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Komplemente fiir zyklische Moduln iiber Dedekindringen

Von

HeLMUT ZOSCHINGER

Diese Note beschiftigt sich mit der Frage, wann ein Dedekindring R in einer Er-
weiterung R c M ein Komplement hat. Die Antwort lautet:

Ist R nicht direkter Summand in M, so sind dquivalent:

(i) R hat ein Komplement in M.

(i) RcMp fiir fast alle maximalen Ideale p; und falls 7(M) p-teilbar ist, muB
RcMp sein.

(iti) R bhat geniigend viele Komplemente in M.

Ist aber R direkter Summand in M, so ist die Inklusion (i) — (iii) nicht mehr
richtig. Die Bedingung (iii) kann dann nicht mehr von der ,,Lage® von R in M ab-
héngen, sondern nur mehr von der Relation zwischen R und M/R. Eine vollstindige
Beschreibung dieser Relation geben wir am SchluB der Note durch die Torsions-
elemente von ExtL(M/R, R) an.

Die Arbeit gliedert sich in einen Hilfssatz mit drei Folgerungen, dann einen Satz
in dem die oben angegebenen Aquivalenzen bewiesen werden, und an ihn schlieBen
sich nochmals drei Folgerungen an. Stets ist R ein Dedekindring mit Quotienten-
kérper K == R und den maximalen Idealen p, g,.... Sind ¥ und U Untermoduln
von M mit V 4 U = M, so heiBt V schwaches Komplement von U in M, wenn
VN U klein in M ist, und V heiit Komplement von U in M, wenn VN U klein
in Vist, d.h. aus V'4+ U =M und V'c V folgt V'= V. Wir sagen, U habe ge-
niigend viele (schwache) Komplemente in M, wenn es zu jedem X c M, mit
X+ U=M, ein (schwaches) Komplement V von U in M gibt mit V c X. Zum
Beispiel hat jeder artinsche Untermodul geniigend viele Komplemente in M, ins-
besondere jeder zyklische Torsionsmodul. Genau dann ist U klein in M (hat also
nur V = M als Komplement), wenn U c Ra(M) = (") M p ist und U koatomar ist,

P
d.h. U keine teilbaren Faktormoduln hat. Ist U nicht mehr in allen M p enthalten,
so gilt noch:

Hilissatz. Sei U ein koatomarer Untermodul von M und U in fast allen M p enthalten.
Dann gils:
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{a) Es gibt esn U'c U, so daf3 U’ direkte Summe aus einem endlich erzeugten und
einem beschrimkten Modul ist und U[U’ klevn in M|U’.

(b) U hat geniigend viele schwache Komplemente in M.

(¢) Ist zusdtzlich U c Myp + T (M) fiir alle p, so hat U geniigend viele Komplemente
mn M.

Beweis. Es gibt ein » = 0 mit Ur c Ra(M). Bei (a) wihle man einen endlich
erzeugten freien Untermodul Uy von U, so dal U[U, torsionsvoll ist. Jede Primar-
komponente T',(U/Uy) ist dann beschrankt, also auch U’/ Uy = @ T, (U|Uy). Weil

. re
dann U'/T(U’) endlich erzeugt und 7'(U’) beschrankt ist, bleibt pnur noch U/U’'c
Ra(M/U'}) zu zeigen, und wir behaupten sogar, daf U/Upc Ra(M|Us) + U’ Uy
ist: Falls rep, gilt nidmlich T, (U/Up) c U'[Us; falls aber r¢p, ist T,(U/U))
durch 7 teilbar, also in (U/Up)r c Ra(M[U,) enthalten.

Bei (b) bentitzen wir, wie noch hédufig im folgenden, die in ([3] Lemma 1.4) be-
wiesene Tatsache, daB ein beschrankter Modul in jeder Erweiterung ein Komplement
hat, Ist nun V/Ur ein Komplement von U/Ur in M/Ur, so ist nicht nur Ur, sondern
sogar VNU klein in M, also V ein schwaches Komplement von U in M. Damit
bekommt man auch geniigend viele, denn zu X + U = M gibt es nach eben ein
schwaches Komplement W von XN U in M, so daf WNX ein schwaches Kom-
plement von U in M ist.

Bei (¢) kann man wegen (a) gleich annehmen, daBl T'(U) beschrankt und U/T(U)
endlich erzeugt ist. Weil dann T(U) in jeder Erweiterung geniigend viele Kom-
plemente hat, kénnen wir sogar T(U) = 0, also U endlich erzeugt voraussetzen.
Um zu X + U = M ein Komplement unter X zu finden, sei nach (b) gleich XNnU
klein in M. Weil (U + T (M))/T (M) klein in M|T (M) ist, folgt T(M) + X = M,
s0 daB es, weil M|X endlich erzeugt ist, ein Komplement ¥ von X in M gibt mit ¥
endlich erzeugt und torsionsvoll. Wihit man ein Komplement X’ von Y in M,
mit X'c X, so ist X/X’ klein in M/X’, insbesondere X'+ U = M, und weil X’
nicht in M ist, d.h. X'p = X'n M p fiir alle p, ist X’ sogar ein Komplement von
Uin M.

Folgerung 1. Ist R semilokal, so hat ein koatomarer Modul in jeder Erweiterung ge-
niigend viele schwache Komplemente, und er selbst ist direkte Summe aus einem endlich
erzeugten und einem beschrimkten Modul.

Folgerung 2. Set U ¢ M, U isomorph zu einem von Null verschiedenen Ideal, U nicht
direkter Summand in M. Dann sind dguivalent:
(1) U hat ein schwaches Komplement in M.
(i) UcMp fir fast alle p.
(i) U hat geniigend viele schwache Komplemente in M.

Beweis. Weil (ii) — (iii) — (i) klar ist, bleibt nur noch (i) — (ii) zu zeigen: Ist
V+U=Mmit VanU cRa(M), so muBl VU == 0 sein, so daBl U/VNU en zy-



Vol. 32,1979 Komplemente fiir zyklische Moduln 145

klischer Torsionsmodul ist, insbesondere p-teilbar fiir fast alle p, d.h.
U=Up+(VNnU)cMUyp.
Zur Formulierung der nichsten Folgerung sagen wir, eine exakte Folge

0>A5B >C’—>0

sel c-exakt, wenn Bia ein schwaches Komplement in B hat. Die entsprechenden
Elemente in Exth(C, A) nennen wir ¢-Elemente.

Folgerung 3. Ist R nicht semilokal und A isomorph zu einem von Null verschiedenen
Ideal, so gilt:

(a) Exth(C, 4)°NT(Exth(C, 4)) = 0 = Exth (0, 4)°N Ra(Exth(C, 4)).
(b) Besteht Exty(C, A) nur aus o-Elementen, so folgt Ext%(C, 4) = 0.

Beweis. (a) Reprasentiert 0 — 4 % B% (050 ein Torsionselement oder ein
Element aus dem Radikal, so ist es durch fast alle p teilbar. Nach ([2] Theorem 5.1)
bedeutet das (Bia)p = Biae N By, d.h. hier Bi « & By fiir fast alle p. Falls also
Bi o nicht schon direkter Summand ist, kann es nach der zweiten Folgerung kein
schwaches Komplement in B haben. (b) Es ist E = Ext}(C, 4) ein Kotorsions-
modul (siehe [2] Theorem 2.1 oder [1] § 54) mit Ra(E) = 0, also E ~ H (E/E ).
Aus T(E)=0 folgt daher E =0.

Satz. Sei U c M, U isomorph zu etnem von Null verschiedenen Ideal, U nicht direkter
Summand in M. Dann sind dgquivalent :

(i) U hat ein Komplement in M.
(il) UcMyp fir fast alle p, und falls T (M) p-teilbar ist, muf U c Mp sein.
(iii) U hat geniigend viele Komplemente in M.

Beweis. (i) — (ii) Sei V ein Komplement von U in. M. Wie in der zweiten Folge-
rung erhilt man, weil VN U == 0 ist, U c My fir fast alle p. Ist aber T, (M) teil-
bar, so folgt 7'y (M) c V (weil MV reduziert ist), also T,(M/V) = 0, so daBl wieder
U/VNU p-teilbar ist, also U c M p.

Bei (ii) — (iii) darf U auch direkter Summand sein (was ohnehin nicht méoglich
ist, wenn R unendlich viele maximale Ideale hat). Ist X + U = M und XNU =0,
50 behaupten wir, daBl das Paar XN U c X wieder die Bedingungen aus (ii) erfiillt:
Fiir fast alle p ist U ¢ M p, insbesondere M /X endlich erzeugt und p-teilbar,

Ty(M/|X)=0, XnUcXp;

und falls T'(X) p-teilbar ist, kann XN U nicht p-rein in X sein (sonst wire 7', (M)
= T, (X) teilbar und U p-rein in M, also U p-teilbar), so daB folgt

XNUcXp+ T(X)=

Hatten wir ein Komplement X’ von XN U in X, so wire das auch ein Komplement
von U in M, d.h. wir miissen nur noch (ii) — (i) zeigen: Falls U in allen M p liegt,
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sind wir fertig; falls pi, ..., p, die Ausnahmen sind, ist Up; ... p, klein in M
und 7' (M) durch keines der p, teilbar, und eine triviale Induktion liefert (i), wenn
wir gezeigt haben:

Hat Uy ein Komplement in M und ist 7(M) nicht p-teilbar, so hat auch U ein
Komplement in M. Zum Beweis sei ¥ ein Komplement von Uyp in M. Dann ist
auch VN U isomorph zu einem von Null verschiedenen Ideal, und (VN U)p=VNUp
klein in ¥, auBlerdem 7'(V) nicht p-teilbar (weil M/V endlich erzeugt und p-teilbar,
insbesondere T, (M) = T',(V) ist), so dal wir von vorneherein V = M, d.h. Up
klein in M annehmen konnen.

1. Fall. U ist nicht p-rein in M. Dann folgt Uc Mp + T(M), und wegen der
Kleinheit fiir alle g == p sogar U c Mg, so daB U nach dem Hilfssatz ein Kom-
plement in M hat.

2. Fall. U ist p-rein in M. Dann gehen wir dhnlich dem Beweis zu ([4] Satz 3.1)
vor: Weil T,(M|U) == T, (M) nicht teilbar ist, gibt es eine Zerlegung

MU=XU®M|U mt X/UxR/pn (n=1),

und weil U direkter Summand in X ist, ist das auch M’ in M, mit M/M' =~ R[p».
Schreibt man W/Upnr @ UJUpm = M'|U p», so zeigt die Kleinheit von Up, dal
W ein schwaches Komplement von U in M’ ist, auBerdem M'|/W =~ M/M’'. Weil
dann U x 0 ein Komplement in M’ x (M’'/W) hat, hat auch U X 0 eines in M’ X
(M|M'), also auch U in M wie gewiinscht.

Folgerung 4. Ist R nicht lokal, so sind fir einen Modul M dquivalent:

() Jeder zyklische Untermodul von M hat ein Komplement in M.
() M/Ra(M) ist halbeinfach, und aus T (M) p-teilbar folgt M p-teilbar.
(iii) Jeder zyklische Untermodul von M hat geniigend viele Komplemente in M.

Beweis. (i) — (ii) Weil auch in M/Ra (M) jeder zyklische Untermodul ein Kom-
plement hat, das notwendig direkt ist, kann R als Untermodul nicht vorkommen,
so dafl M[Ra (M) torsionsvoll ist wie behauptet. Sei nun 7' (M) p-teilbar und x € M:
Falls x € T'(M), folgt sofort xe Mp; falls z ¢ T(M), gilt fir U =zR, daBl Uyp
nicht klein in U ist (weil B nicht lokal ist), so daB es einen nichttrivialen zyklischen
Untermodul U’ von U gibt mit U+ Up = U. Nach dem Satz folgt U'c Mp,
also Uc My, xe Myp. (i) — (iii) Sei Uc M mit U =~ R. Zu Punkt (ii} des Satzes
miissen wir noch zeigen, daf U in fast allen M p liegt: Weil (U + Ra(M))/Ra (M)
torsionsvoll, also beschrankt ist, gibt es ein # &= 0 mit Ur c Ra(M), und daraus
folgt U c M p fir alle p mit 7 ¢ p.

(Im lokalen Fall ist die Sache differenzierter. Wir haben in [4] gezeigt, daB iiber
einem diskreten Bewertungsring (ii) echt stirker als (iii), und dieses echt stirker
als (i) sein kann.)

Entsprechend der Definition vor Folgerung 3 heille eine exakte Folge

0-45B5% 00
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x-exakt, wenn Bi« ein Komplement in B hat, und Ext}(C, A)* sei die Menge der
»-Elemente von Extk (C, 4).

Folgerung 5. Ist R nicht lokal und 4 isomorph zu einem von Null verschiedenen Ideal,
so sind dquivalent:

(i) ExtL(C, A) besteht nur aus x-Elementen.

(i) Falls T(C) durch mindestens ein maximales Ideal teilbar ist oder R unendlich
viele maximale Ideale hat, ist Bxty (C, A) = 0.

Beweis. (i) — (ii) Der Fall unendlich vieler maximaler Ideale wurde in Folge-
rung 3 erledigt. Bleibt, dafl ein 7',(C) teilbar ist: Angenommen, alle Primérkom-
ponenten von C sind ungleich Null, so gibt es mindestens ein q' == q mit 7',/(C) == 0.
Wahlt man f: 7(C) — K[R derart, daB f, =0 und f, =0 ist (die anderen f, be-
liebig), so erhalt man mit der injektiven Hiille 4 c 4 das Diagramm

E=0-45%BE 10000

| I 2
0->4cAd—-K/R -0,

worin f == 0, also 0 == [E] € Extk(T(C), 4) ist. f, = 0 bedeutet
(T4(B)®Bi«)/Bia = T, (B/Bia),

so dall T,(B) teilbar und Bix g-rein in B isb, insbesondere Bi« ¢ Bg. Nach dem
Satz ist daher [E] kein x-Element, so daB auch Ext(C, 4) nicht nur aus »-Ele-
menten besteht (vgl. [3] Hilfssatz 5.1), entgegen der Voraussetzung. — Also ist in
C mindestens eine Primirkomponente Null, so daB nach ([3] Hilfssatz 5.2) jede
wesentliche Uberdeckung von C einen torsionsvollen Kern hat, also Extl, (C, 4)*=0
ist wie behauptet. (ii) — (i) Es ist nur noch der Fall zu priifen, da R semilokal
und 7T (C) durch kein p teilbar ist. Zu 4 c M, mit M/A o~ C, zeigen wir Punkt (ii)
des Satzes: Ist T(M) p-teilbar, so kann 4 nicht p-rein in M sein, und es folgt

AcMp+T(M)=Mp.

Folgerung 6. Set U c M, U isomorph zu einem von Null verschiedenen Ideal, U di-
rekter Summand in M und C == M|U. Dann sind dquivalent :
(1) U hat geniigend viele Komplemente in M.
(i) 7 (Exth(C, U))cExtyh(C, Uy
(i) Falls T(C) durch mindestens ein maximales Ideal teilbar ist oder R unendlich
viele maximale Ideale hat, ist T (Exth(C, U)) = 0.

Beweis. Wiein ([5] Lemma 3.1) zeigt man, dafl (i) genau dann erfilllt ist, wenn fiir

jeden Untermodul 4 von U der Kern der induzierten Abbildung Exth(C, 4) =
Ext%(C, U) nur aus x-Elementen besteht. Damit ist (i) — (ii) klar, denn zu jedem
z e Ext%(C, U) mit 2r =0, r & 0 induziert p: U — Ur das kommutative Dia-

10%*
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gramm
Extl(C, Ur) > Exth(C, U)
RN S
ExtL(C, U) ,

in dem p* x-Elemente refiektiert, weil ¢ ein Epimorphismus mit beschrinktem
Kern ist. Nach Voraussetzung ist p,(z)eKet, ein x-Element, also auch
x e ExtL(C, U)* wie verlangt. (ii) — (i) Die Formel gilt auch fiir jeden Unter-
modul 4 == 0 von U, denn bei semilokalem R ist sogar 4 o~ U =2 R, und bei un-
endlich vielen maximalen Idealen ist nach Folgerung 3 ExtL(C, 4) ~ Ext%(C, U)
sogar torsionsfrei. Weil andererseits Hompg (C, U[/A) beschrankt ist, besteht der Kern

von Exth(C, 4) 3 Exth(C, U) nur aus Torsionselementen, und wir sind fertig.
(ii) — (iii) Der Fall, daB R nicht semilokal ist, ist wieder durch Folgerung 3 er-
ledigt. Sei also T'(C) durch mindestens ein maximales Ideal teilbar, etwa q. Dann
mub es schon durch alle p teilbar sein: Angenommen, es gibt ein ¢’ = ¢, so daB
T, (C) nicht teilbar ist, so wahle man ein f: T(C) — K/R derart, da8 f,, weder
surjektiv noch Null ist, aber alle f,, fiir p == ¢, Null sind. Wie in der letzten Folge-
rung erhilt man dann ein Torsionselement in Ext}(7'(C), U), das kein x-Element
ist, dann ein entsprechendes Element in Exty(C, U), entgegen der Voraussetzung.
— Aus der Teilbarkeit von T (C) folgt

Exth (C, Uy T (Exth (C, U)) =0

(und damit sind wir fertig), denn aus der Torsionsfreiheit von Extk (7(C), U) folgt
T (Ext% (C, U)) c D(Ext: (0, U)), so daB fiir jedes Torsionselement

0—-UcM-—-C~—~0

gelten muf}, daB U rein in M und daher auch T(M) == T(C) teilbar ist. Falls also
U ein Komplement in M hat, mub es nach dem Satz abspalten. (iii) — (ii) Sei R
semilokal und 7T(C) durch kein einziges p teilbar. Dann besteht Extk(C, U) nur
aus x-Elementen, denn im letzten Beweisschritt der Folgerung 5 durfte B auch
lokal sein.
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