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Der Krull’sche Durchschnittssatz fiir kleine Untermoduln

Von

HeLMUT ZOSCHINGER

Einleitung. Sei R ein kommutativer Ring, M ein R-Modul und U ein Untermodul von
M. Bekanntlich heilit U klein in M, wenn aus X + U = M (X ein Untermodul von M)
stets folgt X = M. Eine naheliegende Verallgemeinerung des Lemmas von Nakayama
besagt: Ist U endlich erzeugt und U <= Ra (M) = Durchschnitt aller maximalen Unter-
moduln von M, so ist U klein in M. Die erste Bedingung — U endlich erzeugt — ist jedoch
nicht notwendig. Z. B. zeigen wir in Abschnitt 3 dieser Arbeit fiir jeden noetherschen
Integritdtsring R mit Quotientenkorper K # R, daB R’ (der ganze AbschluB von R in K)
als R-Modul klein in K ist, aber es ist wohlbekannt, dafl R’ nicht endlich erzeugt sein
muB. Trotzdem mdchte man fiir einen kleinen Untermodul U gewisse Endlichkeitsbedin-
gungen herleiten, und das uns bisher bestmogliche Ergebnis ist der folgende Durch-
schnittssatz:

Ist R ein noetherscher Integritditsring, M ein torsionsfreier R-Modul und U ein kieiner

Untermodul von M, so folgt () &' U =0 fiir jedes Ideal a % R.
i=1

Aus ihm folgt insbesondere, daf} {iber einem noetherschen lokalen Ring R jeder flache
kleine Untermodul U doch schon endlich erzeugt ist. Als Hauptanwendung geben wir in
Abschnitt 2 die Bestimmung aller koassoziierten Primideale eines flachen R-Moduls F,
d.h. der peSpec(R), zu denen es einen artinschen Faktormodul 4 von F gibt mit
p = Anng (A4). Speziell fiir F = R, die Vervollstindigung eines noetherschen lokalen Rin-
ges (R, m), erhalten wir:

Koass (R) = {m} w {p e Spec(R)| R/p ist nicht vollstindig} .

1. Der Durchschnittssatz. Stets sei in dieser Arbeit R ein kommutativer noetherscher
Ring. Weil R auch nicht-lokal sein darf, miissen wir den Begriff , endlich erzeugt* verall-
gemeinern: Ein R-Modul M heiBt koatomar, wenn jeder echte Untermodul von M in
einem maximalen Untermodul enthalten ist. Nach [3] ist das dquivalent damit, daB alle

w
m-Komponenten L (M) = Y Ann,, (m’) durch eine Potenz von m annulliert werden
i=1

und daB der sockelfreie Anteil M /L(M), mit L(M):= @ L, (M), lokal endlich erzeugt ist.
Dual heift M halbartinsch, wenn jeder echte Untermodul von M einen einfachen Unter-
modul enthilt, und das ist d4quivalent mit L(M) = M.
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Lemma L1, Ist (R, m) ein lokaler Integritdisring, so besitzt jeder torsionsfreie R-Modul

M einen Untermodul M, derart, daf [} m' M, = 0 und M{M, halbartinsch ist.
i=1

Beweis. Ist K der Quotientenkdrper von R, so konnen wir gleich K + R annehmen.
Im Spezialfall M = K gibt es nach Chevalley (siche [1] Theorem 258) einen diskreten

Bewertungsnng {V, .#) zwischen R und K mit .# n R =m, und aus ﬂ =0 folgt
sofort q m' ¥V = 0. Weiter gibt es, weil K/V als V-Modul artinsch ist, zu Jedem x €K ein

ex1 mlt M x =V, es folgt m*x = 0 filr xe K/V, so daBl K/V als R-Modul halbartinsch
ist. — Ist M nur torsionsfrei + 0, hat die injektive Hiille @ von M die Gestalt 0 = KV,

also einen Untermodul @, = V¥, und weil [} m'Q, = 0 sowie 0/Q, halbartinsch ist,
leistet M; = Q, N M das Gewiinschte. =t

Satz 1.2. Sei (R, m) lokal, M ein flacher R-Modul und U ein kleiner Untermodil von M.
Dann gilt

ﬁm"UC:NM,

i=1
wobei N das Nilradikal von R sei.

Beweis. Sei im 1. Schrift R zusitzlich ein vollstindiger Integrititsring. Ist E die
injektive Hiille des Restklassenkorpers R/m und M° = Homy (M, E), erhilt man die
exakte Folge 0 — (M/U)° 5 M° 5 U° - 0, in der, well R vollstandig ist, v° ein wesentli-
cher Monomorphismus ist ([4] Hilfssatz 3.3), d. h. Bi v groB in M°. Also ist Kok v° = U®
ein Torsionsmodul, 0¢ Ass(U°®) = Koass(U). Weil U als Untermodul von M ebenfalls
torsionsfrei ist, kann man nach (1.1) einen Untermodul U; von U wihlen, so daB

ﬁ m'U; =0 und U/U, halbartinsch ist. Aus 0¢Koass(U/U,) folgt nun nach ([5]
agelmma 2.8,b), daBl U/U, beschrinkt ist, d. h. ein 0 % se R existiert mit s U < U,, Wegen
U= sU ist also auch ﬁ mU =0
Seiim 2. Schritt R mtnt ;och vollstindig. Mit Min(R) = {q,..., q;} st N =q; n... " q,,
also, weil M flach ist, NM = ‘ﬁi {(a;M). Es geniigt daher, _ﬁl mU cqM fiir alle
i= =

qgeMin(R) zu zeigen: Weil R = R/q ein vollstindiger Integritiitsring und M/qM als
R-Modul wieder flach ist, ist der kleine Untermodul (U + q M)/q M nach dem ersten
Schritt in der w-adischen Topologie separiert, d. h. ﬂ (' U + qM)/q M =0, und daraus

folgt die Behauptung,
Aus der soeben bewiesenen Inklusion ﬂ wt U < N M folgt auch, daB es keinen Mono-

morphismus R — ﬂ ' U gibt, denn mlt NE =0, N°“1 £ 0 ist ja N°~ l(ﬂ m’ U) = (),
i=1 i=1
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Seiim 3. Schritt R ein Integritdtsring, aber nicht notwendig vollstindig. Nach (4] p. 60}
ist R® U als B-Modul klein in R @M, so daB es nach der letzten Bemerkung keinen
R R o
R-Monomorphismus f:R - R® U gibt mit Bi f < W (ﬁ ® U), wobei # =mR
R i=1 R

das maximale Ideal von R sei. Es gibt also auch keinen R-Monomorphismus g: R — U

mit Big < ﬂ m' U, und das bedeutet, weil R ein Integrititsring und U torsionsfrei war,
=1

ﬂmU 0.

Ist im 4. Schritt R nur lokal, miissen wir wieder ﬂ w! U < qM fiir alle ge Min(R)
i=1

zeigen. Das geht jetzt wie im zweiten Schritt, denn R = R/q braucht nach dem dritien
Schritt nicht mehr vollstindig zu sein.

Bemerkung. Ein Untermodul U von M heift radikalvoll, wenn Ra (U} = U ist (d. h
wenn U keine maximalen Untermoduln besitzt). Im lokalen Fall ist das dquivalent mit
mU = U, und dann sagt der Satz: Ist M flach und U ein radikalvoller kleiner Untermodul
von M, so folgt U « N M. Auf die Flachheit von M kann man dabei nicht verzichten. Ist
z.B. R ein lokaler Integritdtsring mit dim (R) 2 2 und wéhit man M = E, so folgt fiir jedes
Primideal 0 + p & m, daB} U = Ann,, (p) ein radikalvoller, kleiner Untermodul # 0 von
M ist.

Satz 1.3. Sei R ein Integrztatsrmg, M ein torsionsfreier R-Modul und U ein kleiner

Untermodul von M. Dann gilt ﬂ a' U =0 fiir jedes Ideal o + R.
i=1

Beweis. Durch Ubergang zur injektiven Hille @ & K’ von M kénnen wir gleich
annehmen, daB M flach ist. Angenommen, es gibt ein me Max{R) mit r‘} w U0, s0
gibt es einen R-Monomorphismus g: R —» U mit Big < ﬂ m' U, und dann 151 G Ry = Uy,
ein R, -Monomorphismus mit Big, < ﬂ MU, wobe1 M =mR,, sei. Nach ([3]

Lemma 4.1} ist aber U, als R, -Modul klem m M., alsonach (1.2) ﬂ MU =0, und das
ist unmdoglich.

Dic erste Folgerung ist eine Verallgemeinerung von (1.2) auf den nicht-lokalen Fall, die
zweite wird der wesentliche Baustein im Beweis von (1.7).

Folgerung 1.4. Sei J duas Jacobson- und N das Nilradikal von R, sei M e¢in flacher
[ee]
R-Modul und U ein kleiner Untermodul von M. Dann gilt [\ J'U = NM.
=1

Beweis. Wie im zweiten Beweisschritt von (1.2) geniigt es [} J'U < qM zu zei-
i=1

gen fiir alle geMin(R). Uber dem Integritdtsring R = R/q ist M/qM wieder flach
und (U + qM)/qM ein kleiner Untermodul, auBerdem J= R, so daf nach (1.3)

ﬂ (J'U + gM)/g M = 0 ist wie gewtnscht. {Offenbar kann man J durch jedes Ideal a

ersetzen das die Bedingung « + g = R fiir alle ge Min(R) erfuﬂt}
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Folgerung 1.5. Sei R ohne nilpotente Elemente, M ein beliebiger R-Modul und U ein
radikalvoller kleiner Untermodul von M. Dann ist U ein Torsionsmodul.

Beweis. Ist R sogar ein Integritdtsring, folgt die Behauptung sofort aus (1.3):
(U + T(M))/T (M) ist ein radikalvoller kleiner Untermodul von M/T (M), also Null. Ist
nur N = 0, folgt fiir jedes p € Ass(U), daB (U + p M)/p M ein radikalvoller kleiner Unter-
modul von M/p M ist, also iiber dem Integrititsring R/p ein Torsionsmodul, und das
heit U, = Ra(M,). Wegen U, # 0 kann also R, kein Korper sein, wegen N = 0 folgt
p € UAss(R), d.h. p ist regulir.

Lemma 1.6. Sei M ein R-Modul und U ein flacher Untermodul von M.
(a) FirallepeAss(R) gilt UnpM=pU.
(b) Fiir das Nilradikal N von R gilt UnNM=NU.,

Beweis. (a) Sei ueUnpM, u= 3 r;x; mit r,ep, x;€ M. Mit p = Anng(a), aeR,
i=1 m
folgt au = 0, wegen der Flachheit von U alsou = Y t;u;mitu;e U, t;ep fiir alle j. Damit
istuep U. J=1
(b) Speziell fir alle qeMin(R) gilt jetzt UnNMcUngqM=qU, also
UnNMcn{qU|qeMin(R)} =NU.

Satz 1.7. Sei M ein R~-Modul und U ein flacher kleiner Untermodul von M. Dann ist U
koatomar.

Beweis. Sei im 1. Schritt U zusitzlich radikalvoll. Dann ist (U + N M)/N M ein
radikalvoller kleiner Untermodul von M/N M, also nach (1.5) ein Torsionsmodul iiber
R = R/N. Nach (1.6, b} ist aber (U + N M)/N M = U/N U auch als R-Modul flach, insbe-
sondere torsionsfrei. Aus U/N U = 0 folgt U = 0 wie behauptet.

Ist im 2. Schritt U nur noch flach, aber R lokal, so wollen wir zeigen, daBl U sogar
endlich erzeugt ist. Uber dem Restklassenkorper k = R/m hat der Vektorraum UmU
eine k-Basis (if, | A € 4), und bekanntlich sind dann die (4, ] 1€ 4) in U R-linear unabhingig
(siehe [2] p. 51), so daB F:= @ Ru;, ein freier Untermodul von U wird mit F + mU = U,
FamU=mF. Weil U klein in M ist, kann es keinen Epimorphismus von U in die
injektive Hiille E von k geben, also auch keinen von F nach E, d. h. F ist endlich erzeugt.
Damit ist F koabgeschlossen in U: Aus X « F, F/X klein in U/X, folgt F/X < Ra(U/X),
Fc X +mU,F=X 4+ mF,alsonach Nakayama F/X = 0. In flachen Moduln sind aber
nach ([4] Satz 3.4} alle koabgeschlossenen Untermoduln bereits rein, so daB jetzt U/F ein
flacher kleiner Untermodul von M/F ist. Nach dem ersten Schritt folgt U/F =0, so da3
U = F endlich erzeugt ist wie behauptet.

Der 3. Schritt ist jetzt, weil Kleinheit beim Lokalisieren nach maximalen Idealen
erhalten bleibt ([3} Lemma 4.1), Routine: Alle U,, (m e Max (R)) sind als R, -Moduin nach
dem zweiten Schritt endlich erzeugt, so daf jeder radikalvolle Faktormodul von U Null
ist, also U koatomar.
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Bemerkung. Auf die Flachheit von U kann man in {1.7) nicht verzichten. Verlangt
man z. B., daBl Gber R alle kleinen Untermoduln koatomar sind, so ist das nach [3]
dquivalent damit, daB dim(R) <1 ist und in allen R, (meMax(R)) das Nilradikal
endliche Linge hat.

Folgerung 1.8. Sei K der totale Quotientenring von Rund R < 4 < K ein Zwischenring,
so daff A als R-Modul flach und klein in K ist. Dann folgt A = R.

Beweis. Nach (1.7) ist 4 als R-Modul koatomar, und weil der Untermodul R durch
kein m e Max (R) teilbar ist, gilt das nach ({3] Lemma 1.1) auch fiir 4 selbst, d.h. Rc 4
ist eine treuflache Ringerweiterung. Damit ist auch 4/R flach, auferdem ein Torsionsmo-
dul, also Null.

2. Die koassoziierten Primideale eines flachen Moduls. Fiir einen R-Modul M ist
Koass (M) eine i. allg. echte Teilmenge von Att(M) = {peSpec(R)|Anng (M/p M) =p}, und
fiir einen flachen R-Modul M sieht man sofort, da} Att(M) = {peSpec(R)|M/p M + 0}
ist. Koass (M) aber konnten wir in ([S] Abschnitt 4) nur filr ganz spezielle flache R-Moduln
berechnen, z. B. fir M = R, falls R ein Integrititsring und qeSpec(R} war. Mit dem
letzten Satz aus Abschnitt 1 gelingt uns diese Berechnung jetzt fiir alle flachen R-Moduln,
und wir wollen das Ergebnis an drei Beispielen illustrieren.

Satz 2.1. Fiir jeden flachen R-Modul M ist Koass (M) = {peSpec(R}| M/p M = 0, und
Jalls p¢Max(R), ist M/p M nicht koatomar}.

Beweis. ,=“Fiir jeden R-Modul M gilt: Ist p € Koass (M), also p = Anny (M/U) und
M/ U artinsch, so folgt pM = U, M/p M 0. Ist zusitzlich M/p M koatomar, hat M/U
als artinscher koatomarer Modul sogar endliche Linge, und es folgt pe Max(R).

2 Ist pe Max (R) und M/p M + 0, kann man einen maximalen Untermodul U von
M wihlen mit p M < U, und es folgt p = Anng (M/U). Ist p¢ Max(R) und M/p M nicht
koatomar, kann iiber dem Integrititsring R = R/p der flache Modul M/p M in seiner
injektiven Hiille nicht klein sein (1.7), hat also einen teilbaren Faktormodul D = 0, und
aus {0} = Koassy (D) = Koassg (M/p M) folgt p & Koass (M).

Folgerang 2.2, Ist M ein flacher R-Modul und p € Koass (M) kein maximales ideal, so
Sfolgt qge Koass (M) fiir jedes Primideal q < p.

Folgerung 2.3. Fiir einen radikalvollen flachen R-Modul M ist Koass (M) = Att(M).

Beispiel 2.4. Ist (R,m) lokal und R die Vervollstindigung von R, so gilt
Koass(R) = {m} v {peSpec(R)| R/p ist nicht vollstindig}.

Beweis. Wegen mR = R ist me Koass(R). Fiir alle Primideale p = m folgt aber die
Behauptung aus (2.1): Der Kokern der kanonischen Abb. ¢: R/p — R/p = R/p R ist stets
radikalvoll, also R/p R genau dann koatomar, wenn ¢ surjektiv, d. h. R/p vollstindig ist.

Bemerkungen. 1) Es ist leicht zu sehen, daB Att(R) = Spec(R) ist, denn allgemeiner
gilt fitr jede treuflache Ringerweiterung R < A und jedes peSpec(R), daB pAn R =y,
also Anng (4/p A) = p ist. 2) Mit {2.4) haben wir sogar Koass (M) fiir jeden endlich erzeug-
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ten R-Modul M berechnet: Es ist (M)° = (R ® M)° = Homg (M, (R)°), also Koass (M) =
R

Ass ((M)°) = Supp (M) n Ass ((R)°) = Supp (M) n Koass (R). 3) Sei weiter R lokal. Fiir je-
den injektiven R-Modul M ist dann M° flach, so daB sich Koass (M?) = Ass(M°°) mit
Hilfe von (2.4) und (2.3) berechnen 14Bt: Ist M halbartinsch, d. h. M = E®, folgt M°® >~ R,
also Ass(M°°) = Koass (R) falls I endlich + @, Ass (M°°) = Spec (R) falls I unendlich ist.
Ist M sockelfrei, d. h. M® radikalvoll, erhilt man Ass{(M°°) = {peSpec(R)|es gibt cin
qeAss{M) mit p < q}.

Beispiel 2.5. Ist S eine multiplikative Teilmenge von R, so gilt Koass(Rg) =
{peSpec(R)|[pnS=0, und falls p¢Max(R), gibt es ein p < myeMax(R) mit
myn S + 0}

Beweis. Sei peAtt(Ry), d.h. p n S = 0. Falls pe Max (R), folgt sofort p ¢ Koass(Ry).
Falls p ¢ Max (R), gehen wir wie im Beweis von (2.4) vor: Der Kokern der kanonischen
Abb. ¢: R/p — (R/p)s = Rg/p Ry ist stets radikalvoll, also Rg/p Rg genau dann koatomar,
wenn ¢ surjektiv ist, d.h. § nur aus Einheiten besteht, d.h. mn S =0 ist fiir alle
p < me Max(R). Mit (2.1) folgt dic Behauptung.

Bemerkung. Das eben bewiesene Beispiel konnten wir in ([S] Satz 4.5) nur unter der
Zusatzbedingung behandeln, daB R ein Integrititsring und der Ring R semilokal war.
In den dort angegebenen Formeln (4.6) und (4.7) fiir Koass(R,) braucht also R kein
Integritdtsring zu sein.

Beispiel 2.6. Zu peSpec(R) gibt es hdchstens zwei Typen von flachen R-Moduln
M mit Koass(M) = {p}: Falls h(p) =0, ist M = (R,)P mit I + §; falls & (p) =0, muB
peMax(R) sein, R/q lokal fiir alle Primideale q = p und M = (R,)" mit n 2 1.

Beweis. Fiir jeden flachen R-Modul M gilt U Ass(M) < uKoass(M), denn
aus geAss(M) folgt bekanntlich M/qM +0, mit einem peKoass(M/qM) also
q < peKoass(M). Ist daher Koass(M) = {p}, operieren alle se R\p auf M nicht nur
surjektiv, sondern auch injektiv, und es folgt M = M. 1. Fall h(p) = 0. Dann ist der Ring
R, artinsch und M, als R ,-Modul nicht nur flach, sondern sogar frei, also M = (R,)” mit
I4 0. 2. Fall h(p) + 0. Mit irgendeinem Primideal q ¢ p folgt dann nach Voraussetzung
q ¢ Koass (M), also nach (2.2) p e Max (R). Damit ist M als R-Modul koatomar, also auch
M, als R,-Modul ([3] Lemma 1.1, Folgerung), und mit einem freien R -Untermodul F
von M, F+Ra(M,)=M, (siche den zweiten Beweisschritt von (1.7)) erhdlt man
F=M,,also M =(R,)'¥ mit I + §. Weil der Ring R, nicht artinsch ist, ist jeder koatomare
freie R -Modul bereits endlich erzeugt ([3] Lemma 2.1, Folgerung 1), also I endlich. Weil
schlieBlich R, als R-Modul koatomar, also die kanonische Abbildung R — R, surjektiv
ist, folgt nach ([4] Satz 1.3) fir jedes Primideal g < p, daB p/q das cinzige maximale Ideal
im Ring R/q ist.

Bemerkung. Die beiden angegebenen Typen haben tatsichlich nur ein koassoziiertes

Primideal: Ist h(p) = 0 und I + §, gilt sogar Att((R,)'V) = Att(R,) = {p}. Ist m ein maxima-
les Ideal derart, daB alle R/q lokal sind (q = m), folgt mit (2.5) sofort Koass(R,,) = {m}.

3. Uber den ganzen AbschluB von R im totalen Quotientenring K. Hauptziel dieses letzten
Abschnittes ist es, fiir jeden noetherschen Integritatsring R mit Quotientenkdrper K # R zu
zeigen: R’, der ganze AbschluB von R in K, ist als R-Modul klein in K. Die
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Umbkehrung - Ist ein Zwischenring R « 4 < K als R-Modul kiein in K, so ist 4 ganz fiber
R — gelingt uns bis jetzt nur unter der Zusatzbedingung, da$} alle 4/m A endlich erzeugt
sind (me Max (R)). Weil die Nullteilerfreiheit beim Ubergang zu R, i. allg. verlorengeht,
wollen wir auf sie von vorneherein verzichten.

Lemma 3.1. Sei M ein flacher R-Modul und U < M < L. Genau dann ist U klein in M,
wenn (U + g L)/q L klein in (M + q L)/q L ist fiir alle g Min{R).

Beweis. ,="“Ist Uklein in M, so gilt fiir jeden Untermodul L, von L, daB{U + L,)/L,
klein in (M + L)/L ist: Aus Lyc X cM+ L, und X+(U+L)=M+ L, folgt
U+ XnM)=M,McX,X=M+1L,.

»<=" Nur hier wird die Flachheit von M, d.h. (1.6, a) beniitzt: Aus X + U = M folgt
nach Voraussetzung X + qL=M +qL,also X + (L M)=M, X +qM = M fiir alle
qgeMin(R), X+ NM =M, X =M.

Satz 3.2. Sei R’ der ganze Abschiufi von R in K und M ein flacher R-Untermodul von K.
Dann ist R nRa(M) klein in M.

Beweis. Sei U = R '~ Ra(M). Istim 7. Schritt R zusitzlich lokal und vollstindig, giit
nach Nagata fiir jedes g€ Min(R), daB (R/q), der ganze Abschlufl von R/g in seinem
Quotientenkorper g (R/q), endlich erzeugt ist. In

(U+aK)/qK =M +qK)/aK = K/qK < Q(R/q)

ist also (U + g K)/q K als Untermodul von (R/q) endlich erzeugt und deshalb klein in
(M + q K)/q K. Weil das fir alle g e Min (R) galt, folgt mit L = K in (3.1) die Behauptung.

Sei im 2. Schritt R nur lokal, R die Vervollstindigung von R und Q(R) der totale
Quotientenring von R. Aus

RIUcROMcR®K<=QR
R R R

folgt dann, daB R ® M ein flacher R-Untermodul von Q (R) ist, also nach dem ersten
R
Schritt (ﬁ)’ N Ra (ﬁ KM > als R-Modul klein in R ® M ist. Das gilt dann erst recht fiir
R R
den Untermodul R ® U, so daB nach ([4] p. 60) auch U klein in M ist.
R

Sei im 3. Schritt R ein Integritdtsring, aber nicht notwendig lokal. Fiir jedes me Max (R)
ist natiirlich M, ein flacher R -Untermodul von K, also nach dem zweiten Schritt
(R,) nRa(M,)als R ~-Modul klein in M. Das gilt dann erst recht fiir den Untermodul
U,,. Weil also U, klein in M, ist fiir alle me Max (R), ist auch U klein in M.

Ist im 4. Schritt R beliebig, miissen wir wieder fiir alle ge Min (R} zeigen, daB
(U + gK)/qK klein in (M + qK)/q K ist. Wie im ersten Schritt ist (M + gK)/qK ein
Untermodul von @ (R/q), auBerdem als R/q-Modul flach (1.6, a) also nach dem dritten
Schritt (R/gq) N Ra{(M + q K)/q K) klein in (M + g K)/q K. Das gilt auch fiir den Unter-
modul (U + q K)/q K, und wir sind fertig.

Fiir jedes maximale Ideal m von R gilt R + m K = K. Will man also, dal R(oder R')
als R-Modul klein in K ist, muf3 K als R-Modul radikalvoll sein. Diese Bedingung ist
nach (3.2) sogar hinreichend, denn mit M = K erhilt man:
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Folgerung 3.3. Sind alle maximalen Ideale von R reguldr, so ist R als R-Modul klein
in K.

Satz 3.4. Sei R © A < K ein Zwischenring, so dafi A als R-Modul klein in K ist und alle
Ajm A endlich erzeugt sind (me Max (R)). Dann folgt A < R

Beweis. Wir verwenden das folgende, wohlbekannte Kriterium fiir Ganzheit (das
dem in (3.1) bewiesenen Kriterium fiir Kleinheit entspricht): ae K ist genau dann ganz
iber R, wenn de K/q K ganz liber R/q ist fiir alle ge Min(R).

Seiim 1. Schritt R zusitzlich lokal und vollstindig. Ist e Min (R) und R = R/q, so ist
(A + gK)/q K auch als R-Modul klein in K/q K, also nach (1.2) in der m-adischen Topo-
logie separiert. Nach Voraussetzung ist (4 + q K)/q K modulo m endlich erzeugt, wegen
der Vollstindigkeit von R also (4 + qK)/qK selbst endlich erzeugt. Weil das fiir alle
g€ Min(R) galt, folgt mit der Vorbemerkung 4 — R'.

Sei im 2. Schritt R nur lokal, R die Vervollstindigung von R und Q(R) der totale
Quotientenring von R. In

ﬁcﬁ@Acﬁ@KcQ(RA)

ist dann auch R ® A modulo .# = m R endlich erzeugt und als R-Modul klein in R ® K

([4] p. 60), also nach dem ersten Schritt ganz iiber R. Fiir alle ae 4 ist daher R ® R [a]
endlich iiber R, R[a] endlich iiber R, ac R’ wie behauptet.

Sei im 3. Schritt R ein Integrititsring, aber nicht notwendig lokal. Fiir jedes
e Max (R) ist auch 4,, modulo m R, endlich erzeugt und als R,,.-Modul klein in K, so
dafB3 nach dem zweiten Schritt 4,, = (R,)) = (R),, ist. Weil das fir alle me Max (R) galt,
folgt A< R

Ist im 4. Schritt R beliebig, folgt fiir alle qe Min (R), daB (4 + q K)/q K ein Unterring
von Q (R/q) ist, der modulo aller i (¢ = me Max (R)) endlich erzeugt und als R/g-Modul
kiein in @ (R/q) ist, also nach dem dritten Schritt ganz iiber R/q. Wieder mit der Vorbe-
merkung erhilt man 4 < R'.

Bemerkung. Die Bedingung an alle A/m A ist z. B. dann erfiillt, wenn A4 als R-Modul
flach ist (d. h. (1.8) ist ein Spezialfall von (3.4)) oder wenn A/R halbartinsch ist.
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