sets as input
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data, due to this "black box" property, one can hope SVMs with convex sets as

input space perform sufficiently well.

Conversely, treating convex sets as imprecise data relies on the strong assumption

that there is some "true" value within the convex set. Since this does not need to

hold true for seeing convex sets as precise data, from a philosophical point of view,

methods that can cope with this input space directly should be preferred. In Section

3 we will see how a specific kernel can be chosen to adapt Support Vector Machines

to the input space

Xc = {A ⊂ R
d|A compact and convex}.

Here all elements of Xc are generally seen as unrelated input vectors. Therefore, the

space of possible decision functions is very large and a priori it is not clear how the

choice of a specific kernel restricts it. This is a disadvantage compared to the decision

theoretical approach formulated in Section 4. In this section elements A ∈ Xc are

seen as imprecise values of some unknown variable a ∈ A. This automatically

restricts the space of meaningful decision functions, since when a certain label is

assigned to all points within a set A ∈ Xc, the same label should be assigned to

A. This diverging behaviour of the two approaches discussed in this work should

be kept in mind when deciding between them. Only when both approaches are

meaningful for a given data set, their performance should be compared.

The next section gives some theoretical background of SVMs. Since the input

space is not specified there, it is relevant for both approaches.
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2. Support Vector Machines for Classification

In this section theoretical aspects of Support Vector Machines (SVMs) as an empir-

ical classification algorithm are going to be discussed. In particular, we show that

usually unique solutions exist. Moreover, reproducing kernel Hilbert spaces (RKHS)

as special function spaces in which one can look for solutions are introduced. More-

over, we take a look at the issue of numerical optimisation for the hinge loss as an

concrete example.

Even though we will not make any strong assumptions on the input space X, like

for example X = R
d, we will only discuss empirical SVMs in detail. That means we

generally assume a given data set

D = {(xi, yi)|i = 1, . . . , n} ⊆ X × {−1, +1}

where (X, A) is a measurable space and all products are equipped with corresponding

product σ-algebras. At the end of this section we will additionally cover some results

on consistency. Here a sequence of data sets with increasing size is assumed.

Even thought Steinwart and Christmann in [16] focus on general (non-empirical)

Support Vector Machines, we essentially follow their argumentation. See there for

more details and for an additional discussion of Support Vector Regression.

2.1. Empirical Risk Minimisation

A key concept to describe whether a data point in x ∈ X with label y ∈ {−1, +1}
agrees with a statistical model is that of a loss function.

Definition 2.1 (Loss function)

A loss function for classification or simply loss is a measurable function

L : R × {−1, 1} → R
+
0 ∪ ∞.

For (x, y) ∈ D and a given measurable function f : X → R the value L(f(x), y) is

called the loss of predicting y by f(x).
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Most loss functions for classification, which are used in practice, penalise data

points (x, y) for which the sign of f(x) does not agree with the label y associated

with x. Hence sign(f(x)) is used for predictions. We look at loss functions of this

kind in the following definition.

Definition 2.2 (Commonly used loss functions)

For t ∈ R and y ∈ {−1, +1} define the following loss functions.

• 0 − 1 loss:

L0−1(t, y) = 1]−∞,0](y sign(t)) =











0 for sign(t) = y

1 else

• Hard margin loss:

Lhm(t, y) =











0 for yt ≥ 1

∞ else

• Hinge loss:

Lhinge(t, y) = max{0, 1 − yt}

• Logistic loss:

Llogist(t, y) = log(1 + exp(−yt))

Definition 2.3 (Convex and monotonic loss)

A loss function L : R × {−1, 1} → R
+
0 ∪ ∞ is called

• convex when Ly : R → R
+
0 ∪ ∞, t 7→ L(t, y) is convex for both y = +1 and

y = −1,

• monotonic when Ly : R → R
+
0 ∪ ∞, t 7→ L(t, y) is monotonically increasing

for y = −1 and monotonically decreasing for y = +1.
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Note that all loss functions given in Definition 2.2 are convex and monotonic,

except the 0 − 1 loss which is monotonic but not convex. Having a convex loss is

vital for the uniqueness of the minimiser of the following functional, and to invent

numerically stable procedures to find this optimiser.

0

1

∞

−2 −1 0 1 2

t

L
(t,

 y
=

+
1
)

Loss function

0−1

hard margin

hinge

logistic

Figure 1: Common loss functions for classification.

Definition 2.4 (Risk)

Let f : X → R be measurable, P be a measure on (X ×{−1, +1}, A⊗P({−1, +1}))

and L be a loss function.

1. The expected loss with respect to P is defined by

RP (f) = EP [L(f(x), y)] =
∫

X×{−1,+1}

L(f(x), y)dP (1)

and is called the risk of f given P .

2. For a set of observations D = {(xi, yi)|i = 1, . . . , n} with (xi, yi)
i.i.d.∼ P is

Remp(f) =
1

n

∑

(x,y)∈D
L(f(x), y) (2)

the empirical risk of f given D. This is an approximation of the actual

(but unknown) risk for a given loss.
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Instead of minimising the empirical risk, an extra term is commonly added to

avoid overfitting. This procedure is known as structured risk minimisation. More

precisely we try to minimise the following regularised empirical risk functional on

some Hilbert space H. Here the regularisation term is chosen to be ‖f‖2
H for f ∈ H.

It could also be replaced by a different continuous and increasing function of ‖f‖2
H.

Definition 2.5 (Regularised empirical risk functional)

Let H ⊆ R
X be some function space. Let λ > 0 and for f ∈ H let Remp(f) be the

empirical risk of f given D. Then the functional

R :H → R ∪ ∞
f 7→ λ‖f‖2

H + Remp(f) (3)

is called regularised empirical risk functional. Alternatively an objective function

with offset can be used:

Roff :H × R → R ∪ ∞
(f, b) 7→ λ‖f‖2

H + Remp(f + b). (4)

Subsequently we will focus on the risk without offset but corresponding results for

the risk with offset are usually mentioned. One reason for preferring R over Roff

is the next theorem, which states that unique minimiser for R exists under weak

assumptions.

Theorem 2.6 (Existence of unique minimisers)

Let L be a finite and convex loss. Let H ⊆ R
X be a Hilbert space such that the linear

maps δx : H → R, f 7→ f(x) are continuous for all x ∈ X.

Then R (defined in Equation 3) has a unique minimiser.

Proof. Since R → R
+
0 , t 7→ L(t, yi) is convex for all i = 1, . . . n these are continuous as

a real functions (see Lemma A.7). Therefore H → R
+
0 , f 7→ L(f(xi), yi) is continuous

as a composition of continuous functions and consequently one concludes that R is

continuous as a linear combination of continuous functions.

Moreover, we have H → R
+
0 , f 7→ 1

n

∑n
i=1 L(f(xi), yi) being convex as a sum and

positive multiple of convex functions. Hence R is strictly convex as a sum of a

convex and a strictly convex function (the squared norm of f).
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Furthermore, for every sequence (fn)n∈N ⊂ H with ‖f‖H → ∞ we have

R(f) ≥ ‖f‖2
H → ∞

which implies that R is coercive. Therefore we conclude, by applying Theorem

A.10, that there exists a minimal solution f ∗ of R in the Hilbert space H, which is

in particular a reflexive Banach space. The uniqueness of f ∗ is a result of R being

strictly convex.

Remark 2.7

Analogously to Theorem 2.6 it can be shown that Roff (defined in Equation 4) has

a minimiser. However one needs further assumptions to ensure uniqueness in that

case.

Hilbert spaces that fulfil the second requirement of Theorem 2.6 will play an

important role in subsection 2.3. The are called reproducing kernel Hilbert spaces.

The naming can be understood when considering the proof of Theorem 2.19 in

Subsection 2.3 and the subsequent comments.

Definition 2.8 (Reproducing kernel Hilbert space)

Let H ⊆ R
X be a Hilbert space. H is called a reproducing kernel Hilbert space

(RKHS) on X if

δx : H → R

f 7→ f(x)

is continuous for all x ∈ X.

Corollary 2.9

Let X be a Hilbert space, for example X = R
n, and H = X ′ is its dual space, that

is the vector space of all continuous linear functionals on X. Then we have

|f(x)| ≤ ‖f‖H‖x‖X ∀x ∈ X, f ∈ H

by applying the Cauchy-Schwarz Inequality (Lemma A.2). Thus H → R, f 7→ f(x)

is continuous for all x ∈ X.
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Hence the second condition of Theorem 2.6 is fulfilled when considering linear

functionals on a Hilbert space. Therefore, its dual is a reproducing kernel Hilbert

space and we can conclude existence and uniqueness of solutions.

2.2. Geometrical Interpretation

Consider the special case where X = R
d and D is linearly separable. That is, there

exists a linear hyperplane in R
d such that all x ∈ X with label y = +1 lie on one side

of the plane and those with label y = −1 on the other. Furthermore, let H = (Rd)′,

the dual of R
d. Hence all f ∈ H can be written as fw = 〈w, ·〉 for some w ∈ R

d

(Riesz Representation Theorem [14, page 118]). Additionally assume a hard margin

loss.

Example 2.10 (Linear separation without offset)

Considering a hard margin loss,

L(y, 〈w, x〉) =











0, for y〈w, x〉 ≥ 1

∞, else

for all (x, y) ∈ D, implies that for all w ∈ R
d such that R(fw) is finite, all points with

different labels are separated by the hyperplane {x ∈ R
d|〈w, x〉 = 0}. Furthermore

there are no points in between the two hyperplanes {x ∈ R
d|〈w, x〉 = −1} and

{x ∈ R
d|〈w, x〉 = +1}. The distance between those hyperplanes equals 2

‖w‖2
. Hence

minimising the risk R(fw) = λ‖w‖2
2 is equivalent to maximising the distance between

the separating hyperplanes. This distance is called the margin.

Example 2.11 (Linear separation with offset)

Similarly the loss function

L(y, 〈w, x〉 + b) =











0, for y(〈w, x〉 + b) ≥ 1

∞, else
∀(x, y) ∈ D.

ensures that points with different labels are separated by all hyperplanes described by

{x ∈ R
d|〈w, x〉 + b = c} ∀c ∈ [−1, 1]. Since the distance between the two hyperplanes

9



{x ∈ R
d|〈w, x〉 + b = −1} and {x ∈ R

d|〈w, x〉 + b = +1} does not depend on the

offset b, it can likewise be computed as 2
‖w‖2

.

Minimising the risk Roff (f, b) = λ‖w‖2
2 is therefore still equivalent to maximis-

ing the distance between the separating hyperplanes. In this particular example the

variable b can actually be interpreted as an geometrical offset of the hyperplane

{x ∈ R
d|〈w, x〉 + b = 0}, which is the distance to the origin.

−
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0.0

2.5

5.0

−5.0 −2.5 0.0 2.5 5.0

x1

x
2

w
T
x = +1    w

T
x = 0     w

T
x = −1

−
−
−

−

−

+
+
+

+
+

ww

−5.0

−2.5

0.0

2.5

5.0

−5.0 −2.5 0.0 2.5 5.0

x1

x
2

w
T
x + b = +1    w

T
x + b = 0     w

T
x + b = −1

Figure 2: Linear separation in R
2 without offset (left) and with offset (right).

Example 2.10 and Example 2.11 not only demonstrate the use of an offset, when

the special case of linear separation is considered, they also illustrate where Support

Vector Machines got their name from. The data points that lie on either

{x ∈ R
n|〈w, x〉 + b = −1} or {x ∈ R

n|〈w, x〉 + b = +1}

are called Support Vectors. Only these determine the position of the separating

hyperplane.
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2.3. The Kernel Trick

Unlike in Subsection 2.2, linear separation might not be sufficient for separation

of arbitrary datasets. On the other hand it is not clear in which Hilbert space H
one should look for separating functions instead. Even if we had a suitable space of

functions, optimisation of the regularised empirical risk functional might be difficult.

A common workaround for this problem is to define a mapping φ : X → F where

F is some Hilbert space and find a separating hyperplane there. Hence the task

becomes to find an element of F ′ that minimises the regularised empirical risk for

data

φ(D) := {(φ(xi), yi)|i = 1, . . . , n}.

This procedure effectively leads to a non-linear separating functional on X.

Definition 2.12 (Feature map)

Let φ : X → F , with F being a Hilbert space.

Then φ is called a feature map for the feature space F .

Remark 2.13

Corollary 2.9 shows that there exists an unique linear functional f ∗ ∈ F ′ that min-

imises the risk for data φ(D) ⊂ F × {−1, +1}. Moreover, the next lemma shows

that this minimiser admits a certain representation.

Lemma 2.14

Let D = {(xi, yi)|i = 1, . . . , n} ⊂ X × {−1, +1} and φ : X → F be a feature map

with corresponding feature space F . Let F ′ be the dual of the Hilbert space F and

f ∗ ∈ F ′ be a minimiser of

R : F ′ → R

f 7→ λ‖f‖2
F ′ +

1

n

n
∑

i=1

L(f(φ(xi)), yi). (5)

Then f ∗ admits a representation

f ∗ = 〈
n
∑

i=1

αiφ(xi), ·〉F with αi ∈ R ∀i = 1, . . . , n.

11



Proof. Let f ∗ be any minimiser of Equation 5. Let H = span({φ(x1), . . . φ(xn)})

and decompose F as a direct sum of H (which is closed, since it is the span of a

finite set) and its orthogonal complement (see [14, page 100]):

F = H ⊕ H⊥.

Then f ∗ can be written as

f ∗ = 〈h1 + h2, ·〉 with h1 ∈ H and h2 ∈ H⊥

using the Riesz Representation Theorem A.3. Let (x, y) ∈ D be an arbitrary point

of the training data set. Applying f ∗ to φ(x) gives

f ∗(φ(x)) = 〈h1, φ(x)〉 + 〈h2, φ(x)〉 = 〈h1, φ(x)〉 ∀x ∈ X

and therefore

Remp(f ∗) = Remp(〈h1, ·〉) on data φ(D).

Applying the Pythagorean Theorem yields

‖f ∗‖2
F ′ = ‖h1 + h2‖2

F = ‖h1‖2
F + ‖h2‖2

F ≥ ‖h1‖2
F = ‖〈h1, ·〉‖2

F ′ .

Since f ∗ is a minimiser of Equation 5 we get

R(f ∗) ≤ R(〈h1, ·〉) = λ‖〈h1, ·〉‖2
F ′ + Remp(f ∗) ≤ λ‖f ∗‖2

F ′ + Remp(f ∗) = R(f ∗).

Hence we have ‖f ∗‖F ′ = ‖〈h1, ·〉‖F ′ . Applying the Pythagorean Theorem once more

one obtains

‖〈h2, ·〉‖2
F ′ = ‖h2‖2

F = ‖h2‖2
F + ‖h1‖2

F − ‖h1‖2
F = ‖f ∗‖2

F ′ − ‖〈h1, ·〉‖2
F ′ = 0

which implies h2 = 0 and consequently f ∗ = 〈h1, ·〉. Since h1 ∈ span({φ(x1), . . . φ(xn)}),

the desired representation follows immediately.

12



Remark 2.15

Lemma 2.14 still holds true when a risk function with offset is used.

When we substitute the representation of f ∗ obtained in Lemma 2.14 back into

Equation 5 we see that the problem is actually equivalent to minimising the objective

function

λ‖
n
∑

i=1

αiφ(xi)‖2
F +

1

n

n
∑

j=1

L
(

〈
n
∑

i=1

αiφ(xi), φ(xj)〉F , yj

)

=λ
n
∑

j=1

n
∑

i=1

αjαi〈φ(xj), φ(xi)〉F +
1

n

n
∑

j=1

L
(

n
∑

i=1

αi〈φ(xi), φ(xj)〉F , yj

)

with respect to α = (α1, . . . , αn) ∈ R
n.

One observes that the minimisation problem depends on {xi, | i = 1, . . . , n} and φ

only via 〈φ(xj), φ(xi)〉. Hence, it might be sufficient to define a mapping (named a

kernel) k : X × X → R instead of a feature map φ and a feature space F .

Definition 2.16 (Kernel)

A function k : X × X → R is called a kernel on X if there exists a Hilbertspace F
and a map φ : X → F such that

k(x1, x2) = 〈φ(x1), φ(x2)〉F ∀x1, x2 ∈ X. (6)

This definition directly yields the following implications.

Lemma 2.17 (Basic properties of kernels)

Let k : X × X → R be a kernel. Then

1. the kernel k is symmetric, that is k(x1, x2) = k(x2, x1) ∀x1, x2 ∈ X,

2. the kernel k is positive semi-definite, that is for all n ∈ N, for all α1, . . . , αn ∈
R and for all x1, . . . , xn ∈ X holds

n
∑

i=1

n
∑

j=1

αiαjk(xi, xj) ≥ 0. (7)
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3. We have the Cauchy-Schwarz Inequality, that is

k(x1, x2)
2 ≤ k(x1, x1)k(x2, x2) ∀x1, x2 ∈ X (8)

Proof. The kernel k is clearly symmetric, since the scalar product on F is symmetric.

Furthermore we compute

n
∑

i=1

n
∑

j=1

αiαjk(xi, xj) =
n
∑

i=1

n
∑

j=1

αiαj〈φ(xi), φ(xj)〉F

= 〈
n
∑

i=1

αiφ(xi),
n
∑

j=1

αjφ(xj)〉F

= ‖
n
∑

i=1

αiφ(xi)‖2
F

≥ 0.

Hence k is positive semi-definite. This also implies the Cauchy-Schwarz Inequality

(Lemma A.2)

Remark 2.18

Note that some authors (for example Steinwart and Christmann [16]) call a mapping

positive definite when Inequality 7 holds true. We call this property positive

semi-definite, since this definition coincides with the usual definition for matrices.

More precisely a mapping k : X × X is positive semi-definite (according to the

definition given here) if and only if all its Gram matrices

K := (k(xi, xj))i=1,...,n
j=1,...,n

with n ∈ N, x1, . . . xn ∈ X (9)

are positive semi-definite.

Having defined kernels indirectly through a feature space and a feature map it

seems natural to ask which mappings k : X × X → R actually define kernels on X.

The next theorem can answer the question if a given mapping k : X × X → R is a

kernel. That is whether there exists a feature map φ : X → F and Hilbert space F
such that k = 〈φ, φ〉F .
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Theorem 2.19 (Characterisation of kernel functions)

Let k : X × X → R be a symmetric function. Then k is a kernel if and only if it is

positive semi-definite.

Proof. This proof is essentially the same as in [13, page 418]. However it introduces

the concept of reproducing kernel Hilbert spaces, therefore we repeat it here. By

Lemma 2.17 we already now that every kernel is positive semi-definite. To show the

other direction let

V := span ({k(x, ·)|x ∈ X}) .

and

〈f, g〉V :=
n
∑

i=1

m
∑

j=1

αiβjk(x1i, x2j)

for f =
n
∑

i=1

αik(x1i, ·) and g =
m
∑

i=1

βik(x2i, ·). Then (V, 〈·, ·〉V) defines an inner product

space, since

• the mapping 〈·, ·〉V is well defined, as

〈f, g〉V =
m
∑

j=1

βjf(x2j) =
n
∑

i=1

αig(x1i)

is independent of concrete representations of f and g.

• It is clearly linear and symmetric by definition and

• positive definite since

〈f, f〉V =
n
∑

i=1

n
∑

j=1

αiαjk(x1i, x1j) ≥ 0 ∀f ∈ V (10)

because k is positive semi-definite. To show 〈f, f〉V = 0 implies f = 0 we first

notice that 〈·, ·〉V is itself a positive semi-definite bilinear form on V.
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To see this let f1, . . . , fm ∈ V and λ1, . . . λm ∈ R. Then we have

m
∑

i=1

m
∑

j=1

λiλj〈fi, fj〉V = 〈
m
∑

i=1

λifi,
m
∑

j=1

λjfj〉V ≥ 0,

since
m
∑

i=1

λifi ∈ V and Equation 10. Hence the Cauchy-Schwarz Inequality

holds for 〈·, ·〉V (see Lemma A.2), hence we have

〈f1, f2〉2
V

≤ 〈f1, f1〉V〈f2, f2〉V ∀f1, f2 ∈ V.

Now let f =
∑n

i=1 αik(xi, ·) ∈ V be such that 〈f, f〉V = 0. Then we have for

all x ∈ X:

f(x)2 =

(

n
∑

i=1

αik(xi, x)

)2

= 〈f, k(x, ·)〉2
V

≤ 〈f, f〉V〈k(x, ·), k(x, ·)〉V = 0. (11)

This gives f(x) = 0 for all x = X which is the same as f = 0.

Define F to be the completion of V with respect to the norm induced by 〈·, ·〉V (see

[17, page 64]). Then F is a Hilbert space with inner product 〈·, ·, 〉F such that

〈f, g〉F = 〈f, g〉V ∀f, g ∈ V.

This shows that k is actually a kernel on X × X since we have for x1, x2 ∈ X

k(x1, x2) = 〈k(x1, ·), k(x2, ·)〉F .

Hence φ : X → F , x → k(x, ·) defines a feature map on X with feature space F .

The feature space F constructed in the proof will play an important role when

considering Support Vector Machines based on a specific kernel function. Note that,

Equation 11 implies that

|f(x)| ≤ ‖f‖F
√

k(x, x) for all x ∈ X, f ∈ F .
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Hence

δx : H → R

f 7→ f(x)

is continuous for all x ∈ X, which means F is a reproducing kernel Hilbert space.

Hence for any given kernel k we can construct a feature space that is a reproducing

kernel Hilbert space.

Definition 2.20

Let k : X × X → R be a kernel. Then we denote by Hk the feature space constructed

in the proof of Theorem 2.19. Hk is called the reproducing kernel Hilbert space

associated with k.

Corollary 2.21 (Reproducing kernel)

Let k be a kernel on X and Hk be the reproducing kernel Hilbert space associated

with it. Then we have

f(x) = 〈f, k(x, ·)〉Hk
∀x ∈ X, f ∈ Hk.

Conversely if this property holds for any kernel function k : X × X → R with

k(x, ·) ∈ H for all x ∈ X and some Hilbert space H we call k a reproducing

kernel of H.

Remark 2.22

There is a one-to-one correspondence between reproducing kernel Hilbert spaces and

reproducing kernels. Many properties of the functions in the RKHS can equivalently

been seen as properties of the kernel. For more details see Chapter 4 in [16], in

particular Theorem 4.20 and Theorem 4.21.
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Lemma 2.23

For any kernel k : X × X → R is Hk a reproducing kernel Hilbert space. Moreover

if X is a metric space and k is continuous on X × X we have

Hk ⊂ C(X),

where C(X) denotes the space of all continuous functions on X. That is all functions

in Hk are continuous.

Proof. We have implicitly shown

|δx(f)| = |f(x)| ≤ ‖f‖Hk
‖k(x, ·)‖Hk

∀x ∈ X, f ∈ Hk.

That is δx being continuous for all x ∈ X. Hence Hk is a reproducing kernel Hilbert

space. Moreover for all x1, x2 ∈ X and all f ∈ Hk we obtain

|f(x1) − f(x2)| = |〈f, k(x1, ·)〉Hk
− 〈f, k(x2, ·)〉Hk

|
= |〈f, k(x1, ·) − k(x2, ·)〉Hk

|
≤ ‖f‖Hk

‖k(x1, ·) − k(x2, ·)‖Hk

= ‖f‖Hk

√

k(x1, x1) + k(x2, x2) − 2k(x1, x2)

Hence if k is continuous, so is f .

Since Hk is a RKHS we can deduce that, given a finite and convex loss function

L, a unique solution to the optimisation problem given any valid kernel function

can be found. More precisely we have

Corollary 2.24 (Representer Theorem)

Let L be a finite and convex loss and k be a kernel on X. Furthermore let Hk be

the reproducing kernel Hilbert space associated with k. Then there exists a unique

minimiser f ∗ ∈ Hk of

R : Hk → R

f 7→ λ‖f‖2
Hk

+
1

n

n
∑

i=1

L(f(xi), yi). (12)
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Moreover, f ∗ admits a representation of the form

f ∗ =
n
∑

i=1

αik(xi, ·)

for some α1, . . . , αn ∈ R.

This and similar statements are know as the "Representer Theorem" for exam-

ple in [16, page 168] and in [13]. They are an immediate consequence of Lemma

2.14 and the reproducing property of kernels. Since there is a one-to-one correspon-

dence between reproducing kernels and reproducing kernel Hilbert spaces one can

equivalently replace the assumption of a kernel by requiring a RKHS in Corollary

2.24.

As a consequence it is sufficient to consider a kernel function instead of an ex-

plicit function space H. The Hilbert space H is then implicitly assumed to be the

reproducing kernel Hilbert space associated with k. Hence it is vital to have suitable

kernel functions on hand. The following lemmata will show how to construct new

kernel functions and give examples of commonly used ones.

Lemma 2.25 (Constructing kernel functions)

Let ki : X × X → R, i ∈ N be kernel functions and λ ≥ 0.

1. If f : X → R is some function on X then

X × X → R

(x1, x2)
T 7→ f(x1)k1(x1, x2)f(x2)

is a kernel on X × X.

2. The mappings k1 + λk2, and k1 · k2 are kernels on X × X.

3. If lim
i→∞

ki(x1, x2) =: k(x1, x2) exists for all x1, x2 ∈ X then the limit

k : X × X → R

(x1, x2)
T 7→ k(x1, x2)

is a kernel on X × X.
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Proof.

1. Since k1 is a kernel on X ×X there exists a feature space F and a feature map

φ : X → F such that

k1(x1, x2) = 〈φ(x1), φ(x2)〉F ∀x1, x2 ∈ X.

Hence

f(x1)k1(x1, x2)f(x2) = f(x1)〈φ(x1), φ(x2)〉Ff(x2) = 〈f(x1)φ(x1), f(x2)φ(x2)〉F

for all x1, x2 ∈ X which shows that f · φ is a feature map for feature space F .

2. The mapping k1 + λk2 is clearly symmetric. Moreover, for all α1, . . . , αn ∈ R

and for all x1, . . . , xn ∈ X holds

n
∑

i=1

n
∑

j=1

αiαj(k1 + λk2)(xi, xj) =
n
∑

i=1

n
∑

j=1

αiαjk1(xi, xj) + λ
n
∑

i=1

n
∑

j=1

αiαjk2(xi, xj)

≥ 0.

This means k1 + λk2 is positive semi-definite and by Theorem 2.19 a kernel.

To show that the product of two kernels is a kernel let F1, F2 be feature spaces

with feature maps φ1, φ2 for kernels k1 and k2 respectively. Let F = F1 ⊗ F2

be the tensor product Hilbert space of F1 and F2 with corresponding scalar

product

〈v1 ⊗ w1, v2 ⊗ w2〉F = 〈v1, v2〉F1
〈w1, w2〉F2

∀v1, v2 ∈ F1, w1, w2 ∈ F2.

Hence φ : X → R, x 7→ φ1(x) ⊗ φ2(x) defines a feature map for feature space

F since we have

〈φ(x1), φ(x2)〉F = 〈φ1(x1) ⊗ φ2(x1), φ1(x2) ⊗ φ2(x2)〉F

= 〈φ1(x1), φ1(x2)〉F1
〈φ2(x1), φ2(x2)〉F2

= k1(φ1(x1), φ1(x2))k2(φ2(x1), φ2(x2))

for all x1, x2 ∈ X. This shows that k1 · k2 is a kernel on X × X.
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3. k is clearly symmetric and for all α1, . . . , αn ∈ R and for all x1, . . . , xn ∈ X

holds

n
∑

i=1

n
∑

j=1

αiαjk(xi, xj) = lim
i→∞

n
∑

i=1

n
∑

j=1

αiαjki(xi, xj) ≥ 0.

Hence k is positive semi-definite as well and therefore a kernel on X × X.

Lemma 2.26 (Common kernel functions on R
d)

Let X = R
d and 〈·, ·〉 the usual inner product (dot product) on R

d. Then the following

functions are valid kernels on X × X:

1. Linear kernel: k(x1, x2) = 〈x1, x2〉 ∀x1, x2 ∈ R
d

2. Polynomial kernel: k(x1, x2) = (〈x1, x2〉+c)m ∀x1, x2 ∈ R
d, c > 0, m ∈ N

3. Gaussian kernel: k(x1, x2) = exp(−γ‖x1 − x2‖2
2) ∀x1, x2 ∈ R

d, γ > 0

Here ‖ · ‖2 denotes the norm induced by the dot product.

Proof.

1. The usual scalar product on R
d is a kernel by construction.

2. Notice that every non-negative constant c ∈ R is a kernel since φ : X → R,

x 7→ √
c is a feature map for feature space R. The desired result can therefore

be obtained by applying the second part of Lemma 2.25 and using the first

part of this lemma.

3. Let k∗(x1, x2) = exp(2γ〈x1, x2〉) =
∞
∑

i=0

(2γ〈x1, x2〉)i

i!
for all x1, x2 ∈ X. Then

k∗ defines a kernel on X × X (called the exponential kernel) since it is the

limit of positive linear combination of kernels (Lemma 2.25). Moreover we can

write k as

k(x1, x2) = exp(−γ‖x1 − x2‖2
2) = exp(−γ‖x1‖2)k∗(x1, x2) exp(−γ‖x2‖2)

for all x1, x2 ∈ X , which shows that k defines a kernel on X × X by the first

part of of the foregoing lemma.
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Note that if k is a linear kernel, its reproducing kernel Hilbert space is precisely

R
d. Hence the risk for fw ∈ (Rd)′ with f = 〈w, ·〉 for some w ∈ R

d is the same as if

we define H in Equation 3 to be (Rd)′.

2.4. Optimisation Procedure for the Hinge Loss

We have seen that for a given kernel the optimisation problem becomes a convex

problem in R
n. Nevertheless, the objective function is not necessarily differentiable.

This is even the case for one of the most commonly used loss function, the hinge

loss. We will now discuss how the optimisation problem for the hinge loss without

offset can be reformulated in a way that allows efficient numerical optimisation.

This procedure can be adapted for other risks, for example for the hard margin loss

or an additional offset.

In this subsection let L be the hinge loss (see Definition 2.2) and k : X × X → R

be an arbitrary kernel on X. Denote by

K = (k(xi, xj))i=1,...,n
j=1,...,n

=











k(x1, x1) . . . k(x1, xn)
...

...

k(xn, x1) . . . k(xn, xn)











the symmetric Gram matrix for data D = {(xi, yi)|i = 1, . . . , n}. Thus the risk

function without offset can be written as

R : R
n → R

α 7→ λαT Kα +
1

n

n
∑

i=1

max{0, 1 − yi

n
∑

j=1

αjKij}. (13)

Hence minimizing R with respect to α = (α1, . . . , αn) is equivalent to the following

optimisation problem.
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Definition 2.27 (Primal Optimisation Problem)

This convex optimisation problem is called the primal problem for the hinge

loss.

minimize λαT Kα +
1

n

n
∑

i=1

ξi

subject to
1 − yiα

T Ki − ξi ≤ 0

ξi ≤ 0







∀i = 1, . . . , n

with respect to α, ξ ∈ R
n,

where KT
i = (k(xi, xj))j=1,...,n

for all i = 1, . . . , n.

Here so called slack variables ξi ∈ R
+
0 , i = 1, . . . , n were introduced. Solving

the primal problem directly is still is numerically expensive thought. Thus a dual

formulation is used instead. More precisely we have

Lemma 2.28

Let µ∗ ∈ R
n be a solution to the following optimisation problem.

maximize
n
∑

i=1

µ − 1

4λ

n
∑

i=1

n
∑

j=1

µiµjyiyjKij

subject to 0 ≤ µi ≤ 1

n
∀i = 1, . . . , n

with respect to µ ∈ R
n.

Then α∗ = (α∗
i )i=1,...,n with α∗

i =
yiµ

∗

i

2λ
for all i = 1, . . . , n minimises the risk given

in Equation 13.

Proof. Since both, the objective function and the constraints, are convex the dual-

ity gap vanishes. Hence the primal problem (Definition 2.27) is equivalent to the

Lagrangian dual optimisation problem (see [2, page 267]) which can be formulated

as

maximize Φ(µ, ν)

subject to µi, νi ≥ 0 ∀i = 1, . . . , n

with respect to µ, ν ∈ R
n.
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with corresponding objective function

Φ(µ, ν) = inf
α,ξ∈Rn

Λ(α, ξ, µ, ν).

and Lagrangian

Λ(α, ξ, µ, ν) = λαT Kα +
1

n

n
∑

i=1

ξi +
n
∑

i=1

µi(1 − ξi − yiα
T Ki) −

n
∑

i=1

νiξi.

Necessary requirements to a solution of both the primal and the dual problem are

given by the Karush-Kuhn-Tucker conditions (Theorem A.11). Applied to the primal

problem (Definition 2.27) they become

I.1 : ∇α(λαT Kα +
∑n

i=1 ξi) +
∑n

i=1 µi∇α(1 − yiα
T Ki − ξi) = 0

I.2 : ∇ξ(
∑n

i=1 ξi) +
∑n

i=1 µi∇ξ(1 − yiα
T Ki − ξi) −∑n

i=1 νi∇ξξi = 0

and for all i = 1, . . . , n:

II.1 : µi(1 − yiα
T Ki − ξi) = 0

II.2 : νiξi = 0

III : µi, νi ≥ 0.

Which means we need to have for all i = 1, . . . , n:

I.1 : 2λαT Ki =
∑n

j=1 µiyiKij

I.2 : µi + νi = 1
n

II.1 : µiyiα
T Ki = µi(1 − ξi)

II.2 : νiξi = 0

III : µi, νi ≥ 0.

Using Equations I.2 and II.2 one obtains

1

n
ξi = µiξi

I.1
= µi − µiyiα

T Ki, (*)

24



and from I.1 one concludes

λαT Kα =
1

2

(

n
∑

i=1

µiµjKij

)

j=1,...,n

α

=
1

2

n
∑

j=1

n
∑

i=1

µiµjKijαj

=
1

2

n
∑

i=1

µiµjα
T Ki. (**)

Hence the Lagrangian can be reformulated as

Λ(α, ξ, µ, ν) = λαT Kα +
1

n

n
∑

i=1

ξi
∗
= λαT Kα +

n
∑

i=1

µi −
n
∑

i=1

µiyiα
T Ki

∗∗
=

n
∑

i=1

µi − 1

2

n
∑

i=1

µiyiα
T Ki

I.1
=

n
∑

i=1

µi − 1

2

n
∑

i=1

µiyi

1

2λ

n
∑

j=1

µjyjKij

=
n
∑

i=1

µi − 1

4λ

n
∑

i=1

n
∑

j=1

µiµjyiyjKij.

where the condition µi, νi ≥ 0 for all i = 1, . . . , n can be fulfilled by demanding µ

to be within
[

0, 1
n

]

. Hence maximising Φ(µ, ν) with respect to µ and ν is equivalent

to the optimisation problem stated in this lemma. To construct a solution to the

primal problem let µ∗ be a solution to the optimisation problem given in Lemma

2.28. We have just shown that this means (µ∗, ν∗) with ν∗ = 1
n

− µ∗ is a solution to

the Lagrangian dual problem. For all i = 1, . . . , n let

α∗
i =

yiµ
∗
i

2λ

ξ∗
i =











0 if µ∗
i = 0

1 − yiα
∗T Ki else,

which implies µ∗
i ξ

∗
i = µ∗

i (1 − yiα
∗T Ki) for all i = 1, . . . , n and therefore

n
∑

i=1

µ∗
i (1 − ξ∗

i − yiα
∗T Ki) = 0.
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Moreover we have

n
∑

i=1

ν∗
i ξ∗

i =
n
∑

i=1

(
1

n
− µ∗

i )ξ
∗
i =

1

n

n
∑

i=1

ξ∗
i −

n
∑

i=1

µ∗
i ξ

∗
i

and as a consequence the Lagrangian can be calculated as

Λ(α∗, ξ∗, µ∗, ν∗) =
1

4λ

n
∑

i=1

n
∑

j=1

µ∗
i µ

∗
jy

∗
i y∗

j Kij +
n
∑

i=1

µ∗
i − 1

2λ

n
∑

i=1

n
∑

j=1

µ∗
i µ

∗
jy

∗
i y∗

j Kij

Which simplifies to

n
∑

i=1

µ∗
i − 1

4λ

n
∑

i=1

n
∑

j=1

µ∗
i µ

∗
jy

∗
i y∗

j Kij = Φ(µ∗, ν∗).

Therefore, we know, by duality, that (α∗, ξ∗) is a solution to the primal problem

stated in Definition 2.27. Moreover, this means α∗ is a minimiser of the risk given

in Equation 13.

2.5. Selection of Tuning Parameters

Up to this point we have seen the tuning parameter λ > 0 as a fixed value that

is priorly chosen to avoid to close adaptation to the data D. By the law of large

numbers, we know that for n = |D| tending to infinity, the empirical risk tends to

the actual risk for all decision functions f . Therefore, intuitively, for small training

data we need a large λ to control the generalization error.

Cross validation In practice this behaviour gives no advise for selecting a specific

parameter, thought. Hence usually one considers a finite set of tuning parameters

λ1, . . . , λm. To choose the best one among them we try to minimise the expected

risk for decision functions fλ1
, . . . , fλm

. Here fλi
is the minimiser of the regularized

risk (Definition 2.5) with tuning parameter λi for all i = 1, . . . , m, respectively.

The risk (Equation 1) is then approximated by applying a k-fold cross validation

algorithm. For k = n this coincides with the leave-one-out algorithm. Here the risk
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is approximated by

RP (fλj
) ≈ 1

n

n
∑

j=1

L(f ∗
λj

(xj), yj) for all j = 1, . . . , m (14)

where f ∗
λj

denotes the minimiser of the regularised risk with tuning parameter λj

and data Dj = {(xi, yi)|i = 1, . . . , n, i 6= j}. Since D ≈ Dj we expect fλj
≈ f ∗

λj
and

therefore, an nearly unbiased estimate of the expected loss with respect to P .

When a classification task is performed one might actually be interested in the

0 − 1 loss but be using the hinge loss for optimisation (as this loss is convex, see

Theorem 2.6). For the ultimate selection of a tuning parameter λ and consequently

a decision function fλ one can replace the loss L in Equation 14 by any desired loss

function. Moreover, similarly to the selection of a tuning parameter, one can use

k-fold cross-validation to select a kernel among a finite set of possible kernels. For

example to decide for a certain parameter γ ∈ R when considering Gaussian kernels

(see Lemma 2.26).

Data independent selection for universal kernels Additionally to this data de-

pendent way of choosing the tuning parameter λ, for a certain class of kernels there

exists a sequence (λn)n∈N that ensures consistency of the classification algorithm.

Hence this second approach provides a parameter λn for a given data set of size

|D| = n, previously to minimising the regularised risk.

Before giving the main result of this subsection (Theorem 2.33), we will formally

define what it means for a classifier to be consistent.

Definition 2.29 (Classifier)

For a measurable input space X equipped with σ-Algebra A let

(X × {−1, +1})∞ = {D ⊆ X × {−1, +1}| |D| < ∞}

be the set of all finite training data sets. A classifier C is map that assigns every

D ∈ (X × {−1, +1})∞ a decision function fD. That is

C : (X × {−1, +1})∞ → {f ∈ XR| f Borel measurable}
D 7→ fD.
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In the context of Support Vector Machines the map that assigns every data set D
the minimiser of the regularised risk (Equation 3) is a classifier for fixed λ ∈ R. The

general aim for a classifier is for D being drawn independently from X×{−1, 1} with

respect to some distribution P , to find a decision function that approximately min-

imises the risk of misclassification. This smallest achievable risk of misclassification

is called Bayes risk.

Definition 2.30 (Bayes risk)

For any probability distribution P on X × {−1, +1} is

RP = inf{RP (f)| f ∈ XR, f Borel measurable}

the Bayes risk of P . Here the risk of a measurable f : X → R is defined to be

RP (f) = P (sign(f(x)) 6= y).

It is clear that not every classification method used in practice can be expected

to achieve the Bayes risk. If this strong property holds for a classifier it is called

universally consistent. Formally we have

Definition 2.31 (Universal consistency)

Let D being drawn identically and independently as elements of X × {−1, 1} with

respect to some distribution P . A classifier is said to be universally consistent if

RP (fD) → RP for |D| → ∞

in probability with respect to P .

In general we do not expect the SVM classifier to be universally consistent. If for

instance a linear kernel is used, only linear separating functions can be obtained.

This means every distribution P that causes non-linear structure has a lower Bayes

risk than the risk achievable by linear separation. Hence we only expected the Bayes

risk to be achieved by classifiers based on Support Vector Machines with kernel k,

if the corresponding reproducing kernel Hilbert space is large enough. Precisely we

want a universal kernel.
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Definition 2.32 (Universal kernel)

Let X be a compact metric space. Let k : X × X → R be a continuous kernel. k is

called universal, if for the corresponding reproducing kernel Hilbert space Hk holds

Hk
‖·‖∞

= C(X).

That is Hk being dense in C(X). C(X) denotes the space of real valued, continuous

functions on X equipped with the uniform norm ‖ · ‖∞.

It can be shown (see for example [16, page 155]) that the Gaussian kernel defined

in Lemma 2.26 is universal on every compact X ⊂ R
d. The next Theorem shows

that there exist suitable null-sequences (λn)n∈N such that a SVM classifier based on

a universal kernel is universally consistent.

Theorem 2.33 (SVMs with universal kernels are universally consistent)

Let k : X × X → R be a universal kernel on a compact metric space X and let L be

the hinge loss. Moreover, let (λn)n∈N with λn > 0 ∀n ∈ N be such that

λn → 0 for n → ∞
nλ2

n → ∞ for n → ∞.

Then the classifier based on a Support Vector Machine with kernel k and the risk

without offset (Equation 3) is universally consistent.

Proof. See Theorem 3.20 in [15, page 136].

Remark 2.34

Steinwart also gives a stronger assumption on the sequence (λn)n∈N to ensure uni-

versal consistency of the SVM classifier with offset. Here the sequence of tuning

parameter (λn)n∈N should achieve n
log(n)

λ2
n → ∞ (see Example 1.1 in [15]).
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Similar results exists for other loss functions than the hinge loss. Furthermore,

the condition on (λn)n∈N can be weakened for certain kernels or under restriction of

the probability distribution P .

Nevertheless, Theorem 2.33 only requires a certain asymptotic behaviour of the

sequence of parameters (λn)n∈N. Hence it does not tell us how to choose one param-

eter for fixed sample size, as the limit is for example not influenced by multiplication

with a constant value. Thus, rather than giving concrete advice on how to select

one parameter λ, the results of this subsection can partially explain why Support

Vector Machines based on universal kernels adapt well.
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3. Convex Sets as Data Points

In this section we look at an input space Xc that consists of all compact and convex

subsets of R
d. Hence we define

Xc = {A ⊂ R
d|A compact and convex}.

Since in Section 2 the input space was not further defined, all theoretical results

apply to the input space Xc without any limitations. In all of the following examples

the hinge loss is used and the parameter λ is set to 1, as long as not stated otherwise.

3.1. Towards a Kernel for Convex Sets

Some known kernel functions on R
d, for example the Gaussian kernel, are based on

the Euclidean distance as a dissimilarity measure. To adapt those kernels to convex

sets as data points, one has to find a suitable distance function on Xc. Do and

Poulet [4] suggest to replace the Euclidean distance in the formula for the Gaussian

kernel by the Hausdorff distance dH . However, the resulting kernel is not necessarily

positive definite.

Definition 3.1 (Hausdorff distance)

For A, B ∈ Xc let

dH(A, B) = max{sup
a∈A

inf
b∈B

‖a − b‖2, sup
b∈B

inf
a∈A

‖a − b‖2}.

Example 3.2

Let d = 1 and I1 = [0.5, 1.4], I2 = [1, 1.1], I3 = [0.5, 0.6], I4 = [0, 0.9]. The Gram

matrix for the Hausdorff distance can be shown to be

















0.00 0.50 0.80 0.50

0.50 0.00 0.50 1.00

0.80 0.50 0.00 0.50

0.50 1.00 0.50 0.00

















.
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Hence the Gram matrix for the kernel

k(A, B) = exp(−dH(A, B)2) ∀A, B ∈ Xc

can be computed as

K ≈

















1.00 0.78 0.53 0.78

0.78 1.00 0.78 0.37

0.53 0.78 1.00 0.78

0.78 0.37 0.78 1.00

















.

For the determinant of K holds det(K) ≈ −0.1, hence K is not positive semi-definite

which means the kernel k is not positive semi-definite.

It is problematic for a kernel to be indefinite as the construction of the reproducing

kernel Hilbert space (see Theorem 2.19) strongly depends on the kernel being positive

semi-definite. Moreover, the corresponding optimisation problem does not need to

yield a unique minimiser. Even though Ong et al. [10] provide some results on

adapting kernel methods for indefinite kernels, these are not covered by the classical

theory for Support Vector Machines given in Section 2.

That is the reason why we try a different approach to obtain a positive semi-

definite kernel. Instead of defining a kernel function directly, we assume a suitable

feature map for convex subsets of R
d.

3.2. Support Functions as a Feature Space

Definition 3.3 (Support function)

Let Xc = {A ⊂ R
d|A compact and convex}. For A ∈ Xc define it’s support function

as

hA : R
d → R

v 7→ max
a∈A

〈a, v〉,

where 〈·, ·〉 is the usual scalar product on R
d.
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Note that hA is well defined for all A ∈ Xc, since 〈·, v〉 is continuous for all v ∈ R
d.

Thus, it attains its maximum on all compact A ⊂ R
d. Intuitively its value can be

understood as the greatest signed distance from A to the origin in direction v ∈ R
d

(see Figure 3). To see this let for a ∈ A

av =
〈a, v〉
‖v‖2

2

v

be the projection of a on span(v). Then we have ‖av‖2 = |〈a,v〉|
‖v‖2

and consequently

maximising 〈a, v〉 is equivalent to maximising sign(〈a, v〉)‖av‖2. Moreover, we get

hA(v) =















max
a∈A

〈a, v〉 = max
a∈A

‖av‖2 if ∃a ∈ A : 〈a, v〉 ≥ 0

max
a∈A

〈a, v〉 = − min
a∈A

‖av‖2 else.

for all v ∈ R
d with ‖v‖2 = 1.

●

●

amax

amax, v

v

A

−1

0

1

2

3

4

−1 0 1 2 3 4

x1

x
2

Figure 3: Geometrical interpretation of support functions. The length of amax,v

corresponds to the value of the support function hA(v) = 〈amax, v〉 for
‖v‖2 = 1.
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Lemma 3.4

The support function hA is Lipschitz continuous for all A ∈ Xc.

Proof. Let A ∈ Xc and v1, v2 ∈ R
d. Then we have

max
a∈A

〈a, v1〉 = max
a∈A

(〈a, v1 − v2〉 + 〈a, v2〉)

≤ max
a∈A

〈a, v1 − v2〉 + max
a∈A

〈a, v2〉.

Hence we get

max
a∈A

〈a, v1〉 − max
a∈A

〈a, v2〉 ≤ max
a∈A

〈a, v1 − v2〉 ≤ max
a∈A

|〈a, v1 − v2〉| ≤ max
a∈A

‖a‖2‖v1 − v2‖2,

where we used the Cauchy-Schwarz Inequality (Lemma A.2). Since A is bounded

as a compact set, there is a M ∈ R such that ‖a‖2 ≤ M for all a ∈ A. Therefore,

by exchanging v1 and v2 we conclude

|hA(v1) − hA(v2)| = | max
a∈A

〈a, v1〉 − max
a∈A

〈a, v2〉| ≤ M‖v1 − v2‖2,

which shows that hA is Lipschitz continuous.

Remark 3.5

The support function hA is positive homogeneous, that is for all λ > 0 and all v ∈ R
d

holds

hA(λv) = max
a∈A

λv = λ max
a∈A

v = λhA(v).

Hence hA is fully determined by its values on the unit sphere Sd−1.

Therefore, we will look at restrictions of support functions on the unit sphere

Sd−1. Firstly notice that those restrictions belong to a Hilbert space.

Lemma 3.6

The support function hA is square-integrable on the unit sphere. More precisely we

have hA|Sd−1
∈ L2(Sd−1) for all A ∈ Xc.

Proof. Let A ∈ Xc. Since we have shown in Lemma 3.4 that hA is continuous on

R
d it is borel measurable. Furthermore, |hA| attains its maximum M ∈ R on the
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compact set Sd−1. Thus, we have

∫

Sd−1

|hA(v)|2dv ≤
∫

Sd−1

M2dv = M2|Sd−1| < ∞,

where |Sd−1| denotes the surface area of the unit sphere as a d − 1 dimensional

manifold embedded in R
d.

Definition 3.7 (Kernel for convex sets)

Let Xc = {A ⊂ R
d|A compact and convex}. Define the feature map (for a feature

space L2(S
d−1)) by

φ : Xc → L2(Sd−1)

A 7→
√

d

|Sd−1|
hA.

Denote by kc the corresponding kernel on Xc.

Hence a feature map on Xc is given by mapping any compact and convex subset

of R
d to a multiple of its support function. The Lebesgue space L2(Sd−1) acts here

as a feature space. This implies that kc can be written as

kc(A1, A2) = 〈φ(A1), φ(A2)〉L2(Sd−1) =
d

|Sd−1|
∫

Sd−1

max
a∈A1

〈a, v〉 max
a∈A2

〈a, v〉 dv (15)

for all A1, A2 ∈ X. The constant
d

|Sd−1|
is introduced to ensure that this kernel

actually generalises linear Support Vector Machines on R
d.

Lemma 3.8

For point sets A = {a} and B = {b} we have

kc(A, B) = aT b.

Hence kc acts on point sets like the usual inner product on R
d.
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Proof. Let A = {a} and B = {b}. Then we have

kc(A, B) =
d

Sd−1

∫

Sd−1

max
a∈A

〈a, v〉 max
b∈B

〈b, v〉 dv

=
d

Sd−1

∫

Sd−1

aT vbT v dv

=
d

Sd−1

∫

Sd−1

d
∑

i=1

d
∑

j=1

aivibjvj dv

=
d

Sd−1

d
∑

i=1

d
∑

j=1

aibj

∫

Sd−1

vivj dv

=
d
∑

i=1

aibi

d

Sd−1

∫

Sd−1

v2
i dv

= aT b

where we used

∫

Sd−1

vivj dv = 0 ∀i 6= j,

with i, j ∈ 1, . . . , d, which is due to symmetry and

d
∫

Sd−1

v2
i dv =

d
∑

i=1

∫

Sd−1

v2
i dv =

∫

Sd−1

‖v‖2 dv =
∫

Sd−1

1 dv = |Sd−1|

for all i = 1, . . . , d.

The next lemma shows that every minimiser of the regularised empirical risk

actually acts like an affine linear classifier on sets of equal shape.

Lemma 3.9

Let D = {(Ai, yi)|Ai ∈ Xc, yi ∈ {−1, +1}, i = 1, . . . , n} and let Hc be the repro-

ducing kernel Hilbert space associated with kc. Moreover, let f ∈ Hc be a minimiser

of

R : Hc → R

f 7→ λ‖f‖2
Hc

+
1

n

n
∑

i=1

L(f(Ai), yi).
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Let B ∈ Xc, then

fB : R
d → R

x 7→ f(x + B)

is affine linear.

Proof. Let x ∈ R
d. We have

max
a∈(x+B)

〈a, v〉 = max
b∈B

〈x + b, v〉 = max
b∈B

(〈x, v〉 + 〈b, v〉) = 〈x, v〉 + max
b∈B

〈b, v〉

and therefore,

kc(Ai, x + B) =
d

|Sd−1|
∫

Sd−1

max
a∈Ai

〈a, v〉(〈x, v〉 + max
b∈B

〈b, v〉) dv

=
d

|Sd−1|
∫

Sd−1

max
a∈Ai

〈a, v〉
d
∑

j=1

xjvj dv + kc(Ai, B)

=
d
∑

j=1

xj

d

|Sd−1|
∫

Sd−1

max
a∈Ai

〈a, v〉〈ej, v〉 dv + kc(Ai, B)

= 〈x, kc(Ai, {ej})j=1,...,d〉 + kc(Ai, B)

for all i = 1, . . . , n. Here does ej denote the j-th unit vector in R
d. Since we have

by Corollary 2.24 (Representer Theorem)

f(x + B) =
n
∑

i=1

αikc(Ai, x + B)

for all x ∈ R
d, we conclude that f is affine linear in x ∈ R

d.

Remark 3.10

1. The same result holds true when a risk with offset is used.

2. If we choose B = {0} we have x + B = x ∈ R
d and kc(Ai, B) = 0 for all

i = 1, . . . , n. Hence this lemma shows that the restriction of f on points sets

is linear.
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3. The proof shows that the parameter of the decision function

f(x) = 〈w, x〉 + b ∀x ∈ R
d

can be computed as

w =
n
∑

i=1

αikc(Ai, {ej})j=1,...,d

b =
n
∑

i=1

αikc(Ai, B).

Lemma 3.9 gives an intuitive understanding of how Support Vector Machines with

kernel kc act with respect to the position of sets. As an example, Figure 4 shows

how a minimiser separates points. That is setting B = {0} in Lemma 3.9.

−5

0

5

−4 0 4 8

x1

x
2

offset

no

yes

labels

−1    

+1    

Figure 4: Restricting the minimising functional to point sets for the risk without
and with offset. The grey lines indicate the separating hyperplanes respec-
tively.
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However, it is not straightforward to see how the shape of sets Ai ∈ Xc, i =

1, . . . , n influences the resulting decision function and how this function then acts

on sets of different shape. Since calculating the kernel kc for sets of arbitrary shape

is numerically expensive we will restrict Xc to the set of d-dimensional intervals.

3.3. Restriction on Interval Data

Let XI ⊂ Xc be the set of all d-dimensional intervals. That is

XI = {A ∈ Xc| A =
d×

i=1
[a−1i, a+1i] with a−1i ≤ a+1i ∀i = 1, . . . , d}.

The next theorem will show that evaluating kc on d-dimensional intervals can be

simplified. Afterwards this representation of the reduced kernel is used to understand

how Support Vector Machines using kc act on interval-valued data.

Theorem 3.11

Let A, B ∈ XI with A =
d×

i=1
[a−1i, a+1i] and B =

d×
i=1

[b−1i, b+1i]. Then the kernel for

convex sets evaluated at sets A and B can be computed as

kc(A, B) =
1

2
aT Mb,

with a = (a−11, a+11, . . . , a−1d, a+1d)T ∈ R
2d, b = (b−11, b+11, . . . , b−1d, b+1d)T ∈ R

2d

and a matrix M ∈ R
2d×2d defined by

M =

























12 A . . . . . . A

A 12
...

...
. . .

...
... 12 A

A . . . . . . A 12

























with 12 =





1 0

0 1



 , A =





1
π

− 1
π

− 1
π

1
π



 .
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Proof. For s ∈ {−1, 1}d let Sd−1(s) = {v ∈ Sd−1|visi > 0, ∀i = 1, . . . , d}. Then we

have for all v ∈ Sd−1(s)

hA(v) = max
a∈A

〈a, v〉 = max
a∈A

d
∑

i=1

aivi =
d
∑

i=1

max
a−1i≤ai≤a+1i

aivi =
d
∑

i=1

asiivi = aT
s v

and analogously

hB(v) = bT
s v

where as = (asii)
T
i=1,...,d and bs = (bsii)

T
i=1,...,d. Hence the integral associated with the

kernel can be written as

∫

Sd−1

hA(v)hB(v) dv =
∑

s

∫

Sd−1(s)
aT

s vbT
s v dv

=
∑

s

∫

Sd−1(s)

d
∑

i,j=1

(asb
T
s )i,jvivj dv

=
∑

s

d
∑

i,j=1

asiibsjj

∫

Sd−1(s)
vivj dv.

Due to symmetry and Lemma 3.12 we have

∫

Sd−1(s)
vivj dv = sisj

∫

S+

d−1

v1v2 dv =
sisj |Sd−1|

2d−1dπ
∀i 6= j

where S+
d−1 = Sd−1(s), s = (1, . . . , 1)T . We get for i = j:

∫

Sd−1(s)
vivj dv =

∫

S+

d−1

v2
i dv =

|Sd−1|
2dd

since

|Sd−1| =
∫

Sd−1

1 dv =
d
∑

i=1

∫

Sd−1

v2
i dv =

d
∑

i=1

∑

s

∫

Sd−1(s)
v2

i dv = d2d
∫

S+

d−1

v2
i dv

for all i = 1, . . . , n.
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Hence we conclude:

∫

Sd−1

hA(v)hB(v) dv =
d
∑

i,j=1

∑

s

asiibsjj

∫

Sd−1(s)
vivj dv

=
d
∑

i,j=1

2d−2
∑

si,sj∈{−1,1}
asiibsjj

∫

Sd−1(s)
vivj dv

= 2d−2
d
∑

i,j=1

∑

si,sj∈{−1,1}
asiibsjjsisj

∫

S+

d−1

vivj dv

=
2d−2 |Sd−1|

2d−1d









d
∑

i=1

∑

si∈{−1,1}
asiibsii +

d
∑

i,j=1
i6=j

∑

si,sj∈{−1,1}

sisj

π
asiibsjj









=
|Sd−1|

2d











2d
∑

i=1

aibi +
2d
∑

i,j=1
|i−j|≥2

(−1)i+j

π
aibj











.

Therefore dividing the last equation by d
|Sd−1| yields the desired result.

Lemma 3.12

For all d ∈ N, d ≥ 2 holds

∫

S+

d−1

v1v2 dv =
|Sd−1|
2d−1dπ

.

Here Sd−1 denotes the unit sphere, that is the surface area of the d-dimensional unit

ball and S+
d−1 = {v ∈ Sd−1| vi ≥ 0 ∀i = 1, . . . , d}.

Proof. By the Fundamental Theorem of Calculus we have

∫

S+

d−1

v1v2 dv =
d

dR

∫ R

r=0

∫

S+

d−1
(r)

v1v2 dv dr

∣

∣

∣

∣

∣

R=1

=
d

dR

∫

B+

d
(R)

v1v2 dv

∣

∣

∣

∣

∣

R=1

,

where the last equality is due to Theorem A.4 (Integration in spherical coordinates).

Here does Sd−1(r) denote the surface area of Bd(r), the d-dimensional ball with

center at the origin and radius r. Using a transformation to polar coordinates from
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two dimensional Cartesian coordinates and Fubini’s Theorem one computes

∫

B+

d
(R)

v1v2 dv =
∫

B+

d−2
(R)

∫

B+

2
(
√

R2−x)

x=
∑d

i=3
v2

i

v1v2 d(v1, v2) d(v3, . . . , vd)

=
∫

B+

d−2
(R)

√

R2−
∑d

i=3
v2

i
∫

r=0

π
2
∫

t=0

r3 cos(t) sin(t) dt dr d(v3, . . . , vd)

=
∫

B+

d−2
(R)

[

r4

4

]

√

R2−
∑d

i=3
v2

i

r=0

[

1

2
sin2(t)

]
π
2

t=0
d(v3, . . . , vd)

=
1

8

∫

B+

d−2
(R)

(R2 − ‖v‖2
2)

2 dv.

This can further be simplified by using spherical coordinates (Theorem A.4) once

more;

∫

B+

d
(R)

v1v2 dv =
1

8

R
∫

r=0

(R2 − r2)2|S+
d−3(r)| dr

=
|Sd−3|
8 · 2d−2

R
∫

r=0

(R4 − 2R2r2 + r4)2rd−3 dr

=
|Sd−1|(d − 2)

2d+2π

[

R4rd−2

d − 2
− 2R2rd

d
+

rd+2

d + 2

]R

r=0

=
|Sd−1|Rd+2

2d+2π

(

1 − 2(d − 2)

d
+

(d − 2)

d + 2

)

.

Here we used a recursive formula for the area of a unit sphere (Lemma A.5) to derive

the third equality. The desired result is therefore obtained by

d

dR

∫

B+

d
(R)

v1v2 dv

∣

∣

∣

∣

∣

R=1

=
|Sd−1|Rd+1

2d+2π

(

2d − 2(d + 2)(d − 2)

d

) ∣

∣

∣

∣

∣

R=1

=
|Sd−1|
2d−1dπ

.
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The next lemma shows how solutions of Support Vector Machines with kernel

kc and input space XI can be interpreted. It turns out that every minimiser can

be decomposed as a sum of two linear functionals. One maps the midpoint vector

of the d-dimensional intervals and the other the vector of interval lengths in every

coordinate direction.

Lemma 3.13

Let D = {(Ai, yi)|Ai ∈ XI , yi ∈ {−1, +1}, i = 1, . . . , n} and let Hc be the reproducing

kernel Hilbert space associated with kc. Moreover, let f ∈ Hc be a minimiser of

R : Hc → R

f 7→ λ‖f‖2
Hc

+
1

n

n
∑

i=1

L(f(Ai), yi).

Then there exist w1, w2 ∈ R
d such that

f(B) = wT
1 m(B) + wT

2 l(B)

for all B ∈ XI .

The functions m and l assign the midpoint and the length in each direction to an

d-dimensional interval, respectively. That is for B =
d×

i=1
[b−1i, b+1i] ∈ XI

m(B) =
1

2
(b−1i + b+1i)i=1,...,d

l(B) = (b+1i − b−1i)i=1,...,d.

Proof. Let A, B ∈ XI with m(A) = x, l(A) = a, m(B) = y, l(B) = b. Denote by

x̃ = (x1, x1, . . . , xd, xd)T

ã =
1

2
(−a1, a1, . . . , −ad, ad)T

ỹ = (y1, y1, . . . , yd, yd)T

b̃ =
1

2
(−b1, b1, . . . , −bd, bd)T

where x̃, ã, ỹ, b̃ ∈ R
2d.
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Defining M ∈ R
2d×2d like in Theorem 3.11 one computes

x̃T Mỹ = x̃T ỹ = 2xT y

x̃T Mb̃ = x̃T b̃ = 0

ãT Mỹ = ãT ỹ = 0

ãT Mb̃ = ãT b̃ +
1

π

d
∑

i,j=1
i6=j

aibj

=
1

2
aT b − 1

π

d
∑

i=1

aibi +
1

π

d
∑

i,j=1

aibj

=

(

(
1

2
− 1

π
)aT +

1

π

d
∑

i=1

ai(1, . . . , 1)

)

b.

Hence we deduce (using Theorem 3.11) that the kernel kc evaluated at sets A, B ∈ XI

can be written as

kc(A, B) =
1

2
(x̃ + ã)T M(ỹ + b̃)

= xT y +

(

(1 − 2

π
)aT +

2

π

d
∑

i=1

ai(1, . . . , 1)

)

b.

Reconsidering the representation of the minimiser given in the Representer Theo-

rem (Corollary 2.24) we obtain that w1, w2 are linear combinations of the prefactors

of y and b in the equation above, respectively.

The next two examples shall demonstrate what this decomposition means in prac-

tice for classifying interval data. In both examples the tuning parameter λ is set to

one and the kernel for convex sets kc is used. Evaluations are computed using the

results of Theorem 3.11.
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Example 3.14

Let (A, Y ) be a random variable with P (Y = −1) = P (Y = 1) = 1
2
, A ∈ XI

with midpoint vector M ∼ U([−100, 100]2) and length vector L. For the conditional

distribution of the length L given the label Y shall hold

L|Y ∼ 4





2 − Y

2 + Y



+ Exp(1)

where Exp(1) denotes a exponential distribution with rate parameter set to 1. Figure

5 shows 100 identically and independently drawn samples (Ai, yi) ∼ (A, Y ).

−100

−50

0

50

100

−100 −50 0 50 100

x1

x
2

labels

−1    

+1    

Figure 5: Interval data with non-predictive position but predictive shape.

This data is now used to train a Support Vector Machine with kernel kc. According

to Theorem 3.11 and the Representer Theorem (Corollary 2.24) we obtain w ∈ R
4

such that for the risk minimiser f and all B = [b−11, b+11] × [b−12, b+12] ∈ XI holds

f(B) = (b−11, b+11, b−12, b+12)w.
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Define (m1, m2)
T = m(B) to be the vector of midpoints and (l1, l2)

T = l(B) to be

the vector of lengths. Hence we can rewrite the decision functions f as

f(B) = wT

















m1 − 0.5l1

m1 + 0.5l1

m2 − 0.5l2

m2 + 0.5l2

















= wT

















m1

m1

m2

m2

















+ 0.5wT

















−l1

+l1

−l2

+l2

















= wT

















1 0

1 0

0 1

0 1





















m1

m2



+ 0.5wT

















−1 0

1 0

0 −1

0 1





















m1

m2





For a simulated example data set D = {(Ai, yi)
i.i.d∼ (A, Y )} (see Figure 5) the risk

is optimised by

w =

















0.1207

−0.1215

−0.1191

0.1186

















.

Thus w1, w2 ∈ R
2 defined like in Lemma 3.13 can be computed as

w1 =





1, 1, 0, 0

0, 0, 1, 1



w ≈




0

0





w2 = 0.5





−1, 1, 0, 0

0, 0, −1, 1



w ≈




−0.12

0.12



 .

This shows that the position of the midpoints m(B) of the 2-dimensional interval

B has no influence on the predicted label. Intervals which spread more in the first

coordinate direction than in the second are predicted to have label y = −1, whereas

intervals that spread more in the second coordinate direction than in the first one

are assumed to have label y = +1. Hence the interval length l(B) is predictive.

Due to the decomposition given in Lemma 3.13 it is also clear that no Support

Vector Machine with kernel kc and no offset can distinguish between d-dimensional
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intervals of different size. When we consider sets of form

B = [−b, b]d for b ∈ R
+
0 ,

we get f(B) = (−1, 1, . . . , −1, 1)w2b. This implies

sign(f(B)) = sign((−1, 1, . . . , −1, 1)w2),

hence all sets are assumed to have the same label. The next example shows how an

offset can be used to avoid this behaviour.

Example 3.15

Let (A, Y ) be a random variable with P (Y = −1) = P (Y = 1) = 1
2

and A ∈ XI

with midpoint vector M ∼ U([−50, 50]2), and length vector L. The conditional

distribution of the length L given the label Y is given by

L|Y ∼ 2|N (3 − Y, 0.8)|.

Here N (µ, σ) denotes a normal distribution with mean µ and standard derivation σ.

Figure 6 shows a sample of 100 independently and identically drawn sets according

to the distribution of (A, Y ).

Firstly, a Support Vector Machine without offset is trained on suchlike dataset

of sample size 1000. Similarly to the example before, we obtain a risk minimiser

represented by

w =

















0.0583

−0.0584

0.0587

−0.0579

















.
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Figure 6: Interval data with non-predictive position but predictive size.

As expected, this corresponds to

w1 ≈




0

0



 , and w2 ≈




−0.06

−0.06



 ,

which means the classifier can not distinguish between interval sets of different size,

since f(B) is strictly negative for all two dimensional intervals B.

Secondly, an additional offset d ∈ R is considered. In this case we obtain the

minimising values

w =

















0.1747

−0.1748

0.1752

−0.1743

















and d = 2.09.
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This implies

w1 ≈




0

0



 , and w2 ≈




−0.17

−0.17



 ,

hence for B ∈ XI with each side of same length l(B) we get

f(B) > 0 ⇔ 2.09 − 2 · 0.17l(B) > 0

⇔ l(B) < 6.1.

When we compare the histogram of the lengths l(B) in the example data set differ-

entiated by label (Figure 7), the calculated decision value seems to be reasonable.
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Figure 7: Size of the two dimensional intervals differentiated by label.

3.4. The Gaussian Kernel for Convex Sets

As seen in Lemma 3.13, every decision function obtained by a SVM with kernel

kc on interval data, is additive linear as a function of the position and the length

of the interval. This is a very limiting behaviour, as not even linear interactions

between position and shape can be detected using this kernel. Moreover, Example

3.15 shows that SVMs without offset and kernel kc can not even distinguish between

interval sets of different size. Hence it is questionable whether those Support Vector

Machines can adapt well to sets of different shape.
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To overcome these restrictions on the decision function, the "kernel trick" described

in Subsection 2.3 can be used to perform more flexible classification of convex sets.

Similarly as in Lemma 2.26 for kernels on R
d, valid kernel functions on Xc can be

constructed as transformations of kc. Some examples are shown in the next lemma.

Lemma 3.16 (More kernel functions for convex sets)

Let Xc = {A ⊂ R
d| A compact and convex} and kc be the kernel on Xc × Xc defined

in Definition 3.7. Then the following functions are valid kernels on Xc × Xc:

1. Polynomial kernel:

k(A1, A2) = (kc(A1, A2) + c)m

for all A1, A2 ∈ Xc, c > 0, m ∈ N.

2. Exponential kernel:

k(A1, A2) = exp [γkc(φ(A1), φ(A2))]

for all A1, A2 ∈ Xc, γ > 0.

3. Gaussian kernel:

k(A1, A2) = exp
(

−γ‖φ(A1) − φ(A2)‖2
L2(Sd−1)

)

for all A1, A2 ∈ Xc, γ > 0. Here φ and L2(S
d−1) denote the feature map and

the feature space defined in Definition 3.7.

Proof. Analogously to the proof of Lemma 2.26 we use the results of Lemma 2.25,

where the scalar product on R
d is replaced by kc. The reasoning there only uses that

the scalar product (or kc respectively) is positive semi-definite.
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Remark 3.17

The Gaussian kernel for convex sets (Lemma 3.16) is similar to the indefinite kernel

defined in the approach of Do and Poulet [4]. The kernel there can be written in

terms of support functions as

k(A1, A2) = exp(−γdH(A1, A2)
2) = exp(−γ‖φ(A1), φ(A2)‖2

∞)

for all interval sets A1, A2 ∈ XI and γ > 0 (see Equation 16). The only difference

is, that the uniform norm ‖ · ‖∞ on the space of support functions is replaced by the

L2-norm. This modification ensures positive semi-definiteness of the kernel.

To ensure asymptotic approximation of the best achievable decision function one

might desire to have an universal kernel on Xc (see Theorem 2.33). This request

is meaningful since Xc equipped with the Hausdorff distance (Definition 3.1) is

a metric space. Moreover, the next lemma shows that little effort is needed to

construct compact subsets of Xc.

Lemma 3.18

Let K ⊂ R
d be compact. Then Xc,0 = {A ⊆ K| A compact} equipped with the

Hausdorff distance dH (Definition 3.1) is a compact metric space.

Proof. Henrikson [7] showed that (Xc,0, dH) is indeed a metric space (Proposition

2-2) which is totally bounded (Theorem 3-1) and complete (Theorem 3-3). Since

every complete and totally bounded metric space is also compact (see [1, page 81])

we obtain that (Xc,0, dH) is compact.

The following theorem is due to Christmann and Steinwart [3] and shows how to

construct universal kernels on other input spaces than subsets of R
d. This general

result is then used to show that the Gaussian kernel defined in Lemma 3.16 is

universal on a suitable input space.
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Theorem 3.19 (Universal kernels on non-standard input spaces)

Let X be a compact metric space and H be a separable Hilbert space. Let φ : X → H
be continuous and injective.

1. Denote by M = sup
x1,x2∈X

〈φ(x1), φ(x2)〉H. Let (ai)i∈N ⊂ R
+
0 such that

∞
∑

i=0

aiM
i < ∞.

Then k : X × X → R defined by

k(x1, x2) =
∞
∑

i=0

ai〈φ(x1), φ(x2)〉i
H ∀x1, x2 ∈ X,

is a universal kernel.

2. The Gaussian kernel given by

k(x1, x2) = exp(−γ‖φ(x1) − φ(x2)‖2
H) ∀x1, x2 ∈ X,

is universal for all constant γ > 0.

Proof. See Theorem 2.2 in [3, page 4].

We will see that all requirements of Theorem 3.19 are full filled for the reproducing

kernel Hilbert space Hc belonging to kc and every compact subset of Xc. In detail

we can state:

Lemma 3.20

Let Xc,0 ⊂ Xc be compact and k : Xc,0 × Xc,0 be the exponential kernel or the

Gaussian kernel defined in Lemma 3.16. Then k is universal.
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Proof. Here we have H = L2(Sd−1) which is a separable Hilbert space. The expo-

nential kernel can be written as

k(A1, A2) = exp [γkc(φ(A1), φ(A2))]

=
∞
∑

i=0

(γkc(φ(A1), φ(A2)))
i

i!

=
∞
∑

i=0

γi

i!
〈φ(A1), φ(A2)〉i

H

for all A1, A2 ∈ Xc,0. The power series involved,
∞
∑

i=0

(γM)i

i!
, converges for every

M ∈ R
+. Hence it is left to show that the feature map defined in 3.7 is continuous

and injective in order to prove that both the exponential and the Gaussian kernel are

universal. To do so we write the Hausdorff distance in terms of support functions.

That is

dH(A1, A2) = ‖hA1
− hA2

‖∞ ∀A1, A2 ∈ Xc, (16)

where ‖f‖∞ = sup
v∈Sd−1

|f(v)| denotes the uniform norm on the unit sphere. A proof

for this statement can be found in [12, page 66]. This immediately implies that φ is

injective, as we have

dH(A1, A2) =

√

d

Sd−1

‖φ(A1) − φ(A2)‖∞ ∀A1, A2 ∈ Xc

and therefore, A1 = A2 whenever φ(A1) = φ(A2).

Lastly, we conclude that φ is continuous since

‖φ(A1) − φ(A2)‖2
L2(Sd−1) = ‖

√

d

Sd−1

(hA1
− hA2

) ‖2
L2(Sd−1)

=
d

Sd−1

∫

Sd−1

|hA1
− hA2

|2dv

≤ d

Sd−1

∫

Sd−1

‖hA1
− hA2

‖2
∞dv = d · dH(A1, A2).
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Remark 3.21

The SVM classifier based on the Gaussian kernel for convex sets is universally con-

sistent; assuming a suitable loss function and an appropriate null sequence (λn)n∈N.

For further details see for example the assumptions given in Theorem 2.33 and the

subsequent remark.

Hence Support Vector Machines based on the Gaussian kernel for convex sets

are expected to learn well for arbitrary distributions on the set of convex sets. To

understand how decision functions obtained by SVMs with Gaussian kernel behave,

we will look at the restriction to point sets and to interval sets again. Figure 8a

shows convex data which is clearly not linearly separable.
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(a) Example of convex data which is not
linearly separable
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−0.05 0.00 0.05
f(x)

(b) The decision function obtained for point
sets {x}, x ∈ R

d

Figure 8: Classification based on the Gaussian kernel for convex sets. Parameters λ
and σ are set to 1 and 0.1 respectively.

The decision function in Figure 8b seems to describe the position of the convex

sets differentiated by label well. It was computed applying the results of the next

lemma (Lemma 3.22).
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Lemma 3.22

Let k be the Gaussian kernel as defined in Lemma 3.16. Let A ∈ Xc and x ∈ R
d.

Moreover denote by

ξA = kc(A, {ej})j=1,...,d ∈ R
d

a vector with kernel evaluations at set A and all unit vectors ej for j = 1, . . . , d.

1. The kernel evaluated at the point set {x}, x ∈ R can then be computed as

k(A, {x}) = exp
[

−γ(kc(A, A) − ‖ξA‖2
2)
]

exp
[

−γ‖x − ξA‖2
2

]

.

2. Let A, B ∈ XI with B =
d×

i=1
[−bi, bi]. Then

k(A, x + B) = exp
[

−γ(‖(a − b)T M(a − b)‖2
2 − ‖ξA‖2

2)
]

exp
[

−γ‖x − ξA‖2
2

]

,

where the vectors a, b ∈ R
2d and the matrix M ∈ R

2d × R
2d are defined as in

Theorem 3.11.

Proof. Let A, B ∈ Xc, x ∈ R
d and k be the Gaussian kernel for convex sets. We

compute

k(A, x + B) = exp
[

−γ‖φ(A) − φ(x + B)‖2
L2(Sd−1)

]

= exp
[

−γ〈φ(A) − φ(x + B), φ(A) − φ(x + B)〉L2(Sd−1)

]

= exp [−γ (kc(A, A) − 2kc(A, x + B) + kc(x + B, x + B))]

=
exp (−γkc(A, A))

exp (−2γkc(A, B))

exp (−γkc(x + B, x + B))

exp (−2γxT ξA)

where ξA = kc(A, {ej})j=1,...,d ∈ R
d. To obtain the last equality we used the compu-

tations made in the proof of Lemma 3.9.

1. Now let B = {0}. Then the equation above simplifies to

k(A, {x}) = exp (−γkc(A, A)) exp
[

−γ
(

‖x‖2
2 − 2xT ξA

)]

= exp
[

−γ
(

kc(A, A) − ‖ξA‖2
2

)]

exp
(

−γ‖x − ξA‖2
2

)

.
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2. Similarly, for A, B ∈ XI , A =
d×

i=1
[a−1i, a+1i] and B =

d×
i=1

[−bi, bi] we get

k(A, x + B) =
exp

(

−γaT Ma
)

exp (−2γaT Mb)
exp

[

−γ
(

‖x‖2
2 + bT Mb − 2xT ξA

)]

= exp
[

−γ(‖(a − b)T M(a − b)‖2
2 − ‖ξA‖2

2)
]

exp
[

−γ‖x − ξA‖2
2

]

,

featuring the results of Theorem 3.11 and Lemma 3.13.

In the next example, the second part of this lemma is used to calculate the decision

function for an example data set with predictive interaction of position and shape.

This data set contains, like the data set in Example 3.14, two dimensional intervals

of two different shapes (up to some random noise). One shape is an interval that

spreads mainly along the x1-axis, the other along the x2-axis. Contrarily to the

data set in Example 3.14, the label does not only depend on the orientation of the

interval, but on the interaction of orientation and the position relative to the x1-axis.

Example 3.23

Let (A, Y ) be a random variable with P (Y = −1) = P (Y = 1) = 1
2

and A ∈ XI

with midpoint vector M =
(

M1

M2

)

∼ U([−10, 10]2), and length vector L. For the

conditional distribution of the length L, given the label Y and the position of the

midpoint M shall hold

L|Y, M ∼




1.5 − Y

1.5 + Y



1M2≥0 +





1.5 + Y

1.5 − Y



1M2<0 + Exp(10)

where Exp(10) denotes a exponential distribution with rate parameter set to 10.

Figure 9a shows 100 identically and independently drawn samples (Ai, yi) ∼ (A, Y ).

For the conditional expectation of the interval lengths holds therefore

l1 = E[L|Y = −1, M2 ≥ 0] = E[L|Y = 1, M2 < 0] =





2.5

0.5



+ E[E] =





2.6

0.6



 ,

l2 = E[L|Y = 1, M2 ≥ 0] = E[L|Y = −1, M2 < 0] =





0.5

2.5



+ E[E] =





0.6

2.6



 .
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For j = 1, 2 let Bj =
1

2

2×
i=1

[−lji, lji], thus B1 and B2 are the expected interval sets

centred at the origin.
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(a) 100 identically and independently
drawn realisation of (A, Y ).
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(b) Expected shapes:
B1 = [−1.3, 1.3] × [−0.3, 0.3]
B2 = [−0.3, 0.3] × [−1.3, 1.3].

Figure 9: Data set with predictive interaction of position and shape. Sets of shape
B1 have negative label in the half plane described {x ∈ R

2| x2 < 0}, sets
of shape B2 have negative label in the half plane {x ∈ R

2| x2 > 0}.

To understand how a decision function obtained by a SVM algorithm featuring

the Gaussian kernel for convex sets behaves, we will look at restrictions to set of

the form x + B1 and x + B2. Figure 10 shows f |x+B1
and f |x+B2

for f being the

minimiser of the risk without offset, the Gaussian kernel defined in Lemma 3.16 and

parameters λ and γ set to 1 and 5, respectively.

It seems that the classifier can distinguish between sets of differently orientated

intervals. Nevertheless, at least for the present choice of parameters it does not

generalise the position of the interval sets well. Hence the risk for the decision

function is still greater than the Bayes risk. This minimal risk would be obtained by

a function that separates the two half spaces {x ∈ R
2| x2 ≥ 0} and {x ∈ R

2| x2 < 0}.
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(a) Decision function for sets x + B1.
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(b) Decision function for sets x + B2.

Figure 10: Decision function obtained for sets of form x + B given the position
x ∈ R

d for two predictive shapes.

The problem arising in the last example seems to be due to the Gaussian kernel

being only dependent on one shape parameter γ. This means a Support Vector

Machine based on the Gaussian kernel for convex sets only generalises well for either

the shape or the position of the intervals. To get good adaptation to both, one needed

to modify the kernel further, for example by including a second shape parameter.
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4. Decision Theoretical Approach to Classifying

Convex Data

Whereas the construction of a kernel for convex sets seems to be unique to this work,

decision theoretical approaches to generalise Support Vector Machines to interval

data have already been discussed. See for example papers by Utkin, Chekh and

Zhuk [19] and Wiencierz and Cattaneo [20]. The later study a minimax approach

for Support Vector Regression with interval data in detail. In this section we discuss

some approaches of classifying convex data using SVMs and compare their results

to those obtained using a Support Vector Machine featuring a kernel for convex sets,

as given in the previous section. Consider, like before, a given data set of form

D = {(Ai, yi)| Ai ⊆ R
d compact and convex, yi ∈ {−1, 1}, i = 1, . . . , n}.

Equivalently one can ask for

D ⊆ Xc × {−1, 1} with |D| = n < ∞,

where Xc = {A ⊆ R
d compact and convex}. The general task is to decide for a

statistical model, in our case for a classification function, given the assumption that

there is some "true" value ai within Ai for all i = 1, . . . , n. These decision theoretical

strategies can be split into two main approaches. The first one is referred to as

"decision under risk". Here the decision maker assumes probabilities for the possible

outcomes. The second one is referred to as "decision under uncertainty", here the

probabilities are either unknown or do not exist. For further investigation of these

concepts see for example an introduction to decision theory by Peterson [11].

When considering decision under risk, instead of the risk given in Definition 2.5

one tries to minimise the regularised Bayesian risk

RB(f) = ‖f‖2
H +

1

n

n
∑

i=1

EPi
[L(f(ai), yi)]

for a measurable function f : R
d → R within some Hilbert space of functions H.

Here one assumes some probability distribution Pi and some random variable ai ∼ Pi
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for all i = 1, . . . , n. Pi should be related to the convex sets observed. For example

Pi might have support on Ai for all i = 1, . . . , n. This is the case in the following

example.

Example 4.1

Like in Example 2.10, let H = (Rd)′ and L be the hard margin loss. Furthermore,

let Pi be a continuous probability distribution on R
d with support equal to Ai for all

i = 1, . . . , n.
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w
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Figure 11: Decision function obtained under risk for the hard margin loss.

One computes for all w ∈ R
d and i = 1, . . . , n

EPi
[L(〈w, ai〉, yi)] =











0, if yi〈w, ai〉 ≥ 1 for almost all ai ∈ Ai

∞, else.
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Hence RB(fw) is finite if and only if for all i = 1, . . . , n holds

Pi[yi〈w, ai〉 ≥ 1] = 0 ⇔ λd({ai ∈ Ai|yi〈w, ai〉 < 1}) = 0.

Here does λd denote the d-dimensional Lebesgue measure on R
d. The equivalence is

due to Pi being continuous with support equal to Ai. Hence a minimiser of RB exists

if and only if there exists a w ∈ R
d such that all Ai’s with label yi = +1 lie within the

half-plane {x ∈ R
d| 〈w, x〉 ≥ 1} and all Ai’s with label yi = −1 lie within the half-

plane {x ∈ R
d| 〈w, x〉 ≤ −1}. If this is the case for some w ∈ R

d the corresponding

Bayesian risk becomes RB(f) = ‖f‖2
H. This means minimising the risk is again

equivalent to maximising the distance between the separating hyperplanes (compare

to Example 2.10). Figure 11 shows the separating hyperplanes for an example data

set consisting of interval data.

Optimal solutions for the regularised Bayesian risk generally exist, due to the

expectation functional preserving convexity. This means RB is still strictly convex

and therefore yields an unique minimiser. Nevertheless, this minimising function

might be hard to obtain as expectations needed to be calculated. Moreover, the

outcome of this optimisation problem is, for other loss functions than the hard

margin loss, strongly depended on the choice of the priory distributions Pi, i =

1, . . . , n. One might not want to make this strong assumption. This leads to the

approach based on decision under uncertainty, which we will discuss in detail.

4.1. Decision Under Uncertainty

In this setting we can not tell how likely a certain outcome (a1, . . . , an) ∈ n×
i=1

Ai

is and do not want to make any assumptions. On way of dealing with this issue

is to apply a decision rule to all possible outcomes and then look at the set of all

actions obtained. In the context of classification, the decision rule corresponds to

the classifier as discussed in Subsection 2.5. The set of possible actions is here the

set of decision function obtained as the image of the classifier restricted to input

sets of form

{(ai, yi)| i = 1, . . . , n} with (a1, . . . , an) ∈ n×
i=1

Ai.
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Then the input space R
d can be canonically split into three distinct parts. A set

of input vectors for which all decision functions are strictly positive, a set where all

decision functions are negative and the remaining vectors for which both, positive

and negative values, exist. Figure 12 shows how these sets can look like in the case

of linear separation without offset.
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Figure 12: The figure on the right-hand side indicates areas where all decision func-
tions (obtained using a SVM classifier on the interval data set shown in
the left plot) have equal sign.

The area for which decision functions with both, positive and negative values,

exist can in general be very large. Furthermore, those areas are hard to obtain,

as every possible combination of (a1, . . . an) with ai ∈ Ai has to be taken into

account. Even in the case of linear separation, an optimiser has to be found for

every combination of extreme points. This is even for small data sets not feasible.

To avoid those difficulties, one can only consider the minimal and the maximal risk

for every decision function f ∈ H given data {(ai, yi)| i = 1, . . . , n} with ai ∈ Ai for

all i = 1, . . . , n, instead.
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Definition 4.2 (Minimal and maximal risk)

Let D = {(Ai, yi)| i = 1, . . . , n} ⊆ Xc × {−1, 1} be an input data set consisting of

convex data. The functional

Rmin :H → R

f 7→ λ‖f‖2
H +

1

n

n
∑

i=1

inf
ai∈Ai

L(f(ai), yi) (17)

is called minimal SVM risk functional. Similarly one defines the maximal SVM risk

functional as

Rmax :H → R

f 7→ λ‖f‖2
H +

1

n

n
∑

i=1

sup
ai∈Ai

L(f(ai), yi). (18)

Remark 4.3

Alternatively, an additional offset can be added. In this case the subsequent results

could be modified just like in Section 2. For the sake of a clear presentation, those

modifications are not made here, though.

A common strategy of decision making under uncertainty is to minimise either

the minimal or the maximal risk. The next theorem and the subsequent example

demonstrate that the two functionals given in Definition 4.2 do not behave the same

way. Whereas the maximal risk is still convex and therefore yields a minimiser, this

property is not guaranteed for the minimal risk.

Theorem 4.4 (Unique minimiser exist for Rmax)

Let L be a finite and convex loss. Let H ⊆ {f : R
d → R} be a Hilbert space such

that the linear maps δx : H → R, f 7→ f(x) are continuous for all x ∈ R
d.

Then Rmax (defined in Equation 18) has a unique minimiser.

Proof. Similar to the proof of 2.6 we will see that Rmax is convex and coercive. Un-

like the risk R given in Equation 3, Rmax is not necessarily continuous. Nevertheless

it is lower-semicontinuous, which is sufficient for concluding that a minimiser exists

(see Theorem A.10).
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We have seen in the proof of Theorem 2.6 that

H → R
+
0

f 7→ L(f(a), y)

is convex and continuous for all a ∈ R
d and y ∈ {−1, +1}. Hence

H → R
+
0

f 7→ sup
a∈A

L(f(a), y)

is convex and lower-semicontinuous (see Lemma A.8) for every set A ⊆ R
d. This

implies that

H → R
+
0

f 7→ 1

n

n
∑

i=1

sup
ai∈Ai

L(f(ai), yi)

is convex and lower-semicontinuous as a positive multiple and a sum of convex and

lower-semicontinuous functions. Thus Rmax is strictly convex and lower-semicontinuous

as f → ‖f‖2
H is strictly convex and continuous. Since Rmax is clearly coercive as

well, Mazur’s Theorem A.10 states that it has a minimiser, which is unique due to

Rmax being strictly convex.

Example 4.5 (Minimiser are not unique for Rmin)

Let λ = 1, X = R
2, H = (R2)′ and L be the hinge loss. Let

D = {(A, y)} with A = [−1, 1] × {0} and y = 1.

Then we have for all f ∈ H = (R2)′ and equivalently (see Example 2.10) for all

w = ( w1
w2

) ∈ R
2 and fw = 〈w, ·〉:

Rmin(fw) = ‖fw‖2
H + inf

x∈A
L(fw(x), 1)

= ‖w‖2
2 + inf

x∈A
max{0, 1 − 〈w, x〉},

64



and therefore

Rmin(fw) = w2
1 + w2

2 + inf
x1∈[−1,1]

max{0, 1 − w1x1}.

• For w1 ∈ R\] − 1, 1[ and for x1 = 1
w1

∈ [−1, 1] it holds max{0, 1 − w1x1} = 0

which implies

0 ≤ inf
x1∈[−1,1]

max{0, 1 − w1x1} ≤ 0,

which implies Rmin(fw) = w2
1 + w2

2 for all w = ( w1
w2

) ∈ R\] − 1, 1[×R.

• For w1 ∈]−1, 1[ we have 1−w1x1 ≥ 1−|w1| > 0 and for x1 = sign(w1) ∈ [−1, 1]

holds 1 − w1x1 = 1 − |w1| hence we conclude

inf
x1∈[−1,1]

max{0, 1 − w1x1} = 1 − |w − 1|.

This implies Rmin(fw) = w2
1 + w2

2 + 1 − |w1| for all w = ( w1
w2

) ∈] − 1, 1[×R.

Putting these cases together one concludes

Rmin(fw) = w2
1 + w2

2 + (1 − |w1|)1[−1,1](w1) ∀w = ( w1
w2

) ∈ R.

Hence the minimisation with respect to w2 can be done independently of the minimi-

sation with respect to w1. Therefore, the minimisation problem simplifies to

minimize R1(w1) := w2
1 + (1 − |w1|)1[−1,1](w1)

with respect to w1 ∈ R.

Since R1 is differentiable on R \ {−1, 0, 1} one calculates

R′
1(w1) = 2w1 −











sign(w1) if w1 ∈] − 1, 1[

0 else

for all w1 /∈ {−1, 0, 1}.
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Figure 13: Objective function R1.

Hence we see for all w1 /∈ {−1, 0, 1}

R′
1(w1) = 0 ⇔ 2w1 − sign(w1) = 0

⇔ w1 ∈
{

−1

2
,
1

2

}

and R1(−1
2
) = R1(

1
2
) = 1

4
+ 1

2
= 3

4
.

w~ w

A
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x
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Figure 14: Minimiser w̃ and w of Rmin.

Since we have additionally R1(−1) = R1(0) = R1(1) = 1 > 0.75, we conclude

that both fw̃ and fw with w̃ = ( −0.5
0 ) and w = ( 0.5

0 ) are minimiser for Rmin, hence

solutions are not unique.
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Minimising the maximal risk Rmax can be interpreted as an insurance against the

worst case. Having seen that Rmax yields a unique minimiser we can define:

Definition 4.6 (Minimax Support Vector Machine)

The optimisation problem

minimise Rmax(f)

with respect to f ∈ H

is called Minimax Support Vector Machine.

Even though solutions to the Minimax SVM exist in general, numerical optimisa-

tion of Rmax can still be difficult. One might hope that the kernel trick developed

in Subsection 2.3 could be adapted. This was possible when minimisation and max-

imisation could be exchange. The optimisation problem would then become

maximise min
f∈H

{λ‖f‖2
H +

1

n

n
∑

i=1

L(f(ai), yi)}

with respect to ai ∈ Ai for all i = 1, . . . , n.

Hence the kernel trick could be used to simplify the inner minimisation. Neverthe-

less, the following example shows that this optimisation problem is in general not

equivalent to minimising the maximal risk.

Example 4.7

Consider an input data set

D = {(A1, 1), (A2, −1)}

with A1 = {( 0
0 )} and A2 = [−1, 1] × {1}. Moreover, let L be the hinge loss and H

be the reproducing kernel Hilbert space defined via the feature map

φ : R
2 → R

3

( x1
x2

) 7→
(

x2 cos(x1π)
x2 sin(x1π)

x2+1

)

.
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The tuning parameter is set to λ = 1
8
. Figure 15 shows the image of both input

sets in the feature space R
3. These two sets are to be separated by a hyperplane

containing the origin.
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Figure 15: Input sets φ(A1) and φ(A2) with corresponding labels y1 = +1 indicated
in pink and y2 = −1 in blue.

Minimisation of Rmax, the maximal risk For w ∈ R
3 denote by fw = 〈w, φ(·)〉 the

corresponding function in H. Then we have for every f ∈ H such a representation;

hence the optimisation problem can be equivalently formulated as

minimise Rmax(w) := Rmax(fw) with respect to w ∈ R
3.
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Assume w =
( w1

w2
w3

)

∈ R
3 is a minimiser of Rmax and let w̃ =

(

−w1

−w2
w3

)

. Then one

computes

sup
a2∈A2

L(fw̃(a2), −1) = sup
a∈[−1,1]

L(〈w̃,
(

cos(aπ)
sin(aπ)

2

)

〉, −1)

= sup
a∈[−1,1]

L(〈w,
( − cos(aπ)

− sin(aπ)
2

)

〉, −1)

= sup
a∈[−1,1]

L(〈w,
(

cos((a+1)π)
sin((a+1)π)

2

)

〉, −1)

= sup
a∈[0,2]

L(〈w,
(

cos(aπ)
sin(aπ)

2

)

〉, −1)

= sup
a∈[−1,1]

L(〈w,
(

cos(aπ)
sin(aπ)

2

)

〉, −1),

since we have

{
(

cos(aπ)
sin(aπ)

2

)

| a ∈ [0, 2]} = {
(

cos(aπ)
sin(aπ)

2

)

| a ∈ [−1, 1]}.

Hence one concludes

Rmax(w̃) =
1

8
‖w̃‖2

2 +
1

2

[

L(〈w̃, φ (( 0
0 ))〉, 1) + sup

a∈[−1,1]
L(〈w̃,

(

cos(aπ)
sin(aπ)

2

)

〉, −1)

]

=
1

8
‖w‖2

2 +
1

2

[

L(w3, 1) + sup
a∈[−1,1]

L(〈w,
(

cos(aπ)
sin(aπ)

2

)

〉, −1)

]

= Rmax(w).

Theorem 4.4 shows that the minimiser of Rmax is unique. Hence Rmax(w̃) =

Rmax(w) for a minimiser w implies w = w̃. This means any minimiser w ∈ R
3

must have form w =
( 0

0
w3

)

for some w3 ∈ R. It is therefore sufficient to consider the

following reduced minimisation problem.

Minimise R3(w3) := Rmax(
( 0

0
w3

)

) with respect to w3 ∈ R.
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This risk can be simplified to
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Figure 16: Objective function R3 yielding a unique minimiser.

R3 is differentiable for all w3 /∈ {−1
2
, 1} with

R′
3(w3) =

1

4
w3 +

1

2























−1 if w3 < −1
2

1 if − 1
2

< w3 < 1

2 if 1 < w3.

Thus we observe

R′
3(w3) =

1

4
w3 − 1

2
< 0 for all w3 < −1

2

R′
3(w3) ≥ 1

4
w3 +

1

2
> −1

8
+

1

2
> 0 for all w3 > −1

2

This means a minimiser can only be found at points w3 where R3 is not differentiable

at. Hence we conclude by computing R3(−1
2
) = 25

32
and R3(1) = 13

8
> R3(−1

2
) that

w =
(

0
0

− 1

2

)

is the unique minimiser of Rmax.
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The SVM solution in the least favourable case For all a ∈ [−1, 1] let

Ra : R
3 → R

w 7→ 1

8
‖w‖2

2 +
1

2

[

L(〈w,
(

0
0
1

)

〉, 1) + L(〈w,
(

cos(aπ)
sin(aπ)

2

)

〉, −1)
]

be the corresponding risk. The unique minimiser w =
(

0
0

− 1

2

)

of Rmax is for no

a ∈ [−1, 1] the minimiser of Ra. To see this let wa =
( − cos(aπ)

− sin(aπ)
0

)

for all a ∈ [−1, 1].

We compute

Ra(wa) =
1

8
‖wa‖2

2 +
1

2

[

L(〈wa,
(

0
0
1

)

〉, 1) + L(〈wa,
(

cos(aπ)
sin(aπ)

2

)

〉, −1)
]

=
1

8
+

1

2

[

L(0, 1) + L(− cos2(aπ) − sin2(aπ), −1)
]

=
1

8
+

1

2
(1 + 0)

=
5

8
.

This shows that Ra(wa) = 20
32

is strictly smaller than

Ra(w) =
1

8
‖w‖2

2 +
1

2

[

L(〈w,
(

0
0
1

)

〉, 1) + L(〈w,
(

cos(aπ)
sin(aπ)

2

)

〉, −1)
]

=
1

32
+

1

2

[

L(−1

2
, 1) + L(−1, −1)

]

=
1

32
+

3

4

=
25

32
.

This means the unique minimiser of Rmax can not be found by considering the

optimisation problem

maximise min
w∈R3

Ra(w) with respect to a ∈ [−1, 1].

Example 4.7 shows that one can not apply a procedure like the ’kernel trick’

described in Subsection 2.3 in order to obtain a non-linear classifier. Nevertheless,
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the optimisation problem

maximise min
f∈H

{λ‖f‖2
H +

1

n

n
∑

i=1

L(f(ai), yi)}

with respect to ai ∈ Ai for all i = 1, . . . , n.

yields under certain circumstances, which needed to be studied in more detail, a

maximiser (a∗
1, . . . , a∗

n) ∈ ×n
i=1 Ai and a corresponding minimiser f ∗ ∈ H. This opti-

miser f ∗ ∈ H can be seen as an alternative classification function to the minimiser

of the maximal risk Rmax. An advantage is that then H can be defined as a repro-

ducing kernel Hilbert space associated with some kernel. Hence the optimisation

problem can be simplified; especially when the maximum is attained at the bound-

ary of the Ai’s for all i = 1, . . . , n. Examples of Support Vector Machines for interval

valued training data, where the optimisation problem above simplifies further, are

considered by Utkin, Chekh and Zhuk [19, page 295-303].

4.2. The Linear Minimax Support Vector Machine

We have seen in the previous subsection that the ’kernel trick’ can not be used

to construct function spaces for the Minimax Support Vector Machine. Moreover,

numerical optimisation of Rmax is in general expensive, as evaluating Rmax(f) for

a function f ∈ H involves itself n maximisation problems, where n denotes the

number of input sets. These maximisation problems simplify when we consider

linear separation. That is we choose H = (Rd)′ and might add an optional offset

b ∈ R. One can show that in this case the maxima on the Ai’s can always be found

at their extreme points. These are defined as follows.

Definition 4.8 (Extreme points)

For every subset C ⊆ R
d define its extreme points E(C) to be all points x ∈ C that

cannot be written as a convex combination of points in C \ {x}. That is

x = ty + (1 − t)z

for some t ∈]0, 1[ implies y = x and z = x.
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Corollary 4.9

Let A ⊆ R
d be compact and convex and y ∈ {−1, 1}. Furthermore consider a convex

loss function L and an optional offset b ∈ R. Let

φ : A → R

a 7→ L(〈w, a〉 + b, y).

Then φ attains its maximum at an extreme point of A.

Proof. Bauers Maximum Principle (see [1, page 298]) states that every upper semi-

continuous function on a compact and convex subset has a maximum that is an

extreme point. Since φ is convex, as a composition of a linear and a convex function,

and continuous (compare to the proof of Theorem 2.6), this corollary is an immediate

consequence [2, page 136].

We observe that the extreme points of a convex polygon are precisely its corners.

Hence the last corollary in particular shows that, in the case of polygons as input

data, the maxima can be found in the corners of these sets. Since we consider a

finite input set and every polygon has a finite number of extreme points, we are left

with a simplified optimisation problem:

minimise max
ai∈E(Ai)

λ‖w‖2
2 +

1

n

n
∑

i=1

L(〈ai, w〉, yi) (19)

with respect to w ∈ R
d.

This is a so called ’convex finite min-max problem’; hence belongs to a class of op-

timisation problems for which numerical solving procedures are proposed. See for

example the incremental method described by Gaudioso, Giallombardo and Miglion-

ico [5] as well as the regularisation method in case of a differentiable loss presented

by Gigola and Gomez [6]. However, problem 19 is not discussed in detail here as

we will focus on finding a solution to the linear Minimax SVM when the input set

consists of d-dimensional intervals and the loss function is convex and monotonic. In

this case we do not only know that the maximum is attained in one of the corners,

we also know in which one.
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Corollary 4.10

Let D ⊆ XI × {−1, 1} with n = |D| < ∞, hence we consider interval-valued input

sets. For A =
d×

i=1
[a−1i, a+1i], s ∈ {−1, +1}d and y ∈ {−1, +1} define as,A,y =

(aysii)
T
i=1,...,d. Moreover, let L be a convex and monotonic loss function. Then w ∈ R

d

is a minimiser of

Rmax(w) = λ‖w‖2
2 +

1

n

∑

(A,y)∈D
sup
a∈A

L(〈a, w〉, y)

if and only if it is a solution to the constrained problem

minimise λ‖w‖2
2 +

1

n

∑

(A,y)∈D
L(〈as,A,y, w〉, y)

with respect to w ∈ R
d
s

where R
d
s = {x ∈ R

d|xisi > 0, ∀i = 1, . . . , d} and s ∈ {−1, +1}d being a minimiser

of

{−1, +1}d → R

s 7→ inf
w∈Rd

s

λ‖w‖2
2 +

1

n

∑

(A,y)∈D
L(〈as,A,y, w〉, y).

Proof. For all w ∈ R consider the linear functional

A → R

a 7→ 〈a, w〉 =
d
∑

i=1

aiwi,

which attains its maximum at as,A,+1 and its minimum at as,A,−1 where s = (sign(wi))i=1,...,d.

Since L is monotonic this implies

sup
a∈A

L(〈a, w〉, y) = L(〈as,A,y, w〉y),

where s = (sign(wi))i=1,...,d for all w ∈ R
d.
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Hence we conclude

Rmax(w) = λ‖w‖2
2 +

1

n

∑

(A,y)∈D
L(〈as,A,y, w〉y)

for all w ∈ R
d
s and s ∈ {−1, +1}d.

Corollary 4.10 shows that the minimisation problem can be split into 2d con-

strained minimisation problems. Hence the number of numerical minimisations,

which need to be performed is finite and only depends on the dimension of the input

space d not on the number of input sets n. This result is used to calculate the linear

separating hyperplanes plotted in Figure 17.
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Figure 17: Linear separating functions obtained using the hinge loss and a minimax
approach; dots in the corners of the intervals indicate critical points for
the optimisation.

4.3. Comparision to the Kernel Based Approach

In this subsection we are comparing the results of the minimax approach discussed in

this section and the kernel based approach given in Section 3. One clear advantage

of the kernel based approach is that both linear and non-linear separation can easily

be achieved. Contrarily, only linear separation seems to be numerically feasible
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when the maximal risk is considered as an objective function. Hence a comparison

of both approaches can only be done in the case of linear separation.

Figure 18 shows the separating hyperplane obtained by the two approaches dis-

cussed. The separating hyperplane for the kernel based approach is, as before in

Section 3, the restriction to point sets. On this example data set the decision func-

tions differ noticeable, hence predictions for may not agree.
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Figure 18: Separating hyperplane obtained by the minimax approach compared to
the separating hyperplane for point sets obtained via the linear kernel for
convex sets.

Whereas the separating hyperplane obtained by a minimax approach can be inter-

preted in a straightforward manner, which is close to the interpretation of decision

functions for point sets, the decision function obtained by the kernel based approach

is not so uncomplicated to interpret. Nevertheless, when classifying interval data by

a linear decision function the effect on midpoints and lengths of the intervals can be

analysed.

Hence to compare both approaches it might be convenient to analyse their per-

formance. For Support Vector Machines the label of an input vector is usually

predicted as the sign of the decision function evaluate at this input vector. Hence

this procedure gives predictions for the kernel based approach as well. Predictions

for the minimax classifier are not as canonical as the ones for the kernel based ap-
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proach. In this case we are going to predict the label by minimising the maximal

loss given a decision function f . For all A ∈ Xc is that the minimiser of

{−1, 1} → R

y 7→ sup
a∈A

L(f(x), y).

The next example shows an interval valued data set for which the SVM classifier

based on the linear kernel for convex sets preforms clearly better.

Example 4.11

Let (A, Y ) be a random variable with P (Y = −1) = P (Y = 1) = 1
2

and

A = [M1 − 0.5, M1 + 0.5] × [M2 − E, M2 + E] ∈ XI ,

with M1 ∼ U [−30, 30] and E ∼ |N (10, 1)|. The conditional distribution of M2, the

midpoint in the second direction, given the label Y is defined as

M2|Y ∼ N (−4Y, 1).

The tuning parameter λ is set to 1. Figure 19 shows a sample of 40 independently

and identically drawn sets according to the distribution of (A, Y ).
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Figure 19: Example data set consisting of overlapping intervals.
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Decision function obtained by the linear minimax classifier Given this example

data set the minimiser of Rmax is obtained as

w =





0.0354

0.0000



 ≈




0.04

0.00



 ,

using the results of Corollary 4.10. Hence the classifier can not distinguish between

sets with midpoint above the x1-axis which are more likely to have a negative label

and sets with midpoint below the x1-axis which are more likely to have a positive

label. The probability of predicting a wrong label is calculated as

P [M1 > 0 ∩ Y = −1] + P [M1 ≤ 0 ∩ Y = 1]

ind.
= P [M1 > 0]P [Y = −1] + P [M1 ≤ 0]P [Y = 1]

= (P [M1 > 0] + P [M1 ≤ 0]
1

2

=
1

2
.

Note that nearly half of the interval sets are expected to lie completely in the ’wrong’

half space. Hence every sensible criterion for predictions produces the wrong label,

not only the criterion used here.

SVM classifier featuring the linear kernel for convex sets The optimiser of the

regularised empirical risk for a Support Vector Machine with kernel kc discussed in

Section 3 is calculated as

w =

















− 0.0049

0.0049

−0.1555

−0.1425

















.
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Thus w1, w2 ∈ R
2 as defined in Lemma 3.13 can be computed as

w1 =





1, 1, 0, 0

0, 0, 1, 1



w ≈




0

−0.30





w2 = 0.5





−1, 1, 0, 0

0, 0, −1, 1



w ≈




0.00

0.01



 .

Hence, intervals with midpoints above the x1-axis are expected to have negative label,

which is mainly correct. More precisely, for the probability of predicting a wrong label

holds approximately (since wT
2 ≈ (0, 0))

P [(M1, M2)w1 > 0 ∩ Y = −1] + P [(M1, M2)w1 ≤ 0 ∩ Y = 1]

= P [−0.3M2 > 0 ∩ Y = −1] + P [−0.3M2 ≤ 0 ∩ Y = 1]

= P [M2 < 0|Y = −1]P [Y = −1] + P [M2 ≥ 0|Y = 1]P [Y = 1]

symm.
=

1

2
P [M2 < 0|Y = −1]

=
1

2
Φ(−4)

< 0.0001.
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5. Summary and Outlook

Thinking about measurements as interval or convex sets seems to be natural in

many incidents. Whether one tries to take the observed variable’s variation into

account or assumes that the variable is in fact a convex set. Whenever its character

as a set is related to some output, it is not satisfying to replace the convex input

set by a real valued vector. Nevertheless, imputation methods seem to be common

statistical practice, as methods to analyse interval or convex data are limited. The

lack of methods with its corresponding need for simplification impedes the adequate

study of such data. Further developing methods dealing with convex data one might

hope to encourage scientists to collect interval or convex data without hesitation,

whenever the data structure suggests it.

This work contributes to this development. We have seen that Support Vector

Machines for classification can be adapted to convex input data. This was done by

defining a kernel function acting on those sets. Furthermore this approach proved

to be sufficiently flexible, as the Gaussian kernel based on this kernel was shown to

be universal. Therefore, independently of the nature of the observed convex data,

one can assume that the presented approach will successfully capture its structure.

Applying the results of this work to concrete data sets to assess the capacity of the

methods proposed could be the object of further study.

Depending on the properties of certain given data this kernel based approach

might need further exploration. On the one hand it could be extended to regres-

sion problems by using appropriate loss functions. Despite classification, this is

the second field of statistical problems where Support Vector Machines are mainly

used. Their theory can be developed analogously to the theory of SVMs for clas-

sification, as described in the first section of this work. On the other hand, even

when sticking to classification problems, one might need to establish better com-

putational procedures for other convex sets than intervals. One aim would be to

find effective procedures for convex polytops, at least in two dimensions. Evaluating

the presented kernel for arbitrary convex sets is numerically expensive, as for every

combination of input sets a multi-dimensional integral on the unit sphere has to be

approximated. This is certainly not feasible for ’real life’ applications. One way of

dealing with this time-consuming computations might be to evaluate the kernel par-
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allel, since evaluations for different sets are independent of each other. Moreover,

to achieve better adaptation and generalisation for complex data structures, the

Gaussian kernel could be extended by adding an additional second tuning parame-

ter. The concrete realisation of this extension would need further examination, in

particular one might be interested in whether the resulting kernel is still universal.

In addition to the kernel based approach a decision theoretical approach was dis-

cussed in the fourth section of this work. Whereas the theory for the first approach

can fully be inherited from the classical results given in the first section, this sec-

ond approach revealed some major difficulties. In particular uniqueness of solutions

could only be obtained when the maximal risk is considered. However, even the so-

lution to this so called minimax SVM is in general hard to obtain, as minimisation

and maximisation cannot be exchanged. One way of dealing with those numerical

difficulties could be to restrict oneself to certain combinations of loss and kernel

functions, for which the corresponding optimisation problem simplifies. In particu-

lar, this is the case for linear minimax SVMs. Similar to the kernel based approach,

the decision theoretical approach can be extended to regression problems. Their

theory, especially problems where the dependent variable is interval valued but not

the predictors, was covered by Wiencierz and Cattaneo [20].

Linear Support Vector machines based on a kernel for convex sets showed better

performance on simulated data sets than corresponding minimax SVMs. However,

the resulting decision function is more straightforward to interpret for the decision

theoretical approach. Hence both approaches can be appropriate for analysing a

given data set. Moreover, it needs to be explored to what extent SVMs for convex

data improve the handling of interval and convex data compared to substituting

these sets by precise values. This work hopes to encourage scientists to collect

interval and convex data by contributing to the number of statistical methods that

are tailored to generalised interval data.
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A. Mathematical Preliminaries

This section deals with some essential mathematical background to this work. How-

ever, it should not be seen as a complete presentation, rather as a thematic classifi-

cation of the underlying mathematical theory.

A.1. Topology and Integration

The theory of Hilbert spaces and multi dimensional integration theory is used

throughout this work. Hence some results are presented here. Since properties

of Hilbert spaces are vital for the corresponding minimiser of the regularised empir-

ical risk (Definition 2.5), its definition and a characterisation of its topological dual

is given here.

Definition A.1 (Real Hilbert space)

Let (H, 〈·, ·〉H) be a real inner product space. Moreover, let H be complete with

respect to the metric induced by the inner product 〈·, ·〉H. Then H is called a real

Hilbert space.

The following inequality is shown for every bilinear, positive semi-definite map.

In particular it holds true for the inner product of a Hilbert space.

Lemma A.2 (Cauchy-Schwarz Inequality)

Let X be a set and k : X × X → R be bilinear and positive semi-definite. Then we

have

k(x1, x2)
2 ≤ k(x1, x1)k(x2, x2) (20)

for all x1, x2 ∈ X. In particular we have for a Hilbert space (H, 〈·, ·〉H):

〈x1, x2〉2
H ≤ ‖x1‖2

H‖x2‖2
H

for all x1, x2 ∈ H. Here ‖ · ‖H denotes the norm induces by the inner product.
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Proof. Let α1 = k(x2, x2), α2 = −k(x1, x2). Since k is positive semi-definite we have

0 ≤
2
∑

i=1

2
∑

j=1

αiαjk(xi, xj)

= k(x2, x2)
2k(x1, x1) − 2k(x2, x2)k(x1, x2)

2 + k(x1, x2)
2k(x2, x2)

= k(x2, x2)(k(x1, x1)k(x2, x2) − k(x1, x2)
2).

Assuming k(x2, x2) = 0 leads to k(x1, x2) = 0. Hence in this case the desired

inequality is trivially fulfilled. One can therefore assume without loss of generality

that k(x2, x2) > 0 which implies k(x1, x2)
2 ≤ k(x1, x1)k(x2, x2).

Theorem A.3 (Riesz Representation Theorem)

Let H be a real Hilbert space. Then H is isometrically isomorphic to its dual via the

embedding

H → H′

x 7→ 〈x, ·〉H.

Hence for every continuous linear functional f on H exists an unique x ∈ H such

that

f = 〈x, ·〉H and ‖f‖H′ = ‖x‖H.

Proof. See [14, page 104].

To evaluate the presented kernel at interval sets a multi-dimensional integral on

the unit sphere needed to be solved. The proof of the corresponding theorem (The-

orem 3.11) relied on some standard results in integration theory. One of them,

relating the integral in d dimensions to those on d − 1-dimensional spheres, is given

here. The subsequent lemma derives a recursive formula for the surface area of a d

dimensional unit sphere.
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Theorem A.4 (Integration in spherical coordinates)

Let f : R
n → R be Lebesgue integrable. Then

∫

Rd
f(x) dx =

∫ ∞

0

∫

Sd−1

f(rv)rd−1 dv dr,

where Sd−1 denotes the sphere of d-dimensional ball with radius 1. That is

Sd−1 = {x ∈ R
d|

d
∑

i=1

x2
i = 1}.

Proof. This theorem is a consequence of the so called co-area formula. A proof can

be found in [18, page 89].

Lemma A.5

We have for all d ≥ 2

|Sd| =
2π

d
|Sd−2|.

Proof. Using the previous theorem we have for all d ∈ N

|Bd(R)| =
∫

Rd
1Bd(R)dx =

∫ R

0

∫

Sd−1

rd−1 dv dr = |Sd−1|
[

1

d
rd

]R

0
=

|Sd−1|
d

Rd.

This implies |Bd(R)| = |Bd(1)|Rd for all R > 0. Hence using polar coordinates we

obtain for all d ≥ 2

|Bd(1)| =
∫ 1

0

∫ 2π

0

∫

Bd−2(
√

1−r2)
r d(x3, . . . , xd)dφdr

=
∫ 1

0

∫ 2π

0
|Bd−2(1)|(1 − r2)

d−2

2 r dφdr

= 2π|Bd−2(1)|
[

−1

d
(1 − r2)

d
2

]1

0
=

2π

d
|Bd−2(1)|.

The desired result is therefore obtained via

|Sd| = d|Bd+1(1)| = 2π|Bd−1(1)| =
2π

d
|Sd−1|.
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A.2. Convex Optimisation

Since the regularised empirical risk functional is a convex function, finding its min-

imiser is a convex optimisation problem. Problems of this type have been studied in

great detail and some results used in this work are presented here. We first provide

some properties of convex functions.

Definition A.6 (Convex function)

Let X be a normed vector space and C ⊆ X convex. f : C → R is called convex if

f(tx + (1 − t)y) ≤ tf(x) + (1 − t)f(y)

for all x, y ∈ X and for all t ∈ [0, 1].

Lemma A.7

Let S ⊆ R
d be a nonempty convex set, and let f : S → R be convex. Then f is

continuous on the interior of S.

Proof. see [2, page 100].

The next lemma is essential for the discussion of the maximal risk Rmax. It is the

main reason for this functional to yield a unique minimiser, as lower-semicontinuity

and convexity are requirements of Theorem A.10.

Lemma A.8

Let X be a normed space, A be some index set and ga : X → R for all a ∈ A. Let

g := sup
a∈A

ga be the pointwise supremum. Then the following statements hold true.

1. If ga is lower-semicontinuous for all a ∈ A, then so is g.

2. If ga is convex for all a ∈ A, then so is g.
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Proof. For a proof of the first part see [1, page 43]. To show the second part let

t ∈ [0, 1] and x1, x2 ∈ X. Then we have

g(tx1 + (1 − t)x2) = sup
a∈A

ga(tx1 + (1 − t)x2)

≤ sup
a∈A

[tga(x1) + (1 − t)ga(x2)]

≤ t sup
a∈A

ga(x1) + (1 − t) sup
a∈A

ga(x2)]

= tg(x1) + (1 − t)g(x2),

where we obtained the first inequality via using that ga is convex for all a ∈ A.

To ensure the existence of a minimiser in an unbounded vector space, we require

a functional to be coercive.

Definition A.9 (Coercive functional)

Let X be a normed vector space and f : X → R. f is called coercive if

‖x‖ → ∞ ⇒ |f(x)| → ∞.

Theorem A.10 (Mazur-Schauder)

Let E be a reflexive Banach space, C 6= ∅ a closed and convex subset of E. Let φ be

a lower-semicontinuous, convex and coercive functional on C. If φ is bounded from

below then it has a minimal solution.

Proof. See [9, page 37]. Definitions for the terms appearing in this theorem can be

found there as well.

The Karush-Kuhn-Tucker conditions (conditions I − III in the next theorem)

give necessary requirements for an optimum of a constrained optimisation problem.

Since minimising the regularised empirical risk with a hinge loss function can be

formulated in this way, Theorem A.11 is used to derive the dual formulation in

Subsection 2.4.
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Theorem A.11 (Karush-Kuhn-Tucker)

Let ∅ 6= X ⊆ R
n be open and let f : R

n → R and gi : R
n → R for all i = 1, . . . , m.

Consider the optimisation problem P

minimize f(x)

subject to gi(x) ≤ 0 ∀i = 1, . . . , m

with respect to x ∈ X.

Let x∗ ∈ X be a solution of P with f, gi being differentiable at x∗ for all i = 1, . . . , m.

Then there exists u ∈ R
m such that

I : ∇f(x∗) +
∑m

i=1 ui∇gi(x
∗) = 0

II : uigi(x) = 0 ∀i = 1, . . . , n

III : ui ≥ 0 ∀i = 1, . . . , n.

Proof. See [2, page 190]
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B. R-Package: convexdatasvm

The methods derived in the third and the forth section are implemented in R. The

corresponding functions are collected in a package called convexdatasvm. This

package should not be seen as fully functional and ready to use implementation,

though. It is rather constructed to give an idea of how SVMs using a kernel for

convex sets and minimax SVMs can be implemented. Some basic features are still

missing, like proper input checking and a wider choice of loss and kernel functions.

Furthermore, no test are executed. Nevertheless, the functions in convexdatasvm

have already been used to create the examples throughout this work.

B.1. User Manual

The next pages present the user manual belonging to convexdatasvm.
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Package ‘convexdatasvm’

August 3, 2017

Type Package

Title SVM for classification of convex data

Version 0.1.0

Description Classification using a Support Vektor Machine based on a kernel for convex sets.

For the case of linear separation a minimax approach is implemented as well.

License CC0

Encoding UTF-8

LazyData true

Imports kernlab,

SphericalCubature,

stats,

grDevices

Depends ggplot2

Suggests testthat

RoxygenNote 6.0.1

R topics documented:

autoplot.convex_data_svm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
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2 autoplot.minimax_svm

autoplot.convex_data_svm

Plot function for convex_data_svm classifier

Description

Plotting method for data of class ’convex_data_svm’.

Usage

## S3 method for class 'convex_data_svm'

autoplot(object, existing_plot = NULL,

direction = TRUE, colours = c(1, 2), ...)

Arguments

object object of class ’convex_data_svm’,

usually a result of a call to get_convex_data_svm.

existing_plot ggplot object to which this plot should be added. NULL for new plot.

direction TRUE if the direction of larger values for the decision function shoul be added.

colours vector of colours for both labels.

... further graphical arguments, to be passed on to ggplot.

Value

a ggplot object

Examples

set.seed(21)

d <- 2

n <- 20

lower <- matrix(rnorm(d*n, sd = 2.5), d)

upper <- lower + matrix(rnorm(d*n, mean = 1, sd = 0.2), d)^2

intervals <- lapply(1:n, function(i) cbind(lower[,i], upper[,i]))

labels <- sign(rnorm(n, sapply(intervals, mean)))

interval_data <- interval_data(intervals,labels)

convex_data_svm <- get_convex_data_svm(interval_data)

autoplot(convex_data_svm)

autoplot.minimax_svm Plot function for minimax classifier

Description

autoplot method for data of class ’minimax_svm’.
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autoplot_data 3

Usage

## S3 method for class 'minimax_svm'

autoplot(object, existing_plot = NULL,

critical_points = FALSE, direction = TRUE, colours = c(1, 2), ...)

Arguments

object object of class ’minimax_svm’,

usually a result of a call to get_minimax_svm.

existing_plot ggplot object to which this plot should be added. NULL for new plot.

critical_points

TRUE if critical points should be added.

direction TRUE if the direction of larger values for the decision function shoul be added.

colours vector of colours for both labels.

... further graphical arguments, to be passed on to ggplot.

Value

a ggplot object.

See Also

autoplot.convex_data and autoplot.interval_data

Examples

set.seed(21)

d <- 2

n <- 20

lower <- matrix(rnorm(d*n, sd = 2.5), d)

upper <- lower + matrix(rnorm(d*n, mean = 1, sd = 0.2), d)^2

intervals <- lapply(1:n, function(i) cbind(lower[,i], upper[,i]))

labels <- sign(rnorm(n, sapply(intervals, mean)))

interval_data <- interval_data(intervals,labels)

minimax_svm <- get_minimax_svm(interval_data)

autoplot(minimax_svm)

autoplot_data Plot functions for two dimensional interval/convex data.

Description

autoplot method for data of class ’interval_data’ and ’convex_data’.

Usage

## S3 method for class 'interval_data'

autoplot(object, colours = c(1, 2), ...)

## S3 method for class 'convex_data'

autoplot(object, colours = c(1, 2), ...)
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4 constructor_functions

Arguments

object object of class interval_data or convex_data.

colours vector of length two defining the colours of the sets differenciated by label.

... further graphical arguments, to be passed on to ggplot.

Value

a ggplot object

Examples

set.seed(21)

d <- 2

n <- 20

lower <- matrix(rnorm(d*n, sd = 2.5), d)

upper <- lower + matrix(rnorm(d*n, mean = 1, sd = 0.2), d)^2

intervals <- lapply(1:n, function(i) cbind(lower[,i], upper[,i]))

labels <- sign(rnorm(n, sapply(intervals, mean)))

interval_data <- interval_data(intervals,labels)

autoplot(interval_data)

interval_points <- lapply(intervals, function(interval) {

t(expand.grid(lapply(1:d, function(i) interval[i,])))

})

convex_data <- convex_data(interval_points,labels)

autoplot(convex_data)

constructor_functions Construct objects of class ’interval_data’ and ’convex_data’

Description

Creates objects of class ’interval_data’ and ’convex_data’

Usage

interval_data(intervals, labels)

convex_data(convex_sets, labels)

Arguments

intervals list of d-dimensional intervals, each interval is a dx2 matrix with lower bound in

the first coordinate and upper bound in the second.

labels numerical vector of labels -1 and +1.

convex_sets list of matrices with d-rows, coloums indicate extreme points of the convex set.

Value

an object of class ’interval data’ or ’convex_data’.
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convexdatasvm 5

Examples

set.seed(21)

d <- 2

n <- 20

lower <- matrix(rnorm(d*n, sd = 2.5), d)

upper <- lower + matrix(rnorm(d*n, mean = 1, sd = 0.2), d)^2

intervals <- lapply(1:n, function(i) cbind(lower[,i], upper[,i]))

labels <- sign(rnorm(n, sapply(intervals, mean)))

interval_data <- interval_data(intervals,labels)

interval_points <- lapply(intervals, function(interval) {

t(expand.grid(lapply(1:d, function(i) interval[i,])))

})

convex_data <- convex_data(interval_points,labels)

convexdatasvm SVM for classification of convex data

Description

Classification algorithm using a Support Vektor Machine based on a kernel for convex sets. For the

case of linear separation, a minimax approach is implemented as well. See get_convex_data_svm

and get_minimax_svm. Moreover, plotting methods for both approaches, as well as for interval and

convex data sets are implemented.

get_convex_data_svm get_convex_data_svm

Description

Finds an optimal separating function using a kernel for convex data

Usage

get_convex_data_svm(data, loss = "hinge", lambda = 1, kernel = "linear",

gamma = 1, offset = FALSE)

Arguments

data data of class ’interval_data’ or ’convex_data’

loss character indicating a loss function, only for the "hinge" loss implemented at the

moment.

lambda a positiv tuning parameter

kernel character indicating a kernel, must be one of "linear", "affine_linear" or "gaus-

sian" at the moment.

gamma tuning parameter for the Gaussian kernel.

offset logical, should an additional offset be used.
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6 get_minimax_svm

Value

an object of class ’convex_data_svm’, that is a list containing

w_optim The optimal parameter in case of interval data.

alpha_optim Weights for the input vectors.

offset optimal offset, FALSE when no offset is used.

data Input data.

loss The loss function used.

type Type of input data.

kernel The kernel used.

See Also

interval_data and convex_data for the construction of suitable data.

Examples

set.seed(3)

d <- 2

n <- 15

middle_points <- matrix(runif(2*n, -8, 8), 2)

labels <- sign(rnorm(n, c(1,1)%*%middle_points) + 1)

data_points <- lapply(1:n, function(i) middle_points[,i] + matrix(rnorm(16, 0, 0.5), 2))

convex_data <- convex_data(data_points, labels)

get_convex_data_svm(convex_data)

get_minimax_svm get_minimax_svm

Description

Finds an optimal separating function using the minimax rule.

Usage

get_minimax_svm(data, loss = "hinge", offset = FALSE, lambda = 1)

Arguments

data data of class ’interval_data’.

loss character indicating a loss function, only for the "hinge" loss implemented at the

moment.

offset logical, should an additional offset be used.

lambda a positiv tuning parameter.
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Value

an object of class ’minimax_svm’, that is a list containing

w_optim The optimal parameter in case of interval data.

x_optim Critical points for minimisation.

offset optimal offset, FALSE when no offset is used.

data Input data.

loss The loss function used.

See Also

interval_data for the construction of suitable data.

Examples

set.seed(21)

d <- 2

n <- 20

lower <- matrix(rnorm(d*n, sd = 2.5), d)

upper <- lower + matrix(rnorm(d*n, mean = 1, sd = 0.2), d)^2

intervals <- lapply(1:n, function(i) cbind(lower[,i], upper[,i]))

labels <- sign(rnorm(n, sapply(intervals, mean)))

interval_data <- interval_data(intervals,labels)

minimax_svm <- get_minimax_svm(interval_data)

predict_functions Predictions for convex data and minimax SVMs.

Description

predict method for objects of class ’convex_data_svm’ and ’minimax_svm’.

Usage

## S3 method for class 'minimax_svm'

predict(object, newdata, ...)

## S3 method for class 'convex_data_svm'

predict(object, newdata, ...)

Arguments

object object of class ’convex_data_svm’ or ’minimax_svm’.

newdata list of new interval data, that are a dx2 matrices with lower bounds in the first

column and upper bound in the second.

... additional arguments, not used here.

Value

vector of predicted labels.
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Examples

set.seed(21)

d <- 2

n <- 20

lower <- matrix(rnorm(d*n, sd = 2.5), d)

upper <- lower + matrix(rnorm(d*n, mean = 1, sd = 0.2), d)^2

intervals <- lapply(1:n, function(i) cbind(lower[,i], upper[,i]))

labels <- sign(rnorm(n, sapply(intervals, mean)))

interval_data <- interval_data(intervals,labels)

minimax_svm <- get_minimax_svm(interval_data)

predict(minimax_svm, intervals)

interval_points <- lapply(intervals, function(interval) {

t(expand.grid(lapply(1:d, function(i) interval[i,])))

})

convex_data <- convex_data(interval_points,labels)

convex_data_svm <- get_convex_data_svm(interval_data)

predict(convex_data_svm, intervals)

supplementary_functions

Supplementary functions for objects of type ’convex_data_svm’.

Description

Calculating the decision functions restricted to point sets for objects of type ’convex_data_svm’.

get_w_projected calculates the separating hyperplane in case of a linear kernel,

get_decision_fkt_parameter calculates the weights for the Gaussian kernel.

Usage

get_w_projected(convex_data_svm)

get_decision_fkt_parameter(convex_data_svm)

Arguments

convex_data_svm

object of class ’convex_data_svm’,

usually a result of a call to get_convex_data_svm.

Value

the optimal parameter projected on point sets; weights for the Gaussian kernel.

Examples

set.seed(3)

d <- 2

n <- 10

middle_points <- matrix(runif(2*n, -8, 8), 2)

labels <- sign(rnorm(n, c(1,1)%*%middle_points) + 1)

data_points <- lapply(1:n, function(i) middle_points[,i] + matrix(rnorm(16, 0, 0.5), 2))
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convex_data <- convex_data(data_points, labels)

convex_data_svm <- get_convex_data_svm(convex_data)

get_w_projected(convex_data_svm)
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B.2. Electronic Appendix

The CD-R enclosed contains a electronic version of this document in PDF format.

Moreover, several R-scripts are included, which can be sourced to produce all figures

in this work. They are named according to the corresponding section.

• plots_theory.R produces all plots in Section 2,

• plots_convex_kernel_1.R, plots_convex_kernel_2.R and

plots_convex_kernel_3.R produce the plots in Section 3,

• and plots_minimax_1.R, plots_minimax_2.R and plots_minimax_3.R pro-

duce every plot in Section 4.

To run these scripts the package ’convexdatasvm’ needs to be installed and added

to the local library. This package is provided on the CD-R as well.
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