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Gelfandringe und koabgeschlossene Untermoduln

von Helmut Zsschinger

Einleitung. Ausgangspunkt dieser Arbeit war die Beobachtung,
daB verschiedene Klassen von Moduln oder Ringen unter dem
gemeinsamen Gesichtspunkt betrachtet werden kénnen, daB sich
jeder Untermodul von A/ durch einen einfacheren ,,approximie-
ren‘’ 1iBt. Damit meinen wir, daB zu jedem UC Mein U, C U
existiert, so daB3 U, von einfacherer Struktur (oder ausgezeich-
neter Lage in M) ist und U/U; klein in M|U,. Fir die letzte
Bedingung sagen wir, daB U durck U, in M gestiitzt wird.

So nennt Hinohara in [7] einen kommutativen Ring R
schwach-noethersck, wenn sein Maximalspektrum 2 in der
Zariski-Topologie noethersch ist, und er zeigt dort, daB3 das
genau dann der Fall ist, wenn jedes Ideal a von R durch ein
endlich erzeugtes Ideal a; gestiitzt wird. Ein weiteres Beispiel
ist die Klasse der kommutativen semiperfekten Ringe (d.h. end-
lich vieler Produkte von lokalen Ringen): Ein kommutativer
Ring R gehort ihr genau dann an, wenn jedes Ideal a von R
durch einen direkten Summanden a, gestiitzt wird. Definiert man
schlieBlich zu einem Punkt p eines vollstindig reguliren Raumes
X im Ring der stetigen reellen Funktionen die ldeale M,
={f€e CX) |f(p) =0} und O, = {f € C(X) | f verschwin-
det in einer Umgebung von p }, so sieht man sofort, da3 M, durch
0, in C(X) gestiitzt wird, daB O, das kleinste Ideal mit dieser
Eigenschaft ist und daB tberdies O, rein in C(X) ist.

Tatsédchlich gilt das letzte Beispiel viel allgemeiner: Wir nen-
nen einen kommutativen Ring R nach Carral [5] einen Gelfand-
ring, wenn fir jedes m € 2 die kan. Abbildung R — R,
surjektiv ist und zeigen in (1.4), daB das genau dann der Fall ist,
wenn jedes Ideal a von R durch ein reines Ideal a, gestitzt wird.
Das ist weiter dquivalent damit, daB jedes Primideal von R in
nur einem maximalen Ideal liegt, und diese Klasse von Ringen
wurde von DeMarco und Orsatti in [6] ausfihrlich unter-
sucht.

> 43/ 1804
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Ein Ring R (in der ganzen Arbeit sei jetzt R kommutativ) ist
daher genau dann semiperfekt, wenn er ein Gelfandring ist und
wenn jedes reine Ideal von R bereits direkter Summand ist.
Daraus folgt, daf3 iber beliebigem R der Funktor K (M)
= {x € M | R|Anng(x) ist semiperfekt} ein linksexakter Sockel

ist, fur den wir in (2.3) eine ,,Primidrzerlegung" K(M) = P
meQ

K (M) angeben, in der die K (M) auf natirliche Weise Moduln
Uber den lokalen Ringen R, sind. Es ist das eine Verallge-
meinerung der M atlis’schen Zerlegung von 7(M) Gber 4-lokalen
Integritdtsringen (sieche [9]) auf beliebiges R. Sie 148t sich ins-
besondere auf jeden komplementierten Modul M Uber einem
noetherschen Ring R anwenden, denn fur ihn zeigen wir KX(M)
= M. Mit Hilfe der Ergebnisse von [14] erhalten wir so in (2.5)
eine vollstandige Beschreibung der reduzierten komplementierten
Moduln tber noetherschen Ringen.

In einem beliebigen Modul A braucht zu einem Untermodul
U von M die Menge {¥Y C U | U]Y ist klein in M|V} kein mini-
males Element zu haben. Falls sie aber doch eines besitzt, sagen
wir U, so ist U, koabgeschlossen in M, d. h. aus U,/X klein in
M|X folgt U,/X = o. (In der dualen Situation hat bekanntlich
die Menge {Y C M | U ist groB in ¥} nach dem Zorn’schen
Lemma stets ein maximales Element, und dieses ist im Sinne
von Goldie abgeschlossen in M/.) Wihrend in jedem injektiven
Modul die abgeschlossenen Untermoduln schon dirckte Sum-
manden sind, ist die entsprechende Aussage fiir projektive Mo-
duln nicht richtig: Wir zeigen in (3.4), daB uber noetherschen
Ringen in jedem projektiven Modul die koabgeschlossenen Un-
termoduln gerade mit den reinen Untermoduln zusammenfallen.
Als merkwirdige Folgerung erhalten wir, da} {ber einem
noetherschen Ring R ein R-Modul M genau dann flach ist,
wenn er keine wesentlichen Uberdeckungen hat, d.h. wenn
jeder wesentliche Epimorphismus B — M schon cin Isomorphis-
mus ist.

In einem nicht notwendig projektiven Modul A/ scheint es
angemessener zu fragen, wann jeder Untermodul U von M
durch einen koabgeschlossenen (und nicht wie in (1.4) durch
einen reinen) Untermodul U, gestiitzt wird. Uber einem Dede-
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kindring R geben wir darauf in (4.2) eine vollstindige Antwort.
Falls R unendlich viele maximale Ideale hat, kénnen wir in (4.5)
priziser fur einen einzelnen Untermodul U von M, wenn nur
M|U endlich erzeugt ist, beweisen: Genau dann wird U durch
einen koabgeschlossenen Untermodul U; gestiitzt, wenn dim
(Anny, (m)) < dim(7(M)[m - T(M)) ist fir alle maximalen
Ideale m. Das liefert zum SchluB mehrere Kriterien fur die
Existenz von Komplementen, die in [13] nur im lokalen Fall
gezeigt werden konnten.

0. Bezeichnungen und Definitionen. Stets ist R ein kommutativer

Ring und £ die Menge aller maximalen Ideale von R. Bei

lokalen bzw. semilokalen Ringen wird keine Kettenbedingung

angenommen. Ist M/ ein R-Modul, so heiit ein Untermodul U

rein in M, wenn fur alle R-Moduln A4 die induzierte Abb.

A ®U — A ® M injektiv ist. Bei flachem M ist das dquivalent
R R

damit, dafl auch MU flach ist.

Ein Untermodul U von M heil3t £lezn in M, wenn aus X + U
= M stets folgt X = M. Die Summe aller kleinen Untermoduln
ist das Jacobson-Radikal Ra(#/), und bekanntlich gilt Ra(M) =
N {mM|me 2} =) {X|X maximaler Untermodul von
M}. Ein Modul M heillt radikalfres bzw. radikalvoll, wenn
Ra(M) = o bzw. Ra(M)= M ist. Den groBBten radikalvollen
Untermodul von M bezeichnen wir mit P(M), und falls P(M) = o
ist, heiBt M reduziert. M heillt koatomar, wenn jeder echte
Untermodul von # in einem maximalen Untermodul enthalten
ist. Uber noectherschen Ringen ist jeder koatomare Modul auch
reduziert.

Ein Epimorphismus f: B — M heil3t wesentlich, wenn Ke f
klein in B ist. Falls also U; C U C M ist, wird U genau dann
durch U, in M gestutzt, wenn M|U, — M|U cin wesentlicher
Epimorphismus ist. Dual hei3t ein Monomorphismus « : M — A4
wesentlich, wenn B7 « grol3 in A4 ist. Mit £(M) bezeichnen wir
die injektive Hille von M.

M heil3t unzerlegbar, wenn M == o ist und aus X + V =M
stets folgt X = M oder Y = M. Ist M beliebigund V' 4+ U = M,
so heillt V' Komplement (bzw. schwaches Komplement) von U
in M, wenn V AU klein in V (bzw. V' ~ U klein in M) ist.
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Im ersten Fall ist I/ automatisch koabgeschlossen in A7, und
gibt es zu jeder Zerlegung X + U = M ein Komplement V' von
Uin M, mit V C X, so sagen wir, U habe geniigend viele Kom-
plemente in M. Hat schlieBlich jeder Untermodul von A ein
Komplement (ein schwaches K., geniigend viele K.) in M, so
heiBt M komplementiert (schwach-komplementiert, supplemen-
tiert). R selbst ist genau dann komplementiert, wenn es Produkt
von endlich vielen lokalen Ringen, d. h. semiperfekt ist. In die-
sem Fall ist sogar jeder endlich erzeugte R-Modul supple-
mentiert.

1. Gelfandringe und der Funktor K(M). Die Frage, wann ein Ideal
@ von R durch ein reines Ideal gestutzt wird, hdngt eng mit
dem Studium des Ideals

G,Z{xek|x=axﬁjreina€a}

zusammen. Bei speziellen Ringen ist die Bildung von a’ wohl-
bekannt:

1) Ist R = C(X) der Ring der stetigen reellen Funktionen auf
einem vollstindig regulidren Hausdorff-Raum X, ist p & X und
a das Ideal der in p verschwindenden Funktionen, so ist a’ das
Ideal der Funktionen, die in einer ganzen Umgebung von p
verschwinden.

2) Ist R noethersch, so ist nach dem Krull’schen Durch-

oo
schnittssatz a’ = (") a".

=1
In einem beliebigen Ring R ist genau dann a = a’, wenn a
rein in R ist. Wird aber a nur durch ein reines Ideal a; ge-
stiitzt, so folgt a; = a; = a’ (siche Punkt (b) des nachfolgenden
Lemmas), d. h. a, ist eindeutig durch a bestimmt.

Lemma 1.1. Sind a und b [deale vor R, so gilt:
(@) (ab)' = (a Ab)Y =a" ~b,(Ja) =a'.
(b) Ist b C a und alb klein in R|b, so folgt b’ = a'.
(¢) Wird a durch ein reines [deal gestiitzt, so folgt (a + b) =
a’ 4+ b
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Beweis. (a) ist leicht nachzurechnen, und bei (b) ist nur
a’C b’ zu zeigen: Sei x € a’, d.h. x =ax fur ein a € a.
Weil a im Radikal des Ringes R = R/b liegt, ist 1 — 4 inver-
tierbar,d. h.1 =71 —4)fureinr € R Mité=1—7r(1 —a)
& b folgt bx ==x, also x & b’ wie gewlnscht. (c¢) Stets ist
(@ 4+0b)Ca+b’,dennx=(y+6)x mit y Ea’, 6 Eb im-
plizierty = ay fireinea & a,als0 b6 (1 —a)x=(1—a) 1 —y)x
=0—a)x, dh. 1—a)xED und *x = ax + (1 —a)x
€ a + b’. Wird nun a durch ein reines Ideal a, gestitzt, so wird
auch a + b durch a; 4+ b gestiitzt, und nach (b) folgt (a + b)’
= (a, +b) C a;+b" = a’ 4+ b’, wihrend die Inklusion D
trivial ist. (Auf die Voraussetzung an a kann man nicht ver-
zichten, wie jeder nichtlokale Integrititsring zeigt.)

Ist zundchst nur afa’ klein in R/a’, so erhidlt man mit (b) auch
a” = a’, d.h. o’ ist automatisch rein in R. Es gilt daher die sehr
nutzliche

‘Folgerung. Genau dann wird a durch ein reines Ideal in R ge-
stitzt, wenn ala’ klein in Rla’ ist.

Lemma 1.2.

(a) [Istc ein Primdrideal und ¢ + a = R, so folgt o’ C «¢.

(b) Istp ein Primideal und p minimal siber o', so folgt
p+a=R

Beweis. (a) Gdbe es ein x € o’ mit x & ¢, so folgte x = ax
fur ein e € a, (1 —a)" E ¢ fur ein # >1, 1 —ra & ¢ und
damit ¢ + @ = R entgegen der Annahme. (b) Definiert man die
zwei multiplikativ abgeschlossenen Teilmengen S; = 1 4+ a und
S, = R\p, so gilt fur alle x € S;, daB Anng(x) C a, also
Anng(x) ~ S, =0 ist. Damit enthilt die multiplikativ abg.
Teilmenge 7 = S, S, nicht das Nullelement, so daBl es ein
Primideal p, gibt mit py ~ 7 =0. Aus p, ~ S, =0 folgt
Po+ a=F R und a’'C py aus py ~ S, =@ auch noch py=1p
wie gewiinscht.

Punkt (a) liefert, falls das Nullideal von R eine Primirzerle-
gung 0=2¢; ~ ... n¢, hat, eine neue Darstellung von a’:
Bildet man zur Menge 4 = {1 <7 < |¢; + a = R} die Ideale
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U= ()¢ und V= (¢

i€d ig A

a’ C U. Andererseits folgt aus V4+a=R, dh. 1 —ag,EV
fur ein qy € a,daB (1 —agg)x € VU = o ist fir alle x € U,
also auch U C a'.

so gilt wegen (a) die Inklusion

(A

Folgerung. Besitzt das Nullideal von R eine Primdrzerlegung
O=1¢ N ... "¢, sofolgt fir jedes Ideal a von R, daff o' =
M {c;|¢c,+a=x= R} st

Fiir ein maximales Ideal m sind die Aquivalenzen (ii, iii, iv) des
folgenden Satzes wohlbekannt (siehe [1] Proposition 1.6.1 fur den
Fall Ra(R) = o), denn in Punkt (iii) steht dann die kan. Abbil-
dung R — R,,. Sei ab jetzt Spec(R) mit der Zariski-Topologie
versehen.

Satz 1.3. Fiir ein Ideal a von R sind dquivalent .

@) a wird durch ein reines Ideal gestiitzt.

(i) [Ist p ein Primideal mit p + a F= R, so ist (p + a)/p
klein in R|p.

(ili) Die kan. Abbildung R — R, mit S =1 + a, ist sur-
Jektiv.

(iv) Ist Y eine abgeschlossene Teilmenge von Spec(R) mit
Via) ~Y = 0, so lassen sich V(a) und Y durch offene
Umgebungen trennen.

Beweis. (i < i1) Hat man (i) und p wie angegeben, so ist
a/a’ klein in R/a’ und nach (1.2, a) o’ C p, also erst recht (p +a)/p
klein in R[p. Ist umgekehrt (ii) erfillt und ¢’ C m, so wihle man
ein Primideal p C m, das minimal tber a’ ist, und nach (1.2, b)
folgt p 4+ a == R, also nach Voraussetzung a C m: Wir haben
gezeigt, daB a/a’ klein in R/a’ ist.

(1 < iii) Fur die kan. Abbildung ¢: R — R gilt offenbar
Ke ¢ = a’. Genau dann ist afa’ klein in Rfa’, wenn im Ring
R = R/a’ alle 5 invertierbar sind (se S),dh 1—rs & Keog,
L = § im Ring Ry ist, also ¢ surjektiv.

(i —iv) Mit ¥V = I (b) ist V(a) ~ V(b) = 0, also nach Vor-
aussetzung @’ + b =R, (1 —a) 1 —é) =0 mit a E a, 6 E b.
Damit ist D (1 — a) eine offene Umgebung von V(a), D (1 — 6)
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eine von V(b), und natirlich D(1—a) ~ D1 —6) = 0.
(iv — ii) Sei p ein Primideal, so daB (p + a)/p nicht klein in
Rlp ist. Zum & 2 mitpC m, a@ m, also V(a) ~ V(m) = 0,
gibt es nach Voraussetzung Ideale a,, by, mit V(a) C Df(ay),
V(im)C Dby und D(ag) nD(by) = 0. Esistalso ay + a = R,
by m und ayob, ein Nilideal. Aus by p folgt daher ayC p,
also p + a = R wie verlangt.

Folgerung. Werden alle m € 2, mit a  m, durch ein reines
Ideal gestiitzt, so wird auch a durch ein reines [deal gestiitzt.

Beweis. Sei p fur Punkt (ii) ein Primideal, so da (p + a)/p
nicht klein in R/p ist. Ein m € £, mit p C m, a ¢ m, wird nach
Voraussetzung durch ein reines Ideal gestutzt, so daBl m/p klein
in Rfp ist. Aus m + a = R folgt daher p 4+ a = R.

LiBt man a in (1.3) alle (maximalen) Ideale von R durch-
laufen, so erhidlt man unmittelbar die folgenden Charakterisie-
rungen von Gelfandringen, unter denen die Aquivalenz (ii <> iv)
bereits von DeMarco und Orsatti in ([6] Theorem 1.2) be-
wiesen wurde.

Satz 1.4. Fiir einen Ring R sind dquivalent .

(i) Jedes (maximale) Ideal wird durch ein reines Ideal
gestitzt.

(i) Jedes Primideal liegt in nur einem maximalen ldeal.
(i) R ist ein Gelfandring.
(iv) Spec(R) ist ein Ty-Raum.

Bemerkung. Weil in einem kommutativen Ring jede Summe
von reinen Idealen wieder rein ist, kann man (i) ersetzen durch
(i"): Jedes zyklische Ideal von R wird durch ein reines Ideal
gestiitzt. Eine elementare Rechnung zeigt, daB das weiter dqui-
valent ist mit (i”): Zu jedem a &€ R gibt es Elemente 4, c & R
mit (1 — ¢ a) (1 — 6 (1 — a)) = o. Andererseits gilt nach Monk
([10] Theorem 1), daBB R genau dann die Austauscheigenschaft
hat, wenn zu jedem a« & R Kingelemente y, ¢ existieren mit
y=oay?und (1 —ya) (1 —o (1 —a)) = 0. Ergebnis: Jeder
Auwustauschring ist ein Gelfandring.

4 Miinchen Ak. Sb. 1982
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Ein Ring R heilt reinzerfallend, wenn jedes reine Ideal be-
reits direkter Summand ist. Bekanntlich ist jeder schwach-
noethersche Ring reinzerfallend (siehe auch unsere Vorbemer-
kungen zu 3.5), insbesondere jeder semilokale Ring. Die Aqui-
valenz (i <> iii) des Satzes liefert also sofort die

Folgerung. Ein Ring R ist genau dann semiperfekt, wenn R
ein Gelfandring ist und reinzerfallend.

Ist z.B. R ein 4-lokaler Integritdtsring im Sinne von M atlis,
so gilt fiir jedes 0 &= » € R, daB der Ring R = R/(r) sowohl
Punkt (ii) in (1.4) erfullt als auch semilokal ist, also nach der
Folgerung semiperfekt ist. Damit haben wir (was auch aus [9]
Theorem 22 folgt): Ein [ntegrititsring ist genaw dann h-lokal,
wenn er eingeschrinkt semiperfekt ist.

Als weitere Anwendung zeigen wir, daB in jedem R-Modul &
die Menge

K(M) = {x € M | R|[Anng(x) ist semiperfekt }

einen Untermodul bildet: Sind x,y € K (M) und »,s & R, so
ist der Ring R/Anng(x) ~ Anng(y) ein semilokaler Gelfandring,
also nach der Folgerung wieder semiperfekt, so dal3 es auch der
Faktorring R/Anng(r x + sy) ist, d. h. rx + sy &€ K(M). Da-
mit ist K ein ,,Sockel’ in der Kategorie der R-Moduln, d. h.
F(K(M))C K(N) fur alle f € Homg(M, N) und K(U) = U ~
K (M) fur alle UC M. Thn wollen wir im Rest dieses Para-
graphen und in Abschnitt 2 ndher untersuchen.

Beispiel 1. /st R ein noetherscher Hilbertring, so ist K(M) die
Summe aller artinschen Untermoduin von M.

Beweis. Uber beliebigem R sei Z(M) diese Summe, und
dann ist klar L(M)C K(M). Ist umgekehrt R ein Hilbertring
(d.h. Ry a radikalfrei fir alle Ideale ) und x € K(M), so ist
im Ring R[Anng(x) jedes Primideal schon maximales Ideal,
also mit der Zusatzbedingung ,,noethersch* x & L(M).

Beispiel 2. /st R ein nichtiokaler, h-lokaler Integrititsring, so
ist K(M) der Torsionsuntermodul von M.

Beweis. Uber jedem nichtlokalen Integrititsring R gilt
K(M)C T(M), und ist R zusitzlich 4-lokal, so folgt fir jedes
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x € T(M), daBl Anng(x) = o, also R[/Anng(x) semiperfekt ist,
d.h.x € K(M).

Im noetherschen Fall kann man mehr tber die Lage von
K (M) in M sagen:

Lemma 1.5. /st R noethersch, so gilt fiir jeden R-Modul M :
(a) Esist K(M|K(M)) = o, und K(M) ist abgeschlossen in M.
(b)  Genau dann ist K(M) = M, wenn jedesp & Ass(M) in nur

einem maximalen Ideal liegt.
(c) Die Klasse der R-Moduin A, mit K(A) = A, ist gegeniiber

wesentlichen Erweiterungen und gegeniiber Gruppenerwei-
terungen abgeschlossen.

Beweis. (a) folgt unmittelbar aus (c), und ebenso (c) aus (b),
denn fur jeden Untermodul 4 von B gilt bekanntlich Ass(B) C
Ass(A) w Ass(B|A), ja sogar Ass(B) = Ass(A) falls 4 groB in
B ist.

Bleibt also (b) zu zeigen. Bei K(M) = M gilt fur jedes p &
Ass(M), daB3 der Integritdtsring R/p semiperfekt, also lokal ist.
In der umgekehrten Richtung ist zunichst R/Anng(x) ein Gel-
fandring fur alle x € M, denn zu Anng(x)C qC m; ~ ni,
wihle man ein p C g, das minimal Gber Anng(x) ist, und dann
folgt p & Ass(M), also nach Voraussetzung m,; = m,. Weil der
Ring R/Anng(x) zusitzlich reinzerfallend ist, ist er schon semi-
perfekt, d.h. x &€ K (M) wie verlangt.

Beispiele zeigen, daB3 ohne ,,noethersch keiner der drei Punkte
gilt, aber fir endlich erzeugte Moduln erhidlt man im Fall (b)
eine weitere Beschreibung:

Satz 1.6. Fiir einen endlich erzeugten R-Modul M sind dqui-
valent .
(i) Esist K(M) =M.
(1) M ist komplementiert.
(iii) Der Ring R|Anng(M) ist semiperfekt.
Beweis. (ii — 1) In jedem Modul M gilt: Haben alle maxi-

malen Untermoduln von M ein Komplement in A, so muB

.

4
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M|K (M) radikalvoll sein. Andernfalls hitte man einen Zwischen-
modul K(M)C U C M mit M|U einfach, dazu ein Komplement
V von U in M, und dann wire V zyklisch und unzerlegbar, also
V' C K(M). Das ist aber unmoglich. — Bei endlich erzeugtem M
folgt also K(M) = M. (i —iii) In M = D’ Rx, sind alle Ringe
=1
R[Anng(x,) nach Voraussetzung semiperfekt, also auch der Ring
R () Anng(x;) = R[/Anng(M), denn er ist ein semilokaler
i=1

Gelfandring. (iii — ii) klar.

Folgerung. /st M endlich erzeugt und komplementiert, so ist
auck jeder endlich erzeugte Untermodul komplementiert. Insbe-
sondere ist M supplementiert.

2. G - lokale Moduln. Die wohlbekannte Primirzerlegung von
Torsionsmoduln iber Dedekindringen - d.h. 7(M) = @ 7,,(M)

m
mit m € 2 - wurde von Matlis (siche [9] Theorem 22) auf
Moduln iber Z-lokalen Integritdtsringen verallgemeinert. Wir
wollen in diesem Abschnitt zeigen, dal3 sie sogar Uber beliebigen
Ringen gilt, wenn man 7 (M) durch unser K (M) ersetzt und
T (M) durch den gréfiten m-lokalen Anteil (siehe 2.3).

Dazu heille, zu einem beliebigen Ideal a von R, ein R-Modul
M a-lokal, wenn aus Anng(x) C m (mit x € M, m € Q) stets
folgt a C m. Das ist dquivalent damit, daB3 M, = o ist fur alle
m & £ mit a  m, und aus dieser Beschreibung folgt, daf3 die
Klasse der a-lokalen R-Moduln gegentber Untermoduln, Fak-
tormoduln, Gruppenerweiterungen und direkten Summen abge-
schlossen ist.

Lemma 2.1.

(@) Ein endlich erzeugter Modul M ist gemawu dann a-lokal,
wenn a M klein in M ist.

(b)  Ein artinscher Modul M ist genau dann a-lokal, wenn er

oo
a-primér ist, d. h. wenn M = 3’ Ann,(a’) ist.
i=1
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Beweis. (a) Fur jeden a-lokalen Modul M gilt a M C Ra(M),
denn aus a @ m folgt m + Anng(x) = R fur alle x & M, so dal3
m M = M ist. Falls zusitzlich M endlich erzeugt ist, mul} also
mit Ra(M) auch a M klein in M sein. Bei der Umkehrung folgt
aus a d m zuerst mM 4+ a M = M, also m M = M, so dal3
wegen endlich erzeugt auch alle Untermoduln von M m-teilbar
sind, d.h. Anng(x) ¢ m fiur alle x € M. (b) Bei beliebigem M

ist der Untermodul 3’ Ann,(a*) a-lokal, denn a®* C Anng(x) Cm
i=1

impliziert a C m. Ist aber M artinsch und a-lokal, so gilt fur

jedes x € M, daB der Ring R = R[Anng(x) endliche Linge

hat und a in seinem Radikal liegt. Aus a° = o folgt » &

Ann,, (a®) wie gewiinscht.

Lemma 2.2. Sez M a-lokal und werde a durch ein reines [deal
in R gestiitzt. Dann ist jede wesentliche Uberdeckung und jede
wesentliche Erweiterung von M wieder a-lokal.

Beweis. Ist S eine multiplikativ abgeschlossene Teilmenge
von R, so sagen wir ein R-Modul M sei S-teilbar (bzw. S-torsions-
frei), wenn fir jedes s & S die Multiplikation mit s : M — M
surjektiv (bzw. injektiv) ist. Speziell gilt fir S =1 4 q, daf3
jeder a-lokale Modul M sowohl S-teilbar als auch S-torsionsfrei
ist, denn fur alle x € M und s € S ist (s) + Anng(x) = R. Ist
nun NV eine wesentliche Uberdeckung (bzw. Erweiterung) von
M, so ist auch N S-teilbar (bzw. S-torsionsfrei), und es folgt
a’' C Anng(y) fur alle y € N. Weil nach Voraussetzung a/a’
klein in R/a’ ist, hei3t das a C m falls Anng(y) C m, d.h. V ist
wie behauptet a-lokal.

Jeder Modul M besitzt einen grifiten a-lokalen Untermodul,
den wir mit XK,(M) bezeichnen. Zum Beispiel liefert der Beweis

von (2.1), daB in einem artinschen Modul K,(M) = >’ Ann,(a")
i=1

ist, und daB in einem radikalfreien Modul K,(#) = Ann,(a)
ist. Bei beliebigem M ist K (M) = {x € M |x = o oder das
einzige maximale Ideal Uber Anng(x) ist m}. Dieser Untermodul

wurde von Brandal in ([3] p. 18) eingefihrt und dort mit
M(m) bezeichnet.
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Satz 2.3. Fiir jeden Modul M gilt K(M) = @ K,(M).

me
Beweis. Die Direktheit zeigt man wie im klassischen Fall
der Primirzerlegung: Ist x; + ... 4+ x, = o mit x, € K, (M),
m; == m; fir alle 7 = 7, so folgt fir jedes 1 < ; <, dal}

-01 Anng(x;) C Anng(x)),
e

also x; = o ist. Naturlich liegen alle K;(#) in K(M), denn fir
0=+ x & Ky(M) ist der Ring R|/Anng(x) sogar lokal. Ist um-
gekehrt o &= x & K (M), so zerlege man den semiperfekten Ring
R[Anng(x) in ein endliches Produkt von lokalen Ringen, also
Rx = @ Ry,, worin jedes R[Anng(y,) lokal sei mitdem einzigen
i=1

maximalen Ideal m,;/Anng(y,). Es folgt y, € K, (M) fir alle
1 <7< n.

Durch diesen Zerlegungssatz 148t sich, wie wir jetzt zeigen
wollen, das Studium von komplementierten Moduln Uber noe-
therschen Ringen ganz auf den lokalen Fall zuriuckfihren.
Dazu genlgt ¢s, dafl R ein sog. AZ-Ring ist, d.h.

Homg(£(R[m,), E(R[m,)) = o
fir alle maximalen Ideale m; &= m,. Nun ist Hom (M, £ (R[m,))
= o dquivalent mit M, = o, also R genau dann ein H-Ring,
wenn alle E(R|m) m-lokal sind (m € ). Bekanntlich ist jeder
noethersche Ring ein A-Ring, ebenso jeder Gelfandring nach
(2.2), und nach dem Kriterium von Camillo ([4] Proposition 3)
auch jeder Z-lokale Integritdtsring.

Lemma 2.4. Sez R ein H-Ring und B — C ein wesentlicher
R-Epimorphismus. Dann ist fiir alle m © Q auch By — C,
etn wesentlicher Ry -Epimorphismus.

Beweis. Priziser gilt fur einen Untermodul ' von M: Genau
dann ist U klein in M, wenn Uy, klein in M ist fur allem &€ Q.
Das wurde in ([14] Lemma 4.1) Uber noetherschen Ringen ge-
zeigt, und der dortige Beweis, den wir hier nicht reproduzieren
wollen, benttzt nur folgende Eigenschaft von R: Ist X C V' C
E(R/m) und (Y/X), = o, so folgt V/X =o. Das gilt aber
offensichtlich auch uber #Z-Ringen.
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Ist unter den Voraussetzungen des Lemmas C zusitzlich a-
lokal, so folgt auch B, = o fur alle m € 2 mit a { m, d.h. wir
haben die

Folgerung. /st R ein H-Ring, so ist jede wesentliche Uber-
deckung eines a-lokalen R-Moduls wieder a-lokal.

Satz 2.5. Uber einem H-Ring ist ein Modul M genau dann
komplementiert, wenn M = @ K (M) ist und wenn alle K (M)

me R
komplementiert sind.

Beweis. Ist M/ komplementiert, so ist wegen (2.3) nur noch
M = K(M) zu zcigen (denn dann sind naturlich auch die K (M)
als direkte Summanden komplementiert). Ware M 5= K(M), so
gibe es einen Zwischenmodul X(M)C U $ M und eine Ein-
bettung M|U — E(R[m) fir ein m € £, dazu ein Komplement
V' von U in M, also einen wesentlichen Epimorphismus V— M|U.
Nach der letzten Folgerung wire dann V' m-lokal, V' C K (M)
C U, und das ist nicht moglich.

Hat man umgekehrt die angegebene Zerlegung,d.h. M =@ M,

i€l
mit M; = K, (M) komplementiert, so folgt wieder wegen (2.3)
fur alle Untermoduln X von AM:
MNX=2X~MH,
=y
Damit ist M komplementiert: Zu U C M wihle man, far
jedes 7 &€ 7, ein Komplement V; von U ~ M, in M, und dann

1

zeigt (*), daBB V' = 3’ V, ein Komplement von U in M ist.
el
Weil also dber einem HA-Ring fir jeden komplementierten
Modul M = K (M) gilt, erhdlt man unmittelbar:

Folgerung 1. /st R ein H-Ring und M ein beliebiger R-Modul,
so ist K(M) die Summe aller komplementierten Untermoduln
von M.

Folgerung 2. /st R ein H-Ring und M komplementiert, so gilt.
(a) Jeder endlich erzeugte Untermodul von M ist wieder kom-
plementiert. (b) Ist MU endlich erzeugt, so hat U geniigend
viele Komplemente in M.
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Weil jeder reduzierte komplementierte Modul koatomar ist,
und weil umgekehrt Gber einem noetherschen lokalen Ring jeder
koatomare Modul A nach ([14] Satz 2.4) komplementiert ist
(denn er ist von der Form 4 = A; + A, mit 4, endlich erzeugt
und m* 4, = o), gilt weiter:

Folgerung 3. Uber einem noetherschen Ring R ist ein R-Modul
M genau dann reduziert und komplementiert, wenn M = K (M)
ist und M koatomar.

Uber den radikalvollen Anteil P(M) eines komplementierten
Moduls M ist viel weniger bekannt. Immerhin ist er noch kom-
plementiert, denn es gilt allgemeiner:

Lemma 2.6. Sei R noethersch und M komplementiert. Dann ist
auch jeder Zwischenmodul P(M) C X C M komplementiert.

Beweis. Sei 4 ein Komplement von P(M) in M. Dann ist
mit M[P(M) auch A koatomar, also in (4 ~X) + P(M) =X
der erste Summand nach Folgerung 3 bereits komplementiert.
Bleibt zu zeigen, dal es auch der zweite ist: Zu U C P(M) sei V
ein Komplement von U + 4 in M. Dann ist mit /4 auch V
radikalvoll und in V 4+ U+ 4 ~ P(M) = P(M) der dritte
Summand klein in P(M), also V schon ein Komplement von U/
in P(M).

3. Uber den Zusammenhang zwischen reinen und koabgeschlossenen
Untermoduln.

Wir wollen im zweiten Teil dieser Arbeit die Moduln unter-
suchen, in denen jeder Untermodul nicht (entsprechend 1.4)
durch einen reinen, sondern nur durch einen koabgeschlossenen
Untermodul gestutzt wird. Dabei heil3t U, £oabgeschlossen in M,
wenn aus U,/X klein in M[X stets folgt U,/X = o. Offenbar
wird U genau dann durch einen koabgeschlossenen Untermodul
U, gestutzt, wenn die Menge {¥Y' C U | U]Y klein in M|V} ein
minimales Element hat.

In vielen Fillen stimmen nun die koabgeschlossenen Unter-
moduln von A mit den reinen tberein, und das Hauptergebnis
(3.4) dieses Abschnittes sagt, da3 das tber noetherschen Ringen
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fur jeden flachen Modul M zutrifft. Wir wissen nicht, wann in R
selbst die koabgeschlossenen Ideale mit den reinen iberein-
stimmen. Es ist das wenigstens dann der Fall, wenn R ein
H-Ring ist (3.2) oder wenn R endliche Krulldimension hat (3.6).

Zuerst einige notwendige bzw. hinreichende Bedingungen da-
fir, daB3 ein Untermodul koabgeschlossen ist:

Lemma 3.1. Sez U ein Untermodul von M.

(a) Ist M koatomar, so gilt: Genau dann ist U koabgeschlossen
in M, wenn U selbst koatomar ist und mU = U ~mM fiir
meE Q.

(b) Ist M endlich erzeugt und U rein in M, so ist U auch ko-
abgeschlossen in M.

(¢) Ist R noethersch und U rein in M, so ist U auch koabge-
schlossen in M.

(d) Ist R dedekindsch, so gilt : Genau dann ist U koabgeschlossen
in M, wenn mU = U ~mM ist fiir alle m € L.

Beweis. Aus der Koabgeschlossenheit allein folgt mU =
U~mM fiur alle m € 2, denn bekanntlich ist mU =
N {X CU|UIX = R/m}, und fir jedes dieser X gilt nach
Voraussetzung U/X ~ m(M|X) = o, also U ~nmM C X.

(a) Ist U koabgeschlossen in M, so ist U koatomar, denn aus
U|X radikalvoll folgt U/X klein in M|X, also U/X = o. — Sei
nun umgekehrt U koatomar und mU = U ~mM fur alle
m & Q (M beliebig): Aus U/ X klein in M| X folgt m(U|X)=U|X
fir alle m € 0, so daf3 U/X radikalvoll, also Null ist.

(b) Nach ([15] Lemma 3.2) ist U koatomar, so daB3 wir nach
eben fertig sind.

(c) Gibe es ein X § U mit U/X klein in M|X, so kénnten wir
gleich U/X als Untermodul eines £ (&R/m) annehmen, also nach
Matlis artinsch, insbesondere algebraisch kompakt nach War-
field ([11] Proposition 9). Dann wire aber U/X direkter Sum-
mand in M/X, und das ist nicht méglich.

(d) Wie in (a) folgt aus U/X klein in M|X, da3 U/X radikal-
voll ist. Uber einem Dedekindring ist aber dann U/X injektiv,
also direkter Summand und daher Null.
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Bei einem Ideal a von R ist der Faktor a/a? genau dann radi-
kalvoll, wenn ma =a ~m ist fir alle m € 2, und so licfert

(a) die

Folgerung. Ein Ideal a ist genau dann koabgeschlossen in R,
wenn a koatomar ist und a® = a.

Lemma 3.2. Sei R ein H-Ring und U ein Untermodul von M.
Genau dann ist U koabgeschlossen in M, wenn alle Uy koab-
geschlossen in My, sind (m € 2).

Beweis. Sind alle U, koabgeschlossen und U/X klein in
M|X, so folgt mit (2.4), daB (U[X)y klein in (M]X), ist, d. h.
(U]X)m = o fur alle m € 2, also U/X = o. Zur Umkehrung
sei jetzt U, nicht koabgeschlossen in M, d.h. X C U mit
0 #+ (U]X)y klein in (M]X),,. Weil Homgx(U/X, E(R/m)) == o
und £ (R/m) m-lokal ist, erhilt man ein X C ¥ $ U mit UJY
m-lokal, und dann ist U[Y klein in MY (also wie gewlinscht U
nicht koabgeschlossen in M): V + U = M mit Y C V impli-
ziert Vi + X = My, also (M|V), = o; andererseits ist
M|V = UlV ~ U als Faktor von U]Y wieder m-lokal, also
sogar M|V = o.

Folgerung. /st R ein H-Ring und M endlich erzeugt, so gilt:
(a) Genau dann ist M flach, wenn M keine wesentlichen Uber-
deckungen hat. (b) Ist M flach, so stimmen die koabgeschlossenen
Untermoduln von M mit den reinen tiberein.

Beweis. Uber beliebigem R gilt wegen (3.1, b) fiir einen
endlich erzeugten flachen Modul #, dal3 jeder wesentliche Epim.

B —"» M schon cin Isom. ist (denn B ist wieder endlich er-
zeugt und Ke f sowohl rein als auch klein in B, also Null) und
daB in M jeder reine Untermodul koabgeschlossen ist.

Ist umgekehrt U koabgeschlossen in M/ und R zusitzlich cin
H-Ring, so gilt nach (3.2) fur jedes m € 2, daB3 auch U, ko-
abgeschlossen in M, ist, ja sogar direkter Summand: Fur jedes
Komplement V,, von U, in M, ist nimlich V, ~ U, klein
in U, also auch U, c¢in Komplement von \V,.,‘” und weil M
sogar frei ist, folgt V,, @ U, = M. Damit ist MU lokal frei,
M|U flach, U rein in M.
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Hat schlieBlich ein endlich erzeugter R-Modul M keine
wesentliche Uberdeckungen und ist R ein #-Ring, so folgt mit
einem endlich erzeugten freien Modul F/ und einem Epim.
F -2~ M, daBl Ke n koabgeschlossen, also nach eben sogar
rein in £ ist, d.h. M = F/Ke n flach wie behauptet.

Uber noetherschen Ringen gelten die Aussagen (a) und (b)
der Folgerung auch ohne die Voraussetzung ,,endlich erzeugt®.
Die Beweisidee besteht darin, im lokalen Fall von flachen R-
Moduln (und ihren koabgeschlossenen Untermoduln) via Matlis-
Dualitdt auf injektive R-Moduln iberzugehen, in denen die
entsprechenden abgeschlossenen Untermoduln bekanntlich ab-
spalten.

Hilfssatz 3.3. Sez (R, m) noethersch und lokal mit Vervollstin-
digung R, sei E die injektive Hiille von R[m und M° =
Homy(M, E). Dann gilt fir jeden Untermodul U von M :

(1) Genau dann ist U|X klein in M|X, wenn Annu(U)
R-grof in Ann,pw(X) ist.

(2) Genawu dann ist U koabgeschlossen in M, wenn Ann,.(U)
R-abgeschlossen in MO ist.

Beweis. Nach Matlis ([8] Theorem 3.7) ist R = End(£), so
daB die R-Struktur auf M9 einfach die Hintereinanderausfiih-
rung « f ist (« € R, f € M. Wir behaupten, dal} es zu jedem
R-Untermodul # von M°, mit Ann,,.(U)$ H, ein U, S U gibt
mit Anny(U,) C H. Zum Beweis sci f & H, f & Ann,,(U) und
U, = U ~Kef:Klaristdann U; $ U, und zu jedem g € Ann,,
(UD,dh. U ~KefC U ~Keg, gibteseina € R mit g|U =
o (f1U),d.h. g—afE Ann,.(U), so dal3 folgt g € H.

(1) Ist Ann,,.(U) R-groB in Ann,,(X) und V + U = M mit
X C V, so folgt Ann,,(V) ~ Anny(U) = o mit Ann (V)
C Ann,.(X), also Anny(V) = o, V' = M. Ist umgekehrt U/X
klein in M|X und 0 # f € Ann,.(X), so muBl f(U) $ Bi f sein
und daher ein von Null verschiedener Homom. 4: B7 f - F
existieren mit A (f(U)) = o. Der 1dllt sich zu einem Homom.
o: £ ———> FE hochheben, und damit folgt o == o« f & Ann (V).

(2) Ist Ann,,(U) R-abgeschlossen in #° und U/X klein in
M|X, so folgt nach eben Ann,.(U) = Ann,(X), also U/X = o.
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Ist aber Ann,(U) nicht R-abgeschlossen in M#°, d.h. R-groB3
in einem echten Zwischenmodul /A, so hat man nach der Vor-
bemerkung ein U; ¢ U mit Ann,,(U;) C H. Wieder mit (1) ist
daher U/U; klein in M|U,, also U nicht koabgeschlossen in M.

Folgerung. Sei R noethersch und lokal mit Vervollsiindigung
R. Genau dann ist f: B > C ein wesentlicher R-Epimorphis-
mus, wenn 1 @ B: R %f) B —R @ C ein wesentlicher R-Epi-
morphismus ist.

Beweis. Mit den Bezeichnungen des Hilfssatzes hat man fur
jeden R-Modul M einen kanonischen R-Isom. w, : M°
Hom,;,(]?(j?M, E), wobei E als R-Modul auch die injektive
Hille des Restklassenkorpers von R ist.

Ist nun B surjektiv und U = Ke § klein in B, so wird in der
exakten Folge 0 — (% ——> B® ——» % ——o0 der erste Pfeil
nach (1) ein wesentlicher 2-Monom., und das gilt via w auch
fur den ersten Pfeil der R-exakten Folge

> Homz(R ® C,E) —— Hom (R ® B, E)
Homz(R® U, E)

>

o

>

> 0.

Wieder wegen (1) ist daher 1 ® 8 ein wesentlicher R-Epim.
wie behauptet. — Die Umkehrung geht ebenso, denn aus der
Surjektivitit von 1 ® f folgt die von f, so dal man dieselben
exakten Folgen verwenden kann.

Satz 3.4. Sei R noethersch und M ein R-Modul.

(@) Genau dann ist M flach, wenn M keine wesentlichen Uber-
deckungen hat.

(b) Ist M flack, so stimmen die koabgeschlossenen Untermoduin
von M mit den reinen tiberein.

Beweis. Sei im 1. Schritt R zusitzlich lokal und R, £ und
M° wie im Hilfssatz. Es ist wohlbckannt, dall 4/ genau dann
flach ist, wenn M?° als R-Modul injektiv ist. Andererseits zeigt
die treuflache Ringerweiterung & > R, daB M auch genau
dann flach ist, wenn es R g)f) M als R-Modul ist ([2] chap. I, § 3,
Proposition 6), d.h. wenn Hom;?(Rg’;)M, E) = M° als R-
Modul injektiv ist.
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Ist daher M flach und U koabgeschlossen in M, so ist nach
(3.3,2) mit M° auch Ann,.(U) = (M|U)® als R-Modul injektiv,
d.h. M|U flach und daher U rein in M.

Sei nun im 2. Schritt R nur mehr noethersch. Dann sind
nach (3.1, ¢) in jedem R-Modul die reinen Untermoduln koab-
geschlossen. Ist aber A/ flach und U koabgeschlossen in M, so
ist auch M, flach und U, nach (3.2) koabgeschlossen in M,
also nach eben sogar rein in M. Das gilt fur alle m € £, so daB
M|U flach und U rein in M ist, d.h. wir haben (b) gezeigt. Wie
in der Folgerung zu (3.2) ergibt sich damit auch (a).

Wihrend in jedem Ring R die reinen Ideale koabgeschlossen
sind (das sieht man unmittelbar, aber auch mit (3.1, b)), haben
wir fur die Umkehrung bisher nur zwei Teilantworten:

1) Ist R schwach-noethersch, so ist jedes koabgeschlossene [deal
bereits direkter Summand.

2) Ist R ein H-Ring, so ist jedes koabgeschlossene [deal rein.

Die zweite Aussage ist ja ein Spezialfall der Folgerung zu (3.2),
und im ersten Fall wird a durch ein endlich erzeugtes Ideal a;
gestiitzt, es folgt a = a; idempotent nach der Folgerung zu (3.1),
also a direkter Summand.

Einen dritten Fall - dim(R) < oo - wollen wir jetzt durch
eine Abschwichung des Begriffes ,,koabgeschlossen‘ behandeln.
In einem beliebigen Ring R heifle ein Ideal a awusgezeichnet,
wenn aus a C V¢ stets folgt a C ¢. Offenbar ist jedes koabge-
schlossene Ideal ausgezeichnet (denn im Ring R = Rfa ~ ¢ ist
a ein Nilideal, also Null) und jedes ausgezeichnete Ideal
idempotent. Weiter gilt:

Lemma 3.5. Sez a ein ausgezeichnetes Ideal von R.

(a) Ist I ein [deal von R, so ist auch @ ausgezeichnet im Ring
R =R|L

(b) Ist S eine multiplikativ abgeschlossene Teilmenge von R,
so ist auch a R ausgezeichnet im Ring R.

(¢) Ist R ein Integrititsring und a = R von endlicher Hohe,
so folgt bereits a = o.
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Beweis. (a) und (b) sind klar, und bei (¢) zeigen wir zuerst
durch Induktion iber #: Ist R ein lokaler Integritdtsring mit
dim(R) = n, so hat R keine ausgezeichneten Ideale. Bei 2 = o
ist nichts zu zeigen, und hitte man bei 7z = 1 ein ausgezeich-
netes Ideal o0 % a 4= R, so folgte mit 0 #+ x € a, daB a C V/(x),
also a = (x) idempotent wire, was unmoglich ist. Sei also 7 > 1
und po$p; S ... $p, eine Primidealkette maximaler Linge.
Ist a &= R ein ausgezeichnetes Ideal in &, so auch @ im (z—1) -
dim. lokalen Integrititsring = RJp,, und es folgt nach In-
duktion @ = o, d.h. aC p;. Ebenso ist aR, ein ausgezeich-
netes Ideal im 1-—dim. Integrititsring R,, also aR, = o,
a = o wie behauptet.

Damit ist auch der allgemeine Fall erledigt: Ist a &= R ausge-
zeichnet von der Hohe #, so wihle man ein a C p mit A(p) = 7,
und weil wieder nach (b) a R, ausgezeichnet in R, ist, folgt nach
eben a R, = o, d.h. wie gewiinscht a == o.

Satz 3.6. Hat R endliche Krulldimension, so stimmen die
koabgeschlossenen [deale von R mit den reinen diberein.

Beweis. Mit dem vorhergehenden Lemma ist fast nichts
mehr zu zeigen. Sogar jedes ausgezeichnete Ideal a ist rein, denn
es ist a C Va’ (damit fertig): Ist p minimal iber a’, so folgt
nach (1.2,b) p 4+ aC m fur ein m & 2, und daher ist @ im
Integrititsring R = R/p ein ausgezeichnetes Ideal mit 4(@) <
/(M) < oo. Nach (3.5, ¢) folgt @ =0, d.h. aC p.

4. g-Moduln iiber Dedekindringen. Wird jeder Untermodul U von
M durch einen koabgeschlossenen Untermodul U, gestiitzt, so
sagen wir M sei ein g-Modu/. Natirlich hat jeder supplemen-
tierte Modul diese Eigenschaft: Ist V' ein Komplement von U
in M und U; ein Komplement von V in M mit U, C U, so
leistet {/; das Gewlinschte. Die Umkehrung gilt i. allg. nicht,
denn jeder Gelfandring ist nach (1.4) ein g-Modul, braucht aber
(z.B. R = (C(J)) nicht supplementiert zu sein.

Uber Dedekindringen ist aber jeder g-Modul bereits supple-
mentiert (4.2). Tieferliegend — und wir ziehen daraus cine Reihe
von Folgerungen - ist das Hauptergebnis (4.5), das fir einen
einzelnen Untermodul U, wenn nur M|U endlich erzeugt ist,
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hinreichende (und in vielen Fillen auch notwendige) Bedingun-
gen dafir angibt, dal U durch einen koabgeschlossenen Unter-
modul U, gestitzt wird.

Lemma 4.1. Sez R schwach-noethersch und M ein g-Modul.
(a) Esist K(M)+ P(M)= M.
(b) M|Ra(M) ist halbeinfackh und M|P(M) supplementiert.

(¢) Jeder Untermodul U von M, mit M|U endlich erzeugt, hat
gentigend viele Komplemente in M.

Beweis. Auch ohne ,;schwach-noethersch** gilt fur den g-
Modul M: Ist U C M und besitzt U selbst keine koabgeschlos-
senen Untermoduln, so ist U klein in M oder unzerlegbar. Falls
nimlich U nicht klein in A/ ist, mul3 der koabgeschlossene Unter-
modul Uj, der U in M stitzt, mit U Ubercinstimmen, und dann
ist U selbst ein g-Modul, also sogar unzerlegbar.

Andererseits besitzt ein schwach-noetherscher Ring R die fol-
gende Eigenschaft:

(**) Zu jedem zyklischen R-Modul B gibt es eine Zerlegung
B=B8,4+ ... + B, in der jedes der B, selbst keine
koabgeschlossenen Untermoduln hat,

und wir werden beim Beweis des Lemmas nur diese Eigenschaft
(**) benutzen.

(a) Zunichst ist Ra(M)|P(M) klein in M|P(M), denn Ra(M)
wird durch einen koabgeschlossenen Untermodul A gestitzt,
der ist radikalvoll, so daB3 aus A C P(M) die Behauptung folgt.
Bleibt also K(M) + Ra(M) = M zu zeigen: Zu jedem x € M
hat man eine Zerlegung Rx = B, + ... 4+ B, wie in (**), und
falls B,  Ra(M), ist nach der Vorbemerkung B; unzerlegbar
und zyklisch, also B, C K (M).

(b) Als Faktormodul von K(M) ist M|Ra(M) halbeinfach. Als
wesentliche Uberdeckung von M|Ra(M) ist daher M = M|P(M)
koatomar und schwach-komplementiert. Aulerdem ist 47 wieder
ein g-Modul: Jeder Zwischenmodul P(M)C U C M wird durch
einen koabgeschlossenen Untermodul U, gestiitzt, und natirlich
ist dann U/U, klein in MU, sowie mU, = U, ~m M fir alle
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m € 2; weil nun U, als Faktormodul von U,/P(U,) koatomar
ist, ist es nach (3.1, a) auch koabgeschlossen in 4. Ein schwach-
komplementierter g-Modul ist aber (siche den Beweis des nich-
sten Satzes) bereits supplementiert.

(c) Ist U wie angegeben und X 4+ U = M, so kann man
gleich X koabgeschlossen in M/ annehmen. Dann ist auch X ein
g-Modul, X/K(X) als Faktor von P(X) radikalvoll, X/ X ~ U
nach Voraussetzung endlich erzeugt, also X; + (X ~nU) =X
mit X; C K(X) endlich erzeugt. Nach (1.6) ist nun X,; komple-
mentiert, und ein Komplement von X; ~ U in X ist dann auch
eines von U in M, enthalten in X wie gewunscht.

Folgerung. /st R schwach-noethersch und M ein g-Modul, so
ist jeder endlich erzeugte Faktormodul supplementiert.

Satz 4.2. Uber einem Dedekindring ist jeder g-Modul bereits
supplementiert.

Beweis. Wir zeigen uber einem beliebigen Ring R: Ein
Modul M ist (genau) dann supplementiert, wenn er die drei
folgenden Bedingungen erfillt (1) A ist ein g-Modul. (2) M/
Ra(M) ist halbeinfach. (3) Jeder radikalvolle koabgeschlossene
Untermodul von A/ hat ein schwaches Komplement in M. Zu-
nichst hat man zu jedem U C M eine Zerlegung W/Ra(M) &
(U 4+ Ra(M))|Ra(M) = M|Ra(M), also W 4+ U = M mit
W AUC Ra(M). Dann wird W ~ U durch einen koabge-
schlossenen Untermodul A gestitzt, der ist radikalvoll, hat also
ein schwaches Komplement V' in M. Weil dann V" ein schwaches
Komplement von W ~ U in M ist, ist auch V' ~ W cincs von
U in M, d. h. wir haben gezeigt: M ist schwach-komplemen-
tiert. Fur die Supplementiertheit wihle man jetzt zu X + U = M
ein schwaches Komplement ¥ von X ~ U in M, und weil
V =Y ~ X dann ein schwaches Komplement von U in M ist,
aulerdem durch einen koabgeschlossenen Untermodul V; ge-
stutzt wird, ist V; C X cin Komplement von U in M wie ver-
langt.

Da uber einem Dedekindring jeder radikalvolle Untermodul
bereits abspaltet, ist mit (4.1, b) der Satz bewiesen.
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Die im nichsten Lemma untersuchten Moduln werden wir,
in der Folgerung 2 zu (4.5), Uber Dedekindringen sogar explizit
beschreiben.

Lemma 4.3. /st R schwach-noethersch, so sind fiir einen R-
Modul M dquivalent :

(1) M|Ra(M) ist halbeinfach und jeder Untermodul U von
M, mit M|U endlich erzeugt, wird durch einen koabge-
schlossenen Untermodul gestiitzt.

(i) Jeder endlich erzeugte Untermodul von M hat geniigend
viele Komplemente in M.

Beweis. (i — i1) Das gilt Giber beliebigem &, denn zu X+4-U =
M, mit U endlich erzeugt, hat man eine Zerlegung W|/Ra (M)
D (X ~U) + Ra(M))|Ra(M) = M|Ra(M), so daB fir V' =
WA~X folgt V+U=Mund VU klein in M. Weil
aber M|V endlich erzeugt ist, wird nach Voraussetzung V" durch
einen koabgeschlossenen Untermodul V), gestutzt, so dall V', C X
ein Komplement von U in M ist.

(ii — 1) Wie im Beweis von (4.1) geniigt es, daBB R die Be-
dingung (**) erfullt. Wir zeigen zuerst, da M = M|Ra(M)
halbeinfach ist, wenn auch nur jeder zyklische Untermodul von
M ein schwaches Komplement in A hat: Zu jedem x & M hat
man ndmlich W 4+ Rx = M mit W ~ Rx klein in M, also
W @ Rx = M, d.h. in M ist jeder direkt unzerlegbare Unter-
modul bereits einfach. Mit (**) ist daher jeder zyklische Unter-
modul von 47 halbeinfach, und es folgt die erste Behauptung. Sei
nun M|U endlich erzeugt: Zu Ra(M)C VC M, mit V QU = M,
wihle man einen endlich erzeugten Untermodul V; von V' mit
Vi+4+ U= M, und dann ist V; ~ U sogar klein in M. Nach
Voraussetzung hat V; ein Komplement U; in M mit U, C U,
und dann ist U; eine koabgeschlossene Stutze von U in M.

Fur den Rest der Arbeit sei nun R ein Dedekindring, kein
Koérper. Wie ublich bezeichnen wir die Elemente von 2 mit
p, q, - ... Die koabgeschlossenen Untermoduln sind jetzt wegen
(3.1, d) auch als neat-Untermoduln bekannt, d. h. sie stimmen mit
den abgeschlossenen Untermoduln Uberein. Gilt pU = U ~np M

s Miinchen Ak. Sb. 1982
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fir ein einzelnes p € Q, so heilt U p-meat in M. Im fol-

genden spielen die Invarianten p-Rang(M) = dimg, (M[p M)

und p-dim(M) = dimg, (Ann,(p)) eine zentrale Rolle. Fur sie

gelten (siehe [12] Lemma 1.1 und Satz 1.3) folgende Rechen-

regeln:

1) Ist Up-neatin M (p € ), so gilt p-Rang(U) < p-Rang(M)
und p-dim(M[U) < p-dim(M).

2) Ist B —— ( ein wesentlicher Epim., so gilt p-Rang(B) =
p-Rang(C) und p-dim(B) < p-dim(C) fur alle p € 2.

3) Ist A —— B ein wesentlicher Monom., so gilt p-dim(B) =
p-dim(A4) und p-Rang(B) < p-Rang(A4) fur alle p € 2.

4) Ist M koatomar, so gilt p-Rang(M) > p-dim(M) fur alle
p € Q; ist M torsionsvoll, so gilt p-Rang(M) < p-dim(M)
fur alle p € Q.

Mit ihnen erhidlt man auch das folgende Kriterium:

Lemma 4.4. Sei R dedekindsch, M|U koatomar und mindestens
eine Primdrkomponente von M|U gleich Null. Dann gilt .

Wird U durch einen koabgeschlossenen Untermodul Uy in M
gestiitzt, so folgt p-dim(M|U) < p-Rang(T(M)) fiir alle p € £Q.

Beweis. Weil im Ziel des wesentlichen Epim. M|U,-—— M|U
mindestens eine Primirkomponente verschwindet, gilt £(M/U,)
=~ E(M|U) nach ([12] Satz 1.3), insbesondere p-dim(M|U) =
p-dim(M[U)) fur alle p € 2. Ein maximales Element in der Menge
{XC M| X ~U; = o} liefert nun einen wesentlichen Monom.
X —— M|U,, so daBl mit M|U; auch X koatomar ist und daher
p-dim(M|U) = p-dim(X) — p-Rang(7(X)) < p-Rang(T(40)
ist fur alle p & 2 wie behauptet. (Falls in M/U alle Primiir-
komponenten vorkommen, brauchen die Ungleichungen nicht
mehr zu gelten: Ist R semilokal, so ist / = Ra(R) sogar klein
in R, aber p-dim(R//) = 1 fur alle p.)

Satz 4.5. Sei R dedekindsch, M|U endlich erzeugt wund
p-dim(M|U) < p-Rang (T(M)) fiir allep € Q. Dann wird U
durch einen koabgeschlossenen Untermodul in M gestiitzt.

Beweis. Seiim 1. Schritt sogar M|U = R[p” fur einp € L,
n > 1. Falls dann 7, (M) ¢ U, ist die Voraussetzung lber
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p-Rang (7°(M)) uberflissig, denn fiir ein maximales Element U,
in der Menge {X C U | X p-neatin M} und M = M|U, gilt:
U umfaBt keinen p-neat Untermodul von 7, d.h. U liegt in
p M und hat selbst keine p-teilbaren Untermoduln. Wegen
M|U = R[p" gilt das letztere sogar fiir ganz M, und p-Rang
(M) =1 zeigt jetzt, daB M direkt unzerlegbar ist. Wegen
T, (M) = o heilt das aber, daB A7 zyklisch und p-primir ist.
Also ist U klein in 47 und U, sogar koabgeschlossen in M wie
gewlnscht.

Falls aber 7,(M) C U, hat man schon 7(#)C U, und wegen
p-Rang (7(M)) = o auch noch 7(M) = X @ ¥V mit X = R/y",
e > 1. Es genigt zu zeigen, da3 U[/Y in M|Y durch einen ko-
abgeschlossenen Untermodul gestitzt wird, d.h. wir kénnen
gleich Y = o annehmen. Mit M = C @ T(M)und B =C ~AU
folgt C/B = R[p", so dal} es, weil C torsionsfrei ist, ein A C B
gibt mit C[A =~ R[p"**, insbesondere einen Isomorphismus
w:B[A ——T(M). Definiert man

f=B-—>Cx (BlA)—

C x T(M)-—— M,

1xw

so folgt fur U; = Bif, da M|U, =~ Kok d =~ C|A = R[p"*+*
und U, C U, also UJU; klein in MU, ist. AuBlerdem ist U,
torsionsfrei, also 7(M) —— M|U, ein wesentlicher Monom. und
daher U, koabgeschlossen in M.

Ist im 2. Schritt M/U endlich erzeugt und p-primir fiir ein
p E 2, so zeigen wir die Behauptung durch Induktion tber
n = p-dim(M|U). Bei » > o hat man eine Zerlegung M|U =
AU @ BJU mit A|U =~ Ry, ¢ > 1. Nach dem ersten
Schritt wird B durch einen koabgeschlossenen Untermodul B,
in M gestutzt, ebenso nach Induktion 4 durch einen koabge-
schlossenen Untermodul 4, in M. Klar wird dann U durch
U, = A; ~ By in M gestiitzt, so daB es jetzt genugt zu zeigen,
daB U, in A4, durch einen koabgeschlossenen Untermodul ge-
stutzt wird. Weil 4,/U; =~ M|B, isomorph zu R oder R/[p" ist,
geht das mit dem ersten Schritt: Wire p-Rang(7(4,)) = o, so
folgte fur den torsionsfreien, koabgeschlossenen Untermodul 4,
von M = M|T(A4,), daBB » < p-Rang (7(M)) = p-Rang (7 (7))
< p-dim(M) = p-dim(#M|A4,) < p-dim(M|A) = n— 1 ist, und
das ist nicht wahr.

S



68 Helmut Zéschinger

Im 3. Schritt, wenn M/U nur mehr endlich erzeugt ist, fih-
ren wir einen Induktionsbeweis Uber #» = |{p € Q| T,(M|U)
4 0} |. Bei n=o0 ist M|U projektiv, also U sogar direkter
Summand. Bei z > o gibt esein q &€ 2 mit 7,(M|U) = A|U
= 0. Schreibt man M|U = AU & B|U, so ist M|B endlich
erzeugt und q-primir mit q-dim(M/B) < q-Rang (7' (M)), so daB
nach dem zweiten Schritt B durch einen koabgeschlossenen
Untermodul B, in M gestitzt wird. Andererseits ist | {p € Q|
TW(M|A) % o} | = »— 1, und natiirlich M/A endlich erzeugt
mit p-dim(M[A4) < p-dim(M|U) < p-Rang (7 (M)) fur allep € 2,
so daf3 nach Induktion auch A durch einen koabgeschlossenen
Untermodul 4, in M gestitzt wird. Wieder wird dann U durch
U, = A, ~ By in M gestitzt, aber zusitzlich ist U; koabge-
schlossen in M: Aus q-dim(B,/U;) = q-dim(#M[A4,) < g¢-dim
(M]A) = o folgt nimlich U, q-neat in M, und fur alle p == q
gilt entsprechend p-dim(A4,/U,) = o, also U; p-neat in M.

Bemerkung. Ist /U endlich erzeugt und hat der Dedekind-
ring R unendlich viele maximale Ideale, so folgt mit (4.4) sofort:
Genau dann wird U durch einen koabgeschlossenen Untermodul
in M gestiitzt, wenn p-dim(M[U) < p-Rang (7 (M) ist fur alle
maximalen Ideale p.

Folgerung 1. /st R ein nichtlokaler Dedekindring, so sind fiir
etnen Modul M dquivalent .

(1) Jeder Untermodul U von M, mit M|U endlich erzeugt,
wird durch einen koabgeschlossenen Untermodul gestiitzt.

(i) Ist p-Rang(T(M)) < oo (p € Q), so ist M|T(M)
p-teilbar.

Beweis. (i — ii) Sei p-Rang(7(M)) = m endlich. Dann folgt
T(M)=X @Y mit V p-tcilbar, X endlich erzeugt und p-pri-
mir. Mit X @ M’ = M genugt es zu zeigen, dall A/’ p-teilbar
ist: Hitte man ein U C M’ mit M'|U = R]p, so wire M[U end-
lich erzeugt (durch » 4+ 1 Elemente), also nach Voraussetzung
U durch einen koabgeschlossenen Untermodul U; in M gestltzt.
U, wirde dann auch U in M’ stitzen, wegen nichtlokal folgte
M'|U, = R[y’, ¢ > 1, also wie im zweiten Teil von (4.4)
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p-dim(M'|U,) <p-Rang (7 (M")),d. h. T(M") = V¥ nicht p-teilbar
im Widerspruch zur Wahl von Y.

(i1 — 1) Ist MU endlich erzeugt, so gilt p-dim(M|U) <
p-Rang (M). Falls also M| T(M) p-teilbar ist, folgt aus p-Rang(M)
= p-Rang (7 (M)) die im Satz gewiinschte Ungleichung; im Fall
p-Rang (7(M)) = oo ist sie aber trivialerweise erfullt.

Bemerkung. Im lokalen Fall muB3 man (ii) ersetzen durch
(ii"): Ist p-Rang (7(M)) < oo, so ist M| T (M) koseparabel. (Das
folgt aus (4.3) und [13] Folgerung 3.4.) Auch in der nichsten
Folgerung bleiben im lokalen Fall die drei Punkte a, b, ¢ nicht
mehr dquivalent (siehe wieder [13]).

Folgerung 2. /st R ein nichtlokaler Dedekindring, so sind fiir
einen Modul M dquivalent :

(a) Jeder endlich erzeugte Untermodul von M hat ein Komple-
ment in M.

(b) M|Ra(M) ist halbeinfach und aus p-Rang(T(M)) < co
(p € Q) folgt M|T(M) p-tetlbar.

(c) Jeder endlich erzeugte Untermodul von M hat geniigend
viele Komplemente in M.

Beweis. (b < ¢) erhilt man unmittelbar mit (4.3) und Folge-
rung 1, so dafl nur noch (a — b) zu zeigen ist: Klar ist M[Ra(M)
halbeinfach, und falls p-Rang (7' (#)) endlich ist, zerlege man
T(M) = X @ Y wie in Folgerung 1, so daB3 auch noch in &7 =
M| X jeder endlich erzeugte Untermodul ein Komplement hat.
Jetzt ist aber 7(M7) p-teilbar, so dal3 wegen nichtlokal sogar 47
selbst p-teilbar ist, also erst recht der Faktormodul M|7T(M).

Zum SchluB liefert der Satz auch noch eine Verallgemeinerung
von ([13] Satz 3.1 und Folgerung 2) auf den nichtlokalen Fall:

Folgerung 3. Sei R dedekindsch, M|Ra(M) halbeinfach und
U ein endlich erzeugter Untermodul von M mit p-Rang(U) <
p-Rang(T(M)) fiir alle p € Q. Dann hat U geniigend wviele
Komplemente in M.

Beweis. Zu X + U = M findet man wie in (4.3) ein schwa-
ches Komplement V' von U in M mit V' C X. Weil auch M|V



70 Helmut Zéschinger

als Faktor von U endlich erzeugt ist, gilt p-dim(M[V) <
p-Rang(U) < p-Rang (7(M)) fiir alle p € 2, so daB V durch einen
koabgeschlossenen Untermodul V; gestiitzt wird. Der ist dann
ein Komplement von U in M.
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