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Der Krull'sche Durchschnittssatz f/Jr kleine Untermoduln 

Von 

HELMUT ZOSCHINGER 

Einleitung. Sei Rein kommutativer Ring, M ein R-Modul und U ein Untermodul von 
M. Bekanntlich heiBt U klein in M, wenn aus X + U = M (X ein Untermodul yon M) 
stets folgt X = M. Eine naheliegende Verallgemeinerung des Lemmas yon Nakayama 
besagt: Ist U endlich erzeugt und U c R a (M) = Durehschnitt aller maximalen Unter- 
moduln von M, so ist U klein in M. Die erste Bedingung - U endlich erzeugt - ist jedoch 
nicht notwendig. Z.B. zeigen wir in Abschnitt 3 dieser Arbeit ffir jeden noetherschen 
Integrit/itsring R mit Quotientenk6rper K 4: R, dab R' (der ganze AbschluB von R in K) 
als R-Modul klein in K ist, aber es ist wohlbekannt, dab R' nieht endlich erzeugt sein 
muB. Trotzdem m6chte man fiir einen kleinen Untermodul U gewisse Endlichkeitsbedin- 
gungen herleiten, und das uns bisher bestm6gliche Ergebnis ist der fblgende Durch- 
schnittssatz: 

Ist R ein noetherscher Integritdtsring, M ein torsionsfreier R-Modul und U ein kleiner 

Untermodul yon M, so folgt ~ d U = O fiir jedes Ideal a 4: R. 
i = l  

Aus ihm folgt insbesondere, dab fiber einem noetherschen lokalen Ring R jederflache 
kleine Untermodul U doch schon endlich erzeugt ist. Als Hauptanwendung geben wir in 
Abschnitt 2 die Bestimmung aller koassoziierten Primideale eines flachen R-Moduls F, 
d.h. der p E Spec(R), zu denen es einen artinschen Faktormodul A yon F gibt mit 
p = Ann R (A). Speziell ffir F =/~, die Vervollst/indigung eines noetherschen lokalen Rin- 
ges (R, m), erhalten wir: 

Koass (/~) = {m} w {p ~ Spec (R) IR/~ ist nicht vollstfindig}. 

1. Der Durchschnittssatz. Stets sei in dieser Arbeit Re in  kommutativer noetherscher 
Ring. Well R auch nicht-lokal sein daft, mfissen wir den Begriff ,,endlich erzeugt" verall- 
gemeinern: Ein R-Modul M heiBt koatomar, wenn jeder echte Untermodul yon M in 
einem maximalen Untermodul enthalten ist. Nach [3] ist das/iquivalent damit, dab alle 

m-Komponenten L~ (M)= ~ AnnM(m/) durch eine Potenz von m annulliert werden 
i=1 

und dab der sockelfreie Anteil M/L(M), mit L(M) :=  @ L m (M), lokal endlich erzeugt ist. 
Dual heiBt M halbartinsch, wenn jeder eclate Untermodut von M einen einfachen Unter- 
modul enth/ilt, und das ist/iquivalent mit L(M) = M. 
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Lemma 1.1. Ist ( R, m) ein lokaler Integritiitsring, so besitzt jeder torsionsfreie R-Modul 

M einen Untermodul M~ derart, daft ~) m i M 1 = 0 und M / M  i hatbartinsch ist. 
i = I  

B e w e i s. Ist K der Quotientenk6rper yon R, so k6nnen wir gleich K 4: R annehmen. 
Im Spezialfall M = K gibt es nach Chevalley (siehe [1] Theorem 258) einen diskreten 

Bewertungsring (V,~ r zwischen R mid K mit J r  c~ R = m, und aus ~ d [ ~ =  0 folgt 
oo i = 1  

sofort ~ m z V = 0. Weiter gibt es, weil K/V als V-Modul artinsch ist, zu jedem x e K ein 
i = I  

e > 1 mit ~/r x c V, es folgt m~2 = 0 ffir 2eK/V,  so dab K/V als R-Modut  halbartinsch 
ist~ - Ist M nur torsionsfrei :I: 0, hat die injektive Hiitle Q yon M die Gestalt Q -~ K m, 

also einen Untermodul  Qi ~ vm, und weil (~ m i Qi = 0 sowie Q/Qi halbartinsch ist, 
leistet M~ = Q ~ c~ M das Gewfinschte. ~ = 1 

Satz 1.2. Sei (R, m) lokal, M ein flacher R-ModuI und U ein kleiner Untermodut yon M. 
Dann gilt 

• miU c N M ,  
i = 1  

wobei N das NilradikaI yon R sei. 

B e w e i s. Sei im t. Sehritt R zus/itzlich ein vollst/indiger Integrit/itsring. Ist E die 
injektive Hiille des Restklassenk6rpers R/m und M ~  Home(M,  E), erhfilt man die 
exakte Folge 0 ~ (M/U) ~ ~ ~~ 1w"'~~ ~ U o ~ 0, in der, weil R vollst/indig ist, v ~ ein wesentli- 
cher Monomorphismus  ist ([4] Hilfssatz 3.3), d. h. Bi v ~ grol3 in M ~ Also ist Kok v ~ ~ U ~ 
ein Torsionsmodul, 0 r  (U ~ = Koass (U). Well U als Untermodul  von M ebenfaUs 
torsionsfrei ist, kann man nach (1.1) einen Untermodul  U 1 yon U w/ihlen, so dab 

N m i u l  = 0  und U/U1 halbartinsch ist. Aus OCKoass(U/U1) folgt nun nach ([51 

Lemma 2.8, b), dat3 U/L~ beschr/inkt ist, d.h. ein 0 + s e R existiert mit s U c U~. Wegen 

U -~ s U ist also auch (~ m ~ U = 0. 
i = 1  

Sei im 2. Schritt R nur noch vollst/indig. Mit Min (R) = {q 1, -.-, qt} ist N = q i c~... c~ qt, 

also, well M flach ist, N M =  ~ (qjM). Es genfigt daher, m i U c q M  f/ir atle 
j = i  i = i  

q~ Min(R) zu zeigen: Weil g '  = R/q ein vollst/indiger Integrit/itsring und M/q M als 
R-Modul  wieder flach ist, ist der kleine Untermodul  (U + q M)/q M nach dem ersten 

Schritt in der ~-adisehen Topologie separiert, d.h. ~) (m i U + q M)/q M = O, und daraus 
folgt die Behauptung. i= i 

Aus der soeben bewiesenen Inklusion ~) m ~ U ~ N M  folgt auch, dab es keinen Mono-  

morphismus R ~ m ~ U gibt, denn mit N ~ = 0, N ~- I 4 :0  ist ja N ~- 1 m ~ U = 0. 
i = l  \ i = i  
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Sei im 3. Schritt Rein Integrit~tsring, aber nicht notwendig votlst~indig. Nach ([4] p. 60) 
ist/~ | U ats/~-Modul klein in /~  |  so daB es nach der letzten Bemerkung keinen 

R R oo 
/~-Monomorphismus f : /~  ~ / ~  | U gibt mit Bi f = ~=~(-] Jg~ \(/~ | U), wobei Jg  = m 

das maximale Ideal yon/~  sei. Es gibt also auch keinen R-Monomorphismus g: R ~ U 

mit Big ~ ~] m ~ U, und das bedeutet, well Re in  Integrit~itsring und U torsionsfl'ei war, 
i=1  

~ m~U=O. 
i=1 

Ist im 4. Schritt R nur lokal, mfissen wir wieder (~ m ~ U ~ q M ffir alte q e Min (R) 
i=1 

zeigen. Das geht jetzt wie im zweiten Schfitt, denn R = R/q braucht nach dem dritten 
Schritt nicht mehr vollst~indig zu sein. 

B e m e r k u ng .  Ein Untermodul U yon M heiBt radikatvoll, wenn Ra (U) = U ist (d. h. 
wenn U keine maximalen Untermoduln besitzt). Im lokaten Fall ist das ~quivalent mit 
m U = U, und dann sagt der Satz: Ist M flach und U ein radikalvoller kleiner Untermodul 
yon M, so folgt U ~ N M. Auf die Flachheit yon M kann man dabei nicht verzichten. Ist 
z. B. Rein  lokaler Integrit~itsring mit dim (R) => 2 und w/ihlt man M = E, so folgt ffir jedes 
Primideal 0 # p ~ m, daB U = Ann M (p) ein radikalvoller, kleiner Untermodul #= 0 yon 
Mis t .  

Satz 1.3. Sei R ein Integritdtsring, M ein torsionsfreier R-Modul und U ein kleiner 

Untermodul yon M. Dann gilt ~ a i U = 0 fftr jedes Ideal a 4= R. 
i = l  

B e w e i s. Durch Ubergang zur injektiven Hfille Q ~ K (~) von M k6nnen wir gleich 

annehmen, dab M flach ist. Angenommen, es gibt ein m ~ Max (R) mit i~ ra~ U 4= 0, so 
i=1 

gibt es einen R-Monomorphismus g: R -* U mit Big c m; U, und dann ist g,~: R,~ -~ U,, 
(~  i=1 

ein R~-MonoIn.orphismus mit Big,, c d/l i U~, wobei ~ = mR,,, sei. Nach ([3] 
i = l  

Lemma 4.1) ist aber [,~ als R~-Modul klein in M~, also nach (1.2) (~ j r  U,, = 0, und das 
ist unmSglich, i= ~ 

Die erste Fotgerung ist eine Verallgemeinerung von (1.2) aufden nicht-tokalen Fall, die 
zweite wird der wesentliche Baustein im Beweis yon (1.7). 

Folgerung 1.4. Sei J das Jacobson- und N das Nilradikal yon R, sei M ein flacher 

R-Modul und U ein kleiner Untermodul yon M. Dann gilt ~ a ri U ~ N M. 
i = l  

B e w e i s. Wie im zweiten Beweisschritt yon (1.2) genfigt es (~ J~ U = q M zu zei- 
i=1 

gen ffir alle q~ Min(R). Qber dem Integritatsring /~ = R/q ist M / q M  wieder flach 
und ( U + q M ) / q M  ein kleiner Untermodul,  aul3erdem J :~R ,  so dal3 nach (1.3) 

5(J~  U + q M)/q M = 0 ist wie gewfinscht. (Offenbar kann man J dureh jedes Ideal a 

ersetzen, das die Bedingung a + q + R fiir alle cl a Min (R) erffitlt.) 
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Folgerung 1.5. Sei R ohne nilpotente Elemente, M ein beliebiger R-Modul und U ein 
radikalvoller kleiner Untermodul yon M. Dann ist U ein Torsionsmodul. 

B e w e i s .  Ist R sogar ein Integrit/itsring, folgt die Behauptung sofort aus (1.3): 
(U + T(M))/T(M) ist ein radikalvoller kleiner Untermodul  yon M/T(M),  also Null. Ist 
nur N = 0, folgt ffir jedes p e Ass (U), dab (U + p M)/p M ein radikalvoller kleiner Unter- 
modul von M/p M ist, also fiber dem Integrit~tsring Rip ein Torsionsmodul, und das 
heiBt U~ c Ra (Mp). Wegen U~ + 0 kann also R~ kein K6rper sein, wegen N = 0 folgt 
p ~; u Ass (R), d.h. p ist regul/ir. 

Lemma 1.6. Sei M ein R-Modul und U ein flacher Untermodul yon M. 
(a) Fiir alle p ~ Ass (R) gilt U n p M = p U. 
(b) Fiir das Nilradikal N yon R gilt U n N M = N U. 

B e w e i s. (a) Sei u e U n p M, u = ~ r, x /mi t  r, e p, x; ~ M. Mit p = Ann a (a), a e R, 

folgt a u = 0, wegen der Flachheit yon U also u = tj uj mit uj ~ U, t] ~ p ffir alle j. Damit 
ist u ~ p  U. j=l  

(b) Speziell ffir alle qeMin (R)  gilt jetzt U n N M c U ~ q M = q U ,  also 
U n N M  c c~ {q UIqEMin(R)}  = N U .  

Satz 1.7. Sei M ein R-Modul und U ein flacher kleiner Untermodul yon M. Dann ist U 
koatomar. 

B e w e i s .  Sei im 1. Schritt U zus/itzlich radikalvoll. Dann ist (U + N M ) / N M  ein 
radikalvolter kleiner Untermodul yon M / N M ,  also nach (1.5) ein Torsionsmodul fiber 

= R/N. Nach (1.6, b) ist aber (U + N M ) / N M  ~- U/N U auch als/1-Modul flach, insbe- 
sondere torsionsfrei. Aus U/N U -= 0 folgt U = 0 wie behauptet. 

Ist im 2. Schritt U nur noch flach, aber R lokal, so wollen wir zeigen, dab U sogar 
endlich erzeugt ist. Ober dem Restklassenk6rper k = R/m hat der Vektorraum U/m U 
eine k-Basis (tia [ 2 ~ A), und bekanntlich sind dann die (ux] 2 e A) in U R-linear unabh/ingig 
(siehe [2] p. 51), so dab F : =  G R ux ein freier Untermodul  yon U wird mit F + m U = U, 
F n m U - - m  F. Weil U klein in M ist, kann es keinen Epimorphismus von U in die 
injektive Hfille E yon k geben, also auch keinen yon F nach E, d.h. F ist endlich erzeugt. 
Damit  ist F koabgeschlossen in U: Aus X c F, F /X  klein in U/X, folgt FIX c Ra(U/X), 
F c X + m U, F = X + m F, also nach Nakayama F / X =  0. In flachen Moduln sind aber 
nach ([4] Satz 3.4) alle koabgeschlossenen Untermoduln bereits rein, so dab jetzt U/F ein 
flacher kleiner Untermodul  von M/F ist. Nach dem ersten Schritt folgt U/F = 0, so dab 
U = F endlich erzeugt ist wie behauptet. 

Der 3. Schritt ist jetzt, weil Kleinheit beim Lokalisieren nach maximalen Idealen 
erhalten bleibt ([3] Lemma 4.1), Routine: Alle U,, (m E Max (R)) sind als R,~-Moduln nach 
dem zweiten Schritt endlich erzeugt, so dab jeder radikalvolle Faktormodul  yon U Null 
ist, also U koatomar.  
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B e m e r k u n g. Auf die Flachheit von U kann man  in (I.7) nicht verzichten. Verlangt 
man z.B., dab fiber R alle kleinen Untermoduln koa tomar  sind, so ist das nach [3] 
/iquivalent damit, dab d i m ( R ) ~  I i s t  und in allen /~,~ (m~Max(R))  das Nilradikal 
endliche L~nge hat. 

Folgerung 1.8. Sei K der totale Quotientenring yon R und R ~ A ~ K ein Zwischenring, 
so daft A ats R-Modul flaeh und klein in K ist. Dann folgt A = R. 

B e w e i s. Nach (1.7) ist A als R-Modul  koatomar ,  und well der Unterrnodul R dutch 
kein m E Max (R) teilbar ist, gilt das nach ([3] Lemma IA) auch fiir A selbst, d.h. R c A 
ist eine treuflache Ringerweiterung. Dami t  ist auch A/R flaeh, aut3erdem ein Torsionsmo- 
dul, also Null. 

2. Die koassoziierten Primideale eines flachen Modu|s. Ffir einen R-Modul  M ist 
Koass (M) eine i. allg. echte Teilrnenge von Att (M)=  {p 6 Spec(R) lAnn R (M/p M)= p}, und 
fiir einen flachen R-Modul  M sieht man sofort, dab Att (M) = {p e Spec (R) IM/p M 4: 0} 
ist. Koass (M) abet  konnten wir in ([5] Abschnitt  4) nur ffir ganz spezielle flaehe R-Moduln  
berechnen, z.B. ffir M = Rq, falls R ein Integritfitsring und q~ Spee(R) war. Mit dem 
letzten Satz aus Abschnitt 1 gelingt uns diese Berechnung jetzt ffir alle flachen R-Moduln,  
und wir wollen das Ergebnis an drei Beispielen illustrieren. 

Satz Z1. Fiir jeden flaehen R-Modul M ist Koass (M) = {p ~ Spec (R) i M/p  M + 0, und 
falls p r Max (R), ist M/p M nicht koatomar}. 

B e w e i s. ,, c ~ F/Jr jeden R-Modul  M gilt: Ist p ~ Koass (M), also p = Ann R (M/U) und 
M/U artinsch, so folgt p M ~ U, M/p M +- O. Ist zusfitzlich M/p M koatornar,  hat M/U 
als artinscher koa tomarer  Modul  sogar endliche L/inge, und es folgt p ~ Max (R). 

, = "  Ist p ~ Max (R) und M/p M 4: O, kann man  einen rnaxirnalen Untermodul  U von 
M w/ihlen mit p M = U, und es folgt p = Ann R (M/U). Ist p 6 Max (R) und M/O M nicht 
koatomar ,  kann fiber dem Integrit~itsring/~ = Rip der flache Modul  M/p M in seiner 
injektiven Hiille nicht klein sein (1.7), hat also einen teilbaren Faktormodul  D =~ 0, und 
aus {0) = Koass~ (O) c Koass/t (M/p M) folgt p ~ Koass (M). 

Folgerung 2.2. Ist M ein flacher R-Modul und p e Koass (114) kein maximates Ideal, so 
folgt q ~ Koass (M) fi~r jedes Primideal q c p. 

Folgerung 2.3. FiJr einen radikalvollen flachen R-Modul M ist Koass (M) = Art (M). 

B e i s p i e l  2.4. Ist (R,m) lokal und /~ die Vervollst/indigung yon R, so gilt 
Koass (/~) = {m} w {p ~ Spec (R) ] R/p ist nieht vollst/indig}. 

B e w e i s. Wegen m/~ +-/~ ist ra ~ Koass (/~). Ffir alle Primideale p + m folgt aber die 
Behauptung aus (2.1): Der Kokern der kanonischen Abb. ~p: R/p ~ ~ -- /~/p/~ ist stets 
radikalvolt, also/~/p/~ genau dann koatornar,  wenn ~o surjektiv, d. h. R/p vollstfindig ist. 

B e rn e r k u n g e n. 1) Es ist leieht zu sehen0 daf3 Att (/~) = Spee (R) ist, denn allgerneiner 
gilt fiir jede treuflache Ringerweiterung R ~ A und jedes p ~ Spec (R), dab p A ,q R = p, 
also Ann R (A/p A) = p ist. 2) Mit (2.4) haben wir sogar Koass ( ~ )  fiir jeden endlieh erzeug- 
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ten R-Modul  M berechnet: Es ist (~)o ~ (/~ | M)O _~ HomR (M, (/~)o), also Koass (2~) = 
R 

Ass ((~)o) = Supp (M) n Ass ((/~)o) = Supp (m) n Koass (/~). 3) Sei weiter R lokal. Ffir je- 
den injektiven R-Modul  M i s t  dann M ~ flach, so dab sich Koass (M ~ = Ass (M ~176 mit 
Hilfe von (2.4) und (2.3) berechnen lfil3t: Ist M halbartinsch, d. h. M ~ E (I), folgt M ~ ~/~I ,  
also Ass (M ~176 = Koass (/~) falls I endlich :~ 0, Ass (M ~176 = Spec (R) falls I unendlich ist. 
Ist M sockelfrei, d.h. M ~ radikalvoll, erhfilt man  Ass (M ~176 = {p E Spec (R) I es gibt ein 
q ~ Ass (M) mit p c q}. 

B e i s p i e l  2.5. Ist S e i n e  multiplikative Teilmenge yon R, so gilt K o a s s ( R s ) =  
{ p s S p e c ( R ) I p n S = 0 ,  und falls pCMax(R) ,  gibt es ein p c m o e M a x ( R  ) mit 
m o n  S 4= 0}. 

B e w e i s. Sei p ~ Att (Rs), d.h. p c~ S = 0. Falls O e Max (R), folgt sofort p e Koass (Rs). 
Falls p r Max (R), gehen wir wie im Beweis yon (2.4) vor: Der Kokern tier kanonischen 
Abb. ~: R/p -* (R/p)~ = Rs/p R s ist stets radikalvoll, also Rs/p R s genau dann koatomar ,  
wenn {p surjektiv ist, d.h. g nur aus Einheiten besteht, d.h. m n S = ~ ist ffir alle 
p c rrt E Max (R). Mit (2.1) folgt die Behauptung. 

B e m e r k u ng .  Das  eben bewiesene Beispiel konnten wir in ([5] Satz 4.5) nur unter der 
Zusatzbedingung behandeln, dab R e i n  Integrit/itsring und der Ring R s semilokal war. 
In den dort  angegebenen Formeln (4.6) und (4.7) ffir Koass (R,) braucht  also R kein 
Integrit/itsring zu sein. 

B e i s p i e 1 2.6. Zu p ~ Spec (R) gibt es h6chstens zwei Typen von flachen R-Moduln  
M mit K o a s s ( M ) =  {p}: Falls h ( p ) =  0, ist M ~ (Rp) (n mit I 4= !b; falls h (~)+  0, mug  
p e Max (R) sein, R/q lokal f/ir alle Primideale q c p und M -- (Rp)" mit n > 1. 

B e w e i s. Fiir jeden flachen R-Modul  M gilt u Ass (M) c u Koass (M), denn 
aus q e Ass (M) folgt bekanntlich M/q M oe 0, mit einem p e Koass (M/q M) also 
q c p ~Koass(M).  Ist daher K o a s s ( M ) =  {p}, operieren alle s~R\p  auf M nicht nut  
surjektiv, sondern auch injektiv, und es folgt M ~ Nip. I. Fall h(p) = 0. Dann  ist der Ring 
R~ artinsch und Mp als Rp-Modul nicht nur flach, sondern sogar frei, also M ~ (R~) (t) mit  
I ~ ~. 2. Fall h (p) -+ 0. Mit irgendeinem Primideal q ~ p folgt dann nach Voraussetzung 
q r Koass (M), also nach (2.2) p e Max (R). Damit  ist M als R-Modul  koatomar ,  also auch 
M~ als R~-Modul ([3] Lemma 1.1, Folgerung), und mit einem freien Rp-Untermodul  F 
yon Mp, F +  R a ( M ~ ) =  M~ (siehe den zweiten Beweisschritt yon (1.7)) erh/ilt man. 
F = Mp, also M - (Rp) m mit I # I~. Weil der Ring R~ nicht artinsch ist, ist jeder koa tomare  
freie Rp-Modul bereits endlich erzeugt ([3] Lemma  2.1, Folgerung 1), also I endlich. Well 
schliel31ich R~ als R-Modul  koatomar ,  also die kanonische Abbildung R ~ R~ surjektiv 
ist, folgt nach ([4] Satz 1.3) ffir jedes Primideal q c p, dab p/q das einzige maximale Ideal 
im Ring R/q ist. 

B e m e r k u ng .  Die beiden angegebenen Typen haben tats/ichlich nur ein koassoziiertes 
Primideal: Ist h (p) = 0 und I + 0, gilt sogar Art ((Rv) m) = Att (R~) = {p}. Ist m ein maxima- 
les Ideal derart, dab alle R/q lokal sind (q c m), folgt mit (2.5) sofort Koass (R,.) = {m}. 

3. Uber den ganzen Absehlufl von R im totalen Quotientenring K. Hauptziel dieses letzten 
Abschnittes ist es, fiir jeden noetherschen Integrit/itsring R mit Quotientenk6rper K ~e R zu 
zeigen: R', der ganze Abschlug yon R in K, ist als R-Modul  klein in K. Die 
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Umkehrung  - Ist ein Zwischenring R c A c K als R-Modul  klein in K, so ist A ganz fiber 
R gelingt uns bis jetzt nur unter der Zusatzbedingung, dab alle A/m A endlich erzeugt 
sind (m ~ Max (R)). Well die Nullteilerfreiheit beim Obergang zu/~,,  i. allg. verlorengeht, 
wollen wir auf sie von vorneherein verzichten. 

Lemma 3.1. Sei M ein flacher R-Modul und U c M c L. Genau dann ist U klein in M, 
wenn (U + q L)/q L klein in (M + q L)/q L ist J~r alle q~Min(R) .  

B e w e i s. ,, ~ ~ Ist U klein in M, so gilt fiir j eden Untermodul L i yon L, dab (U + L 1)/L 1 
klein in ( M + L O / L  1 ist: Aus L i c X c M + L 1  und X + ( U + L  I ) = M + L  1 tblgt 
U + ( X c ~ M ) = M ,  M c X,  X =  M + La. 

, , ~ "  Nur  hier wird die Ftachheit yon M, d.h. (1.6, a) benfitzt: Aus X + U = M folgt 
nach Voraussetzung X + q L = M + q L, also X + (q L n M) = M, X + q M = M ffir alle 
q~Min(R) ,  X + N M = M, X = M. 

Satz 3.2. Sei R' der ganze AbschIufi yon R in K und M ein flacher R-Untermodul yon K. 
Dann ist R' c~ Ra (M) klein in M. 

B e w e i s. Sei U = R' c~ Ra (M). Ist im 1. Schritt R zusfitzlieh lokal und votlst/indig, gilt 
nach Naga ta  ffir jedes q ~ Min (R), dab (R/q)', der ganze AbschluB von R/q in seinem 
Quotientenk6rper  Q (R/q), endlich erzeugt ist. In 

(U + q K)/q K m (M + q K)/O K c K/q K c O (R/q) 

ist also (U + q K)/q K als Untermodul  yon (R/q)' endlich erzeugt und deshatb klein in 
(M + q K)/q K. Well das fiir alle q ~ Min (R) galt, folgt mit L = K in (3.1) die Behauptung. 

Sei im 2. Schritt R nur lokal , /~ die Vervollst~indigung yon R und Q(/~) der totale 
Quotientenring von ,q. Aus 

/~ |  U c / ~ |  c / ~ |  c Q(/~) 
R R R 

folgt dann, d a b / ~  | M ein f lacher /~-Untermodul  yon Q (/~) ist, also nach dem ersten 
R 

Schritt (/~)' c~ Ra( /~ | M )  a ls /~-Modul  klein in/~ | Mis t .  Das gilt dann erst recht fiir 
\ ^ R J R 

den Untermodul  R | U, so dab nach ([4] p. 60) auch U klein in M ist. 
R 

Sei im 3. Schritt Rein Integritfitsring, abet  nicht notwendig lokal. Fiir jedes m e Max (R) 
ist natfirlich Mm ein flacher Rm-Untermodul yon K, also nach dem zweiten Schritt 
(R,~)' c~ Ra (M~) als Rm-Modul klein in M.,.  Das  gilt dann erst recht ffir den Untermodut  
U,,. Weil also U~, klein in M.,  ist ffir alle m e  Max(R), ist auch U klein in M. 

Ist im 4. Schritt R beliebig, mtissen wir wieder ffir alle q e Min(R) zeigen, dab 
(U + q K) /qK klein in (M + q K)/qK ist. Wie im ersten Sehritt ist (M + q K)/q K ein 
Untermodul  von Q (R/q), auBerdem als R/q-Modul  flach (1.6, a) also nach dem dritten 
Schritt (R/q)' c~ Ra ((M + q K)/q K) klein in (M + q K)/q K. Das gilt auch ffir den Unter-  
modul (U + q K)/q K, und wir sind fertig. 

Ffir jedes maximale Ideal m yon R gilt R + m K = K. Will man also, dab R (oder R') 
als R-Modul  klein in K ist, mul3 K als R-Modul  radikalvoll sein. Diese Bedingung ist 
nach (3,2) sogar hinreichend, denn mit M = K erh/ilt man: 
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Folgerung 3.3. S&d alle maximalen Ideale yon R reguldr, so bt R' als R-Modul klein 
inK. 

Satz 3.4. Sei R c A ~ K ein Zwischenring, so daft A als R-Modul klein in K ist und alle 
Aim A endlich erzeugt sind (m e Max (R)). Dann f olgt A = R'. 

B e w e i s. Wit  verwenden das folgende, wohlbekannte Kri ter ium ffir Ganzheit  (das 
dem in (3.1) bewiesenen Kriterium far Kleinheit entspricht): a ~ K  ist genau dann ganz 
fiber R, wenn ~i ~ K/q K ganz fiber R/q ist far alle q ~ Min (R). 

Sei im I. Schritt R zus/itzlich lokal und vollst/indig. Ist q e Min (R) u n d / i  = R/q, so ist 
(A + q K)/q K auch a ls /~-Modul  klein in K/q K, also nach (1.2) in der rh-adischen Topo- 
logie separiert. Nach Voraussetzung ist (A + q K)/q K modulo ga endlich erzeugt, wegen 
der Vollst/indigkeit v o n / ~  also (A + q K)/q K selbst endlich erzeugt. Weil das far alle 
q e Min (R) galt, folgt mit der Vorbemerkung A c R'. 

Sei im 2. Schritt R nur lokal , /~  die Vervollst~indigung von R und Q (/~) der totale 
Quotientenring yon/~.  In 

g ~ g |  c ~ |  = Q(g) 
R R 

ist dann auch/~ | A modulo  J g  = m/~ endlich erzeugt und als /~-Modul  klein in/~ | K 
R R 

([4] p. 60), also nach dem ersten Schritt ganz fiber/~. Fa r  aUe a e A ist daher /~  | R [a] 
endlich fiber/~, R [a] endlich fiber R, a E R' wie behauptet.  R 

Sei im 3. Schritt R ein Integrit/itsring, aber nicht notwendig lokal. Fa r  jedes 
m E Max (R) ist auch A,~ modulo  m Rm endlich erzeugt und als Rm-Modul klein in K, so 
dab nach dem zweiten Schritt A,, c ( R j '  = (R')m ist. Weil das far alle m ~ Max (R) galt, 
folgt A ~ R'. 

Ist im 4. Schritt R beliebig, folgt far alle q e Min (R), dab (A + q K)/q K ein Unterr ing 
yon Q (R/q) ist, der modulo  aller fit (q c m e Max (R)) endlich erzeugt und als R/q-Modul  
klein in Q (R/q) ist, also nach dem dritten Schritt ganz fiber R/q. Wieder mit der Vorbe- 
merkung erh/ilt man A c R'. 

B e m e r k u ng .  Die Bedingung an alle Aim A ist z. B. dann erfiillt, wenn A als R-Modul  
flach ist (d. h. (1.8) ist ein SpezialfalI yon (3.4)) oder wenn A/R halbartinsch ist. 
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