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Einleitung

Ein Modul M heiB3t radikalvoll, wenn er keinen maximalen Untermodul hat,
d.h. wenn Ra{M)=M ist. M heiBe einfach-radikalvoll, wenn M radikalvoll +0
ist und keine echten radikalvollen Untermoduln besitzt, halb-einfach-radikalvoll,
wenn M die Summe seiner einfach-radikalvollen Untermoduln ist. Diese Begriffe
wurden von Matlis in [5] fiir teilbare Torsionsmoduln @iber einem 1-dimensiona-
len lokalen Cohen-Macaulay-Ring R cingefiihrt, um dessen totalen Quotienten-
ring K und den fiir die Struktur der artinschen R-Moduln verantwortlichen
Faktor K/R zu studieren. In der vorlicgenden Arbeit sei R ein beliebiger kommu-
tativer noetherscher Ring. Viele der von Matlis angegebenen Eigenschaften eines
halb-einfach-radikalvollen Moduls M gelten dann nur mehr unter Zusatzbedin-
gungen an dic Mengen Ass(M) und Koass(M). (Dabei heifit ein Primideal p
wie iiblich assoziiert zu M, wenn es einen endlich erzeugten Untermodul 4
von M gibt mit p=Anng(A4), koassoziiert zu M, wenn es einen artinschen Fak-
tormodul M/B gibt mit p=Anng(M/B).) Insbesondere vererbt sich diec Eigen-
schaft ,halb-einfach-radikalvoll nicht mehr — wie in [5] — auf radikalvolle
Untermoduln. Sowohl fiir den Fall, dal M artinsch ist, als auch fiir den Fall,
daBl M sockelfrei, d.h. So (M) =0 ist, untersuchen wir in dieser Arbeit Bedingun-
gen, unter denen M halb-einfach-radikalvoll ist bzw. jeder radikalvolle Untermo-
dul von M diese Eigenschaft hat.

Im ersten Abschnitt werden einige Grundtatsachen iiber halb-einfach-radi-
kalvolle Moduln zusammengestellt. Dabei ergibt sich fiir jeden sockelfreien
Modul M die Aquivalenz der drei folgenden Aussagen:

(a) M ist halb-einfach-radikalvoll.

(b) M ist direkte Summe von einfach-radikalvollen Moduln.

(¢) M ist radikalvoll und jeder Untermodul U von M, mit So (M/U)=0, ist
direkter Summand in M.

Aus (b) folgt sofort Ass(M)<Koass(M). Das Problem, wann diese beiden
Mengen iibereinstimmen, wird im zweiten Abschnitt behandelt. Das Haupter-
gebnis (2.8) lautet, daB fiir einen sockelfreien, halb-einfach-radikalvollen Modul
M dquivalent sind:
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(i) Jeder radikalvolle Untermodul von M ist wieder halb-einfach-radikalvoll.
(ii) Ass (M)=Koass (M).
(iil) Ass (M) ist lokalendlich, d.h. fiir jedes maximale Ideal m von R ist die
Menge {peAss (M)|p<m} endlich.

Die Forderung, dafl Ass(M) sogar endlich ist, bedeutet nach (2.11), dal M
algebraisch kompakt ist.

Im dritten Abschnitt wird der artinsche Fall untersucht. Fiir die Formulie-
rung der Ergebnisse sei ab jetzt M artinsch, R lokal und vollstindig. Weil man
fir den halb-einfach-radikalvollen Modul M keine direkte Zerlegung in einfach-
radikalvolle Moduln erwarten kann, bieten sich als Bausteine die unzerlegbaren
Untermoduln U von M an (d.h. aus U=U"+ U" folgt stets U=U" oder U=U").
Fir sie geben wir in (3.1) folgendes einfache Kriterium, das in alle weiteren
Beweise eingeht: Genau dann ist U halb-einfach-radikalvoll, wenn U radikalvoll
und Anng(U) ein Primideal ist. Fiir einen beliebigen artinschen Modul M erhal-
ten wir damit in (3.4) die folgenden Aquivalenzen:

(a) M ist halb-einfach-radikalvoll.

(b) M=U, + ...+ U,, wobei jeder Untermodul U, unzerlegbar und halb-einfach-
radikalvoll ist.

(c) M ist radikalvoll und fiir jedes qeKoass (M) gilt Ann, (q)+qM =M.

Ob sich dic Eigenschaft (a) auf radikalvolle Untermoduln vererbt, 14Bt sich
— wie in Teil 2 — allein an der Menge Koass (M) ablesen, denn fiir einen artin-
schen, halb-einfach-radikalvollen Modul M sind dquivalent:

(i) Jeder radikalvolle Untermodul von M ist wieder halb-einfach-radikalvoll.

(ii) Fiir jedes qeKoass (M) ist dim {R/q)=1.

(iil) M erfillt die Maximalbedingung fiir radikalvolle Untermoduln.

1. Grundtatsachen iiber halb-einfach-radikalvolle Moduln

Stets sei im folgenden der Ring R kommutativ und noethersch. Ein cinfach-
radikalvoller (erv) R-Modul X ist dann nach ([10] Lemma 4.1) entweder sockel-
frei oder artinsch; im ersten Fall ist X sogar isomorph zum Quotientenkdrper
k(p) des Integritdtsringes R/p mit dim (R/p)=1, im zweiten Fall ist jeder echte
Untermodul von X endlich erzeugt. Die nédchsten beiden Lemmata zédhlen die
Eigenschaften von halb-einfach-radikalvollen (herv) Moduln auf, die wir stindig
verwenden. Es folgt ein Satz mit Charakterisierungen der sockelfreien (herv)
Moduin und zum Schluf dieses Abschnittes ein Beispiel dafiir, daB sich im
Falle So (M) =0 unsere Eigenschaft nicht einmal auf direkte Summanden vererbt.

Lemma 1.1. Ist M halb-einfach-radikalvoll, so gilt:

(a) Fiir jedes peAss (M) ist dim (R/p) = 1.

(b) Fiir jeden grofien Untermodul U von M ist M/U halbartinsch.

(¢) Ist U ein Untermodul von M mit So (M/U)=0, so ist U radikalvoll und
abgeschlossen in M.

(d) Fiir jedes Ideal a von R gilt M[a]+aM =M.

(e) Fiir jeden Untermodul U von M ist Anng(M/U) ein Wurzelideal.
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(f) Fiir jedes Ideal a von R ist Anng(M/aM)=N{qeKoass(M)|acq} und
Anng(aM)=N{qeKoass (M)|actq}.
(g) Jeder sockelfreie Faktormodul von M ist wieder halb-einfach-radikalvoll.

Beweis. Seien in M=) X, alle X, (erv). Bei (a) hat man zu N=[[X, einen
Epimorphismus N — M, so daB zu jedem peAss(M) ein gqeAss(N) existiert
mit g =p, dazu ein A, mit qeAss(X, ), und damit folgt dim (R/q)<1, dim (R/p)
<1 wie behauptet.

(b) Sei U,/U=L(M/U) die Summe aller artinschen Untermoduln von M/U.
Dann ist M/U, sockelfrei, ebenso X,/U,nX,. Weil aber U, groB in M, also
U,nX,;=+0 ist, folgt U, nX,=X, fir alle 4, d.h. U, =M. — Allgemeiner gilt
fiir jeden Untermodul A4 von M: Ist B einc wesentliche Erweiterung von A4
in M, so ist B/A halbartinsch. Wahlt man zum Beweis ein maximales Element
V, in der Menge {V =M |V A=0}, so ist V,@® A groB in M, also nach eben
M=M/V,® A halbartinsch, und weil die kanonische Abb. B—M den Kern
A hat, folgt die Behauptung.

(c) U ist abgeschlossen in M, denn fiir jede wesentliche Erweiterung B von
U in M ist nach dem letzten B/U halbartinsch, d.h. nach Voraussetzung schon
Null. U ist auch radikalvoll, denn zu jedem ac U gibt es endlich viele 44, ..., 4,,

so daB a in A=) X, liegt, und weil A Erweiterung eines endlich erzeugten
i=1

durch einen halbartinschen Modul ist, auBlerdem 4/U n A sockelfrei, ist Un A4

nach ([10] Lemma 1.1) radikalvoll, also ae Ra(U).

(d) M[a] ist die iibliche Abkiirzung fiir Anny(a)={yeM|ry=0 fiir alle
rea}. Fir jedes (erv) X, gilt aX ;=0 oder aX,=X;, also X,cM[a]+aM,
so daB die Summe iiber alle X, die Behauptung liefert.

(e) Fiir M=M/U zeigen wir genauer Anng(M)=Koass (M). Speziell fiir
das Ideal b=NKoass (M) folgt aus M[b]+bM =M nimlich M[b]+bM=M,
weil bM nach ([9] S. 129) klein in M ist, sogar M [b] =M, so dal} in b= Anng (M)
Gleichheit gilt.

(f) Nach ([10] Folgerung 3.2) ist Koass (M/aM)={geKoass{(M)|ac=q}, so
daB die Formel fiir Anng(M/aM) mit der letzten Aussage folgt. Weil auch aM
(herv) ist, wollen wir fiir die zweite Formel entsprechend Koass(aM)=
{qeKoass (M)|adq} zeigen. Darin ist ,,=“ klar, und fiir jedes qeKoass (aM)
gilt, weil a M epimorphes Bild von M" ist, geKoass (M), wegen M [a]+aM =M,
a?M =aM aber auch adq.

(2) Ist M =M/U sockelfrei, so sind in M=) X, alle Summanden Null oder
wieder (erv), denn aus So (X ,;/U n X ;)=0 folgt entweder Un X, =0o0der X, cU.

Lemma 1.2. Ist M sockelfrei und halb-einfach-radikalvoll, so gilt:
(@ M= @ Myl
peAss(M)
(b) M ist direkte Summe von einfach-radikalvollen Moduln.
(c) Ist U ein Untermodul von M mit So (M/U)=0, so ist U direkter Summand
in M.
(d) Fiir jedes Ideal a von R gilt M[a] ® aM =M.
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(e) Fiir jeden Untermodul U von M ist Anng(U) ein Wurzelideal.
(f) Fiir jeden halbartinschen Modul C ist Ext}(C, M)=0=Tor{ (M, C).
(g) M ist selbstinjektiv und selbstflach.

Beweis.(a)Fiirjedesp e Ass (M)istdim (R/p)= l,also Ass (M [p])= {p}, undfiirjedes

0%xeM[p] gilt Anng(x)=p. Damit ist die Summe direkt, d.h.in x; +...+x,=0

mit x;eM [p,], die p; paarweise verschieden, miissen alle x;=0 sein: Wire ein

x;*0, folgte Anng(x;)=p;, also ﬂ Anng(x;) =p;, also Anng(x,) < p; fiir ein k=,
i+

d.h. p,cp;, und das ist unmdglich. Mit M=) X, und X, =«(p,) ist natiirlich

X, cM[p,] und p,eAss (M), so daB auch M=) M[p] gilt.

(b) Fir jedes peAss(M) ist jetzt M{[p] radikalvoll, also auch
Koass (M [p])={p}. Als R/p-Modul ist deshalb M[p] sowohl torsionsfrei als
auch teilbar, d.h. von der Form x(p)\?: Wir haben M[p] als direkte Summe
von (erv) Moduln (=« (p)) dargestellt, also mit (a) auch ganz M.

(¢) Dazu wollen wir den (unten zu beweisenden) Punkt (g) verwenden: Nach
(1.1, ¢) ist U abgeschlossen in M, und in jedem selbstinjektiven Modul spalten
die abgeschlossenen Untermoduln ab (siche den Beweis in [1] S. 207). — Schrei-
ben wir also fiir einen beliebigen Untermodul 4 von M im folgenden A4,/4
=L(M/A), so ist A, die groBte wesentliche Erweiterung von A in M (wegen
1.1, b) und A, direkter Summand in M.

(d) Wir haben M =& X, ~xk(p,). Falls acp,, ist X;[a]=X, und aX,=0,
falls adp,, ist X,[a]=0 und aX,=X,, beide Male also X,[a]®PaX,;,=X,.
Das gilt dann auch fiir die direkte Summe der X ,.

(e) Zeigen wir genauer Anng(U)=NAss(U): Fiir das Ideal b=NAss (U) gilt
nach dem letzten Punkt M[b]nbM =0, also auch U[b]nbU =0, und weil
UJb] groBl in U ist, sogar bU =0, so daB3 in b = Anng(U) Gleichheit gilt.

(f) Wir zeigen im 1. Schritt fir jeden einfachen Modul C, daB Ext(C, M)
=0=Tor{(M, C) ist. Mit M=®X,, X,~x(p,) und C=R/m gilt fiir jedes A,
daBl mdp, ist, es also ein r;em gibt, das bijektiv auf X, operiert, und es folgt
Extk(C, X,)=0=Tor®(X,, C). Weil Tor mit direkten Summen vertauscht, ist
man im zweiten Fall fertig; im ersten Fall ist [ [ X, ein reiner Untermodul von
[1X,, also auch N=][X,/]]X, sockelfrei, so daB in der exakten Folge
Homg(C, N) - Extg(C, M) —> Exti(C, [ | X,) das erste und dritte Glied Null
ist, also auch das mittlere. Ist im 2. Schritt C nur halbartinsch, gibt es einen
Epimorphismus n: [ ]JC;— C, in dem alle C; endliche Linge haben, also (via
Kompositionsreihe) Exti(C;, M)=0=Tor{(M, C)) ist fiir alle i. In den exakten
Folgen Homg(Ken, M)— Extx(C, M)— Exty(] [C;, M) bzw. Tor{(M,[]C)
- Torf(M, C) > M (X)Ke = ist also jeweils das erste und dritte Glied Null, und

R

es folgt die Behauptung.
(g) Sei B ein Modul mit der Eigenschaft, daB3 fiir jeden groBlen Untermodul
B, von B der Faktormodul B/B, halbartinsch ist. Wir behaupten, dall M B-
injektiv (siche [1] S. 184) und B-flach (siche [2] Kap. 1, S. 23) ist, d.h. fiir jeden
Untermodul A von B die induzierte Abb. Homg (B, M) — Homg(A, M) surjektiv
und entsprechend M ®A M ®B injektiv ist: Mit einem maximalen Element
R R
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V, in der Menge {V<B|VnA=0} ist B;=V,® A groB in B und natiirlich

A direkter Summand in By, so daB nur noch die Surjektivitit von

Homg (B, M) — Homg(B;, M) und die Injektivitit von M (X)B, —» M (X)B zu zei-
R R

gen ist, und das folgt sofort aus Extk(B/B;, M)=0=Tor¥(M, B/B,). Nach
(1.1, b) durfen wir speziell B= M sctzen und erhalten, da M sowohl M-injektiv
als auch M-flach ist.

Folgerung 1.3. Ist M sockelfrei und halb-einfach-radikalvoll, so gilt Ass(M)c
Koass (M).

Beweis. Genauer ist Ass(M)={qeKoass(M)|dim(R/q)=1}, denn fir jedes
peAss (M) gilt {p} =Koass (M [p]) = Koass (M) sowie dim (R/p)=1. Umgekehrt
gilt flir jedes qeKoass (M), dal M nicht g-teilbar ist, es also ein peAss (M)
gibt, so daB3 M [p] nicht g-teilbar ist, und daraus folgt q < p. Mit der Zusatzbedin-
gung dim (R/q)=1 erhélt man q=p, also qe Ass (M).

Bemerkung. Falls Ass (M) endlich ist, folgt aus der Zerlegung (1.2, a) sofort
Ass (M)=Koass (M). Weil aber i.allg. nur Ass, nicht Koass mit unendlichen
direkten Summen ,vertauscht“, kann auch Ass(M)g Koass(M) vorkommen.
Diese Abweichung hdngt eng mit dem Problem zusammen, wann in M jeder
radikalvolle Untermodul wieder (herv) ist und wird in Abschnitt 2 genauer
untersucht.

Satz 1.4. Fiir einen sockelfreien Modul M sind dquivalent:
(1) M ist halb-einfach-radikalvoll.
(i) Jeder abgeschlossene Untermodul von M ist radikalvoll und fiir jeden
grofien Untermodul U von M ist M/U halbartinsch.
(iii) M ist radikalvoll und jeder Untermodul U von M, mit So (M/U)=0, ist
direkter Summand in M.

Beweis. Klar ist (i —iii) nach (1.2, ¢). Bei (iii — ii) gilt fiir jeden abgeschlossenen
Untermodul 4 von M, daBl Ass (M/A)< Ass (M), also M/A sockelfrei und daher
A als direkter Summand radikalvoll ist. Fiir jeden groBen Untermodul U gilt
mit U,/U=L(M/U), daB M/U, sockelfrei, also U, direkter Summand in M
ist, und U, groB in M liefert U,=M, d.h. M/U halbartinsch. Bei (ii—1i) ist
zu zeigen, daB jedes OxeM in einem (herv) Untermodul 4 von M liegt, und
dafiir bietet sich A/Rx=L(M/Rx) an: Fiir jede wesentliche Erweiterung B von
A in M ist mit der zweiten Bedingung B/A halbartinsch (vgl. den Beweis von
L1, b), wegen So(M/A)=0 also schon B/A=0, d.h. es ist A abgeschlossen in
M, mit der ersten Bedingung also A radikalvoll. 4 ist sogar direkter Summand
in M, denn mit einem maximalen Element V; in der Menge {V =M |V A=0}
ist M = M/V, sockelfrei sowie Erweiterung eines zyklischen durch einen halbar-
tinschen Modul, also nach ([10] Lemma 1.1) auch M/4 sockelfrei, M/A=0,
Vo @ A=M. Derselbe Beweis zeigt, daBl auch jeder radikalvolle Untermodul

von A direkter Summand in M ist. Schreibt man also A=) A; mit direkt

i=1
unzerlegbaren A;, so ist jedes 4; notwendig (erv) und daher 4 von der verlangten
Gestalt.
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Lemma 1.5. Ist M halb-einfach-radikalvoll und m ein maximales Ideal, so gilt :

(a) M, ist als R,-Modul wieder halb-einfach-radikalvoll.

(b) Die radikalvollen R, -Untermoduln von M., entsprechen genau den S-gesdit-
tigten (S = R\m) radikalvollen R-Untermoduln von M.

(c) Ist R lokal und vollstindig, so ist jeder Faktormodul von M halb-einfach-
radikalvoll.

Beweis. (b) Ein S-gesittigter Untermodul U von M ist durch alle maximalen
Ideale m’ & m teilbar. Zu jedem ae U gibt es ndmlich endlich viele (erv) Untermo-

duln X; von M mit ae ) X,;, wegen m'dmu Anng(X;)U...uAnng(X,) also
i=1
ein rem’ mit re§, rX; =X, fiir alle i, und es folgt acUnrM=rUcm’'U. Weil
natiirlich die S-geséttigten m-teilbaren Untermoduln von M genau den radikal-
vollen Untermoduln von M,, entsprechen, folgt dic Behauptung. (a) Fiir jeden
(erv) Untermodul X von M ist X, Null oder nach (b) wieder (erv). Sind also
in M=) X, alle X, (erv), ist M, =) X, wie gewlnscht. (c) Fiir M=M/U
gilt, mit den X, wie eben, M =) X,. Darin ist jeder Summand Null oder wieder
(erv), denn in X ,/U X, ist jeder echte Untermodul endlich erzeugt: Falls X,
artinsch war, ist das klar; falls aber X ; sockelfrei war, also X, =x(p;), ist wegen
der Vollstandigkeit des 1- d1m lokalen Integrititsringes R/p, sein Quotientenk6r-
per linear-kompakt, also wieder jeder echte Untermodul von X, endlich erzeugt.

Bemerkung. Der letzte Beweisschritt zeigte: Auch dann ist M = M/U (herv), wenn
R beliebig, aber U halbartinsch war (denn im Falle So(X;)=0 ist X,>~X)).
DaB sich die Eigenschaft (herv) i allg. nicht einmal auf direkte Summanden
vererbt, zeigt folgendes

Beispiel 1.6. Ist R ein 1-dim. Integritdtsring, so ist jeder radikalvolle R-Modul
direkter Summand eines halb-einfach-radikalvollen R-Moduls.

Beweis. Ist K der Quotientenkdrper von R, so gibt es zu jedem radikalvollen
Modul N nach ([5] Theorem 4.3) einen Eplmorphlsmus n: K — N. Bildet man
damit das kommutative Diagramm

0— —>Kenr < KOP—X N0

X

0 KW M N 0,

so ist in M =Bia+Bif jeder Summand (herv), also auch M. Weil die untere
Zeile zerfillt, heiBt das, daB N x K@ (herv) ist.

Sei jetzt speziell R ein lokaler 1-dim. Integritétsring, so daf} die Vervollstindi-
gung R ein nilpotentes Element #0 hat. Fiir die injektive Hiille E des Restklas-
senkorpers gibt es dann nach dem Beispiel eine Indexmenge I, so daB M=
E x K¥ (herv) ist. Aber Annz(E) ist kein Wurzelideal, so daB der direkte Sum-
mand E = L(M) nicht (herv) ist.
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2. Der sockelfreie Fall und die Bedingung Ass (M) =Koass (M)

Fiir einen sockelfreien (herv) Modul M galt stets Ass (M) < Koass (M). Wir unter-
suchen in diesem Abschnitt die Frage nach der Gleichheit und zeigen dazu
erstens (2.4), daBl jedes qeKoass (M) von der Form g=0p, ist mit gewissen
p,eAss (M), zweitens (2.7), daB fiir jedes geKoass(M) und jede Wahl q
= Anny (M/B) mit M/B artinsch gilt: Genau dann ist qe Ass (M), wenn der groBte
radikalvolle Untermodul P(B) auch (herv) ist. Wenn also in M jeder radikalvolle
Untermodul wieder (herv) ist, folgt Ass (M)=XKoass (M), und das Hauptergebnis
(2.8) sagt, daB hierin auch die Umkehrung gilt.

Weil jeder sockelfreie (herv) Modul nach (1.2) direkte Summe von Moduln
der Form x(p) ist mit dim (R/p)=1, ist fiir jede Art von Beispielen folgende
Tatsache grundlegend:

Satz (Krull [3] S. 369). Jedes nichtmaximale Primideal q lifSt sich in der Form
q= (') p; darstellen mit dim (R/p,)=1 fiir alle i.

i=1
Gibe es namlich ein q ohne eine solche Darstellung, folgte fiir ein maximales

Gegenbeispiel g, daB dim (R/q)> 1 wire, also q,= ﬂ t; mit nichtmaximalen
j=1

Primidealen v;# q,. Weil jedes t; Durchschnitt von abzihlbar vielen Primidealen

p mit dim (R/p) =1 ist, folgte das auch fiir q,, entgegen der Wahl.

Aufgrund der folgenden Aquivalenz (i« ii) untersuchen wir nur mehr, wann
in M jeder radikalvolle Untermodul abspaltet:

Lemma 2.1. I'st M sockelfrei und halb-einfach-radikalvoll, so sind fiir einen Unter-
modul U von M dquivalent:
i) U ist halb-einfach-radikalvoll.
(i) U ist direkter Summand in M.
(i) M/U ist sockelfrei.
(iv) Fiir jedes pe Ass (U) ist U [p] radikalvoll.

Beweis. Nach (1.2,c) und (1.1, g) ist (iii —>ii —»1i) klar. Hétte bei (i—iil) M/U
einen einfachen Untermodul U,/U, folgte nach (1.2, f) Extk(U,/U, U)=0, also
Uc<®U,, und das ist unmoglich.

(i—1v) U ist radikalvoll und nach (1.2, d) ist U[p] direkter Summand in
U. (1V — 1) Sei Uy der groBte (herv) Untermodul von U. Nach den bereits bewiese-
nen Aqulvalenzen ist VO Uy=M, VnU)® Uy=U, so daBl wir nur noch VU
=0 zeigen miissen: Gébe es ein peAss (Vn U), wire nach Voraussetzung U[p]
radikalvoll, d.h. von der Form x(p)" mit dim(R/p)=1, also U[p]<U,. Es
folgte (V' U) [p] =0, und das ist unméglich.

Folgerung 2.2. Ist M sockelfrei und halb-einfach-radikalvoll und (U;|icl) eine
Familie von direkten Summanden, so sind auch Y U, und NU; direkte Summanden
in M. Fiir jeden Endomorphismus f: M — M ist Bif und Kef direkter Summand
in M.
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Folgerung 2.3. Sei M sockelfrei und halb-einfach-radikalvoll, U ein radikalvoller
Untermodul von M. Falls Ass (U) endlich ist, ist U direkter Summand in M.

Beweis. Bei der ersten Folgerung ist nichts mehr zu beweisen. Bei der zweiten
zeigen wir im 1. Schritt Koass (U)< Ass (U): Mit U= U, =® M ist auch Ass (U,)
endlich, auBerdem U, (herv), also nach der Bemerkung zu (1.3) Ass(U,)
=Koass (U,). Zu jedem qeKoass(U) gibt es nun nach [9] Lemma 2.1) ein
goeKoass (U,) mit qo<gq, und weil U radikalvoll, also q kein maximales Ideal
ist, folgt aus dim(R/qo)=1 bereits qo=qeAss(U,)=Ass(U). Im 2. Schritt gilt
fiir jedes maximale Ideal m, weil Ass(U) und Koass(U) endlich sind, md¢
UAss (U)yuUKoass (U), so daB es ein rem gibt, das bijektiv auf U operiert,
und es folgt Exti(R/m, U)=0, Hom(R/m, M/U)=0, d.h. (M/U) [m]=0. Aber
So (M/U)=0 bedeutet nach dem Lemma U <® M.

Fiir eine Beschreibung von Koass (M) bendtigen wir die folgende Verallge-
meinerung: Zu einem beliebigen Modul M heiflt ein Primideal q nach [6] atta-
chiert (im artinschen Fall siche auch [7]), wenn es einen Untermodul U von
M gibt mit q=Anng(M/U). In diesem Fall gilt sogar q=Anng(M/qM), und
die Menge aller zu M attachierten Primideale bezeichnet man mit Att (M). Klar
ist die Inklusion Koass(M)<Att(M), und i.allg. ist sie echt (z.B. ist
Koass (R)=Q, Att(R)=Spec (R)). Ist ein Primideal q minimal iiber Anng(M),
so folgt qe Att (M): Mit einem Erzeugendensystem (x;|iel) des Moduls M und
x=(x)eM? ist nimlich qeAss(R/Anng(M))=Ass(Rx), also q=Anng(rx) fiir
ein reR, g=Anng(M/M [r]). Insbesondere gilt stets NAftt (M):]/m.

Lemma 2.4. Sei M sockelfrei und halb-einfach-radikalvoll, U ein Untermodul von
M und q ein Primideal. Dann gilt :

(a) Anng(M/U)=N{peAss(M)|Anng(M/U)cp<=UAss(M/U)}.

(b) qeAtt(M)<>es gibt p,eAss (M) mit q=Np,.

(c) qeKoass{(M)<>es gibt p,cAss(M) und maximale Ideale m,, ..., my, so
daff a=Np, ist und jedes p, in einem der m; liegt.

(d) Ist R semilokal, so gilt Koass (M)=Att (M).

Beweis. (a) Mit a=Anng(M/U) und S=R\UAss(M/U) missen wir fiir jedes
reN{peAss(M)|acp und pnS=g} zeigen, dall rM < U ist, also nach (1.2, a)
r(M[p])c U fiir alle peAss(M). 1. Fall acp und pnS=g. Dann ist pe{ },
rep, r(M[p])=0. 2. Fall adp oder pnS+&. Dann ist sogar M [p]< U, denn
aus a ¢ p folgt die a-Teilbarkeit von M [p], also M[plcaMc U, und aus pn S
=+ & folgt mit einem s,ep, das auf M/U injektiv operiert, M [pJ< M [so] = U.

(b) Aus gqeAtt (M) folgt q=Anng(M/qM), also nach dem eben bewiesenen
g=N{peAss(M)|qcp}. Ist umgekehrt g=Np, mit gewissen p,eAss(M), so
kann man die p, paarweise verschieden annehmen, und dann ist M'=][«(p,)
nach (1.2) direkter Summand von M mit Anng(M')=q, also qe Att (M).

(c) Aus qeKoass(M), also q=Anng(M/B) mit M/B artinsch, Ass(M/B)
={my, ..., m}, folgt nach Punkt (a) g=N{peAss (M)]|q<=p und p liegt in einem
der m;}. Sind umgekehrt die p; und my, ..., m, wie angegeben, nehme man
wie eben die p, paarweise verschieden an und erhilt, daB M’'=] J«(p,) direkter

k

Summand von M ist. Die direkte Summe C= [ ] E(R/m,) Gber die injektiven

i=1
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Hiillen der R/m; ist nach ([4] Proposition 3) artinsch, und weil jedes p, in
einem der m; liegt, ist Homz(x(p,), C)+0, so daB es ein h;: k(p,) — C gibt mit
Anng(h,)=p,. Diese h,; induzieren einen Homom. h: M’ — C mit Anng(Bih)
=NAnng(Bi h;)=Np,=q, und weil Bi & ein artinscher Faktormodul von M ist,
heiBt das geKoass (M).

(d) Fir die in (c) geforderten my, ..., m, nehme man das ganze Maximal-
spektrum €. (Im nicht semilokalen Fall kann Koass (M)g Att (M) sein, etwa
in dem Beispiel nach (2.8) iiber R=Z[[X1]].)

Die Punkte (b) und (c) des Lemmas zeigen auch, dafl bei einem sockelfreien
(herv) Modul M die Mengen Att (M) und Koass (M) allein durch Ass (M) be-
stimmt sind. Enthilt insbesondere Ass (M) alle Primideale p mit dim (R/p)=1,
folgt nach dem Satz von Krull Att (M) = Spec (R)\ Q. Speziell erhilt man folgen-
des
Beispiel 2.5. Sei R lokal mit dim (R)=2, und sei A dic Menge aller Primideale
p mit dim (R/p)= 1. Dann ist M = | | x(p) sockelfrei und halb-einfach-radikalvoll
und Ass (M) Koass (M). ped

Lemma 2.6. Sei M sockelfrei und halb-einfach-radikalvoll, B ein Untermodul von
M und M/B artinsch £0. Sei P(B) der grifite radikalvolle Untermodul von B
und b=Anny(M/B). Dann gilt:

(a) Ass(M/P(B)) ist endlich.

(b) Genau dann ist P(B) direkter Summand in M, wenn dim (R/b)=1 ist.

Beweis. (a) Fir jedes meQ ist in der exakten Folge Torf(M/B, R/m)
—>BQR/m—>M QR/m das dritte Glied Null, also B/mB=0 fiir alle
R R

me¢Ass (M/B), B/mB endlich erzeugt fiir alle mecAss(M/B), so daB es einen
endlich erzeugten Untermodul V von B gibt mit V+mB=B fiir alle meQ.

t
Dazu gibt es paarweise verschiedene p,, ..., p,€Ass (M) mit Ve M’ =P M[p],
i=1

und fiir das Ideal a=p,...p, folgt nach (1.2, a) M [a]=M’, so daB insbesondere
a¥=0 und aB radikalvoll ist. In der exakten Folge Torf{(M/B, R/a)— B(X)R/a
R

— M (X)R/a ist das erste Glied artinsch und das dritte nach (1.2, d) isomorph
R

zu M', so dafl mit Ass (B/aB) auch Ass(M/aB) endlich ist.

Mit U=P(B) ist U,/U halbartinsch und radikalvoll, auBerdem U,/U, "B
artinsch, also nach ([10] Lemma 2.1) sogar U,/U artinsch. Der zerfallende Epim.
M/aB— M/U, zeigt, daf’ auch Ass (M/U,) endlich ist, also auch Ass{M/U) wie
behauptet.

(b) Aus bM < U folgt auch b=Anng(M/U). Falls nun U direkter Summand
in M ist, d.h. M/U sockelfrei und (herv) mit nur endlich vielen assoziierten
Primidealen, folgt nach (1.2, a) sofort dim (R/b)= 1. Umgekehrt ist M =M/bM
nach (1.2, d) stets ein sockelfreier (herv) Modul {iber dem Ring R/b, und wenn
dieser die Dimension 1 hat, ist nach (2.3) jeder radikalvolle Untermodul von
M direkter Summand, insbesondere U <=®M, also U<=® M.
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Mit der Beschreibung der Inklusion Ass (M)<Koass (M) in (1.3) erhilt man
unmittelbar:

Folgerung 2.7. Sei M sockelfrei und halb-einfach-radikalvoll, qeKoass (M). Fiir
jeden artinschen Faktormodul M/B mit Anng(M/B)=q gilt dann: Genau dann
ist qe Ass (M), wenn P(B) direkter Summand in M ist.

Satz 2.8. Fiir einen sockelfreien, halb-einfach-radikalvollen Modul M sind dquiva-
lent:
(i) Jeder radikalvolle Untermodul von M ist direkter Summand.
(i) Ass(M)=Koass(M).
(il)) Ass(M) ist lokalendlich, d.h. fiir jedes maximale Ideal m von R ist die
Menge {peAss(M)|pc=m} endlich.

Beweis. Bei (i—1i) ist nach der letzten Folgerung nichts mehr zu zeigen. Ist
bei (ii —1i) U ein radikalvoller Untermodul von M, so folgt fir jedes maximale
Element ¥, in der Menge {V<M |V U=0}, daB U, =V,® U radikalvoll und
M/U, halbartinsch ist. Wire U, + M, folgte mit einem qeKoass(M/U,) nach
Voraussetzung dim (R/q)=1, in M =M/qM also (siche den Beweis von 2.6, b)
U, =® M. Darin ist das direkte Komplement halbartinsch und sockelfrei, d.h.
Null, U; = M bedeutet, daBB M/U, g-teilbar ist, und das ist unmoglich.

(il — 1ii) Fiir jedes maximale Ideal m ist nach (1.5, a) M, als R,.-Modul wieder
sockelfrei und (herv), und mit der bereits bewiesenen Aquivalenz (i<ii) und
(1.5, b) folgt auch Ass(M,)=Koass(M,,). Weil die Mengen {peAss(M)|p<=m}
und Ass(M,,) gleich viel Elemente haben, konnen wir also R lokal annehmen
und miissen zeigen, daBl Ass (M) endlich ist: Jedes peAss (M) ist sogar minimal
iiber Anng (M), denn mit p, < p und p, minimal iiber Anng (M) folgt p,e Att (M),
also nach (2.4, d) p,eKoass (M), nach Voraussetzung p,€ Ass (M), dim (R/p,) =1,
po=p. (ili—ii) Jedes qeKoass (M) hat nach (2.4, ¢) cine Darstellung g=0Np,,
so daB jedes p,eAss (M) in einem m; liegt (1 <i<k). Weil nach Voraussetzung
unter jedem m; nur endlich viele p, liegen, folgt g=p; N ... " p, mit p;cAss (M),
also bereits ge Ass (M).

Bemerkung 1. Man kann leicht einen Modul M wie im Satz angeben, bei dem
Ass (M) zwar lokalendlich, aber nicht endlich ist. Sei dazu A4 ein kommutativer
noetherscher Ring und R=A[[X]]. Fiir jedes maximale Ideal I von 4 ist dann

pz{z a; X'eR |alle aiel} ein Primideal in R mit dim (R/p)=1, und iiber p
i=0

liegt nur ein maximales Ideal, ndmlich p+(X). Mit paarweise verschiedenen

I,,1,, ... und dazugehdrigen p,, p,, ... ist dann M= | | «(p,) das gewiinschte
n=1

Beispiel, denn klar ist Ass(M)={p,, p,, ...} unendlich, fiir jedes meQ aber

[{peAss(M)|pcm}|<1.

Bemerkung 2. Bei halbeinfachen Moduln ist wohibekannt, daB} jeder echte Unter-
modul einen einfachen Untermodul enthilt und in einem maximalen Untermo-
dul enthalten ist. Fiir einen sockelfreien (herv) Modul M sind die entsprechenden
Aussagen nicht mehr richtig, denn man kann zeigen, dafl die Bedingungen von
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Satz (2.8) weiter dquivalent sind zu (iv): Jeder radikalvolle Untermodul #0
von M enthilt einen (erv) Untermodul, (v): Jeder radikalvolie Untermodul
U+ M liegt in einem radikalvollen Untermodul A von M, so daBl M/A (erv)
1st.

Im Rest dieses Abschnittes betrachten wir jetzt Eigenschaften des sockelfreien
(herv) Moduls M, dic schon die Endlichkeit von Ass (M) erzwingen. Dabei spielt
fiir jedes Ideal a der Untermodul Anng(aM)-M cine Rolle (siche auch 3.6).
Er ist stets in M[a] enthalten, aber selbst wenn M (herv) ist, braucht nicht
Anng(aM)-M+aM =M zu gelten.

Lemma 2.9. Fiir einen Modul M und ein Ideal a sind dquivalent :

(a) Anng(aM)-M+aM=M.

(b) Anng(aM)=Anng(a*M) und aus acqeAtt(M), p<q und peAtt(M)
folgt acp.

Beweis. (a—b) Schon aus M[a]+aM =M folgt aM =a*M. Wire im zweiten
Teil a ¢ p, folgte Anng(aM)cp, also Anng(aM)+acgq, also nach Voraussetzung
gM =M, und das ist unmdéglich. (b —a) Angenommen, M ist nicht durch das
Ideal Anng(aM)+a teilbar, so gibt es ein goeAtt (M) mit Anng(aM)+acqg.
Wihlt man ein Primideal p < g, minimal iiber Anng(aM), folgt peAtt (aM),
also auch peAtt(M), und die zweite Bedingung liefert a—p. Andererseits ist
p=Anng () mit Fe R/Anng(aM), insbesondere ar=0, are Anng(aM) fiir alle
aea, d.h. re Anng(a® M). Mit der ersten Bedingung folgt re Anng(aM), d.h. der
Widerspruch 7=0.

Bemerkung. Ist die Bedingung (a) erfiillt und aM % M, so kann es kein Primideal
p mit Annp(M)cpga geben (denn wic im ersten Beweisschritt fithrte
Anng(aM)c=p zum Widerspruch).

Folgerung 2.10. Fiir einen Modul M sind dquivalent:
(@) Anng(aM)-M+aM =M fir alle Ideale a.
(F) Anng(M) ist ein Wurzelideal und Att (M) ist diskret.

Beweis. (x — f) Die Anordnung von Att (M) ist diskret (d.h. je zwei vergleichbare
Elemente stimmen schon iiberein), denn fiir jedes qeAtt (M) gilt M + M, so
daB nach der letzten Bemerkung q minimal iiber Anngz(M) ist. Insbesondere
ist Att (M) endlich, bei M +0 also Att(M)={qy, ..., q,}, und aus M [q;]+q; M

=M fiir alle j folgt fir das Ideal b= () q; auch M[b]+bM =M, bM=b>M.
© j=1

Nach ([9] S. 129) gilt aber (| bB'M =0, d.h. bM =0, so daB b=Anng(M) ein
i=1

Waurzelideal ist. (Wir haben in («) nicht alle Ideale a, sondern nur die attachierten

Primideale g benutzt.) (§ — a) Fiir jedes Ideal a gilt, weil Anng(M) ein Wurzel-

ideal ist, Anng(aM)=Anng(a® M). Mit der Diskretheit von Att(M) ist dann

Punkt (b) in (2.9) erfiillt, also auch (a).

Satz 2.11. Fiir einen sockelfreien, halb-einfach-radikalvollen Modul M sind dquiva-
lent :
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(i) M ist algebraisch kompakt.
(1)) Ass (M) ist endlich.
(iil) Ass (M)=Att(M).
(iv) Anng(aM)-M+aM =M fiir alle Ideale a.

Beweis. Ein Modul C hei3t algebraisch kompakt, wenn fiir jeden reinen Monom.
A— B die induzierte Abb. Homg (B, C) > Hompg(4, C) surjektiv ist. Fiir jeden
Modul N zeigt dann dic Adjungiertheit von Hom und ®, daB auch N°
=Homg(N, C) algebraisch kompakt ist. Wihit man bei (ii—1) C speziell als
injektiven Kogenerator, ist die kanonische Abb. M — M°® injektiv und M°°
algebraisch kompakt. Im Fall M+<0 ist nach Voraussetzung Ass(M)

={p1, ..., P}, also nach (1.2) auch M°° =] k(p)“? sockelfrei und (herv) mit
i=1
nur endlich vielen assoziierten Primidealen. Nach (2.3) ist jeder radikalvolle
Untermodul von M°° direkter Summand, so daB insbesondere M als direkter
Summand algebraisch kompakt ist. Fiir (i—ii) verwenden wir ein Kriterium
von Zimmermann fiir das Abspalten von direkten Summen im Produkt: M
= P MI[p] ist ein reiner Untermodul von || M[p], also nach Vorausset-
peAss (M)

zung schon direkter Summand. Nach ([8] Lemma 5.1) gibt es deshalb bei M 0
eine endliche Teilmenge Y von Ass(M), paarweise verschiedene p,,...,
p,eAss(M) und ny,...,neN\{0}, so daB mit b=pj...pf gilt: Fiir alle
peAss(M)\Y und alle geAss (M) ist b(M[p]) g-teilbar. Insbesondere gilt fiir
alle peAss(M)\Y, daBl b(M[p]) p-teilbar, d.h. Null ist, bcp, p;<p fiir ein
je{l,...,t}, und weil das schon p;=p bedeutet, ist insgesamt Ass(M)
=Yu{py, ..., p} endlich.

(il —ii)) Jedes geAtt(M) ist nach (24,b) von der Form ¢=0p, mit
p,eAss (M), und weil Ass (M) endlich ist, folgt geAss (M). (iii —iv) Fiir jedes
geAtt (M) ist nach Voraussetzung dim (R/q)=1. Weil also Att(M) diskret ist
(und bei jedem (herv) Modul der Annullator ein Wurzelideal ist), liefert (2.10)
die Behauptung, (iv —ii) Jedes peAss (M) ist nach der Bemerkung zu (2.9) mini-
mal tiber Anng (M), und davon gibt ¢s nur endlich viele.

3. Der artinsche Fall

Ist R lokal und R die Vervollstindigung, so 1Bt sich jeder artinsche R-Modul
M in natiirlicher Weise zu einem R-Modul machen. Falls M (herv) ist, muB
nach (1.1) Anng(M) ein Wurzelideal sein, und mit Hilfe des Satzes von Krull
zeigen wir als erstes, dal} fiir spezielle artinsche Moduln diese Bedingung sogar
hinreichend ist. Damit lassen sich iiber jedem vollstindigen lokalen Ring R
genligend viele Beispicle konstruieren: Zu jeder endlichen Teilmenge Y von
Spec (R)\{m} gibt es nach (3.3) einen artinschen (herv) Modul M mit
Koass (M)=Y. Von den drei Sitzen dieses Abschnittes gibt der erste Charakteri-
sierungen der Eigenschaft (herv); die beiden anderen zeigen, wie sich die Frage,
wann sich unsere Eigenschaft auf alle radikalvollen (bzw. koabgeschlossenen)
Untermoduln von M vererbt, allein an der Menge Koass (M) entscheiden 146t.
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Lemma 3.1. Sei R lokal, M artinsch und radikalvoll und Anngz(M) ein Wurzelideal.
Ist M zusdtzlich irreduzibel oder unzerlegbar, so ist M bereits halb-einfach-radikal-
voll.

Beweis. Weil alle Aussagen ebenso iiber R gelten, kénnen wir R vollstindig
annchmen, und dann entsprechen nach Matlis (siche [5] S. 40) die Ideale von
R genau den Untermoduln von E, der injektiven Hiille des Restklassenkorpers.
Falls M irreduzibel, d.h. der Durchschnitt von zwei Untermoduln 40 wieder
=0 ist, nehmen wir gleich M < E an. Dall Anng(M) ein Wurzelideal ist, bedeutet
Anng(M)=gq; N ...Nnq, mit Primidealen q;#m, nach dem Satz von Krull also

Anng(M)= ﬂ p; mit dim (R/p,)=1 fiir alle i. In M'= ) E[p;] ist dann jeder
i=1 © i=1

Summand (erv), auBerdem Anng(M’)= ﬂ p;=Anng (M), also M = M'(herv) wie
behauptet. i=1

Falls M unzerlegbar, d.h. die Summe von zwei Untermoduln # M wieder
+ M ist, folgt mit Koass (M)={p} nach Voraussetzung Anny(M)=p. Fiir den
endlich erzeugten irreduziblen Modul 4=M°=Homg(M, E) gilt dann Ass (4)
={p}, Anng(4)=p, und ein Monom. A — R/p liefert einen Epim. (R/p)° - A°,
d.h. einen Epim. E[p] — M. Weil nach dem ersten Teil E[p] (herv) ist, ist es
(siche die Bemerkung zu 1.5) auch der Faktormodul M.

Bemerkung. Auf die Zusatzbedingung ,irreduzibel“ oder ,,unzerlegbar” kann man
i.allg. nicht verzichten: Ist N artinsch und (herv) mit einem radikalvollen Unter-
modul ¥, der nicht (herv) ist, so ist M=N x V ein artinscher radikalvoller R-
Modul und Anng(M) ein Wurzelideal, aber M nicht (herv).

Folgerung 3.2. Jeder artinsche radikalvolle Modul ist wesentliche Uberdeckung
eines halb-einfach-radikalvollen Moduls.

Folgerung 3.3. Ist R lokal und vollstindig, so gibt es zu jeder endlichen Teilmenge
Y von Spec(R)\{m} einen artinschen halb-einfach-radikalvollen Modul M mit
Koass (M)=Y.

Beweis. Die zweite Folgerung erhélt man unmittelbar aus dem Lemma: Man
kann |Y|=1 annehmen, d.h. Y={p} mit p=+m, und dann leistet M =E[p] das
Gewilinschte. Bei der ersten Folgerung ist zunéchst R beliebig: Nach ([10] Satz
3.6) ist jeder artinsche Modul M wesentliche Uberdeckung ciner endlichen direk-
ten Summe von unzerlegbaren Moduln, so dall wir gleich M als unzerlegbar
annchmen koénnen. Mit Ass(M)={m} wird dann M in natiirlicher Weise zu
einem R, -Modul, so daB wir jetzt zusitzlich R als lokal und vollstdndig voraus-
setzen. Mit Koass (M)={p} und p=Anng(M/B) ist dann B klein in M und
M/B nach dem Lemma (herv).

Satz 3.4. Ist R lokal und vollstdndig, so sind fiir einen artinschen, radikalvollen
Modul M dquivalent :
(i) M ist halb-einfach-radikalvoll.
(i) M ist Summe von endlich vielen unzerlegbaren halb-einfach-radikalvollen
Untermoduln.
(iii) M[al+aM=M fiir alle Ideale a.
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Beweis. Die Inklusion (ii —1) gilt natiirlich fiir beliebige M und R, ebenso (i—iii)
nach (1.1, d).

Zeigen wir (iii —ii) durch Induktion {iber n=|Koass(M)|: Bei n=0, d.h.
M =0, ist nichts zu zeigen. Bei n>1 gilt fiir jedes geKoass (M), daB qM = g2 M,
also M’=qM artinsch, radikalvoll und g-teilbar ist, wegen q¢Koass(M’) also
Koass (M') g Koass (M). Als epimorphes Bild von M™ erfiillt M’ wieder die
Bedingung (iii), ist also nach Induktion Summe von endlich vielen unzerlegbaren
{herv) Untermoduln.

Wir sind fertig, wenn wir einen Untermodul V, von M angeben koénnen,
der selbst Summe von endlich vielen unzerlegbaren (herv) Moduln ist und fiir
den V,+M' =M gilt. Jedes minimale Element V, in der Menge {V<=M[q]|
V+M' =M} ist artinsch =0, hat also eine Darstellung Vo=U,+...4+ U, in
der jedes U; unzerlegbar und koabgeschlossen in V, ist. War nun q in der Menge
Koass (M) maximal gewdhlt, leistet ¥, das Gewiinschte: Nach ([10] Folgerung
3.2) ist dann namlich Koass (V,)=Koass (M/qM)={peKoass(M)|qcp}={q},
also nach ([9] Lemma 2.1) auch Koass(U)={q} fiir alle i, wegen U,c M[q]
sogar Anng(U;)=gq. Aber nach (3.1) heiBt das, daB3 jedes U; (herv) ist, d.h. ¥}
die verlangte Gestalt hat.

Bemerkungen. 1) Wir haben bei (iii —ii) nicht alle Ideale a, sondern nur die
koassoziierten Primideale g von M benutzt. 2) Erfiillen R und M die Vorausset-
zungen des Satzes und ist zusitzlich Koass (M) diskret, bedeutet (iii) gerade,
daB Anng (M) ein Wurzelideal ist. Damit ist (iii — i) eine Verallgemeinerung des
Falles ,,M unzerlegbar* in (3.1). 3) Versucht man (i—1ii) direkt zu beweisen
und schreibt dazu M=U, +... + U,, alle U; unzerlegbar, keines iiberfliissig, so
ist zwar jedes U, koabgeschlossen in M, braucht aber nicht (herv) zu sein. (Man
kann nur zeigen, dafl mindestens ein U; (herv) ist.) 4) Die Aquivalenz (i< ii)
gilt offenbar iiber beliebigem R, d.h. wir haben:

Folgerung 3.5. Jeder artinsche halb-einfach-radikalvolle Modul ist Summe von end-
lich vielen unzerlegbaren halb-einfach-radikalvollen Untermoduln.

Satz 3.6. Ist R lokal und vollstindig, so sind fiir einen artinschen, radikalvollen
Modul M dguivalent :
(i) Jeder koabgeschlossene Untermodul von M ist halb-einfach-radikalvoll.
(ii) Fiir jeden koabgeschlossenen Untermodul U von M ist Anngz(U) ein Wur-
zelideal.
(iil) Anng(M) ist ein Wurzelideal und Koass (M) ist diskret.
(iv) Anng(aM)-M +aM =M fiir alle Ideale a.

Beweis. Fiir die Aquivalenzen (i« ii) bzw. (iii <»iv) ist nach dem Vorhergehenden
nicht mehr viel zu beweisen. Die zweite ist ein Spezialfall von (2.10), und bei
der ersten ist nur (ii — i) zu zeigen. Dazu schreibe man jeden koabgeschlossenen
Untermodul 440 in der Form A= U, + ...+ U,, alle U, unzerlegbar, keines tiber-
fliissig. Jedes U, ist dann koabgeschlossen in A4, also auch in M, so dali Anng(U)
nach Voraussetzung ein Wurzelideal ist, auBBerdem U; radikalvoll. Nach (3.1)
ist daher jedes U, (herv), also auch A.

(iii — i) Beim Induktionsbeweis iber n=|Koass (M)| ist n=0 klar. Ist n=1
und Koass (U)=Koass (M), folgt aus der Voraussetzung N Koass (U)= Anng (M),
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also auch Anng(U)=Anng(M). Ist aber Koass (U)< Koass (M), folgt mit jedem
qeKoass (M)\Koass (U), dal M'= ﬂ q'M artinsch und radikalvoll ist,

i=1
Anng(M’) ein Wurzelideal und Koass (M) & Koass (M). Falls wir U< M’ zeigen
kénnen, sind wir nach Induktion fertig: U ist sogar g-teilbar, sonst gibe es
ein peKoass (U) mit g<p, es folgte peKoass (M), also wegen der Diskretheit
p=gqgeKoass (U), und das ist unmoglich.

(it —»1i1) Speziell fiir U=M erhilt man, daB Anng(M) ein Wurzelideal ist.
Fiir den endlich erzeugten sockelfreien Modul 4=M°=Homg(M, E) miissen
wir zeigen, dall Ass(4)=Koass(M) diskret ist. A besitzt, via Matlis-Dualitit,
die folgende Eigenschaft

(x) Fiir jeden abgeschlossenen Untermodul A, von A ist Anng(A/A,) ein Wurzel-
ideal,

und die vererbt sich auf jeden Untermodul B von A4: Ist B, ein abgeschiossener
Untermodul von B, wihle man ein maximales Element V; in der Menge
{BycV<A|VAB=B,}, und dann ist V, abgeschlossen in A4, mit () also
Anng(A/V)=NAss(A/V}); weiter ist die kanonische Abb. B/B; — A/V, ein
wesentlicher Monom., so daB in Anng(B/B;)=NAss(B/B,)=Anng(A4/V;)
Gleichheit gilt. Zum Beweis, daB3 Ass (A4) diskret ist, ist jetzt nur noch zu zeigen,
daB fir zwei Primideale p & q der Modul B={(R/p) x (R/q) nicht die Eigenschaft

(*) besitzt. Wahlt man cin irreduzibles Ideal b mit pcbg q und ]/Bz q (betrachte
bei p=0 etwa eine Primérzerlegung von q'»), so gibt es wegen gqeAss(R/b)
einen Monom. a: R/q - R/b und dazu cinen Epim. g: R/p — Kok «. Bildet man
damit das kommutative Diagramm

0 R/q C — Rjp ——0
S g
0———R/q——R/b Kok o——0,

so ist C;=Kef ein maximales Element in der Menge {V<=C|VnKen=0},
also C; abgeschlossen in C und natiirlich C/C,~R/b. Wegen pC =0 zerfillt
die obere Zeile, es folgt C = B, so dal} auch B einen abgeschlossenen Untermodul
B, hat mit B/B; = R/b. Aber Anng(B/B,)=D ist kein Wurzelideal, also () ver-
letzt.

Bemerkung zu (iii —ii). Mit einem dhnlichen Induktionsbeweis kann man iiber
beliebigem R fiir jeden Modul M zeigen: Ist Anng(M) ein Wurzelideal und
Att (M) diskret (d.i. die Situation in 2.10), so gilt fiir jeden koabgeschlossenen
Untermodul U von M, daBB Anng(U) ein Wurzelideal ist.

Da bei einem (herv) Modul der Annullator stets ein Wurzelideal ist, erhilt
man aus dem Satz speziell:

Folgerung 3.7. Ist R lokal und vollstéindig, so sind fiir einen artinschen, halb-ein-
Sfach-radikalvollen Modul M dquivalent :
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(o) Jeder koabgeschlossene Untermodul von M ist wieder halb-einfach-radikal-
voll.
(B) Koass (M) ist diskret.

Die Vererbung der Eigenschaft (herv) auf alle radikalvollen Untermoduln
bedeutet, da es i.allg. mehr radikalvolle als koabgeschlossene Untermoduln in
M gibt, eine noch strengere Bedingung an Koass (M):

Satz 3.8. Ist R lokal und vollstindig, so sind fiir einen artinschen, radikalvollen
Modul M dquivalent:
(i) Jeder radikalvolle Untermodul von M ist halb-einfach-radikalvoll.
(i) Fiir jeden radikalvollen Untermodul U von M ist Anng(U) ein Wurzelideal.
(iii) Anng(M) ist ein Wurzelideal und fiir alle qeKoass (M) gilt dim (R/q)=1.
(iv) M ist Summe von endlich vielen einfach-radikalvollen Untermoduln.

Beweis. Fiir die Eigenschaft (iv) wird in [ 10] eine Reihe von Charakterisierungen
gegeben. Ein Modul M heiBt dort schwach-reduziert, wenn jeder radikalvolle
kleine Untermodul von M Null ist, und das ist, falls M artinsch und radikalvoll
ist, nach ([10] Satz 4.10) dquivalent mit (iv). Natiirlich vererbt sich die Eigen-
schaft ,.schwach-reduziert” auf Untermoduln, und damit ist (iv — i) bewiesen.

Weil (i—ii) klar ist, zeigen wir als ndchstes (ii—iil): Fir U=M wird
Anng(M) ein Wurzelideal, und 4= M? hat jetzt dic Eigenschaft

(x+) Fiir jeden Untermodul A’ von A, mit So (A/A’)=0, ist Anng(A/A’) ein Wur-
zelideal.

Mit einem Ansatz wie in (3.6, ii — iii) zeigt man, daB sich (%) auf Untermoduln
vererbt. Damit folgt dim (R/p)=1 fiir alle peAss(4)=Koass(M): Hitte man
ein Primideal g mit pSqEm, wire B=q/p ein Untermodul von A4 der ()

verletzt, denn mit einem irreduziblen Ideal b, fir das p=b&q und ]/B:q gilt,
und B'=b/p folgt Ass(R/b)={q}, also So(B/B)=0, wihrend Anng(B/B)=b
kein Wurzelideal ist.

(iii — iv) Wieder nach ([10] Satz 4.10) ist zu zeigen, daB M die Maximalbedin-
gung fir radikalvolle Untermoduln besitzt. Aber fiir den endlich erzeugten
Modul A =M? gilt dim (R/p)=1 fiir alle pe Ass (4), so daB er die Minimalbedin-
gung fiir Untermoduln X mit So (4/X)=0 hat, also M die verlangte Maximalbe-
dingung.

Bemerkungen. 1) Entsprechend (3.7) 148t sich jetzt, falls R lokal und vollstindig,
M artinsch und (herv) ist, die Vererbung dieser Eigenschaft auf radikalvolle
Untermoduln allein an Koass (M) ablesen: Es muBl dim (R/q)=1 sein fiir alle
qeKoass (M). 2) Punkt (i) und (iv) sind nur Aussagen {iber den Untermodulver-
band von M. Mit Hilfe der im letzten Beweisschritt beniitzten Maximalbedin-
gung erhilt man daher iiber beliebigem R:

Folgerung 3.9. Fiir einen artinschen, halb-einfach-radikalvollen Modul M sind
dquivalent :
(a) Jeder radikalvolle Untermodul von M ist wieder halb-einfach-radikalvoll.
(b) M erfiillt die Maximalbedingung fiir radikalvolle Untermoduln.
(c) M ist Summe von endlich vielen einfach-radikalvollen Untermoduln.
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