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Gelfandringe und koabgeschlossene Untermoduln 

von Helmut Zöschinger 

Einleitung. Ausgangspunkt dieser Arbeit war die Beobachtung, 
daß verschiedene Klassen von Moduln oder Ringen unter dem 
gemeinsamen Gesichtspunkt betrachtet werden können, daß sich 
jeder Untermodul von M durch einen einfacheren ,,approximie­
ren*1 läßt. Damit meinen wir, daß zu jedem U C M ein Ux C U 
existiert, so daß Ux von einfacherer Struktur (oder ausgezeich­
neter Lage in Äf) ist und U\UX klein in M\UX. Für die letzte 
Bedingung sagen wir, daß U durch Ux in M gestützt wird. 

So nennt H i n o h a r a in [7] einen kommutativen Ring R 
schwach-noethersch, wenn sein Maximalspektrum Ω in der 
Zariski-Topologie noethersch ist, und er zeigt dort, daß das 
genau dann der Fall ist, wenn jedes Ideal α von R durch ein 
endlich erzeugtes Ideal ax gestützt wird. Ein weiteres Beispiel 
ist die Klasse der kommutativen semiperfekten Ringe (d.h. end­
lich vieler Produkte von lokalen Ringen): Ein kommutativer 
Ring R gehört ihr genau dann an, wenn jedes Ideal û von R 
durch einen direkten Summanden ö x gestützt wird. Definiert man 
schließlich zu einem Punkt p eines vollständig regulären Raumes 
X im Ring der stetigen reellen Funktionen die Ideale Mp 

= { / G C{X) \/(p) = 0} und Op = {/E C(X) \f verschwin­
det in einer Umgebung von^ }, so sieht man sofort, daß Mp durch 
Op in C(X) gestützt wird, daß Op das kleinste Ideal mit dieser 
Eigenschaft ist und daß überdies Op rein in C(X) ist. 

Tatsächlich gilt das letzte Beispiel viel allgemeiner: Wir nen­
nen einen kommutativen Ring R nach C a r r a i [5] einen Gelfand­
ring, wenn für jedes m E ß die kan. Abbildung R -> ^m 

surjektiv ist und zeigen in (1.4), daß das genau dann der Fall ist, 
wenn jedes Ideal 0 von R durch ein reines Ideal a1 gestützt wird. 
Das ist weiter äquivalent damit, daß jedes Primideal von R in 
nur einem maximalen Ideal liegt, und diese Klasse von Ringen 
wurde von De M arco und Ors atti in [6] ausführlich unter­
sucht. 
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E i n R i n g R ( in der g a n z e n A r b e i t sei jetzt R k o m m u t a t i v ) ist 
daher genau d a n n semiper fekt , w e n n er e in G e l f a n d r i n g ist u n d 
w e n n jedes reine Idea l v o n R bereits d i r ek ter S u m m a n d ist. 
D a r a u s folgt , daß über b e l i e b i g e m R der F u n k t o r K(M) 

= {x G M I RIAr\nR{x) ist s e m i p e r f e k t } e in l i n k s e x a k t e r Socke l 
ist, für den w i r i n (2.3) eine „Pr imärzer legung" K(M) — φ 

m e λ 

Km(M) angeben, i n der die Km(M) a u f natürliche Weise M o d u l n 
über den l o k a l e n R i n g e n Rm s i n d . E s ist das eine V e r a l l g e ­
m e i n e r u n g der M a t l i s ' s c h e n Z e r l e g u n g von T(M) über Λ-lokalen 
Integritätsringen (siehe [9]) a u f bel iebiges R. S ie läßt s i ch i n s ­
besondere a u f jeden k o m p l e m e n t i e r t e n M o d u l M über e inem 
noetherschen R i n g R a n w e n d e n , d e n n für i h n zeigen w i r K(M) 

= M. M i t H i l f e der E r g e b n i s s e v o n [14] e rha l ten w i r so i n (2.5) 
eine vollständige B e s c h r e i b u n g der reduz ier ten k o m p l e m e n t i e r t e n 
M o d u l n über noetherschen R i n g e n . 

I n e inem be l ieb igen M o d u l M b r a u c h t zu e inem U n t e r m o d u l 
U v o n M die M e n g e {Y C U \ U\Y ist k l e i n i n MjY) k e i n m i n i ­
males E l e m e n t zu h a b e n . F a l l s sie aber d o c h eines besitzt, sagen 
w i r Uv so ist Ux koabgeschlossen i n My d . h . aus UX\X k l e i n in 
MjX folgt UJX = o. ( In der d u a l e n S i t u a t i o n hat b e k a n n t l i c h 
die M e n g e {YC M \ U ist g roß i n Y} n a c h d e m Z o r n ' s c h e n 
L e m m a stets e in m a x i m a l e s E l e m e n t , u n d dieses ist i m S inne 
v o n G o l d i e abgeschlossen i n M.) Während i n j edem in jekt iven 
M o d u l die abgeschlossenen U n t e r m o d u l n schon d i rekte S u m ­
m a n d e n s i n d , ist die entsprechende A u s s a g e für pro jekt ive M o ­
d u l n n i cht r i c h t i g : W i r ze igen i n (3.4), daß über noetherschen 
R i n g e n i n j edem pro j ek t iven M o d u l die koabgeschlossenen U n ­
t e r m o d u l n gerade m i t den re inen U n t e r m o d u l n z u s a m m e n f a l l e n . 
A l s merkwürdige F o l g e r u n g erha l ten w i r , daß über e inem 
noetherschen R i n g R e in i ? - M o d u l M genau d a n n f lach ist, 
w e n n er keine wesent l i chen U b e r d e c k u n g e n hat, d. h . w e n n 
jeder wesentl iche E p i m o r p h i s m u s Β —> M s chon e in I s o m o r p h i s ­
m u s ist. 

I n e inem n icht n o t w e n d i g p ro j ek t i ven M o d u l M scheint es 
angemessener z u f ragen , w a n n jeder U n t e r m o d u l U v o n M 

d u r c h e inen koabgeschlossenen (und n i cht wie i n (1.4) d u r c h 
e inen reinen) U n t e r m o d u l Ux gestützt w i r d . Über e inem D e d e -
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k i n d r i n g R geben w i r d a r a u f i n (4.2) eine vollständige A n t w o r t . 
F a l l s R u n e n d l i c h viele m a x i m a l e Ideale hat , können w i r i n (4.5) 
präziser für e inen e inze lnen U n t e r m o d u l U v o n M, w e n n n u r 
MjU e n d l i c h erzeugt ist, beweisen : G e n a u d a n n w i r d U d u r c h 
einen koabgeschlossenen U n t e r m o d u l U1 gestützt, w e n n d i m 
( A n n , 1 / / 6 ( m ) ) < d i m ( r ( A f ) / m · T(M)) ist für alle m a x i m a l e n 
Ideale m. D a s liefert z u m Schluß mehrere K r i t e r i e n für die 
E x i s t e n z v o n K o m p l e m e n t e n , die i n [13] n u r i m l o k a l e n F a l l 
gezeigt werden k o n n t e n . 

0. Bezeichnungen und Definitionen. Stets ist R e in k o m m u t a t i v e r 
R i n g u n d Ω d ie M e n g e al ler m a x i m a l e n Ideale v o n R. B e i 
l o k a l e n b z w . s e m i l o k a l e n R i n g e n w i r d keine K e t t e n b e d i n g u n g 
a n g e n o m m e n . Ist M e in R-Wloaul, so heißt e in U n t e r m o d u l U 

rein i n M, w e n n für alle i ? - M o d u l n A die induz i e r te A b b . 
A ® U —* A ® M i n j e k t i v ist. B e i f lachem M ist das äquivalent 

R R 

d a m i t , daß a u c h MjU f lach ist. 
E i n U n t e r m o d u l U v o n M heißt klein i n M, w e n n aus X -\-U 

= M stets folgt X = M. D i e S u m m e al ler k l e i n e n U n t e r m o d u l n 
ist das J a c o b s o n - R a d i k a l Ra(7kf), u n d b e k a n n t l i c h g i l t R a ( ¥ ) — 
P | { m ¥ | m G Ω) = P | m a x i m a l e r U n t e r m o d u l v o n 
M). E i n M o d u l M heißt radikalfrei b zw . radikalvoll, w e n n 
R a ( A f ) = ο b z w . Ra(Äf ) = M ist . D e n größten r a d i k a l v o l l e n 
U n t e r m o d u l v o n M beze ichnen w i r m i t P(M), u n d fal ls P(M) = ο 

ist , heißt M reduziert. M heißt koatomar, w e n n jeder echte 
U n t e r m o d u l v o n M i n e i n e m m a x i m a l e n U n t e r m o d u l enthal ten 
ist. U b e r noetherschen R i n g e n ist jeder k o a t o m a r e M o d u l auch 
reduz iert . 

E i n E p i m o r p h i s m u s β : Β —> M heißt wesentlich, w e n n Ke β 

k l e i n in Β ist . F a l l s also ür

1 C U C M ist, w i r d U genau d a n n 
d u r c h Ux i n M gestützt, w e n n M\UX -* MjU e in wesent l i cher 
E p i m o r p h i s m u s ist. D u a l heißt e in M o n o m o r p h i s m u s α : M—>A 
wesent l i ch , w e n n Bi α groß i n A ist. M i t E(M) beze ichnen w i r 
d ie in jekt ive Hülle v o n M. 

M heißt unzerlegbar, w e n n Μ φ ο ist u n d aus X + Y = M 
stets folgt X = M oder Y = M. Ist M be l i eb ig u n d V + U == Μ, 
so heißt V Komplement (bzw. schwaches K o m p l e m e n t ) von U 
i n My w e n n V r\U k l e i n i n V (bzw. V r\U k l e i n i n M) ist. 
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I m ersten F a l l ist V a u t o m a t i s c h koabgeschlossen i n My und 
g ib t es zu jeder Z e r l e g u n g X -f- U — M e in K o m p l e m e n t V von 
U i n , m i t V C so sagen w i r , £ / habe genügend viele Kom­

plemente i n 71/. H a t schließlich jeder U n t e r m o d u l von M ein 
K o m p l e m e n t (ein schwaches K . , genügend viele K . ) i n M, so 
heißt M komplementiert (schwach-komplementiert, supplemen-

tiert). R selbst ist genau d a n n k o m p l e m e n t i e r t , w e n n es P r o d u k t 
v o n e n d l i c h v ie len l o k a l e n R i n g e n , d . h . semiper fekt ist. I n die ­
sem F a l l ist sogar jeder e n d l i c h erzeugte 7 ? -Modul s u p p l e -
ment ier t . 

1. Gelfandringe und der Funktor K(M). D i e F r a g e , w a n n e in Ideal 
α v o n R d u r c h e in reines Idea l gestützt w i r d , hängt e n g mi t 
d e m S t u d i u m des Ideals 

α' =_- { χ (= R I χ = ax für e in a £ α } 

z u s a m m e n . B e i spez ie l len R i n g e n ist die B i l d u n g von a ' w o h l ­
b e k a n n t : 

1) Ist R = C{X) der R i n g der stet igen reel len F u n k t i o n e n auf 
e inem vollständig regulären H a u s d o r f f - R a u m X, ist p G X u n d 
α das Idea l der i n p v e r s c h w i n d e n d e n F u n k t i o n e n , so ist et' das 
Idea l der F u n k t i o n e n , die i n einer g a n z e n U m g e b u n g v o n p 

v e r s c h w i n d e n . 

2) Ist R noethersch, so ist n a c h d e m K r u l l ' s c h e n D u r c h -
oo 

schnittssatz « ' = Ç\ a%. 
i = ι 

I n e i n e m be l ieb igen R i n g R ist g e n a u d a n n α = α', w e n n a 
re in i n R ist. W i r d aber α n u r d u r c h e in reines Idea l ö x ge­
stützt, so folgt ö x = a[ — α' (siehe P u n k t (b) des n a c h f o l g e n d e n 
L e m m a s ) , d. h . ax ist e i n d e u t i g d u r c h α bes t immt . 

Lemma 1.1. Sind a und b Ideale von R, so gilt : 

(a) (ab)' = (α π b)' = a' ^ b ' , (^a )' = α'. 

(b) Ist b C ci und ajb klein in R[b, so folgt b' = α'. 

(c) Wird a durch ein reines Ideal gestützt, so folgt (a + b)' = 

a' + b'. 
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B e w e i s , (a) ist le icht n a c h z u r e c h n e n , u n d bei (b) ist n u r 
a ' C b ' z u z e i g e n : Se i χ G α', d . h . χ = αχ für e in a G α. 
W e i l α i m R a d i k a l des R i n g e s R — R/b l iegt , ist ι — à i n v e r ­
t i e rbar , d . h . ι = r (l — a) für e in r G R- M i t b = ι — r (1 — d) 

G b fo lgt b χ :=- xf also # G b ' wie gewünscht, (c) Stets ist 
(α' + b)' C α + b ' , d e n n χ = (y + b) χ m i t y G α', £ G b i m ­
p l i z i e r t y = 3̂/ für e in a G et, also (1 — Λ ) Λ : = (ι —d) (1 — 
= (1 — d) χ, d . h . (1 — Λ ) χ G b ' u n d * = + (1 — # 
G ci + b ' . W i r d n u n α d u r c h e in reines Idea l a1 gestützt, so w i r d 
a u c h α + b d u r c h a1 + b gestützt, u n d n a c h (b) folgt (α + b ) ' 
— (öi + b) ' C a x + b ' = α' + b ' , während die I n k l u s i o n D 
t r i v i a l ist . ( A u f die V o r a u s s e t z u n g a n α k a n n m a n nicht ver ­
z i c h t e n , wie jeder n i c h t l o k a l e Integritätsring zeigt.) 

Ist zunächst n u r α/α' k l e i n i n R/a', so erhält m a n m i t (b) a u c h 
α" = α', d . h . α' ist automat i s ch r e i n i n R. E s g i l t daher die sehr 
nützliche 

Folgerung. Genau dann wird α durch ein reines Ideal in R ge­

stützt, wenn α/α' klein in R\<x' ist. 

Lemma 1.2. 

(a) Ist c ein Primärideal und c + α φ Ry so folgt a ' C C. 
(b) Ist ρ ein Primideal und ρ minimal über α', folgt 

p + a + R. 

B e w e i s , (a) Gäbe es e in χ G « ' m i t a : (J c, so folgte χ = α χ 

für e in a G α, (ι —<z)" G C für e in η > ι, 1 — r <2 G C u n d 
d a m i t c + α = R entgegen der A n n a h m e , (b) De f in ier t m a n die 
zwe i m u l t i p l i k a t i v abgeschlossenen T e i l m e n g e n S1 = 1 + α u n d 
5 2 = R\v, so g i l t für alle χ G S l t daß A n n ^ ^ ) C et', also 
A n n ^ ^ ) r\ S2 = 0 ist. D a m i t enthält die m u l t i p l i k a t i v a b g . 
T e i l m e n g e Τ = Sx S2 n icht das N u l l e l e m e n t , so daß es e in 
P r i m i d e a l p 0 g ib t m i t p 0 Τ = 0. A u s p 0 r\ S1 = 0 folgt 
Po + α 4= R u n d a ' C Po» a u s Po ^ 2̂ = 0 a u c h noch p 0 = ρ 
wie gewünscht. 

P u n k t (a) l iefert , fal ls das N u l l i d e a l v o n R eine Primärzerle­
g u n g ο = c x . . . r\Cn hat , eine neue D a r s t e l l u n g v o n α ' : 
B i l d e t m a n z u r M e n g e A = { 1 < * < # | c,- + û =|= i ? } die Ideale 
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U — Ç\ C- u n d V — f^ l ciy so g i l t wegen (a) die I n k l u s i o n 
i EL Λ i S A 

α' C U. A n d e r e r s e i t s folgt aus V + α = Ry d . h . ι — a 0 G V 
für e in a0 G α, daß (ι — a0) χ G ^ ^ cV = ο ist für a l le χ G £/, 
also a u c h i / C α'. 

Folgerung. Besitzt das Nullideal von R eine Primär Zerlegung 

ο = c± r\ . . . r*\ cny so folgt für jedes Ideal a von Ry daß a' = 
Π { c,- I c,. + α Φ R } ist. 

Für e in m a x i m a l e s Idea l m s i n d die Äquivalenzen ( i i , i i i , iv) des 
f o lgenden Satzes w o h l b e k a n n t (siehe [1] P r o p o s i t i o n 1.6.1 für den 
F a l l Rdi(R) = o), d e n n i n P u n k t ( i i i ) steht d a n n die k a n . A b b i l ­
d u n g R —> Rm. Se i ab jetzt Spec(R) m i t der Z a r i s k i - T o p o l o g i e 
versehen. 

Satz 1.3. Für ein Ideal a von R sind äquivalent : 

(i) a wird durch ein reines Ideal gestützt. 

(ii) Ist ρ ein Primideal mit ρ + a ={= Ry so ist (p + u ) /p 
klein in Rjy. 

( i i i ) Die kan. Abbildung R —> Rs, mit S = 1 + α, ist sur-

jektiv. 

(iv) Ist Y eine abgeschlossene Teilmenge vo?t Spec(R) mit 

V(a) r\ Y = 0, so lassen sich V(a) und Y durch offene 

Umgebungen trennen. 

B e w e i s , (i <-> i i ) H a t m a n (i) u n d ρ wie angegeben , so ist 
α/α' k l e i n i n Rja' u n d n a c h (1.2, a) a ' C p, also erst recht (ρ + a)/p 
k l e i n i n R/p. Ist u m g e k e h r t (ii) erfüllt u n d a ' C i n , so wähle m a n 
e in P r i m i d e a l p C πι, das m i n i m a l über α' ist , u n d n a c h (1.2, b) 
folgt ρ + α φ Ry also n a c h V o r a u s s e t z u n g a C πι: W i r haben 
gezeigt , daß α/α' k l e i n i n Rja' ist . 

(i <-> i i i ) Für die k a n . A b b i l d u n g φ : R —> Rs g i l t offenbar 
Ke φ = α'. G e n a u d a n n ist α/α' k l e i n i n Rja'y w e n n i m R i n g 
R = Rja alle s i n v e r t i e r b a r s i n d (s G S)t d . h . 1 — r s G Ke φ, 

~ = γ i m R i n g R 5 ist, also φ sur j ek t iv . 

(i -> iv) M i t Y = V(b) ist V(a) ΓΛ V(b) = 0, also n a c h V o r ­
ausse tzung α' + b = Ry (1 — d) (1 — b) = ο m i t a G α, b G b. 

D a m i t ist D (1 — a) eine offene U m g e b u n g v o n V(a)y D (1 — b) 
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eine v o n V(b), u n d natürlich D (1—d) r\ D (1 —b) = 0. 
(iv —> i i ) Se i ρ e in P r i m i d e a l , so daß (p + a ) /p n i cht k l e i n i n 
7?/p ist . Z u m G Ω m i t p C m, α Ct m, also F(a ) r\ V(m) = 0, 
g ibt es n a c h V o r a u s s e t z u n g Ideale a 0 , b 0 m i t F ( Û ) C ^ ( Ö 0 ) , 

F ( m ) C £>(b 0 ) u n d £>(û 0 ) ^ £ > ( b 0 ) = 0. E s ist also a0 + a = R, 

b 0 Ct tn u n d a 0 b 0 e in N i l i d e a l . A u s b 0 ρ folgt daher a 0 C p, 
also ρ + α = ^ wie ver langt . 

Folgerung. Werden alle m G ß , razV α Ct m, durch ein reines 

Ideal gestützt, so wird auch a durch ein reines Ideal gestützt. 

B e w e i s . Se i ρ für P u n k t (ii) e in P r i m i d e a l , so daß (ρ + a ) / p 
nicht k l e i n i n R/p ist. E i n m Ε Ω, m i t ρ C πι, α m, w i r d n a c h 
V o r a u s s e t z u n g d u r c h e in reines Idea l gestützt, so daß m/p k l e i n 
i n R/p i st . A u s m + α = R fo lgt daher ρ + α = R. 

Läßt m a n α i n (1.3) al le ( m a x i m a l e n ) Ideale v o n R d u r c h ­
lau fen , so erhält m a n u n m i t t e l b a r die fo lgenden C h a r a k t e r i s i e ­
r u n g e n v o n G e l f a n d r i n g e n , unter denen die Äquivalenz ( i i <-> iv) 
bereits v o n D e M a r c o u n d O r s a t t i i n ([6] T h e o r e m 1.2) be­
wiesen w u r d e . 

Satz 1.4. Für einen Ring R sind äquivalent : 

(i) Jedes (maximale) Ideal wird durch ein reines Ideal 

gestützt. 

(ii) Jedes Primideal liegt in nur einem maximalen Ideal. 

( i i i ) R ist ein Gelfandring. 

(iv) Spec(R) ist ein T^-Raum. 

B e m e r k u n g . W e i l i n e inem k o m m u t a t i v e n R i n g jede S u m m e 
v o n re inen Idealen wieder r e i n ist , k a n n m a n (i) ersetzen d u r c h 
( i ' ) : Jedes z y k l i s c h e Idea l v o n R w i r d d u r c h e in reines Idea l 
gestützt. E i n e e lementare R e c h n u n g zeigt , daß das weiter äqui­
va lent ist m i t (i") : Z u j edem a G R g ib t es E l e m e n t e b} c G R 

m i t (1 — c d) (1 — b (1 — a)) = o. A n d e r e r s e i t s g i l t n a c h M o n k 
([10] T h e o r e m 1), daß R g e n a u d a n n die A u s t a u s c h e i g e n s c h a f t 
hat , w e n n z u j e d e m α G R R i n g e l e m e n t e 7, σ ex is t ieren m i t 
γ = α γ2 u n d (1 — γ α) (ι — σ (ι — α)) = ο. E r g e b n i s : feder 

Austauschring ist ein Gelfandring. 

4 München A k . Sb. 1982 
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E i n R i n g R heißt reinzerfallend, w e n n jedes reine Idea l be­
reits d i r ek ter S u m m a n d ist. B e k a n n t l i c h ist jeder s c h w a c h -
noethersche R i n g re inzer fa l l end (siehe a u c h unsere V o r b e m e r ­
k u n g e n z u 3.5), insbesondere jeder s e m i l o k a l e R i n g . D i e Ä q u i ­
va lenz (i «-> i i i ) des Satzes l iefert also sofort die 

Folgerung. Ein Ring R ist genau dann semiperfekt, wenn R 

ein Gelfandring ist und reinzerfallend. 

Ist z . B . R e in Α-lokaler Integritätsring i m S i n n e v o n M a t I i s , 
so g i l t für jedes ο + r G daß der R i n g R — R\(f) s o w o h l 
P u n k t (ii) i n (1.4) erfüllt als a u c h s e m i l o k a l ist , also n a c h der 
F o l g e r u n g semiper fekt ist. D a m i t h a b e n w i r (was a u c h aus [9] 

T h e o r e m 22 f o lg t ) : Ein Integritätsring ist genau dann h-lokal, 

wenn er eingeschränkt semiperfekt ist. 

A l s weitere A n w e n d u n g ze igen w i r , daß i n j e d e m ^ - M o d u l M 

die M e n g e 
K(M) = {x G M I Rj Ann R{x) ist semiper fekt } 

e inen U n t e r m o d u l b i l d e t : S i n d x, y G Κ {M) u n d r, s Ei R, so 
ist der R i n g RjAnnR(x) ΓΛ Ann^( jy ) e in s e m i l o k a l e r G e l f a n d r i n g , 
also n a c h der F o l g e r u n g wieder semiper fekt , so daß es a u c h der 
F a k t o r r i n g Rj Ann R{r χ + s y) ist , d . h . r χ + s y (Ξ Κ {Μ). D a ­
m i t ist Κ e in , , S o c k e l " i n der K a t e g o r i e der ^ - M o d u l n , d . h . 

f(K(M)) C K(N) für alle / G HomR(M, N) u n d K(U) = U ΓΛ 
K(M) für alle UC M. I h n w o l l e n w i r i m Res t dieses P a r a ­
g r a p h e n u n d i n A b s c h n i t t 2 näher u n t e r s u c h e n . 

Beispiel 1. Ist R ein noetherscher Hilbertring, so ist K(M) die 

Summe aller ar tinse hen Untermoduln von M. 

B e w e i s . Über b e l i e b i g e m R sei L(M) diese S u m m e , u n d 
d a n n ist k l a r L(M) C K(M). Ist u m g e k e h r t R e in H i l b e r t r i n g 
( d . h . RJYci r a d i k a l f r e i für al le Ideale α) u n d χ G K(M), so ist 
i m R i n g R/AnnR(x) jedes P r i m i d e a l s chon m a x i m a l e s Idea l , 
also m i t der Z u s a t z b e d i n g u n g „noethersch" χ G L(M). 

Beispiel 2. Ist R ein nichtlokaler, h-lokaler Integritätsring, so 

ist K(M) der Torsionsuntermodul von M. 

B e w e i s . Über j e d e m n i c h t l o k a l e n Integritätsring R g i l t 
K(M) C T(M), u n d ist R zusätzlich Α-lokal, so fo lgt für jedes 
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χ G T(M), daß AnnR(x) =(= o, also R/AnnR(x) semiper fekt ist, 
d . h . Λ: G Κ {M). 

I m noetherschen F a l l k a n n m a n m e h r über die L a g e von 
K(M) i n M s a g e n : 

Lemma 1.5. Ist R noethersch, so gilt für jedeit R-Modul M : 

(a) Es ist K(M\K(M)) =0, und K(M) ist abgeschlossen in M. 

(b) Genau dann ist K(M) = M, wenn jedes p G Ass(M) in nur 

einem maximalen Ideal liegt. 

(c) Die Klasse der R-Moduln A, mit K( A) — A, ist gegenüber 

wesentlichen Erweiterungen und gegenüber GruppenerWei­

terung en abgeschlossen. 

B e w e i s , (a) folgt u n m i t t e l b a r aus (c), u n d ebenso (c) aus (b), 
d e n n für jeden U n t e r m o d u l A v o n Β g i l t b e k a n n t l i c h Ass ( i ? ) C 
Ass (^ i ) w Ass(B/A)t j a sogar Ass(B) = Ass(A) fal ls A groß i n 
Β ist . 

B l e i b t also (b) zu ze igen. B e i K(M) = M g i l t für jedes p G 
A s s ( A f ) , daß der Integritätsring R/p semiper fekt , also l o k a l ist . 
I n der u m g e k e h r t e n R i c h t u n g ist zunächst R/AnnR(x) e in G e l ­
f a n d r i n g für alle χ G M, d e n n z u AnnR(x) C q C m 2 

wähle m a n e in p C q, das m i n i m a l über AnnR(x) ist, u n d d a n n 
folgt p G Ass(M), also nach V o r a u s s e t z u n g m1 = m 2 . W e i l der 
R i n g RjAnnR(x) zusätzlich re inzer fa l l end ist, ist er schon s e m i ­
per fekt , d . h . χ G Κ (M) wie ver langt . 

Be isp ie le ze igen, daß ohne „noethersch" ke iner der dre i P u n k t e 
g i l t , aber für e n d l i c h erzeugte M o d u l n erhält m a n i m F a l l (b) 
eine weitere B e s c h r e i b u n g : 

Satz 1.6. Für einen endlich erzeugteil R-Modul M sind äqui­

valent : 

(i) Es ist K(M) = M. 

(ii) M ist komplementiert. 

( i i i ) Der Ring R\AnnR(M) ist semiperfekt. 

B e w e i s , ( i i -> i) I n j edem M o d u l M g i l t : H a b e n alle m a x i ­
m a l e n U n t e r m o d u l n von M e in K o m p l e m e n t i n M, so m u ß 

4 
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MjK(M) r a d i k a l v o l l se in . A n d e r n f a l l s hätte m a n e inen Z w i s c h e n ­
m o d u l K(M) C U C M m i t MjU e in fach , d a z u e in K o m p l e m e n t 
V v o n U i n M, u n d d a n n wäre V z y k l i s c h u n d u n z e r l e g b a r , also 
V C K(M). D a s ist aber unmögl ich . - B e i e n d l i c h e r z e u g t e m M 

η 

folgt also K(M) = M. (i -> i i i ) I n Μ = Σ R x i s i n d a l l e R i n g e 
i = ι 

RjAnnR(xt) n a c h V o r a u s s e t z u n g semiper fekt , also a u c h der R i n g 
η 

RI AnnR(xt) = Rj Ann R{M)y d e n n er ist e in s e m i l o k a l e r 
i = ι 

G e l f a n d r i n g , ( i i i —> i i ) k l a r . 

Folgerung. Ist M endlich erzeugt und komplementiert, so ist 

auch jeder endlich erzeugte Untermodul komplementiert. Insbe­

sondere ist M supplementi er t. 

2. α - lokale Moduln. D i e w o h l b e k a n n t e Primärzerlegung v o n 
T o r s i o n s m o d u l n über D e d e k i n d r i n g e n - d . h . T(M) = 0 Tm(M) 

m 

m i t m G Ω - w u r d e v o n M a t l i s (siehe [9] T h e o r e m 22) a u f 
M o d u l n über Λ-lokalen Integritätsringen vera l l geme iner t . W i r 
w o l l e n i n d iesem A b s c h n i t t ze igen , daß sie sogar über be l i eb igen 
R i n g e n g i l t , w e n n m a n T(M) d u r c h unser K(M) ersetzt u n d 
Tm(M) d u r c h den größten m - l o k a l e n A n t e i l (siehe 2.3). 

D a z u heiße, z u e i n e m be l ieb igen Idea l α von R, e in 7 ? -Modul 
M α-lokal, w e n n aus A n n ^ ( ^ : ) C m (mit χ G M, m G Ω) stets 
folgt α C πι. D a s ist äquivalent d a m i t , daß Mm = ο ist für al le 
m G Ω m i t α τη, u n d aus dieser B e s c h r e i b u n g fo lgt , daß die 
K l a s s e der α-lokalen 7 ? -Moduln gegenüber U n t e r m o d u l n , F a k ­
t o r m o d u l n , G r u p p e n e r w e i t e r u n g e n u n d d i r e k t e n S u m m e n abge ­
schlossen ist. 

Lemma 2.1. 

(a) Ein endlich erzeugter Modul M ist genau dann a-lokal, 

wenn α M klein in M ist. 

(b) Ein artinscher Modul M ist genau dann α-lokal, zvenn er 

α-primär ist, d. h. wenn Μ — Σ AnnM(fll) ist. 
i = 1 
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B e w e i s , (a) Für jeden α-lokalen M o d u l M g i l t α M C Ra(-dZ), 
d e n n aus α m folgt m + AnnR(x) = R für alle χ G M, so daß 
m M = M ist. F a l l s zusätzlich M e n d l i c h erzeugt ist, muß also 
mi t R a ( ^ f ) a u c h α M k l e i n i n M se in . B e i der U m k e h r u n g folgt 
aus α Ct m zuerst m Μ + α M = M, also m M = M, so daß 
wegen e n d l i c h erzeugt a u c h alle U n t e r m o d u l n v o n M m- te i lbar 
s i n d , d . h . AnnR(x) m für alle χ G M. (b) B e i be l i eb igem M 

oo 

ist der U n t e r m o d u l Σ AnnM(al) α-lokal, d e n n ae C A n n ^ ( ^ ) C πα 
ι 1 

i m p l i z i e r t α C tn. Ist aber M a r t i n s c h u n d α-lokal, so g i l t für 
jedes χ G Μ, daß der R i n g R = R\ArmR{x) end l i che Länge 
hat u n d ä i n se inem R a d i k a l l iegt . A u s äe = ο folgt χ G 

Α η η Λ / ( α ί ) wie gewünscht. 

Lemma 2.2. 5Vz' M α-lokal und werde α durch ein reines Ideal 

in R gestützt. Dann ist jede wesentliche Überdeckung und jede 

wesentliche Erweiterung von M wieder a-lokal. 

B e w e i s . Ist 5 eine m u l t i p l i k a t i v abgeschlossene T e i l m e n g e 
v o n R, so sagen w i r e in 7 ? -Modul M sei 5 - te i lbar (bzw. S - to rs i ons -
frei) , w e n n für jedes s G -S die M u l t i p l i k a t i o n m i t s : M —> M 

s u r j e k t i v (bzw. in jekt iv ) ist. S p e z i e l l g i l t für 5 = ι + α, daß 
jeder α-lokale M o d u l M s owoh l 5 - te i lbar als a u c h S- tors ions fre i 
ist, d e n n für alle χ G M u n d s G S* ist (s) + Ann^(^r) = R. 1st 
n u n Ν eine wesentl iche Überdeckung (bzw. E r w e i t e r u n g ) v o n 
M, so ist auch Ν 5 - te i lbar (bzw. 5 - torsionsfrei ) , u n d es folgt 
a' C AnnR(y) für alle y EL N. W e i l n a c h V o r a u s s e t z u n g α/α' 
k l e i n i n Rja' ist, heißt das α C ni fal ls AnnR(y) C ni, d . h . Ν ist 
wie behauptet α-lokal. 

Jeder M o d u l M besitzt e inen größten α-lokalen Untermoduly 

den w i r m i t Ka(M) beze i chnen. Z u m B e i s p i e l l iefert der Beweis 
oo 

v o n (2.1), daß i n e inem ar t inschen M o d u l Ka(M) — £ Α Η ΗΛ /( α 0 
i = 1 

ist , u n d daß i n e inem r a d i k a l f r e i e n M o d u l Ka(M) = A n n ^ ( a ) 
ist . B e i be l i eb igem M ist Km(M) = {x G Μ \ χ = ο oder das 
e inz ige m a x i m a l e Idea l über Α η η ^ ( ^ ) ist m } . Dieser U n t e r m o d u l 
w u r d e v o n B r a n d a l i n ([3] p. 18) eingeführt u n d dort m i t 
M(m) bezeichnet. 
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Satz 2.3. Für jeden Modul M gilt K(M) = 0 Km{M). 
m e ß 

B e w e i s . D i e D i r e k t h e i t zeigt m a n wie i m k lass i s chen F a l l 
der Primärzerlegung: Ist x1 + · · · + x„ = ο m i t x- G Km(M), 

mi φ ttiy für alle i φ j , so folgt für jedes ι < j < n, daß 

Π A n n*0O C A n n ^ (*,.), 
i = 1 

also ΛΓ. = ο ist . Natürlich l iegen alle Km(M) i n K(M)> d e n n für 
ο φ x G Km(M) ist der R i n g Rj Ann R{x) sogar l o k a l . Ist u m ­
gekehrt ο φ ^ Ε Κ (M) y so zerlege m a n den semiper fekten R i n g 
RjAnnR(x) i n e in endl iches P r o d u k t v o n l o k a l e n R i n g e n , also 

Rx = 0 Ry.y w o r i n jedes RjAnnR(yt) l o k a l sei m i t d e m e i n z i g e n 
i = ι 

m a x i m a l e n Idea l r n J A n n ^ ^ - ) . E s folgt yt G Kmi (M) für al le 
ι < i < n. 

D u r c h diesen Zer l egungssa tz läßt s i ch , wie w i r jetzt ze igen 
w o l l e n , das S t u d i u m v o n k o m p l e m e n t i e r t e n M o d u l n über noe-
therschen R i n g e n ganz a u f den l o k a l e n F a l l zurückführen. 
D a z u genügt es, daß R e in sog. Jf-Ring ist , d . h . 

HomR(E(Rlm1)t E(R/m2)) = ο 

für alle m a x i m a l e n Ideale φ m 2 . N u n ist HomR(MiE(Rlm2)) 
= ο äquivalent m i t Mm% = o, also R genau dann ein H-Ring, 
wenn alle E{Rj\x\) m-lokal sind (m G Ω). B e k a n n t l i c h ist jeder 
noethersche R i n g e in / / - R i n g , ebenso jeder G e l f a n d r i n g n a c h 
(2.2), u n d n a c h d e m K r i t e r i u m von C a m i l l o ([4] P r o p o s i t i o n 3) 
a u c h jeder ^ - l o k a l e Integritätsring. 

Lemma 2.4. Sei R ein Η-Ring und Β —> C ein wesentlicher 

R-Epimorphismus. Dann ist für alle m G Ω auch Bm —> Cm 

ein wese?ttlicher Rm-Epimorphismus. 

B e w e i s . Präziser g i l t für e inen U n t e r m o d u l U v o n M: G e n a u 
d a n n ist U k l e i n i n M, w e n n Um k l e i n i n Mm ist für alle m G Ω. 

D a s w u r d e i n ([14] L e m m a 4.1) über noetherschen R i n g e n ge­
zeigt , u n d der dor t ige Beweis , den w i r hier n i cht r e p r o d u z i e r e n 
w o l l e n , benützt n u r fo lgende E i g e n s c h a f t von R: Ist X Ç_ Y C 
E(R/m) u n d (Y/X)m = o, so folgt YjX = o. D a s g i l t aber 
of fensichtl ich a u c h über / / - R i n g e n . 
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Ist unter den V o r a u s s e t z u n g e n des L e m m a s C zusätzlich a-
l o k a l , so folgt a u c h Bm = ο für alle m £ Ζ m i t α (J m, d . h . w i r 
haben die 

Folgerung. Ist R ein H-Ring, so ist jede wesentliche Uber­

deckung eines α-lokalen R-Moduls wieder a-lokal. 

Satz 2.5. Uber einem H-Ring ist ein Modul M genau dann 

komplementiert, wenn M — φ Km(M) ist und wenn alle Km(M) 
me Ω 

komplementiert sind. 

B e w e i s . Ist M k o m p l e m e n t i e r t , so ist wegen (2.3) n u r noch 
M — K(M) zu zeigen (denn d a n n s i n d natürlich auch die Km(M) 

als d i rekte S u m m a n d e n k o m p l e m e n t i e r t ) . Wäre Μ φ K(M), so 
gäbe es e inen Z w i s c h e n m o d u l K(M) C U ' !j M u n d eine E i n ­
b e t t u n g M/U —* E(Rjm) für e in rn Ε Ω, d a z u e in K o m p l e m e n t 
V v o n U i n M, also e inen wesent l i chen E p i m o r p h i s m u s V—* MjU. 

N a c h der letzten F o l g e r u n g wäre d a n n V m - l o k a l , VC Km{M) 

C U, u n d das ist n i cht mögl ich. 
H a t m a n u m g e k e h r t die angegebene Z e r l e g u n g , d . h . Μ = φ Mt-

m i t M- = Kmi(M) k o m p l e m e n t i e r t , so folgt wieder wegen (2.3) 

für alle U n t e r m o d u l n X von M: 

(*) X = Σ * ^ Mt. 

D a m i t ist M k o m p l e m e n t i e r t : Z u U C M wähle m a n , für 
jedes i G A ein K o m p l e m e n t Vi v o n U r\ M{ i n M{, u n d d a n n 
zeigt (*), daß V = Σ Vi e m K o m p l e m e n t v o n U i n M ist. 

W e i l also über e inem / / - R i n g für jeden k o m p l e m e n t i e r t e n 
M o d u l Μ = Κ (M) g i l t , erhält m a n u n m i t t e l b a r : 

Folgerung 1. Ist R ein H-Ring und M ein beliebiger R-Modul, 

so ist Κ(M) die Sum?ne aller komplementierten U?ttermoduln 

von M. 

Folgerung 2. Ist R ein Η-Ring und M komplementiert, so gilt : 

(a) Jeder endlich erzeugte Untermodul von M ist wieder kom­

plementiert, (b) Ist M/U endlich erzeugt, so hat U genügend 

viele Ko7nplemente in M. 
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W e i l jeder reduz ier te k o m p l e m e n t i e r t e M o d u l k o a t o m a r ist, 
u n d w e i l u m g e k e h r t über e i n e m noetherschen l o k a l e n R i n g jeder 
k o a t o m a r e M o d u l A n a c h ([14] Sa tz 2.4) k o m p l e m e n t i e r t ist 
(denn er ist v o n der F o r m A = Ax + A2 m i t A1 e n d l i c h erzeugt 
u n d m ' A2 = o), g i l t we i ter : 

Folgerung 3. Über einem noetherschen Ring R ist ein R-Modul 

M genau dann reduziert und komplementiert\ wenn M = Κ (M) 

ist und M koatomar. 

Über den r a d i k a l v o l l e n A n t e i l P(M) eines k o m p l e m e n t i e r t e n 
M o d u l s M ist v i e l wen iger b e k a n n t . I m m e r h i n ist er noch k o m ­
plement ier t , d e n n es g i l t a l l g e m e i n e r : 

Lemma 2.6. Sei R noethersch und M komplementiert. Dann ist 

auch jeder Zwischenmodul P(M) Çi X Çi M komplementiert. 

B e w e i s . Se i A e in K o m p l e m e n t v o n P(M) i n M. D a n n ist 
m i t M\P(M) a u c h A k o a t o m a r , also i n (A r^X) + P{M) = X 

der erste S u m m a n d n a c h F o l g e r u n g 3 bereits k o m p l e m e n t i e r t . 
B l e i b t z u ze igen, daß es a u c h der zweite i s t : Z u UC P(M) sei V 

ein K o m p l e m e n t v o n U + A i n M. D a n n ist m i t M\A a u c h V 

r a d i k a l v o l l u n d i n V + U + Α PCM) = P(M) der dr i t te 
S u m m a n d k l e i n i n P(M), also V s chon e in K o m p l e m e n t v o n U 

i n P(M). 

3. Über den Zusammenhang zwischen reinen und koabgeschlossenen 
Untermoduln. 

W i r wo l l en i m zwei ten T e i l dieser A r b e i t die M o d u l n unter ­
suchen , i n denen jeder U n t e r m o d u l n i cht (entsprechend 1.4) 
d u r c h e inen re inen , s ondern n u r d u r c h e inen koabgeschlossenen 
U n t e r m o d u l gestützt w i r d . D a b e i heißt Ux koabgeschlossen i n M, 

w e n n aus WJX k l e i n i n M\X stets fo lgt ί/JX = o. Of fenbar 
w i r d U genau d a n n d u r c h e inen koabgeschlossenen U n t e r m o d u l 
Ux gestützt, w e n n die M e n g e {YC U \ UjY k l e i n i n M/Y} e in 
m i n i m a l e s E l e m e n t hat . 

I n v ie len Fällen s t i m m e n n u n die koabgesch lossenen U n t e r ­
m o d u l n von M m i t den r e i n e n überein, u n d das H a u p t e r g e b n i s 
(3.4) dieses A b s c h n i t t e s sagt , daß das über noetherschen R i n g e n 
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für j eden f lachen M o d u l M zutri f ft . W i r wissen n i cht , w a n n i n R 

selbst d ie koabgeschlossenen Ideale m i t den re inen überein­
s t i m m e n . E s ist das wenigstens d a n n der F a l l , w e n n R e in 
/ / - R i n g ist (3.2) oder wenn R end l i che K r u l l d i m e n s i o n hat (3.6). 

Zuers t e inige no twendige bzw . h inre i chende B e d i n g u n g e n d a ­
für, daß e in U n t e r m o d u l koabgeschlossen i s t : 

Lemma 3.1. Sei U ein Untermodul von M. 

(a) Ist M koatomar, so gilt : Genau dann ist U koabgeschlossen 

in M y wenn U selbst koatomar ist U7id w\U — U r\W\Mfür 

m G Ω. 

(b) Ist M endlich erzeugt und U rein in My so ist U auch ko­

abgeschlossen in M. 

(c) Ist R noethersch und U rein in My so ist U auch koabge-

schlosse?t in M. 

(d) Ist R dedekindschy so gilt : Genau dann ist U koabgeschlossen 

in My wenn \x\U = U ΓΛΪΪΧΜ ist für alle m G Ω. 

B e w e i s . A u s der Koabgesch lossenhe i t a l l e i n folgt mU = 

U r\VC\M für alle m G ß , d e n n b e k a n n t l i c h ist \\\U — 

Π {X C U I U\X ^ R/m}, u n d für jedes dieser X g i l t n a c h 
V o r a u s s e t z u n g U\X r\ m(M/X) = o, also U π m M C Χ. 

(a) Ist U koabgeschlossen i n My so ist U k o a t o m a r , d e n n aus 
U\X r a d i k a l v o l l folgt U\X k l e i n i n M\Xy also U\X = o. - Se i 
n u n u m g e k e h r t U k o a t o m a r u n d mU = U r\\wM für alle 
m G Ω (M bel iebig) : A u s U/X k l e i n i n M\X folgt m (U/X) = U\X 

für alle m G Ω} so daß U/X r a d i k a l v o l l , also N u l l ist. 

(b) N a c h ([15] L e m m a 3.2) ist U k o a t o m a r , so daß w i r n a c h 
eben fer t ig s i n d . 

(c) Gäbe es ein Χ ξ U m i t U/X k l e i n i n M/Xy so könnten w i r 
g l e i ch U/X als U n t e r m o d u l eines E(R/\\\) a n n e h m e n , also n a c h 
M a t l i s a r t i n s c h , insbesondere a lgebra i s ch k o m p a k t n a c h W a r -
f i e l d ([11] P r o p o s i t i o n 9). D a n n wäre aber U/X d i r ek ter S u m ­
m a n d i n M/Xy u n d das ist n i cht mögl ich . 

(d) W i e i n (a) folgt aus U/X k l e i n i n M/Xy daß U/X r a d i k a l ­
v o l l ist. U b e r e inem D e d e k i n d r i n g ist aber d a n n U/X i n j e k t i v , 
also d i r ek ter S u m m a n d u n d d a h e r N u l l . 
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B e i e inem Idea l α von R ist der F a k t o r α /α 2 g e n a u d a n n r a d i ­
k a l v o l l , w e n n m a = a r\ m ist für alle m £ Ω, u n d so liefert 
(a) die 

Folgerung. Ein Ideal α ist genau dann koabgeschlossen i?i R, 

wenn α koatomar ist und α 2 = α. 

Lemma 3.2. Sei R ein Η-Ring und U ein Untermodul von M. 

Genau dann ist U koabgeschlossen iii M, wenn alle Um koab­

geschlossen in Mm sind (m £ Ω). 

B e w e i s . S i n d al le Um koabgeschlossen u n d U\X k l e i n i n 
M\X, so folgt m i t (2.4), daß {U\X)m k l e i n i n (M/X)m ist , d . h . 
{UjX)m = ο für alle m £ Ω, also UjX = ο. Z u r U m k e h r u n g 
sei jetzt Um n i cht koabgeschlossen i n Mm, d . h . X C U mi t 
ο φ (U\X)m k l e i n i n (M/X)m. W e i l H o m ^ c V / ^ f , E(R/m)) 4= ο 
u n d Ξ (R/m) m - l o k a l ist, erhält m a n e in X C Y $ £/ m i t c 7 / F 
n i - l o k a l , u n d d a n n ist U/Y k l e i n i n MjY (also wie gewünscht U 

nicht koabgeschlossen i n M): V -\- U = M m i t YÇ_ V i m p l i ­
ziert Vm + J f m = Mm, also (MjV)m = o ; andererseits ist 
^ / F ^ U\V r\U als F a k t o r von wieder m - l o k a l , also 
sogar M\V = o. 

Folgerung. Ist R ein H-Ring und M endlich erzeugt, so gilt : 

(a) Genau dann ist M flach, wenn M keine wese?ttlichen Uber­

deckungen hat. (b) Ist M flach, so stimmen die koabgeschlossenen 

Untermoduln vo7t M mit den reinen üb er ein. 

B e w e i s . U b e r b e l i e b i g e m R g i l t wegen (3.1, b) für e inen 
e n d l i c h erzeugten f lachen M o d u l M, daß jeder wesent l i che E p i m . 
Β —--> M schon ein I som. ist (denn Β ist w ieder e n d l i c h er­
zeugt u n d Ke β s owoh l re in als auch k l e i n i n B, also N u l l ) u n d 
daß i n M jeder reine U n t e r m o d u l koabgeschlossen ist. 

Ist u m g e k e h r t U koabgeschlossen i n M u n d R zusätzlich e in 
/ / - R i n g , so g i l t nach (3.2) für jedes m G Ω, daß a u c h Um k o ­
abgeschlossen i n Mm ist, j a sogar d i r e k t e r S u m m a n d : Für jedes 
K o m p l e m e n t Vm von Um i n Mm ist nämlich Vm r\ Um k l e i n 
i n Um, also auch Um e in K o m p l e m e n t v o n V m , u n d we i l Mm 

sogar frei ist , folgt Vm φ Um = Mm. D a m i t ist M\U l o k a l f re i , 
M/U f lach, U r e in in M. 
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H a t schließlich e in e n d l i c h erzeugter R-Moau\ M ke ine 
wesent l i che Überdeckungen u n d ist R e in / / - R i n g , so folgt m i t 
e i n e m e n d l i c h erzeugten freien M o d u l F u n d e inem E p i m . 
F — M , daß Ke π koabgeschlossen , also n a c h eben sogar 
r e i n i n F ist, d . h . M = F/Ke π f lach wie behauptet . 

Ü b e r noetherschen R i n g e n gelten die A u s s a g e n (a) u n d (b) 
der F o l g e r u n g auch ohne die V o r a u s s e t z u n g „endl ich e r z e u g t " . 
D i e Beweis idee besteht d a r i n , i m l o k a l e n F a l l von f lachen R-

M o d u l n (und i h r e n koabgeschlossenen U n t e r m o d u l n ) v i a M a t l i s -
Dualität au f in jekt ive jÇ-Moduln überzugehen, i n denen die 
entsprechenden abgeschlossenen U n t e r m o d u l n b e k a n n t l i c h a b ­
s p a l t e n . 

Hilfssatz 3.3. Sei (R, m) noethersch und lokal mit Vervollstän­

digung R, sei E die injektive Hülle von R\\\\ und M° = 

HomR(M, E). Dann gilt für jeden Untermodul U von M : 

( ι ) Genau dann ist U\X klein in M\X, wenn AnnM»(U) 

R-groß in AnnMo(X) ist. 

(2) Genau dann ist U koabgeschlossen in M, wenn AnnM»(U) 

R-abgeschlossen in M° ist. 

B e w e i s . N a c h M a t l i s ([8] T h e o r e m 3.7) ist R = EnaR(E), so 
d a ß die .ß-Struktur a u f M° e in fach die Hintereinanderausfüh-
r u n g af ist (a G / (Ξ M°). W i r behaupten , daß es zu j e d e m 
A U n t e r m o d u l H von M°, m i t A n n l / 0 ( c 7 ) $ Jf, e in U1 £ U g ib t 
m i t A n n , l / 0 ( c 7 1 ) C H. Z u m Beweis sei / G /7, / £ £ A n n 1 / 0 ( c 7 ) u n d 
L\ — U r\ Ke f: K l a r ist d a n n Ux J U, u n d zu j edem g G A n n 1 / 0 

( ί / i ) , d . h . U π Kef C U Ke g, g ib t es e in α G ß m i t g \ U = 

α ( / I U), d . h . g — α / G A n n v . ( £ / ) , so daß folgt g G H. 

(1) Ist Α η η ; 1 / ο ( ί / ) R-groß i n Α η η Λ / · ( Ζ ) u n d V + U = M m i t 
X C V, so folgt A n n y l / , ( F ) ΓΛ Α η η Λ / . ( ί / ) = o mi t A n n 1 / 0 ( F ) 
C A n n r ( Z ) , also A n n y l / 0 ( F ) = 0 , V — M. Ist u m g e k e h r t 
k l e i n i n A f / ^ f u n d ο φ / G A n n ^ 0 ( J Q , so muß / ( £ / ) ξ sein 
u n d daher e in von N u l l verschiedener H o m o m . λ: Bi f > E 

ex is t ieren m i t λ ( / ( £ / ) ) = o. D e r läßt s i ch zu e inem H o m o m . 
α : E -> E hochheben , u n d d a m i t folgt ο AnnM0(U). 

(2) Ist AnnMo(U) ^ - a b g e s c h l o s s e n i n M° u n d U/X k l e i n i n 
M/X, so folgt nach eben Α η η ι / 0 ( ί / ) = AnnMo(X)y also U\X = o. 
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Ist aber A n n y l / 0 ( £ / ) n i cht ^ - a b g e s c h l o s s e n i n M°, d . h . R-groß 

i n e inem echten Z w i s c h e n m o d u l / / , so hat m a n n a c h der V o r ­
b e m e r k u n g e in U1

<^_ U m i t A n n j l / e ( i / 1 ) C H. W i e d e r m i t (1) ist 
daher UjU1 k l e i n i n M\UX, also U n i ch t koabgeschlossen i n M. 

Folgerung. Sei R noethersch und lokal mit Ver vollständigling 

R. Genau dann ist β : Β > C ein wesentlicher R-Epimorphis-

mus, wenn ι ® β : R ® Β > R ® C ein wesentlicher R-Epi-

morphismus ist. 

B e w e i s . M i t den B e z e i c h n u n g e n des H i l f s s a t z e s hat m a n für 
jeden 7 ? -Modul M e inen k a n o n i s c h e n R-\s»om. ωΜ : M° > 

H o r n A (R ® M, E), wobe i E als ^ - M o d u l a u c h die in j ek t ive 
Hülle des Restklassenkörpers v o n R ist . 

Ist n u n β sur j ek t iv u n d U — Ke β k l e i n i n B, so w i r d i n der 
e x a k t e n F o l g e ο > C° > B° > £ /° >o der erste P f e i l 
n a c h ( l ) e in wesent l i cher ^ - M o n o m . , u n d das g i l t v i a ω a u c h 
für den ersten P f e i l der ^ - e x a k t e n F o l g e 

ο > H o m ^ f C,E) > H o r r i g f B,E) > 

H o m ^ ( ^ f U,E) >o. 

W i e d e r wegen (1) ist daher ι ® β e in wesent l i cher ^ - E p i m . 
wie behauptet . - D i e U m k e h r u n g geht ebenso, d e n n aus der 
Surjektivität v o n ι ® β fo lgt die v o n ß , so daß m a n diese lben 
e x a k t e n F o l g e n v e r w e n d e n k a n n . 

Satz 3.4. Sei R noethersch und M ein R-Modul. 

(a) Genau dann ist M flach, wenn M keine wesentlichen Uber­

deckungen hat. 

(b) Ist M flach, so stimmen die koabgeschlossenen Untermoduht 

von M mit den reinen üb er ein. 

B e w e i s . Se i i m 1. S c h r i t t R zusätzlich l o k a l u n d R, E u n d 
M° wie i m H i l f s s a t z . E s ist w o h l b e k a n n t , daß M g e n a u d a n n 
flach ist , w e n n M° als ^ - M o d u l i n j e k t i v ist . A n d e r e r s e i t s ze igt 
die treuf lache R i n g e r w e i t e r u n g R > R, daß M a u c h g e n a u 
d a n n flach ist , w e n n es R ® M als R-Moau\ ist ([2] c h a p . I, § 3, 
P r o p o s i t i o n 6), d . h . w e n n WomR{R® M, E) ^ M° als R~ 

M o d u l i n j e k t i v ist . 
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Ist daher M flach u n d U koabgeschlossen i n M, so ist n a c h 
(3.3,2) m i t M° a u c h A n n ^ , ( ( / ) ^ (MjU)Q als ^ - M o d u l i n j e k t i v , 
d . h . M\U flach u n d daher U r e i n i n M. 

Sei n u n i m 2. S c h r i t t R n u r m e h r noethersch . D a n n s i n d 
nach (3.1, c) i n j e d e m i ? - M o d u l die re inen U n t e r m o d u l n k o a b ­
geschlossen. Ist aber M flach u n d U koabgeschlossen i n M, so 
ist a u c h Mm flach u n d Um n a c h (3.2) koabgeschlossen i n Mm, 

also n a c h eben sogar r e i n i n Mm. D a s g i l t für alle m £ Ω, so daß 
M\U flach u n d U r e i n i n M ist , d . h . w i r haben (b) gezeigt . W i e 
i n der F o l g e r u n g z u (3.2) e rg ibt s i ch d a m i t a u c h (a). 

Während i n j e d e m R i n g R d ie re inen Ideale koabgeschlossen 
s ind (das sieht m a n u n m i t t e l b a r , aber a u c h m i t (3.1, b)), haben 
w i r für die U m k e h r u n g b isher n u r zwei T e i l a n t w o r t e n : 

1) Ist R schwach-noethersch, so ist jedes koabgeschlossene Ideal 

bereits direkter Summand. 

2) Ist R ein H-Ring, so ist jedes koabgeschlossene Ideal rein. 

D i e zweite A u s s a g e ist j a e in S p e z i a l f a l l der F o l g e r u n g z u (3.2), 

u n d i m ersten F a l l w i r d α d u r c h e in e n d l i c h erzeugtes Idea l a x 

gestützt, es folgt α = αχ i dempotent n a c h der F o l g e r u n g zu (3.1), 

also û d i rek ter S u m m a n d . 

E i n e n dr i t t en F a l l - d i m ( ^ ) < 0 0 - w o l l e n w i r jetzt d u r c h 
eine A b s c h w ä c h u n g des Begrif fes „koabgesch lossen" b e h a n d e l n . 
I n e i n e m be l ieb igen R i n g R heiße e in Idea l α ausgezeichnet, 

w e n n aus α C Vc stets folgt α C c. Of fenbar ist jedes k o a b g e ­
schlossene Ideal ausgezeichnet (denn i m R i n g R = Rja r\ c ist 
ΰ e in N i l i d e a l , also N u l l ) u n d jedes ausgezeichnete Idea l 
idempotent . W e i t e r g i l t : 

Lemma 3.5. Sei a ein ausgezeichnetes Ideal von R. 

(a) Ist I ein Ideal von R, so ist auch ä ausgezeichnet im Ring 

R = R/I. 

(b) Ist S eine multiplikativ abgeschlossene Teilmenge von R, 

so ist auch a R s ausgezeichnet im Ring Rs. 

(c) Ist R ein Integritätsring und α φ R von endlicher Höhe, 

so folgt bereits α = ο. 
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B e w e i s , (a) u n d (b) s i n d k l a r , u n d bei (c) ze igen w i r zuerst 
d u r c h I n d u k t i o n über n\ Ist R e in l o k a l e r Integritätsring mi t 
aim(R) = ?t, so hat R ke ine ausgeze ichneten Ideale . B e i η = ο 
ist n ichts z u ze igen, u n d hätte m a n bei η — ι e in ausgeze i ch ­
netes Ideal ο Φ α =4= R, so folgte m i t o + ^ Ë û , daß α C V(x), 
also α = (or) idempotent wäre, was unmögl ich ist. Se i also η > ι 
u n d Po φ p x J . . . ^ p„ eine P r i m i d e a l k e t t e m a x i m a l e r Länge . 
Ist α =t= R e in ausgezeichnetes Idea l i n R, so a u c h ä i m (n— 1) -
d i m . l o k a l e n Integritätsring R = R/Vi, u n d es folgt n a c h I n ­
d u k t i o n ä = o, d . h . a C P i - E b e n s o ist aRVi e in ausgeze i ch ­
netes Ideal i m ι — d i m . Integritätsring RPi, also a R P i = o f 

α = ο wie behauptet . 
D a m i t ist a u c h der a l lgemeine F a l l e r l e d i g t : Ist α =f= R ausge­

zeichnet v o n der H ö h e n, so wähle m a n e in α C Ρ m i t h(p) = n, 
u n d w e i l wieder n a c h (b) ûRp ausgezeichnet i n Rp ist, folgt nach 
eben α Rp = o, d . h . wie gewünscht α — ο. 

Satz 3.6. Hat R endliche Krulldimension, so stimmen die 

koabgeschlossenen Ideale von R mit de?z reinen über ein. 

B e w e i s . M i t d e m vorhergehenden L e m m a ist fast n ichts 
m e h r z u ze igen. S o g a r jedes ausgezeichnete Idea l α ist r e i n , d e n n 
es ist a C Va' ( dami t f e r t ig ) : Ist ρ m i n i m a l über α', so folgt 
n a c h (1.2, b) ρ + α C in für e in m G Ω, u n d daher ist α i m 
Integritätsring R = R/p e in ausgezeichnetes Idea l m i t h(a) < 
A (m) < 0 0 . N a c h (3.5, c) folgt ä = o, d . h . a C P-

4. g-Moduln über Dedekindringen. W i r d jeder U n t e r m o d u l U v o n 
M d u r c h e inen koabgeschlossenen U n t e r m o d u l U1 gestützt, so 
sagen w i r M sei e in g-Modul. Natürlich hat jeder s u p p l c m e n -
tierte M o d u l diese E i g e n s c h a f t : Ist V e in K o m p l e m e n t v o n U 
i n M u n d [/1 e in K o m p l e m e n t v o n V in M m i t Ux C so 
leistet Ux das Gewünschte. D i e U m k e h r u n g g i l t i . a l l g . n i c h t , 
d e n n jeder G e l f a n d r i n g ist n a c h (1.4) e in ^ - M o d u l , b r a u c h t aber 
( z . B . R = C(I)) n i cht supp lement ier t zu se in . 

Über D e d e k i n d r i n g e n ist aber jeder ^ - M o d u l bereits s u p p l e ­
ment ier t (4.2). T i e f e r l i e g e n d - u n d w i r z iehen daraus eine R e i h e 
v o n F o l g e r u n g e n - ist das H a u p t e r g e b n i s (4.5), das für e inen 
e inze lnen U n t e r m o d u l Ut w e n n n u r MjU e n d l i c h erzeugt ist , 
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h i n r e i c h e n d e (und i n v ie len Fällen a u c h notwendige) B e d i n g u n ­
gen dafür ang ib t , daß U d u r c h e inen koabgeschlossenen U n t e r ­
m o d u l U1 gestützt w i r d . 

Lemma 4.1. Sei R schwach-noethersch und M ein g-Modul. 

(a) Es ist K{M) + P(M) = M. 

(b) MjRa(M) ist halbeinfach und MjP{M) supplementiert. 

(c) jeder Untermodul U von M, mit M/U endlich erzeugt, hat 

genügend viele Komplemente in M. 

B e w e i s . A u c h ohne „schwach-noethersch" g i l t für den g-

M o d u l M : Ist U C M u n d besitzt U selbst ke ine koabgesch los ­
senen U n t e r m o d u l n , so ist U k l e i n i n M oder unzer l egbar . F a l l s 
nämlich U n i cht k l e i n i n M ist , muß der koabgeschlossene U n t e r ­
m o d u l Ulf der U i n M stützt, m i t U übereinstimmen, u n d d a n n 
ist U selbst e in ^ - M o d u l , also sogar unzer l egba r . 

A n d e r e r s e i t s besitzt e in schwach-noetherscher R i n g R die f o l ­
gende E i g e n s c h a f t : 

(**) Z u j edem z y k l i s c h e n ^ - M o d u l Β g ibt es eine Z e r l e g u n g 
Β = Bx + . . . + Rn, i n der jedes der Bi selbst ke ine 
koabgeschlossenen U n t e r m o d u l n hat, 

u n d w i r werden b e i m Beweis des L e m m a s n u r diese E i g e n s c h a f t 
(**) benutzen . 

(a) Zunächst ist Ra(M)/P(M) k l e i n i n M\P{M), denn Ra(M) 

w i r d d u r c h e inen koabgeschlossenen U n t e r m o d u l A gestützt, 
der ist r a d i k a l v o l l , so daß aus A C P(M) die B e h a u p t u n g folgt . 
B l e i b t also K(M) + Ra(M) = M zu z e i g e n : Z u j edem χ G M 

hat m a n eine Z e r l e g u n g Rx — Bx + . . . + Bn wie i n (**), u n d 
fal ls Bt Cj; Ra(M), ist n a c h der V o r b e m e r k u n g B- u n z e r l e g b a r 
u n d z y k l i s c h , also BtC K(M). 

(b) A l s F a k t o r m o d u l von K(M) ist M/Ra(M) h a l b e i n f a c h . A l s 
wesent l iche Überdeckung v o n M/Ra(M) ist daher M = MjP{M) 

k o a t o m a r u n d s c h w a c h - k o m p l e m e n t i e r t . A u ß e r d e m ist M wieder 
e in ^ - M o d u l : Jeder Z w i s c h e n m o d u l P(M) C U C M w i r d d u r c h 
e inen koabgeschlossenen U n t e r m o d u l Ux gestützt, u n d natürlich 
ist d a n n ÜjÜ1 k l e i n i n MjÜ1 sowie xnÜ1 = Û1 r\ m M für alle 
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m G ß ; w e i l n u n Ü1 als F a k t o r m o d u l v o n UJPCU^) k o a t o m a r 
ist, ist es n a c h (3.1, a) a u c h koabgeschlossen i n M. E i n s c h w a c h ­
k o m p l e m e n t i e r t e r £--Modul ist aber (siehe den Beweis des näch­
sten Satzes) bereits supp lement ie r t . 

(c) Ist U wie angegeben u n d X + U = M, so k a n n m a n 
g le i ch X koabgeschlossen i n M a n n e h m e n . D a n n ist a u c h X e in 
^ - M o d u l , X\K(X) als F a k t o r v o n P(X) r a d i k a l v o l l , XjX rs U 

n a c h V o r a u s s e t z u n g e n d l i c h erzeugt , also Xx + (X r\ U) = X 

m i t XxCL e n d l i c h erzeugt . N a c h (1.6) ist n u n X1 k o m p l e ­
ment ier t , u n d e in K o m p l e m e n t v o n Xx r\ U i n Χλ ist d a n n auch 
eines v o n U i n M, entha l ten i n X wie gewünscht. 

Folgerung. Ist R schwach-noethersch und M ein g-Modul, so 

ist jeder endlich erzeugte Faktormodul supplementiert. 

Satz 4.2. Uber einem Dedekindring ist jeder g-Modul bereits 

supplementiert. 

B e w e i s . W i r zeigen über e inem be l ieb igen R i n g R: E i n 
M o d u l M ist (genau) d a n n supp lement i e r t , w e n n er die dre i 
f o lgenden B e d i n g u n g e n erfüllt (1) M ist e in ^ - M o d u l . (2) Mj 

Ra(M) ist h a l b e i n f a c h . (3) Jeder r a d i k a l v o l l e koabgeschlossene 
U n t e r m o d u l v o n M hat e in schwaches K o m p l e m e n t i n M. Z u ­
nächst hat m a n zu j e d e m U C M eine Z e r l e g u n g WjRa(M) φ 
(U + Ra (M)) \Ra (M) = M/Ra(M), also W + U = M m i t 
W r\ U C Ra(M). D a n n w i r d W U d u r c h e inen koabge ­
schlossenen U n t e r m o d u l A gestützt, der ist r a d i k a l v o l l , hat also 
e in schwaches K o m p l e m e n t V i n M. W e i l d a n n V e in schwaches 
K o m p l e m e n t von W r\ U i n M ist, ist a u c h V r\W eines von 
U i n My d . h . w i r haben geze igt : M ist s c h w a c h - k o m p l e m c n -
t iert . Für die S u p p l e m e n t i e r t h e i t wähle m a n jetzt zu X -\- U = M 

ein schwaches K o m p l e m e n t Y von X r\ U i n My u n d we i l 
V — Y r\ X d a n n e in schwaches K o m p l e m e n t v o n U i n M ist, 
außerdem d u r c h e inen koabgeschlossenen U n t e r m o d u l V1 ge­
stützt w i r d , ist νλ C X e in K o m p l e m e n t v o n U i n M wie ver­
langt . 

D a über e inem D e d e k i n d r i n g jeder r a d i k a l v o l l e U n t e r m o d u l 
bereits abspaltet , ist m i t (4.1, b) der S a t z bewiesen. 
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D i e i m nächsten L e m m a untersuchten M o d u l n werden w i r , 
in der F o l g e r u n g 2 zu (4.5), über D e d e k i n d r i n g e n sogar e x p l i z i t 
beschre iben. 

Lemma 4.3. Ist R schwach-noethersch, so sind für einen R-

Modul M äquivale?it : 

(i) MjRa(M) ist halbeinfach und jeder Untermodul U von 

M, mit M/U endlich erzeugt, wird durch eine7i koabge­

schlossenen Untermodul gestützt. 

(ii) Jeder endlich erzeugte Untermodul von M hat genügend 

viele Komplemente in M. 

B e w e i s , (i -> i i ) D a s g i l t über be l i eb igem R, d e n n zu X-\-U = 

M, m i t U e n d l i c h erzeugt , hat m a n eine Z e r l e g u n g W/Ra(M) 

Φ ((X r^U) + Ra{M))jRa{M) = MjRa{M), so daß für V = 

W ΓΛ X folgt V + U = M u n d V ΓΛ U k l e i n i n M. W e i l 
aber M/ V e n d l i c h erzeugt ist, w i r d n a c h V o r a u s s e t z u n g V d u r c h 
e inen koabgeschlossenen U n t e r m o d u l Vx gestützt, so daß V1 C X 

ein K o m p l e m e n t v o n U i n M ist . 
( i i —> i) W i e i m Beweis v o n (4.1) genügt es, daß R die B e ­

d i n g u n g (**) erfüllt. W i r ze igen zuerst , daß M = MjRa(M) 

h a l b e i n f a c h ist, w e n n a u c h n u r jeder z y k l i s c h e U n t e r m o d u l v o n 
M e in schwaches K o m p l e m e n t i n M h a t : Z u j e d e m χ £ M hat 
m a n nämlich W + Rx — M m i t W r\ Rx k l e i n i n M, also 
W φ ^Rx = M, d . h . i n M ist jeder d i r e k t unzer legbare U n t e r ­
m o d u l bereits e in fach . M i t (**) ist daher jeder zyk l i s che U n t e r ­
m o d u l v o n M h a l b e i n f a c h , u n d es fo lgt die erste B e h a u p t u n g . Se i 
n u n M/U e n d l i c h e rzeugt : Z u Ra{M) C VC M, m i t V φ Ü = M, 

wähle m a n einen e n d l i c h erzeugten U n t e r m o d u l V1 von V m i t 
V1 + U = M, u n d d a n n ist Vx ΓΛ U sogar k l e i n i n M. N a c h 
V o r a u s s e t z u n g hat Vx e in K o m p l e m e n t U1 i n M m i t U1 C U, 

u n d d a n n ist Ux eine koabgeschlossene Stütze v o n U i n M. 

Für den Rest der A r b e i t sei n u n R e in D e d e k i n d r i n g , k e i n 
Körper . W i e üblich beze i chnen w i r die E l e m e n t e v o n Ω m i t 
p, q, . . . . D i e koabgeschlossenen U n t e r m o d u l n s i n d jetzt wegen 
(3.1, d) a u c h als n e a t - U n t e r m o d u l n b e k a n n t , d . h . sie s t i m m e n m i t 
den abgeschlossenen U n t e r m o d u l n überein. G i l t $U = U r\$M 

5 München A k . Sb. 1982 
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für e in einzelnes p G ß , so heißt U p-neat i n M. I m fo l ­
genden spie len die I n v a r i a n t e n p-Rang(M) = a\mRJX>(Mjp M) 
u n d p-dim(M) — d i m ^ / p (Ann^(p)) eine zentrale R o l l e . Für sie 
gelten (siehe [12] L e m m a 1.1 u n d Satz 1.3) fo lgende R e c h e n ­
rege ln : 
1) Ist U p-neat i n M (p G ß ) , so g i l t p -Rang(c7) < p - R a n g ( A f ) 

u n d p-dim(MjU) < p-dim(Tkf). 
2) Ist Β > C e in wesent l i cher E p i m . , so g i l t p - R a n g ( i ? ) = 

p -Rang (C) u n d p -d im( i? ) < p -d im(C) für al le p G Ω. 

3) Ist A > Β e in wesent l i cher M o n o m . , so g i l t p-dim(Z?) = 
p -dim(^l) u n d p - R a n g ( i ? ) < p - R a n g ( y i ) für alle p G Ω. 

4) Ist M k o a t o m a r , so g i l t p - R a n g ( J Z ) > p-dim(M) für alle 
p G Ω] ist M t o r s i onsvo l l , so g i l t p - R a n g ( A f ) < p -d im(Af ) 
für alle p G Ω. 

M i t i h n e n erhält m a n a u c h das fo lgende K r i t e r i u m : 

Lemma 4.4. Sei R dedekindsch, MjU koatomar und mindestens 
eine Primärkomponente von M\U gleich Null. Dann gilt : 

Wird U durch einen koabgeschlossenen Untermodul Ux in M 
gestützt, so folgt p-dim(MjU) < $-Rang( T(M) ) für alle p G Ω. 

B e w e i s . W e i l i m Z i e l des wesent l i chen E p i m . MjUx >MjU 
mindestens eine Primärkomponente vers chwinde t , g i l t E(MjU^) 
^ E(MjU) n a c h ([12] S a t z 1.3), insbesondere p-dim(MjU) = 
p-dim( J/I//6 r

1) für al le E i n m a x i m a l e s E l e m e n t i n der M e n g e 
{X d M \ X r\ Ux = 0} l iefert n u n e inen wesent l i chen M o n o m . 
X > MjUv so daß m i t MjUx a u c h X k o a t o m a r ist u n d daher 
p - d i m ^ / c ^ ) = p -d im (X) = p - R a n g ( r ( ^ ) ) < p-Rang(77W)) 
ist für alle p G Ω wie behauptet . ( F a l l s i n MjU al le Primär­
k o m p o n e n t e n v o r k o m m e n , b r a u c h e n die U n g l e i c h u n g e n n i cht 
m e h r z u g e l t e n : Ist R s e m i l o k a l , so ist J = Ra(R) sogar k l e i n 
i n R, aber p-dim(Rjf) = 1 für alle p.) 

Satz 4.5. Sei R dedekindschy MjU endlich erzeugt und 
p-dim(MjU) < p-Rang (T(M)) für alle p G Ω. Dann wird U 
durch einen koabgeschlossenen Untermodul in M gestützt. 

B e w e i s . Se i i m 1. S c h r i t t sogar MjU ^ Rjpn für e in p G Ω, 
η > ι. F a l l s d a n n Tp(M) U% ist die V o r a u s s e t z u n g über 
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p - R a n g ( T ( M ) ) überflüssig, d e n n für e in m a x i m a l e s E l e m e n t Ux 

i n der M e n g e { ^ C U \ X p-neat i n M} u n d M = M/Ux g i l t : 
0 umfaßt ke inen p-neat U n t e r m o d u l v o n M, d . h . Û l iegt i n 
ρ M u n d hat selbst ke ine p - te i lbaren U n t e r m o d u l n . W e g e n 
M/Ü = R/\>n g i l t das letztere sogar für g a n z M, u n d p - R a n g 
(M) = 1 zeigt jetzt , daß M d i r e k t u n z e r l e g b a r ist. W e g e n 
Tp(M) =(= ο heißt das aber, daß M z y k l i s c h u n d p-primär ist. 
A l s o ist Ο k l e i n i n M u n d U1 sogar koabgeschlossen i n M wie 
gewünscht . 

F a l l s aber Tp(M) C U, hat m a n schon T(M) C U% u n d wegen 
p - R a n g ( T ( M ) ) φ ο a u c h noch T(M) = Χ φ Y m i t X ^ 7?/p', 
£ > 1. E s genügt zu ze igen, daß W/Y i n . M / F d u r c h e inen k o ­
abgeschlossenen U n t e r m o d u l gestützt w i r d , d . h . w i r können 
g l e i c h Υ == ο a n n e h m e n . M i t Λ / = C φ u n d Β = C π U 

fo lgt C / i ? ^ ^7p"> so daß es, w e i l C tors ionsfre i ist, e in A C Β 
g i b t m i t = R/)Ç>n + e, insbesondere e inen I s o m o r p h i s m u s 
ω\Β/Α >T(M). De f in ier t m a n 

/ = Β > C X C X T(M) Λ/, 
^ </ s / / 1 X Ü > v / kan 

so fo lgt für Ux = Bif, daß M/U1 ^ ^ C/^f ^ 7?/ρ"+< 
u n d ί / j C ίΛ also U/U1 k l e i n i n Af /c^ ist. A u ß e r d e m ist Ux 

tors ionsfre i , also T(M) > M\UX e in wesent l i cher M o n o m , u n d 
d a h e r Ux koabgeschlossen i n M. 

Ist i m 2. S c h r i t t M/U e n d l i c h erzeugt u n d p-primär für e in 
ρ E fi, so ze igen w i r die B e h a u p t u n g d u r c h I n d u k t i o n über 
η — y-aìm(M/U). B e i η > ο hat m a n eine Z e r l e g u n g M/U = 
A/U φ B/U m i t Λ / ί / ^ Λ / ρ « , * > ι. N a c h d e m ersten 
S c h r i t t w i r d Β d u r c h e inen koabgeschlossenen U n t e r m o d u l Bx 

i n M gestützt, ebenso n a c h I n d u k t i o n A d u r c h e inen k o a b g e ­
schlossenen U n t e r m o d u l A1 i n M. K l a r w i r d d a n n U d u r c h 
Ux = A1 ΓΛ Bx i n M gestützt, so daß es jetzt genügt zu ze igen, 
d a ß Ux i n Ax d u r c h e inen koabgeschlossenen U n t e r m o d u l ge­
stützt w i r d . W e i l AJUX ^ M/Bx i s o m o r p h z u R oder R/γ1 ist , 
geht das m i t d e m ersten S c h r i t t : Wäre p -Rang( T { A ^ j ) = o, so 
folgte für den tors ionsfre ien , koabgeschlossenen U n t e r m o d u l Äx 

v o n M= M\T(AÙ> daß η < p - R a n g (T(M)) = p - R a n g (T(M)) 
< p-dim(AT) = p - d i m ( J ? / y 4 1 ) < p-dim(M/A) = η— ι ist, u n d 
das ist n i cht w a h r . 
5 
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I m 3. S c h r i t t , w e n n MjU n u r m e h r e n d l i c h erzeugt ist , füh­
r e n w i r e inen I n d u k t i o n s b e w e i s über η = | {p G Ώ | Tp(M / U) 

=t= 0} |. B e i η = ο ist MjU p ro j ek t iv , also U s ogar d i r ek ter 
S u m m a n d . B e i η > ο g ib t es e in q G Ω m i t Tq(M j U) = AjU 

4= o. S chre ib t m a n MjU = AjU φ B/U, so ist MjB e n d l i c h 
erzeugt u n d q-primär m i t q-dim(MjB) < c\-Rang(T(M)), so daß 
n a c h d e m zwei ten S c h r i t t Β d u r c h e inen koabgeschlossenen 
U n t e r m o d u l B1 i n M gestützt w i r d . A n d e r e r s e i t s ist | { p G Ω | 

Tp(MjA) φ ο } I = η— ι, u n d natürlich M/A e n d l i c h erzeugt 
m i t p-dim(M/A) < p - d i m ( A f / t / ) < p-Rang (Τ(M)) für al le p G 
so d a ß nach I n d u k t i o n a u c h A d u r c h e inen koabgeschlossenen 
U n t e r m o d u l AY i n M gestützt w i r d . W i e d e r w i r d d a n n U d u r c h 
U1 = A1 ΓΛ B 1 i n M gestützt, aber zusätzlich ist U1 k o a b g e ­
schlossen i n M: A u s q - d i m ^ / i / j ) = q-dim(MjAx) < q - d i m 
(MjA) = ο folgt nämlich U1 q-neat i n M, u n d für alle ρ =r q 
g i l t entsprechend p-dim(A JU^) = o, also L\ p-neat i n M. 

B e m e r k u n g . Ist MjU e n d l i c h erzeugt u n d hat der D e d e k i n d -
r i n g R u n e n d l i c h viele m a x i m a l e Ideale , so fo lgt m i t (4.4) so fort : 
G e n a u d a n n w i r d U d u r c h e inen koabgeschlossenen U n t e r m o d u l 
i n M gestützt, w e n n p-d\m(MjU) < p - R a n g ( T ( M ) ) ist für al le 
m a x i m a l e n Ideale p. 

Folgerung 1. Ist R ein nichtlokaler Dedekindring, so sind für 

einen Modul M äquivalent : 

(i) Jeder Untei-modul U von M, mit MjU endlich erzeugt, 

wird durch einen koaâgeschlossenen Untermodul gestützt. 

( i i ) Ist p-Rang(T(M)) < 00 (p G Ω), so ist MjT(M) 

p-teilbar. 

B e w e i s , (i -> i i ) Se i p - R a n g ( T ( M ) ) — m e n d l i c h . D a n n folgt 
T(M) = Χ φ Y m i t Y p - te i lbar , X e n d l i c h erzeugt u n d p - p r i -
mär. M i t Χ φ M' = M genügt es z u ze igen , daß M' p - te i lbar 
i s t : Hätte m a n e in U C M' m i t M'jU ^ Rjp, so wäre MjU e n d ­
l i c h erzeugt (durch m + 1 E l emente ) , also n a c h V o r a u s s e t z u n g 
U d u r c h einen koabgeschlossenen U n t e r m o d u l U1 i n M gestützt. 
Ux würde d a n n a u c h U i n M' stützen, wegen n i c h t l o k a l fo lgte 
MfjU1 = R/tf, e > 1, also wie i m zwei ten T e i l von (4.4) 
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p - d i m C A T / i / O < p - R a n g (T(M'))t d . h . T(M') ^ Κ n i cht p - t e i lbar 
i m W i d e r s p r u c h zur W a h l v o n Y. 

( i i -> i) Ist M\U e n d l i c h erzeugt , so g i l t y-dim(M / U) < 
p - R a n g ( A f ) . F a l l s also M\ T(M) p - te i lbar ist, folgt aus p-Rang(Af) 
= p - R a n g ( T ( M ) ) die i m Satz gewünschte U n g l e i c h u n g ; i m F a l l 
p - R a n g { T ( M ) ) = 0 0 ist sie aber t r iv ia lerwe ise erfüllt. 

B e m e r k u n g . I m l o k a l e n F a l l m u ß m a n (ii) ersetzen d u r c h 
( i i ' ) : I s t ^ - R a n g (T(M)) < co , so ist M/T(M) koseparabe l . ( D a s 
folgt aus (4.3) u n d [13] F o l g e r u n g 3.4.) A u c h i n der nächsten 
F o l g e r u n g ble iben i m l o k a l e n F a l l die dre i P u n k t e a, b, c n i c h t 
m e h r äquivalent (siehe wieder [13]). 

Folgerung 2. Ist R ei?i nichtlokaler Dede kindring, so sind für 

einen Modul M äquivalent : 

(a) Jeder endlich erzeugte Untermodul von M hat ein Komple­
ment in M. 

(b) MjRa(M) ist halbeinfach und aus p-Rang ( T(M) ) < 0 0 

(p C Ω) folgt Ml T(M) ^-teilbar. 

(c) Jeder endlich erzeugte Untermodul von M hat genügend 
viele Komplemente in M. 

B e w e i s , (b <-> c) erhält m a n u n m i t t e l b a r m i t (4.3) u n d F o l g e ­
r u n g 1, so daß n u r noch (a —> b) z u zeigen i s t : K l a r ist M/Ra(M) 
h a l b e i n f a c h , u n d falls p - R a n g ( T ( M ) ) e n d l i c h ist , zerlege m a n 
T(M) = X 0 Y wie i n F o l g e r u n g 1, so daß a u c h n o c h i n M = 
MIX jeder end l i ch erzeugte U n t e r m o d u l e in K o m p l e m e n t hat . 
Jetzt ist aber T(M) p - te i lbar , so daß wegen n i c h t l o k a l sogar M 
selbst p-te i lbar ist, also erst recht der F a k t o r m o d u l M\ T(M). 

Z u m Schluß liefert der Satz a u c h noch eine V e r a l l g e m e i n e r u n g 
v o n ([13] Satz 3.1 u n d F o l g e r u n g 2) a u f den n i c h t l o k a l e n F a l l : 

Folgerung 3. Sei R dedekindsch, MjRa(M) halbeinjach und 
U ein endlich erzeugter Untermodul von M mit p-Rang (U) < 
V-Ra?zg(T(M)) für alle ρ E fi. Dann hat U genügend viele 
Komplemente in M. 

B e w e i s . Z u X + U — M f indet m a n wie i n (4.3) e i n s c h w a ­
ches K o m p l e m e n t V v o n U i n M m i t VC X- W e i l a u c h M/V 
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als Faktor von U endlich erzeugt ist, gilt p-dim F) < 
p-Rang(i/) < p-Rang(T(M)) für alle ρ E «0, so daß V durch einen 
koabgeschlossenen Untermodul Vx gestützt wird. Der ist dann 
ein Komplement von U in M. 
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