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Einleitung. Betrachtet man fiir einen Ring R die folgende Eigenschaft

(a) Ist P ein projektiver R-Rechtsmodul und P/Ra(P) endlich erzeugt, so ist
bereits P endlich erzeugt,

so wird von Lazard in [6, Proposition 5] gezeigt, daB sie jeder kommutative Ring
besitzt. Gleichzeitig beklagt er, sie im nicht-kommutativen Fall nicht nachweisen
zu konnen. Einen Ring mit der Eigenschaft (a) nennen wir daher Rechts-L-Ring.
Valette beweist in [8] allgemeiner, daB jeder Ring R ein Rechts-L-Ring ist, in dem
fiir jedes Primideal Q der Faktorring R/Q ein Rechts-Goldie-Ring ist. — In
Zusammenhang damit steht folgende Eigenschalft

(b) Ist C ein endlich erzeugter flacher R-Rechtsmodul und C/CJ als R/J-
Modul projektiv [J=Ra(R)}], so ist bereits C projektiv.

Sie gilt nach Vasconcelos [9, Theorem 2.17 fiir jeden kommutativen Ring.
Jondrup zeigt nun in [4], daB (b) immer aus (a) folgt, daB (a) fir P.I.-Ringe gilt,
und daB (a) dquivalent ist mit

(c) Ist Pein projektiver R-Rechtsmodul und X ¢ P endlich erzeugt, so liegt X in
einem maximalen Untermodul von P.

Das Hauptergebnis der vorliegenden Note ist, daB jede der drei Eigenschaften
(a), (b), (c) dquivalent ist mit

(d) Ist M ein endlich erzeugter projektiver R-Rechtsmodul, so ist in M jedes
Komplement direkter Summand.

Als Folgerung ergibt sich, dal jeder Rechts-L-Ring auch Links-L-Ring ist,
und im Hinblick auf (d) zeigen wir im letzten Abschnitt spezieller: Ist R ein
kommutativer Integritdtsring, so spalten sogar in jedem projektiven R-Modul die
Komplemente ab.
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1. Wann ist in Ry jedes Komplement direkter Summand ?

Sei M ein projektiver Modul und V ein Komplement von U in M, d. h. ¥ minimal
beziiglich der Eigenschaft ¥+ U =M (siche [5, p. 104]). Hat auch V ein Komple-
ment in M, sagen wir W, so ist bekanntlich WnV =0, also V direkter Summand in
M. Ohne ein solches W is aber unbekannt, ob V abspaltet. — Zur Untersuchung
dieser Frage brauchen wir noch folgende Varianten des Begriffes ,, Komplement*:
V heiBt schwaches Komplement von U in M, wenn V+ U =M ist und VU klein
in M ; V heiB3t starkes Komplement von U in M (siehe [11]), wenn es Komplement
von U in M ist und zusitzlich VAU direkter Summand in U. Man hat also die
Implikationen: starkes Komplement— Komplement—schwaches Komplement,
und Beispiele zeigen, daBl keiner der beiden Pfeile umkehrbar ist. Bei M = Ry und
zyklischem U gibt es einfache Kriterien fiir die Existenz eines schwachen (starken)
Komplementes

Lemma 1.1. Ist xeR, so gilt: Genau dann hat xR ein schwaches (starkes)
Komplement in Ry, wenn es ein re R gibt mit x—xrxeJ (und (xr)*>=xr).

Beweis. Ist V ein schwaches Komplement von xR in Ry und 1—xreV, so folgt
x—xrxe VxR CJ; umgekehrt folgt aus x—xrxeJ sofort, dafl (1—xr)R ein
schwaches Komplement von xR in Ry ist. — Ist im zweiten Fall V ein starkes
Komplement von xR in R, eexR idempotent mit 1—eeV, so folgt mit e=xr
wieder das Gewiinschte, und umgekehrt ist bei x — xrxeJ, xr idempotent, auch
(1—xr)R ein starkes Komplement von xR in Rp.

Im Fall des starken Komplementes ist dann auch x— x(rxr)xeJ und (rxr)x
idempotent, d.h., wir haben die

Folgerung. Genau dann hat xR ein schwaches (starkes) Komplement in Ry, wenn
Rx ein schwaches (starkes) Komplement in zR hat.

Fiir Komplemente ist die entsprechende Aussage nicht klar, ja sie ist sogar
dquivalent mit der in der Uberschrift formulierten Frage:

Satz 1.2. Fiir einen Ring R sind dquivalent :
(i) In Ry ist jedes Komplement direkter Summand.
() In &R ist jedes Komplement direkter Summand.
(i) Hat xR ein Komplement in Ry, so hat auch Rx ein Komplement in pR.

(ii') Hat Rx ein Komplement in gR, so hat auch xR ein Komplement in Rp.

(uii) Ist ab=0 und 1 —(a+b)eJ, so folgt b- =0.

1
a+b a
Beweis. Vorbemerkung: Ist ¥ ein Komplement von U in Ry, so folgt mit veV,
1—veU, daB v—v?eJ ist und v2R=vR =V, insbesondere v=1v?t fiir ein teR. —
WiiBlten wir, dall V direkter Summand, d. h. v reguléires Element ist, so folgte aus
v—vtve Vor(n)=0 [weil V und r(v)={xeR|vx=0} gegenseitig Komplemente
wiren] sogar v=vtv.
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(' —1i") Ist H ein Komplement von Rx in gR, so ist nach Voraussetzung H direkter
Summand, also sogar H®Y = 3R mit Y CRx, d.h. H ein starkes Komplement von
Rx in zR. Nach der letzten Folgerung hat jetzt xR ein (starkes) Komplement in Rg.
(ii'—1) Sei V =vR mit v=v>%t, v—v?e J wie in der Vorbemerkung. Dann ist vt(1 —vt)
=vt(1 —v)-(1 —vt)e JR(1 —vt), also R(1 —ovt)nRut klein in R(1—wvt), d. h. R(1 —ut)
ein Komplement von Rut in zR. Wegen vt —veJ hat dann Rv dasselbe Komple-
ment in gzR, also nach Voraussetzung V =vR ein Komplement in Rp. Damit ist V
direkter Summand wie gewiinscht. (i—ii—i) Ebenso.

(i—111) Seien @ und b wie angegeben, dazu v=q und t= -{l—7b Dann ist b= % -,
v=v’t und v—v?eJ, insbesondere ¥ =vR ein Komplement von (1—v)R in R,.
Nun ist V direkter Summand in Ry, also nach der Vorbemerkung v=uvtv, d.h.

(? —v) tv=0 oder bta=0 wie verlangt. (ili—1) Sei v=0v% mit v—v?eJ wie in der
Vorbemerkung. Ist t; das Inverse von 1 +v—ut, so folgt v=vt, und 1, eJ, mit

1
a=v und b= P also gerade ab=0, 1-—(a+b)eJ. Die Voraussetzung liefert
1

(r — v) t,w=0, v=vt,v reguldr wie gewiinscht.
1

Beispiel 1. Hat R die Maximalbedingung fiir Annullatorrechtsideale, so erfiillt R die
dquivalenten Bedingungen des Satzes.

Beweis. Fiir V=vR, v=0v7t genligt es, daB die Folge r(v)Cr(v?) Cr(v?)C ... stationir
ist, denn aus r(v™)=r(v™"*1) folgt dann vRr(v)=0, insbesondere v— vtv=0.

Beispiel 2. Sei (4,)Ae A) eine Familie von zweiseitigen Idealen, so daf
1. jeder Faktorring R/A; die dquivalenten Bedingungen des Satzes erfiillt,
2. sich Idempotente modulo D= () A, liften lassen und DCJ ist.

AeA
Dann gelten auch fiir R die dquivalenten Bedingungen des Satzes.

Beweis. Ist V'=vR mit v=0?t, v—v?eJ, so gilt auch 5=5%¢, 5 — 5>€ Ra(R/A4,), also
nach Voraussetzung b=0t5, d.h. v—vtve A, fiir alle leA. Weil also vt ein
Idempotent modulo D ist, gibt es ein Idempotent ee R mit vt—eeD. Wegen
v—eeJ hat also V ein Komplement in Ry [ndmlich W=(1—¢)R] und spaltet ab.

2. L-Ringe

Daf die von Lazard, Vasconcelos und Jondrup an einen Ring gestellten Bedingun-
gen dquivalent und von der Seite des Ringes unabhingig sind, liegt daran, daB sie
auf das Abspalten von Komplementen zuriickgefiihrt werden konnen, diese
Eigenschaft in den Endomorphismenring iibertragen wird und dann nach (1.2)
auch fiir die andere Seite dieses Ringes gilt. Den Schliissel fiir diese Aquivalenzen
bildet das ndchste Lemma, aus dem folgt, daB} in einem projektiven Modul M jeder
Untermodul U, der ein Komplement in M hat, durch einen reinen Untermodul U,
»gestlitzt wird in dem Sinne, dal U/U, klein in M/U, ist. — Wir nennen einen
Modul N radikalvoll, wenn er keine maximalen Untermoduln hat, d.h. Ra(N)=N
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ist. Hat er umgekehrt geniigend viele, d.h, liegt jeder von N verschiedene
Untermodul in einem maximalen Untermodul, so nennen wir ihn koatomar. In
diesem Fall ist Ra(N) klein in N, so daB insbesondere jeder endlich erzeugte
Modul ein kleines Radikal hat. SchlieBlich bemerken wir, daB fiir jeden projekti-
ven Modul M gilt: Ra(M)=MJ.

Lemma 2.1. Ist M projektiv und V ein Komplement von U in M, so gilt :
(a) Ra(V)=VJ.
(b) Es gibt ein U, CU mit V4+U, =M, U, rein in M.

Beweis. Weil V+U=M und M projektiv ist, gibt es ein ye End(M) mit BiyCV,

Bi(1—-y)CU, fiir das wegen der Minimalitit von V folgt Biy?=Biy =V, also auch

noch y=y?t fiir ein te End(M). [Das kdnnte man auch mit dem Beweis von

{2.3,df) und der Vorbemerkung in (1.2) fiir den Ring S=End(M) herleiten.]
Bei (a) sei nun xe Ra(V): Mit x=y(y) folgt

P10 =x=y((y) = y) =1 =y)ye(y)e VNU CRa(M),
also yt(y)e Ra(M)=MJ, yt(y)=) z;r; mit z,e M, r,e J, und damit x= y(z))r,e VJ.

Bei (b) leistet U, = Z Key™ das Gewiinschte, denn aus

m=1
Bi(1—y7)CKeyCKey2C ... CBi(1—y)
und V+ Bi(l —y1)=M folgt zunédchst V+ U, =M, speziell die Kleinheit von U/U,
in M/U,. Fiir die Reinheit miissen wir zu jedem xe U, ein «€ End (M) angeben mit
u(x)=x, BiaCU,: Das leistet, falls xeKey™, gerade «,=1—1"y", denn es ist
Bia,, CKey" "1 CU,.

Folgerung. In folgenden Fillen ist V bereits direkter Summand in M: 1) V ist
projektiv. 2) V ist rein in M. 3) V besitzt keine radikalvollen Untermoduln.

Beweis. Mit U; wie im Lemma ist V/VnU, flach, also VnU, rein und klein in V.
Nach (a) ist VnU, radikalvoll, also Fall 3 erledigt. Weil aber in einem projektiven
Modul jeder reine radikalvolle Untermodul verschwindet (siehe [5, p. 238]), sind
auch die ersten beiden Fille klar.

Bemerkung. Besitzt R keine radikalvollen Rechtsideale, so ist die Bedingung 3 der
Folgerung stets erfiillt, d.h. in jedem projektiven R-Rechtsmodul spalten die
Komplemente ab.

Lemma 2.2. Sei M endlich erzeugt und projektiv, U ein reiner Untermodul von M.
Dann sind dquivalent :
(i) U hat ein (schwaches) Komplement in M.

(ii) U/Ra(U) ist endlich erzeugt.

(i) Fir den flachen Faktormodul C=M/U gilt, daff C/CJ als R/J-Modul
projektiv ist.
Beweis. Wir wollen vorausschicken, dafl aus Ra(M)= MJ wegen der Reinheit auch
Ra(U)=UJ folgt.

(i—iii) Hat man V+U=M mit VAU CRa(M), so folgt aus
V+Ra(M) U+Ra(M) M
Ra(M) Ra(M) ~ Ra\M)’




Projektive Moduln 203

dall C/CJ=M/AU+ MJ) bis auf Isomorphie direkter Summand von M/MJ ist,
also projektiv liber R/J. (iit—ii) Die zerfallende Folge

0->(U+MIH/MI-M/MJ-C/CJ—0
zeigt, dall U/Ra(U)=(U+MJ)/MJ sogar Faktormodul von M ist. (ii—i) Zu
( Y uiR) +Ra(U)="U gibt es wegen der Reinheit ein ae End(M) mit a(u,) =y, fir

i=1
alle i, Bia CU. Wir behaupten, daB} Bi(l —«) ein Komplement von U in M ist und
missen dazu nur noch Bi(1 —a)nU C Ra(Bi{l —a)) zeigen: u=(1~a)x) impliziert

xeU, x— ) ur,eRa(M), also

i=1

u=(1—oc)(x- i uiri)e Ra(Bi(1 —a))

i=1
wie verlangt.

Folgerung. Ist R/J rechts-noethersch und M endlich erzeugt und projektiv, so hat
jeder reine Untermodul von M ein Komplement in M [denn die Bedingung (i) ist
erfiillt].

Im folgenden Hauptsatz verstehen wir unter Moduln immer R-Rechtsmoduln.

Satz 2.3. Fiir einen endlich erzeugten projektiven Modul M sind dquivalent :

(@) Ist P projektiv und P/Ra(P) Faktormodul von M, so ist P endlich erzeugt.

(b) Ist C ein flacher Faktormodul von M und C/CJ als R/J-Modul projektiv, so
ist C projektiv.

(c) Ist P projektiv und X G P Faktormodul von M, so liegt X in einem maximalen
Untermodul von P.

(d) Jedes Komplement in M ist direkter Summand.

(e) Jeder reine Untermodul U von M, mit U/Ra(U) endlich erzeugt, ist direkter
Summand.

(f) Der Endomorphismenring S von M erfiillt die dquivalenten Bedingungen von
Satz (1.2).

Beweis. (a—d) Sei V ein Komplement von U in M und seien y, T und U, wie in
(2.1). Mita,,=1—1"y"eEnd(M) giltauch U, = Z Bia,, so dal U, nicht nur rein

in M, sondern auch abzdhlbar erzeugt ist. Nach Jensen [3, Lemma 2] ist daher U,
projektiv, auBerdem U,/Ra(U,;) bis auf Isomorphie direkter Summand von
M/Ra(M) [siche den ersten Schrltt in (2.2)], so daB nach Voraussetzung U,
endlich erzeugt ist, U, direkter Summand in M, VU, =M. (d—e) Ist U wie
angegeben, so hat es nach (2.2) ein Komplement V, das nach Voraussetzung
projektiv ist. Als reiner radikalvoller Untermodul von V ist daher VAU =0. (e—a)
Zum gegebenen Epimorphismus f: M~ P=P/Ra(P) gibt es ein f:P—M mit
Bf =kan. Offenbar ist f:P-M ein zerfallender Monomorphismus (als Linksin-
verses kann man die von f# induzierte Abbildung nehmen), so daB3 nach Bergman
(siche den Beweis von Lemma 2.2 in [4]) f selbst ein reiner Monomorphismus ist,
insbesondere U = Bi f ein reiner Untermodul von M mit U/Ra(U) endlich erzeugt.
Damit ist U direkter Summand in M, d.h. U= P endlich erzeugt.
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(boe) Das folgt unmittelbar aus (2.2).

(a—c) Nehmen wir an, da P/X radikalvoll ist. Fiir eine projektive Basis

((pss @2)lA€ A) von P ist die Menge L= {Aec A|p,(X)=+0} endlich, und fiir alle A¢L

ist B,={p,0,(»)lyeP} als Faktor von P/X radikalvoll, also auch B= } B,
A¢L

radikalvoll. (Z p,R\+B=P zeigt, dal P/Ra(P) endlich erzeugt ist, also

AeL

P/(X + Ra(P))=0, so daB} auch P/Ra(P) ein Faktormodul von M ist. Dann wire
aber nach Voraussetzung P endlich erzeugt, P/X =0 im Widerspruch zu X ¢ P.
(c—a) Der Epimorphismus § : M — P/Ra(P) ldBt sich zu einem Homomorphismus
g :M—P hochheben, so dall aus Big+Ra(P)=P nach Voraussetzung Big=P
folgt, insbesondere P endlich erzeugt ist.

Die Aquivalenz (d«-f) gilt auch dann, wenn M nur selbstprojektiv ist, d. h. fiir
jeden Epimorphismus f:M—-N die induzierte Abb. S, :Homg(M,M)
—Homg (M, N) surjektiv ist.

Fiir jeden Untermodul ¥V von M sei s(V) das Rechtsideal {«xe S|BiazCV}, fiir
jedes Rechtsideal B von S sei d(B) der Untermodul ) {Bia|ae B}, und wegen der
Selbstprojektivitit von M gilt s(V, +V,)=s(V;)+s(V,) fiir alle Untermoduln V;
und V, von M, sd(B)= B fiir alle endlich erzeugten Rechtsideale B von S.

Erfiillt nun S die Bedingungen von (1.2) und ist V ein Komplement von U in M,
so ist s(V) ein Komplement von s(U) in S, denn die Summe ist klar, und aus
B+s(U)=Sg mit zyklischem BCs(V) folgt d(B)+U =M, d(B)=V, B=s(V). Nach
Voraussetzung ist s(V)=eS mit e2=¢, also V=ds(V)=Bie direkter Summand
in M. — Ahnlich zeigt man in der umgekehrten Richtung: Ist das Rechtsideal
B ein Komplement in Sy, so ist d(B) ein Komplement in M, also d(B)=Bi¢ mit
¢2=¢, und damit B=sd(B)=eS direkter Summand in Sj.

LiBt man M die R-Rechtsmoduln R, R?, R?, ... durchlaufen, so erhilt man
jetzt die in der Finleitung behaupteten Aquivalenzen fiir einen Rechts-L-Ring.
Bleibt die Seiten-Unabhingigkeit zu zeigen:

Folgerung. Ist R ein Rechts-L-Ring, so ist R auch ein Links-L-Ring.

Beweis. R ist genau dann ein Rechts(Links)-L-Ring, wenn fiir alle n=1 im
Matrizenring M (R) die Rechts(Links)-Ideale, dic Komplement sind, abspalten, so
daf} (1.2) die Behauptung liefert.

Bemerkung. DabB jeder kommutative Ring ein L-Ring ist (was man ja aus [6] oder
[9] weiB), folgt jetzt auch mit Punkt (e) und unserem Lemma (3.2): U ist koatomar,
also selbst endlich erzeugt und daher direkter Summand.

Aber der wohl kiirzeste Beweis geht fiir Punkt (c): Es gibt ein maximales Ideal
m mit X, ¢ P,,, und weil P, sogar frei ist, kann P_/X  nicht radikalvoll sein, also
auch nicht P/X.

3. Die kleinen Untermoduln eines projektiven Moduls

Wir zeigen in diesem letzten Abschnitt, daB iiber einem Integritéitsring R (es
geniigt, daB das Nullideal Durchschnitt von endlich vielen Primidealen ist) in
jedem projektiven R-Modul M die Komplemente abspalten. Der Grund liegt
darin, daB jeder kleine Untermodul von M in einem geeigneten endlich erzeugten
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Zwischenmodul enthalten ist und daher auch noch in jedem reinen Zwischenmo-
dul klein ist. — Stets ist in diesem Abschnitt R kommutativ.

Lemma 3.1. Sei M projektiv und U klein in M. Dann gibt es zu jedem Ideal a von R,
das Durchschnitt von endlich vielen Primidealen ist, einen endlich erzeugten Unter-
modul M’ von M mit

UcRa(M')+ Ma.

Beweis. Ist ((x,, @,)|Ae A) eine projektive Basis von M, so folgt nach Ware u.
Zelmanowitz ([10, Theorem 1], siche auch [2, Proposition 1]) aus der Kleinheit
von U, daB die Familie b, = ¢,(U) von Idealen folgende Eigenschaft hat: Zu jeder
Folge (¢, 4) i=1,2,3,..., mit ¢;eb,, A,;+4; fir i=j, gibt es ein m=1 mit
€,¢y...c,=0. In jedem Primideal p liegen also fast alle b,. Ist daher
a=p,n...np, wic verlangt, so ist die Menge L={leAb,(a} endlich, alsc
M'= 3 x,R ein endlich erzeugter Untermodul von M. Fiir jedes ye U hat man

AeL
dann
v=3 x,0,(0)+ . x;0,(y)eM'J+Ma
AeL A¢L

wie gewiinscht.

Folgerung. Sei M projektiv, R noethersch und N das Nilradikal: Genau dann ist U
klein in M, wenn U in Ra(M) liegt und U/UNMN endlich erzeugt ist.

Beweis. Natiirlich ist N Durchschnitt von endlich vielen Primidealen: Ist also U
klein in M und M wie im Lemma, so liefert der Monomorphismus
U/UnMN-M'/M'~nMN die ¢ine Behauptung. Weiter ist N nilpotent, also mit
MN auch UnMN klein in M, so daBl in der anderen Richtung nicht nur
U/UNMN als endlich erzeugter Untermodul des Radikals klein in M/UNMN ist,
sondern auch U klein in M.

Lemma 3.2. Ist M endlich erzeugt, so ist jeder reine Untermodul von M koatomar.

Beweis. Ist U rein in M, so ist zu zeigen, daB jeder radikalvolle Faktormodul von U
gleich Null ist. Wir kdnnen also gleich U radikalvoll annehmen und miissen U=0
zeigen. Sei C ein injektiver Kogenerator in Mod-R mit grofiem Sockel. Dann hat
auch M°=Homgk(M, C) einen groBen Sockel als Untermodul von C" fiir ein
geeignetes n. Andererseits ist U® sockelfrei, denn f'e Anng,(nt) heiBt f(xr)=0 fiir
alle rem, xe U, und weil jedes Element von U die Form Zx,.ri mit 7,em, x;e U hat,
folgt f'=0. Der reine Monomorphismus U— M induziert aber einen zerfallenden
Epimorphismus M°—U®, so daB aus U°=0 folgt U =0 wie gewiinscht.

Die nichste Folgerung wurde, falls R semilokal (d. h. R/J halbeinfach) ist, von
Couchot in [1, Theorem 2.3] gezeigt:

Folgerung. Ist M endlich erzeugt und R/J noethersch, so ist jeder reine Untermo-
dul von M wieder endlich erzeugt.

Beweis. Fir den reinen Untermodul U ist die kanonische Abbildung
U/UJ—-M/MJ injektiv, also auch U/UJ endlich erzeugt. Nach dem Lemma ist U
koatomar, insbesondere UJ klein in U, und es folgt die Behauptung,
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Satz 3.3. Sei M projektiv und das Nullideal von R Durchschnitt von endlich vielen
Primidealen. Dann gilt :

(@) Ist XCUCM, X klein in M und U rein in M, so ist X auch klein in U.

(b) In M ist jedes Komplement direkter Summand.

Beweis. Bei (a) gibt es nach (3.1) einen endlich erzeugten Untermodul M’ von M
mit X CRa(M’). Aus Y+X =U folgt dann, daB U/Y rein und klein in (M’ + U)/Y
ist, insbesondere (M’ + U)/Y endlich erzeugt und U/Y radikalvoll. Nach (3.2) ist
aber U/Y koatomar, also null wie verlangt. Damit ist auch (b) klar: Ist V ein
Komplement von U in M und U, CU wie in (2.1), so ist nach eben VU, auch
klein in U,, also VU, =M.

In unserer letzten Folgerung wurde die Implikation (i—1iii) unter der Zusatzbe-
dingung, daB R keine Idempotente hat, von Snider in [7, Lemma 3] gezeigt:

Folgerung. Sei M projektiv und das Nullideal von R Durchschnitt von endlich
vielen Primidealen. Dann sind fiir U ¢ Ra(M) dquivalent:

(i) U ist klein in M.

(i) U hat ein schwaches Komplement in M.

(i) U hat endliche Goldie-Dimension.
Beweis. (i—1i) ist klar, und bei (ii—1) sei V+U=M, VnU klein in M. Wihlt man
ye End(M) mit BiyCV, Bi(1—y)C U, so induziert y auf M =M/Ra(M) die identi-
sche Abbildung. Wie im Beweis von (2.3, e—a) ist deshalb y selbst ein reiner
Monomorphismus, Biy nach dem Satz sogar ein Komplement von U in M, Biy
direkter Summand in M und M/Biy radikalvoll, also Biy=M, V=M. — Bei der
Aquivalenz (i—iii) konnen wir gleich M frei annehmen. Weil nun Ry, nach
Voraussetzung endliche Goldie-Dimension hat, gilt das auch fiir jeden endlich
erzeugten Untermodul von M, so daB (i—iii) nach (3.1) klar ist. Zur Umkehrung
sei U’ ein endlich erzeugter, groBer Untermodul von U: Wihlit man U'CM'CM
mit M’ endlich erzeugt, M’ direkter Summand in M, so folgt automatisch UM’
(weil M'nU grofB in U ist und der singuldre Untermodul von U/M’NU verschwin-
det), U CRa(M)nM’'=Ra(M’), so daB3 U klein in M’ ist, also erst recht klein in M.
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