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Einleitung. Betrachtet man fiir einen Ring R die folgende Eigenschaft 

(a) Ist P ein projektiver R-Rechtsmodul und P/Ra(P) endlich erzeugt, so ist 
bereits P endlich erzeugt, 

so wird von Lazard in [6, Proposition 5] gezeigt, dal3 sie jeder kommutative Ring 
besitzt. Gleichzeitig beklagt er, sie im nicht-kommutativen Fall nicht nachweisen 
zu k6nnen. Einen Ring mit der Eigenschaft (a) nennen wit daher Rechts-L-Ring. 
Valette beweist in [8] allgemeiner, dab jeder Ring Rein  Rechts-L-Ring ist, in dem 
fiir jedes Primideal Q der Faktorring R/Q ein Rechts-Goldie-Ring ist. - In 
Zusammenhang damit steht folgende Eigenschaft 

(b) Ist C ein endlich erzeugter flacher R-Rechtsmodul und C/CJ als R/J- 
Modul projektiv [ J =  Ra(R)], so ist bereits C projektiv. 

Sie gilt nach Vasconcelos [9, Theorem 2.1] fiir jeden kommutativen Ring. 
Jondrup zeigt nun in [4], dab (b) immer aus (a) folgt, dab (a) fiir P.I.-Ringe gilt, 
und dab (a) ~iquivalent ist mit 

(c) Ist P ein projektiver R-Rechtsmodul und X ~ P endlich erzeugt, so liegt X in 
einem maximalen Untermodul von P. 

Das Hauptergebnis der vorliegenden Note ist, dab jede der drei Eigenschaften 
(a), (b), (c)/iquivalent ist mit 

(d) Ist M ein endlich erzeugter projektiver R-Rechtsmodul, so ist in M jedes 
Komplement direkter Summand. 

Als Folgerung ergibt sich, dab jeder Rechts-L-Ring auch Links-L-Ring ist, 
und im Hinblick auf (d) zeigen wir im letzten Abschnitt spezielter: Ist R ein 
kommutativer Integritiitsring, so spalten sogar in jedem projektiven R-Modul die 
Komplemente ab. 
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1. Wann ist in R e jedes Komplement direkter Summand ? 

Sei M ein projektiver Modul und Vein Komplement yon U in M, d. h. V minimal 
beziiglich der Eigenschaft V+ U = M  (siehe [5, p. 104]). Hat auch V ein Komple- 
ment in M, sagen wit W, so ist bekanntlich Wn  V = 0, also V direkter Summand in 
M. Ohne ein solches W is aber unbekannt, ob V abspaltet. - Zur Untersuchung 
dieser Frage brauchen wit noch folgende Varianten des Begriffes ,,Komplement" : 
V heigt schwaches Komplement von U in M, wenn V + U = M ist und Vn U klein 
in M;  V heil3t starkes Komplement von U in M (siehe [11]), wenn es Komplement 
von U in M ist und zur Vn U direkter Summand in U. Man hat also die 
Implikationen: starkes Komplement~Komplement~schwaches  Komplement, 
und Beispiele zeigen, dal3 keiner der beiden Pfeile umkehrbar ist. Bei M = R R und 
zyklischem U gibt es einfache Kriterien far die Existenz eines schwachen (starken) 
Komplementes : 

Lemma 1.1. Ist xER, so gilt: Genau dann hat xR ein schwaches (starkes) 
Komplement in RR, wenn es ein re R gibt mit x - x r x E  J (und (xr) 2=  xr) .  

Beweis. Ist V ein schwaches Komplement yon xR in R R und 1 - x r E  V, so folgt 
x - - x rxEVc~xRCJ;  umgekehrt folgt aus x - - x r x E J  sofort, dab ( 1 - x r ) R  ein 
schwaches Komplement von xR in R R ist. - Ist im zweiten Fall V ein starkes 
Komplement von xR in R R, eExR idempotent mit 1--eEV, so folgt mit e=xr  
wieder das Gewi.inschte, und umgekehrt ist bei x - x r x E J ,  xr idempotent, auch 
( 1 -  xr)R ein starkes Komplement von xR in R R. 

Im Fall des starken Komplementes ist dann auch x - x ( r x r ) x E J  und (rxr)x 
idempotent, d.h., wir haben die 

Folgerun9. Genau dann hat xR ein schwaches (starkes) Komplement in R~, wenn 
Rx ein schwaches (starkes) Komplement in R R hat. 

Fiir Komplemente ist die entsprechende Aussage nicht klar, ja sie ist sogar 
~iquivalent mit der in der (Aberschrift formulierten Frage: 

Satz 1.2. Ffir einen Ring R sind iiquivalent : 

(i) In RR ist jedes Komplement direkter Summand. 

(i') In RR ist jedes Komplement direkter Summand. 

(ii) Hat xR ein Komplement in RR, so hat auch Rx  ein Komplement in RR. 

(ii') Hat Rx ein Komplement in RR, so hat auch xR ein Komplement in RR. 

1 
(iii) 1st ab=O und 1 - ( a + b ) E d ,  so fotgt b . ~ - ~ . a = O .  

Beweis. Vorbemerkung: Ist Vein  Komplement yon U in RR, SO folgt mi tvE  V, 
l - r E  U, dab v - v 2 E j  ist und v 2 R = v R =  V, insbesondere v=v2t fiir ein tER. - 
WiiBten wit, dab V direkter Summand, d.h. v regul~ires Element ist, so folgte aus 
v -  vtvE Vnr(v) = 0 [weil V und r(v) = {xe Rivx = 0} gegenseitig Komplemente 
w~iren] sogar v = vtv. 
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(i'~ii') Ist H ein Komplement von Rx in RR, so ist nach Voraussetzung H direkter 
Summand, also sogar H G Y = RR mit Y C Rx, d. h. H ein starkes Komplement yon 
Rx in RR. Nach der letzten Folgerung hat jetzt xR ein (starkes) Komplement in R R. 
(ii' ~ i )  Sei V = vR mit v = v2t, v -v2E J wie in der Vorbemerkung. Dann ist vt(1 -v t )  
=vt(1--v).(1--vt)EJR(1--vt), also R(1-v t )nRvt  klein in R(1-vt),  d.h. R(1-v t )  
ein Komplement von Rvt in RR. Wegen v t - w J  hat dann Rv dasselbe Komple- 
merit in RR, also nach Voraussetzung V = vR ein Komplement in R R. Damit ist V 
direkter Summand wie gewiinscht. (i--,ii~i') Ebenso. 

1 1 
(i--,iii) Seien a und b wie angegeben, dazu v=a und t =  a+b" Dann ist b=  -t - v ,  

v=v2t und v - v 2 e j ,  insbesondere V=vR ein Komplement von (1-v)R in R R. 
Nun ist V direkter Summand in Re, also nach der Vorbemerkung v=vtv, d.h. 

( ~ - v ) t v = O  oder bta=O wie verlangt. (iii--,i) Sei v=v2t mit v - v 2 ~ J  wie in der 

Vorbemerkung. Ist t 1 das Inverse yon 1 + v - v t ,  so folgt U=/)Ztl und 1 - t l e J  , mit 
1 

a=v und b = - - v  also gerade ab=O, 1-(a+b)EJ.  Die Voraussetzung liefert 
tt 

Beispiel 1. Hat R die Maximalbedingung fiir Annultatorrechtsideale, so erfiitlt R die 
i~quivalenten Bedingungen des Satzes. 

Beweis. Far V = vR, v = v2t geniigt es, dab die Folge r(v) C r(v 2) C r(v a) C ... station~ir 
ist, denn aus r(v m) = r(v m + 1) folgt dann vRc~r(v)= 0, insbesondere v -v t v  = O. 

Beispiel 2. Sei (A~I2eA) eine Familie yon zweiseitigen Idealen, so daft 

1. jeder Faktorrin9 R/A,t die iiquivalenten Bedingungen des Satzes erfiillt, 

2. sich Idempoteme modulo D= ~ A~ liften lassen und DCJ ist. 
, teA 

Dann 9elten auch fiir R die ~quivalenten Bedingungen des Satzes. 

Beweis. 1st V=vR mit v=v2t, v--v2EJ, so gilt auch ~=g2F, g -~2e  Ra(R/Ax), also 
nach Voraussetzung g=gtg, d.h. v - v t w A x  fiir alle 2~A. Weil also vt ein 
Idempotent modulo D ist, gibt es ein Idempotent e~R mit v t - e s D .  Wegen 
v - e e J  hat also Vein Komplement in R R [n~imlich W= (1 -  e)R] und spaltet ab. 

2. L-Ringe 

DaB die yon Lazard, Vasconcelos und Jondrup an einen Ring gestellten Bedingun- 
gen ~iquivalent und vonder  Seite des Ringes unabh~ingig sind, liegt daran, dab sie 
auf das Abspalten yon Komplementen zurtickgeffihrt werden k6nnen, diese 
Eigenschaft in den Endomorphismenring iibertragen wird und dann nach (1.2) 
auch fiir die andere Seite dieses Ringes gilt. Den Schliissel ftir diese Aquivalenzen 
bildet das n~ichste Lemma, aus dem folgt, dab in einem projektiven Modul M jeder 
Untermodul U, der ein Kornplement in M hat, dutch einen reinen Untermodul U s 
,,gesttitzt" wird in dem Sinne, dab U/Ut klein in M/U 1 ist. - Wir nennen einen 
Modul N radikalvoll, wenn er keine maximalen Untermoduln hat, d. h. Ra(N)= N 
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ist. Hat er umgekehrt gentigend viele, d.h., liegt jeder von N verschiedene 
Untermodul in einem maximalen Untermodul, so nennen wir ihn koatomar. In 
diesem Fall ist Ra(N) klein in N, so dab insbesondere jeder endlich erzeugte 
Modul ein kleines Radikal hat. Schliel31ich bemerken wir, dab far jeden projekti- 
ven Modul M gilt: R a ( M ) = M J .  

Lemma 2.1. Ist M projektiv und Vein  Komplement yon U in M, so gilt: 
(a) Ra(V)= VJ. 
(b) Es gibt ein U 1 C U mit V+ U 1 =M,  U 1 rein in M. 

Beweis. Weil V+ U = M  und M projektiv ist, gibt es ein 7eEnd(M) mit BiTC V, 
Bi(1-7)C U, fiir das wegen der Minimalit~it yon V folgt BiTZ=Bi7 = V, also auch 
noch 7=72r ftir ein zeEnd(M). [Das kiSnnte man auch mit dem Beweis von 
(2.3,d~--ff) und der Vorbemerkung in (1.2) far den Ring S=  End(M) herleiten.] 

Bei (a) sei nun xeRa(V): Mit x=7(y) folgt 

7z(y)- x = 7(~(y)- y) = (1 - 7)(7~(y)) ~ Vn U C Ra(M), 

also 7z(y)e R a ( M ) = M  J, 7z(Y)= ~ziri mit zieM, ri~J , und damit x = ~7(zi)rie VJ. 

Bei (b) leistet U 1 = ~ Ke7 m das Gewtinschte, denn aus 
m : l  

Bi(1-7z)CKe7CKeTZC ... CBi(1-7) 

und V + Bi (1 - 7z) = M folgt zun~ichst V + U I = M, speziell die Kleinheit von U/U I 
in M/U v Ftir die Reinheit miissen wir zu jedem xe U1 ein eE End(M) angeben mit 
c~(x)=x, Bic~cUI: Das leistet, falls x~Ke7 m, gerade em=l--Zm7 m, denn es ist 
Biotin C Ke7 m+l C U 1. 

Folgerung. In folgenden Fallen ist V bereits direkter Summand in M: 1) V ist 
projektiv. 2) V ist rein in M. 3) V besitzt keine radikalvollen Untermoduln. 

Beweis. Mit U1 wie im Lemma ist V / V n  UI flach, also Vn U 1 rein und klein in V. 
Nach (a) ist Vn U 1 radikalvoll, also Fall 3 erledigt. Well abet in einem projektiven 
Modul jeder reine radikalvolle Untermodul verschwindet (siehe [5, p. 238]), sind 
auch die ersten beiden F~ille klar. 

Bemerkun9. Besitzt R keine radikalvollen Rechtsideale, so ist die Bedingung 3 der 
Folgerung stets erffillt, d.h. in jedem projektiven R-Rechtsmodul spalten die 
Komplemente ab. 

Lemma 2.2. Sei M endlich erzeugt und projektiv, U ein reiner Untermodul yon M. 
Dann sind iiquivalent : 

(i) U hat ein (schwaches) Komplement in M. 
(ii) U/Ra(U) ist endlich erzeugt. 

(iii) Fiir den flachen Faktormodul C = M / U  gilt, daft C/CJ als R/J-Modul 
projektiv ist. 

Beweis. Wir wollen vorausschicken, dab aus Ra(M)= M J  wegen der Reinheit auch 
Ra(U) = UJ folgt. 

(i-,iii) Hat man V+ U = M  mit V n U C  Ra(M), so folgt aus 

V+ Ra(M) U+Ra(M)  M 
Ra(m) Ra(m) Ra(m)' 
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dab C/CJ~-M/(U+MJ)  bis auf Isomorphie direkter Summand von M / M J  ist, 
also projektiv fiber R/J. (iii~ii) Die zerfallende Folge 

0 ~ (U + MJ) /MJ ~ M / M J  ~ C/CJ--* 0 

zeigt, dab U/Ra(U)~-(U+MJ)/MJ sogar Faktormodul yon M ist. (ii-*i) Zu 

uiR + Ra(U)= U gibt es wegen der Reinheit ein eeEnd(M) mit c~(ui)=u i far 
i 

alle i, Bie C U. Wir behaupten, dab Bi(1 - c0 ein Komplement yon U in Mis t  und 
mtissen dazu nur noch Bi(1 - c0n U C Ra(Bi(1 - c0) zeigen : u = (1 - c0(x) impliziert 

x~U, x -  ~ uiri~Ra(M), also 
i ~ l  

u--(1-c0(x- i=1 ~ uiri) ~Ra(Bi(1-~))  

wie verlangt. 

Folgerung. Ist R/J rechts-noethersch und Mg endlich erzeugt und projektiv, so hat 
jeder reine Untermodul yon M ein Komplement in M [denn die Bedingung (ii) ist 
erfiillt]. 

Im folgenden Hauptsatz verstehen wir unter Moduln immer R-Rechtsmoduln. 

Satz 2.3. Fiir einen endlich erzeugten projektiven Modul M sind iiquivalent : 
(a) Ist P projektiv und P/Ra(P) Faktormodul yon M, so ist P endlich erzeugt. 
(b) Ist C ein flacher Faktormodul yon M und C/CJ als R/J-Modul projektiv, so 

ist C projektiv. 
(c) Ist P projektiv und X ~ P Faktormodul yon M, so liegt X in einem maximalen 

Untermodul yon P. 
(d) Jedes Komplement in M i s t  direkter Summand. 
(e) Jeder reine Untermodul U yon M, mit U/Ra(U) endlich erzeugt, ist direkter 

Summand. 
(f) Der Endomorphismenring S yon M erffillt die fiquivalenten Bedingungen yon 

Satz (1.2). 

Beweis. ( a~d)  Sei V ein Komplement yon U in M, und seien 7, z und U~ wie in 

(2.1). Mit c~ m = 1 - ~'~Tme End(M) gilt auch U 1 = ~ Bic~m, so dab U I nicht nur rein 
m = l  

in M, sondern auch abziihlbar erzeugt ist. Nach Jensen [3, Lemma 2] ist daher U~ 
projektiv, auBerdem U~/Ra(U 0 bis auf Isomorphie direkter Summand yon 
M/Ra(M) [siehe den ersten Schritt in (2.2)], so dab nach Voraussetzung Ut 
endlich erzeugt ist, U 1 direkter Summand in M, V O U  1 =M. (d-~e) Ist U wie 
angegeben, so hat es nach (2.2) ein Komplement 1/", das nach Voraussetzung 
projektiv ist. Als reiner radikalvoller Untermodul yon V ist daher Vr U = 0. (e--*a) 
Zum gegebenen Epimorphismus fl : M ~ P = P / R a ( P )  gibt es ein f : P - , M  mit 
f l f=kan .  Offenbar ist f :P--*M ein zerfallender Monomorphismus (als Linksin- 
verses kann man die yon fl induzierte Abbildung nehmen), so dab nach Bergman 
(siehe den Beweis yon Lemma 2.2 in [4]) f selbst ein reiner Monomorphismus ist, 
insbesondere U = B i f  ein reiner Untermodul yon M mit U/Ra(U) endlich erzeugt. 
Damit ist U direkter Summand in M, d.h. U-~ P endlich erzeugt. 
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(b*-~e) Das folgt unmittelbar aus (2.2). 

(a~c)  Nehmen wir an, dab P/X radikalvoll ist. FiJr eine projektive Basis 
((pa, q~a)12~A) yon P ist die Menge L =  {2~AIq~(X)+0} endlich, und fiir alle 2r  
ist B~={p~q~(y)Iy~P} als Faktor von P/X radikalvoll, also auch B=  ~ B~ 

2 r  

radikalvoll. (o~paRI+B=P zeigt, dab P/Ra(P)endlich erzeugt ist, also 
k ^ e L  / 

P/(X + Ra(P))=0, so dab auch P/Ra(P) ein Faktormodul von Mist .  Dann ware 
aber nach Voraussetzung P endlich erzeugt, P/X = 0 im Widerspruch zu X ~ P. 
(c~a) Der Epimorphismus/~ : M~P/Ra(P)  l~iBt sich zu einem Homomorphismus 
g : M ~ P  hochheben, so dab aus Big+Ra(P)=P nach Voraussetzung B i g = P  
folgt, insbesondere P endlich erzeugt ist. 

Die ,~quivalenz (d~-ff) gilt auch dann, wenn M nur selbstprojektiv ist, d.h. fiir 
jeden Epimorphismus r  die induzierte Abb. /~. :HomR(M,M) 
~HomR(M,N ) surjektiv ist. 

Fiir jeden Untermodul V von M sei s(V) das Rechtsideal {~SIBi~c  V}, fiJr 
jedes Rechtsideal B von S sei d(B) der Untermodul ~{Bi~lc~B}, und wegen der 
Selbstprojektivitat von M gilt s(V~ + V2)=s(V1)+s(V2) fiJr alle Untermoduln 1/1 
und V 2 yon M, sd(B)= B f'tir alle endlich erzeugten Rechtsideale B von S. 

ErRillt nun S die Bedingungen von (1.2) und ist Vein Komplement von U in M, 
so ist s(V) ein Komplement von s(U) in Ss, denn die Summe ist klar, und aus 
B + s( U) = S s mit zyklischem B C s( V) folgt d(B) + U = M, d(B)= V, B = s( V). Nach 
Voraussetzung ist s(V)=zS mit ~2=e, also V=ds(V)=Bi~ direkter Summand 
in M . -  Ahnlich zeigt man in der umgekehrten Richtung: Ist das Rechtsideal 
B ein Komplement in Ss, so ist d(B) ein Komplement in M, also d(B)= Bie mit 
e2 =e, und damit B=sd(B)=eS direkter Summand in S s. 

L~iBt man M die R-Rechtsmoduln R, R 2, R 3 . . . .  durchlaufen, so erh~ilt man 
jetzt die in der Einleitung behaupteten Aquivalenzen Rir einen Rechts-L-Ring. 
Bleibt die Seiten-Unabh~ingigkeit zu zeigen: 

Folgerung. Ist Re in  Rechts-L-Ring, so ist R auch ein Links-L-Ring. 

Beweis. R ist genau dann ein Rechts(Links)-L-Ring, wenn Rir alle n>  1 im 
Matrizenring M,(R) die Rechts(Links)-Ideale, die Komplement sind, abspalten, so 
dab (1.2) die Behauptung liefert. 

Bemerkung. DaB jeder kommutative Ring ein L-Ring ist (was man ja aus [6] oder 
[9] weiB), folgt jetzt auch mit Punkt (e) und unserem Lemma (3.2): U ist koatomar, 
also selbst endlich erzeugt und daher direkter Summand. 

Aber der wohl kfirzeste Beweis geht Rir Punkt (c): Es gibt ein maximales Ideal 
m mit X mff P,,, und weil P,, sogar frei ist, kann P~,/Xm nicht radikalvoll sein, also 
auch nicht P/X. 

3. Die kleinen Untermoduln eines projektiven Moduls 

Wir zeigen in diesem letzten Abschnitt, dab fiber einem Integrit~itsring R (es 
geniigt, dab das Nullideal Durchschnitt von endlich vielen Primidealen ist) in 
jedem projektiven R-Modul M die Komplemente abspalten. Der Grund liegt 
darin, daB jeder kleine Untermodul yon M in einem geeigneten endlich erzeugten 
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Zwischenmodul enthalten ist und daher auch noch in jedem reinen Zwischenmo- 
dul klein ist. - Stets ist in diesem Abschnitt R kommutativ. 

Lelnma 3.1. Sei M projektiv und U klein in M. Dann gibt es zu jedem Ideal a yon R, 
das Durchschnitt yon endlich vielen Primidealen ist, einen endlich erzeugten Unter- 
modul M' yon M mit 

UC Ra(M') + Ma.  

Beweis. Ist ((xz, tpz)12eA) eine projektive Basis yon M, so folgt nach Ware u. 
Zelmanowitz ([10, Theorem 1], siehe auch [2, Proposition 1]) aus der Kleinheit 
yon U, daf~ die Familie bz = qo~(U) yon Idealen folgende Eigenschaft hat: Zu jeder 
Folge (Cl,2i), i=1 ,2 ,3  . . . . .  mit ciEb~,, ,~i@2j fi.ir i+j, gibt es ein m > l  mit 
clc2...cm=O. In jedem Primideal p liegen also fast alle b~. Ist daher 
a=t01n . . . r ip ,  wie verlangt, so ist die Menge L={2eAIb~r  endlich, also 
M'= ~ x~R ein endlich erzeugter Untermodul von M. Ftir jedes ye  U hat man 

,~eL 
dann 

Y= Z xzq~a(Y)+ Z xztpx(y)eM'J+Ma 
,?.eL 2 ~ L 

wie gewiinscht. 

Folgerung. Sei M projektiv, R noethersch und N das Nilradikal : Genau dann ist U 
klein in M, wenn U in Ra(M) liegt und U/UnMN endlich erzeugt ist. 

Beweis. Nattirlich ist N Durchschnitt von endlich vielen Primidealen: Ist also U 
klein in M und M' wie im Lemma, so liefert der Monomorphismus 
U/Uc~MN--*M'/M'nMN die eine Behauptung. Weiter ist N nilpotent, also mit 
MN auch U n M N  klein in M, so dab in der anderen Richtung nicht nur 
U/UnMN als endlich erzeugter Untermodul des Radikals klein in M / U n M N  ist, 
sondern auch U klein in M. 

Lemma 3.2. Ist M endlich erzeugt, so ist jeder reine Untermodul yon M koatomar. 

Beweis. Ist U rein in M, so ist zu zeigen, dab jeder radikalvolle Faktormodul von U 
gleich Null ist. Wit kiSnnen also gleich U radikalvoll annehmen und mtissen U = 0  
zeigen. Sei C ein injektiver Kogenerator in Mod-R mit grof3em Sockel. Dann hat 
auch M~ einen groBen Sockel als Untermodul yon C" fiir ein 
geeignetes n. Andererseits ist U ~ sockelfrei, denn f e  Annvo(m) heii3t f(xr)=O far 
alle re  m, xe  U, und weil jedes Element yon U die Form ~x~r i mit rie m, xie U hat, 
folgt f = 0 .  Der reine Monomorphismus U ~ M  induziert abet einen zerfallenden 
Epimorphismus M ~  U ~ so dab aus U ~ = 0  folgt U = 0  wie gewtinscht. 

Die n~ichste Folgerung wurde, falls R selfiilokal (d. h. R/J halbeinfach) ist, von 
Couchot in [1, Theorem 2.3] gezeigt" 

Folgerung. Ist M endlich erzeugt und R/J noethersch, so ist jeder reine Untermo- 
dul von M wieder endlich erzeugt. 

Beweis. Fiir den reinen Untermodul U ist die kanonische Abbildung 
U/UJ~M/MJ  injektiv, also auch U/UJ endlich erzeugt. Nach dem Lemma ist U 
koatomar, insbesondere UJ klein in U, und es folgt die Behauptung. 
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Satz 3.3. Sei M projektiv und das Nullideal yon R Durchschnitt yon endlich vielen 
Primidealen. Dann gilt : 

(a) Ist X C U C M, X klein in M und U rein in M, so ist X auch klein in U. 
(b) In M i s t  jedes Komplement direkter Summand. 

Beweis. Bei (a) gibt es nach (3.1) einen endlich erzeugten U n t e r m o d u l  M'  von M 
mit  X C  Ra(M') .  Aus Y + X =  U folgt dann,  dab  U/Y rein und klein in ( M ' +  U)/Y 
ist, insbesondere  (M' + U)/Y endlich erzeugt  und U/Y radikalvol l .  Nach  (3.2) ist 
aber  U/Y  koa tomar ,  also null wie verlangt.  D a m i t  ist auch (b) k la r :  Ist  V ein 
K o m p l e m e n t  yon U in M und U x C U wie in (2.1), so ist nach eben Vc~U 1 auch 
klein in U1, also VO U 1 = M. 

In unserer  letzten Fo lge rung  wurde  die Imp l ika t ion  ( i~ i i i )  unter  der  Zusa tzbe-  
dingung,  dab  R keine Idempo ten te  hat, von Snider  in [-7, L e m m a  33 gezeigt : 

Folgerung. Sei M projekt iv  und das  Nul l idea l  von R Durchschn i t t  yon endl ich 
vielen Pr imidealen.  D a n n  sind flit U C Ra(M)  ~iquivalent : 

(i) U ist klein in M. 
(ii) U ha t  ein schwaches K o m p l e m e n t  in M. 

(iii) U ha t  endliche Gold ie -Dimens ion .  

Beweis. ( i ~ i i )  ist klar,  und bei  ( i i~ i )  sei V+ U = M ,  Vc~U klein in M. W~ihlt m a n  
~ E n d ( M )  mit  B i y c  V, Bi(1 - ? ) C  U, so induzier t  7 auf  ~ I = M / R a ( M )  die ident i-  
sche Abbi ldung.  Wie  im Beweis yon (2.3, e ~ a )  ist deshalb  y selbst ein reiner  
M o n o m o r p h i s m u s ,  Biy nach  dem Satz sogar  ein K o m p l e m e n t  yon U in M, Bi? 
d i rekter  S u m m a n d  in M und M/Biy  radikalvol l ,  also B i ? = M ,  V = M .  Bei der  
Aquivalenz  (i*-~iii) k6nnen  wir gleich M frei annehmen.  Weft nun R R nach 
Vorausse tzung  endliche Go ld i e -D imens ion  hat,  gilt das auch ffir jeden endlich 
erzeugten U n t e r m o d u l  yon M, so dab  ( i -q i i )  nach (3.1) k lar  ist. Zur  U m k e h r u n g  
sei U' ein endlich erzeugter,  groBer U n t e r m o d u l  von U:  W~ihlt man  U ' C M ' C M  
mit  M '  endl ich erzeugt, M '  d i rekter  S u m m a n d  in M, so folgt au tomat i sch  U C M '  
(weft M'c~ U grog  in U ist und der  singul~ire U n t e r m o d u l  von U/M'c~ U verschwin-  
det), UCRa(M)c~M'=Ra(M'),  so d a b  U klein in M '  ist, a lso  erst  recht  klein in M. 
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