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time-efficient tool for statistical inference in biomedical 
event data with latent variables that opens the door for ad-
vanced analyses of pedigree data.  © 2017 S. Karger AG, Basel 

 Introduction 

 Colorectal cancer (CRC) is one of the most prevalent 
cancer diseases in Europe and the United States  [1] , with 
men having a younger average age at diagnosis  [2] . For a 
small proportion of CRC cases, genetic predispositions 
are known  [3] . Interestingly, an additional 15–20% of 
CRC cases occur in familial clusters  [4] . Within these 
clusters, family members show a higher risk of contract-
ing CRC  [5] . The cause for these clusters is unknown but 
assumed to be a risk factor which may be of genetic or 
environmental origin.

  Since cancer develops earlier in these high-risk families, 
it is of interest to identify them in advance. Subsequently, 
health insurances can allow members of high-risk families 
to join screening programs at an earlier age. In this paper, 
we therefore develop an efficient risk calculator for CRC, 
i.e., a method for clinicians to assess the familial risk for a 
specific family based on the family’s CRC history.

 Keywords 

 Colorectal cancer · Personalized medicine · Cancer risk 
prediction · Pedigrees · EM algorithm · Factor graphs ·
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 Abstract 

  Objective:  We analyze data sets consisting of pedigrees with 
age at onset of colorectal cancer (CRC) as phenotype. The 
occurrence of familial clusters of CRC suggests the existence 
of a latent, inheritable risk factor. We aimed to compute the 
probability of a family possessing this risk factor as well as 
the hazard rate increase for these risk factor carriers. Due to 
the inheritability of this risk factor, the estimation necessi-
tates a costly marginalization of the likelihood.  Methods:  We 
propose an improved EM algorithm by applying factor 
graphs and the sum-product algorithm in the E-step. This 
reduces the computational complexity from exponential to 
linear in the number of family members.  Results:  Our algo-
rithm is as precise as a direct likelihood maximization in a 
simulation study and a real family study on CRC risk. For 250 
simulated families of size 19 and 21, the runtime of our algo-
rithm is faster by a factor of 4 and 29, respectively. On the 
largest family (23 members) in the real data, our algorithm is 
6 times faster.  Conclusion:  We introduce a flexible and run-
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  To do this, we look at data consisting of a set of pedi-
grees, where each person has an inheritable latent vari-
able, the risk factor, that influences its phenotype, the age 
at CRC diagnosis. Assuming an inheritance model and a 
penetrance model, we aim to estimate 2 parameters: the a 
priori probability  p  1  for a founder to carry the risk factor, 
and the penetrance  α  (i.e., the multiplicative increase of 
the hazard rate of an individual that carries the risk fac-
tor).

  A closely related subject is  complex segregation analy-
sis . Segregation analysis evaluates whether pedigree data 
of affected and unaffected offspring agree with a mende-
lian transmission mode and perform hypothesis tests for 
different models of inheritance  [6] . Complex segregation 
analysis can go one step further and work with pedigrees 
of arbitrary structure instead of nuclear families and 
quantitative traits as well as qualitative traits  [7] . We per-
form a kind of segregation analysis but do not test for a 
specific genetic model. In accordance with the argument 
in Houle et al.  [8] , we employ a phenotype-based ap-
proach to study a generic inheritance mechanism, be-
cause the details of genetic causation of CRC are still un-
known and complex, and the assumptions of a genotype-
based approach may not hold true.

  This problem has been approached in previous work 
of our group  [9] . Since the latent variable is unknown but 
influences the likelihood, a straightforward estimation 
procedure has to marginalize the likelihood respective to 
them. The inheritability of this latent variable means that 
observations within a family are dependent, and the mar-
ginalization cannot happen on the level of a single person, 
but over a whole family. Since each latent variable can as-
sume 1 of 2 values (risk factor present: yes/no), the com-
plexity of computing this sum is   (2 D ), where  D  is the 
number of family members.

  The runtime of this straightforward optimization over 
the marginalized likelihood is still reasonable when no 
family has an excessive number of members. However, 
the number of possible risk constellations within a family 
grows 2-fold with each new family member. As soon as 
even 1 family is sufficiently large, the marginalization 
quickly becomes unfeasible. In these situations, an alter-
native approach is needed.

  The new aspect in this paper is the implementation of 
an expectation-maximization (EM) algorithm for situa-
tions when some families are too large for the marginal-
ization procedure. The E-step is nontrivial because the 
latent variables within a pedigree are dependent, and a 
straightforward calculation of the marginal posteriors 
would again be of exponential runtime. For a linear de-

pendency structure (such as in a Hidden Markov Model), 
the Baum-Welch algorithm  [10]  is an efficient method for 
solving the E-step. In our problem, the data instead show 
dependency in a tree structure. This dependency struc-
ture necessitates using the sum-product algorithm  [11]  to 
obtain the marginalized posterior probabilities for the la-
tent variables in the E-step. A similar approach for the 
marginalization over hidden variables has been proposed 
and implemented by Failmezger et al.  [12] , yet in the 
completely different context of single cell time lapse im-
age analysis.

  We show that the runtime of our EM algorithm is lin-
ear instead of exponential in terms of the pedigree size. 
We also executed a simulation study to show that our al-
gorithm correctly recovers the specified parameters. Fi-
nally, we demonstrate the runtime improvement of our 
algorithm on a real data set: a family study of CRC cases 
in Upper Bavaria.

  Methods 

 Nomenclature 
 The data set is composed of families which are represented as 

pedigrees ( Fig. 1 a). We call individuals at the top of the pedigree 
(i.e., with unspecified parents)  founder nodes  and all other persons 
 nonfounders . Individuals without any offspring (i.e., at the bottom 
of the pedigree) are called  final  individuals.

  We denote by  t  i  the chronological age in years at clinical onset 
of CRC for each person  i  = 1, …,  n , if the corresponding censoring 
indicator  c  i  equals 1, and the age at censoring if  c  i  = 0. The gender 
of an observation is denoted by  m  i , which is 1 for males and 0 for 
females. The observed data for 1 person is thus  x  i  = ( t  i ,  c  i ,  m  i ).

  Each person also has a latent variable  z  i  which equals 1 if this 
person is a risk carrier and 0 if not. We use  ♂  i  and  ♀  i  to denote the 
position (i.e., the value of  i ) of the father and mother of person  i . 
For example, if we have a risk status  z  i  for a nonfounder  i , his fa-
ther’s risk status is  z  ♂  i . We denote the set of all  i  that are founder 
nodes by  F . The complete data vectors for all patients are called  x  
and  z , respectively.

  Penetrance Model 
 For persons where  z  i  = 1, we assume an elevated relative risk of 

developing CRC, which manifests itself through a hazard rate in-
creased by a multiplicative factor  α , the  penetrance   [5] . This pa-
rameter is unknown and will be estimated.

  We assume a Weibull distribution for  t  i , because it is a paramet-
ric distribution which fits observed CRC incidence curves quite 
well. The Weibull hazard rate is given by  h ( t ) =  kλ  k  t  k  –1 , with the 
parameters  k  > 0 and  λ  > 0. In our relative risk model, we multiply 
the hazard rate by  α  if  z  i  = 1 and, additionally, by  β  if  m  i  = 1. These 
factors model the increased relative risk for risk carriers and males, 
respectively. Our hazard rate for an event (i.e., diagnosis of CRC) 
is then

   h ( t  i ) =  kλ  k  t   i   k  –1   α  z i    β  m i  .
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  The survival function is defined by  S ( t ) = exp(–   ∫  t  0   h ( u )d u ). With 
the additional relative risk factors, this becomes 

  S ( t  i ) = exp(–( t  i  λ ) k   α  z i    β  m i  ).

  The density for 1 observation  i  is composed of the product of 
the survival function and (for uncensored observations) the hazard 
rate:

   f(t  i    |    z  i ) =  h ( t  i ) ci          ·        S ( t  i ).

  The observations  x  i  are conditionally independent given  z  i , and the 
density of the whole data  f ( x    |    z ,  θ ) can be split up into a product of 
individual densities:  f ( x    |    z ,  θ ) = Π i   f ( x  i    |    z  i ,  θ ). 

 Heritage Model 
 The  founder prevalence , i.e., the a priori probability P( Z  i  = 1) 

for a founder node to carry the risk factor, is called  p  1 . This param-
eter will be estimated. The probability for a nonfounder to be a risk 
carrier is dependent on its parents’ risk statuses and the  inheritance 
probability   p  H . Our model does not allow for spontaneous muta-
tions to risk carrier. If any one of both parents passes down a risk 
factor  z  ♂  i  = 1 or  z  ♀  i  = 1 with the probability  p  H , then the probabil-
ity for the offspring to be a risk carrier is

   p  ∼  i  = P( Z  i  = 1   |    z  ♂  i ,  z  ♀  i ) =  p  H  z  ♂  i  +  p  H  z  ♀  i  –  p  2  H  z  ♂  i   z  ♀  i . (1)

  We denote P( Z  i  = 1   |    z  ♂  i ,  z  ♀  i ) for nonfounders by  p  ∼  i  to emphasize 
the distinction from  p  1  for founders. 

 A sensitivity analysis found that varying the value of  p  H  has a 
negligible effect on the final parameter estimates  [9] , and thus we 
chose  p  H  = 0.5 for all our analyses.

  Given a predefined inheritance probability  p  H  and a founder 
prevalence  p  1 , the probability for a risk vector  Z  for the entire da-
taset becomes

  

1 1
1 1 1 1

P( ) P( ) P(

(1 ) (

)

1 )i i i i

i i
i F i F

z z z z

i F i

i

F

iz z z z

p p p

,| z

p
 

  Likelihoods 
 All Weibull parameters ( k ,  λ ) as well as the inheritance proba-

bility  p  H  and the risk increase for males ( β ) are assumed to be 
known. We set  k  = 4 and  λ  = 0.0058 according to Rieger and
Mansmann  [9] ,  β  = 2 according to Kolligs et al.  [2] , and  p  H  = 0.5. 
The complete likelihood, where both  x  and  z  are observed, is then

   L ( θ ;  x ,  z ) =  f ( x ,  z ) =  f ( x    |    z )P( z ). (2)

  The 2 factors  f ( x    |    z ) and P( z ) were defined in the penetrance mod-
el and the inheritance model, respectively. The parameter vector 
in our model is  θ  = ( p  1 ,  α ). 

 The complete log-likelihood becomes (derivation in Appen-
dix A1)

  
1 1

1

, const | | log 1

                          log .i i

i i
i F i F

n k z m
i i i

i

l ; x z z p F z p

c z t

�

� � � �

� � � �

� �

log
 

(3)

  We marginalize the nonreduced form of the complete likelihood 
to obtain the incomplete likelihood  L ( θ ;  x ) [ 13 , Equation 1.5]: 

 ; ; ,
z

L x L x z .� �
 (4)

  To estimate the parameters  p  1  and  α , one could use a Nelder-Mead 
optimization  [14]  on the marginalized likelihood  L ( θ ;  x ). How-
ever, for a family of size  D , the sum over all  z  has 2 D  elements. Even 
when splitting the sum up across all families (Appendix A3), the 
number of summands grows exponentially with increasing fam-
ily size  D . Thus, for large families, the computation of the margin-
alization within the likelihood evaluation quickly becomes unfea-
sible. 

 The EM Algorithm 
 A common approach for finding maximum likelihood esti-

mates in the presence of latent variables is to make use of the EM 
algorithm. Resources on the EM algorithm are plentiful, including 
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  Fig. 1.  A pedigree and its corresponding factor graph.  a  A sample 
pedigree of a family with 9 members. Squares denote males, circles 
females. A couple (a connected circle and square in the same row) 
gives rise to a set of children (the nodes connected to this couple 
in the row below). Persons shaded in grey are risk carriers. The 4 
grandparents in the top row are the  founder nodes  in this family, 

the other 5 persons are  nonfounders .  b  A factor graph visualizing 
the factorization of  g ( z ) =  f ( x ,  z ) (Equation 2) for the family from 
Figure 1a. Circles represent variable nodes, and filled squares rep-
resent factor nodes (i.e., local functions). The edges show which 
variables are arguments to which factor. For example, the factor  φ  6  
has 3 arguments:  φ  6 ( z  3 ,  z  4 ,  z  6 ). 
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a short tutorial  [15] , the seminal paper by Dempster et al.  [16] , and 
an entire book  [17]  devoted to the subject.

  In short, the EM algorithm proceeds in a loop over 2 steps: in 
the  E-step , one calculates the expected log-likelihood over the la-
tent variables  Z , given the observed data and the current parameter 
estimates. This problem reduces to computing complete-data suf-
ficient statistics  [16] . In the subsequent  M-step , one then updates 
the estimates of the parameters, given the new expected sufficient 
statistics from the E-step.

  As a convergence criterion, frequent choices include the size of 
the relative change of either the log-likelihood or the parameter 
estimates  [18] .

  We use the size of the relative change of the parameter esti-
mates for  α  and  p  1  as a stopping criterion. This criterion is more 
conservative than using the log-likelihood  [18] , and we are on the 
safe side by letting the algorithm run a bit longer than it would have 
to.

  To compute the expected log-likelihood  Q ( θ ;  θ  (  t  ) ), we introduce 
the  membership probabilities  [ 17 , p. 43]  T   i  (  t  ) , i.e., the probability for 
 one  person’s risk status  Z  i , given the  whole  observed data  x  (deriva-
tion available in Appendix A2):

  
| ,

| ,

E

E

P 1| ,

P | , .

t

t
i

t
i iZ x

iZ x

t
i

t
i

z

T Z

Z

Z x

z z x

�

�

�

�

 

(5)

  Here, the summation is over all admissible combinations of  z  i  
(i.e., P( z ) > 0 and  z  i  = 1). The condition on the entire observed 
data  x  and the summation over all  z  will conveniently reduce to 
a condition on and summation of only the respective family’s 
data  x  and  z  (Appendix A3). The target function  Q  becomes (cf. 
Equation 3)
  

| ,

1 1

1
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               const log log 1 1

               log 1 .

t

i

t

Z x

t t
i i

i F i F
n k mt t t
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p T p T
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� � �

� � � �

� � � �

� � �

 

(6)

  The M-Step 
 For the M-step, we maximize  Q ( θ ;  θ  (  t  ) ) respective to  α  and  p  1  to 

obtain the new parameter estimates for iteration  t  + 1. Once the 
values of all  T   i  (  t  )  are known, the maximization of  Q  with respect to 
 p  1  and  α  is straightforward and has a closed form solution:

  
11

1

.
i

n t
i iit

kn t m
i ii
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T t
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(7)
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(8)

  The E-Step 
 It follows from Equations 6–8 that, as in the “standard” exam-

ples of the EM algorithm, the E-step conveniently reduces to com-
puting the complete-data sufficient statistics  T   i  (  t  ) . The reason for 

this simplification is the fact that the log-likelihood is linear in the 
latent data  Z . Computing  Q ( θ ;  θ  (  t  ) ) thus simplifies to replacing each 
occurring  Z  i  by its conditional expectation  T   i  (  t  ) . The M-step then 
uses these “imputed” values of the latent data  Z  for the updated 
parameter estimates.

  Marginalization of the Joint Density 
 In our setting, the difficulty in computing  T   i  (  t  )  is that the prob-

ability for the risk status of 1 family member  Z  i  is conditioned on 
the observed data  x  of the  entire family  (Appendix A3). To com-
pute these values, we could marginalize over all risk vectors  z  
where  z  i  = 1, i.e.,  T   i  (  t  )  ∑ r  P( Z  =  r    |    x ,  θ  (  t  ) ), where  r  is a valid risk vec-
tor (i.e., with P( Z  =  r ) > 0 and with  z  i  = 1). However, this requires 
the same exponential runtime as in a Nelder-Mead optimiza-
tion.

  Alternatively, a pedigree can be represented as a Bayesian net-
work  [19, 20] , also known as a causal probabilistic network, which 
in turn can be converted into a factor graph  [11] . This representa-
tion is advantageous because it allows the efficient computation of 
marginals via the sum-product algorithm.

  The sum-product algorithm  [11] , also known as the belief 
propagation algorithm, computes marginalizations of the form of 
 T   i  (  t  )  in linear runtime [ 21 , p. 290]. It does this by representing a 
complex “global” function  g ( z ) – here,  f ( x, z    |    θ  (  t  ) ) – as a factor 
graph, i.e., a product of multiple “local” functions, Π j  φ  j , each de-
pending on only a subset of the arguments in  g ( z ).

  The sum-product algorithm then exploits this structure to ef-
ficiently compute marginalizations of  g ( z ) – here, we marginalize 
the joint density to obtain  f ( z  i ,  x    |    θ  (  t  ) ). By dividing this joint den-
sity through  f ( x ) =  f ( Z  i  = 1,  x    |    θ  (  t  ) ) +  f ( Z  i  = 0,  x    |    θ  (  t  ) ), we ultimately 
obtain  T   i  (  t  )  = P( Z  i  = 1   |    x ,  θ  (  t  ) ), which was our actual goal.

  Factor Graphs 
 Factor graphs were first introduced by Kschischang et al.  [11]  

to represent factorizations of multivariate functions.
  The factor graph in  Figure 1 b encodes the joint density  g ( z ) = 

 f ( z ,  x ) of the family from  Figure 1 a as the product of 7 factors  φ  j :

    g ( z ) =   φ  1 ( z  1 )       ·        φ  2 ( z  2 )       ·        φ  3 ( z  3 )       ·        φ  4 ( z  4 )       ·        φ  5 ( z  1 ,  z  2 ,  z  5 )
      ·        φ  6 ( z  3 ,  z  4 ,  z  6 )       ·        φ  789 ( z  5 ,  z  6 ,  z  7 ,  z  8 ,  z  9 ). (9)

  The factors are defined as
  

( ) P) (( )J J J jjJ j
j J

z ,z ,z f x z z | z| ,z,  

  where  J  is the set of all children with the same parents, which are 
denoted by  z  ♂  J , and  z  ♀  J . If  φ  J  is a factor for a founder node, then  z  ♂  J  
and  z  ♀  J  are defined as an empty set and the respective probability 
P( z  j ) is unconditioned. The exemplary factors for Equation 9 are 
available in Appendix A4. 

 The factor  φ  789  ( Fig. 1 b) cannot be split up into 3 factors be-
cause the graph edges would then form a  cycle , which is not al-
lowed, or would necessitate a costly  loopy belief propagation  pro-
cedure  [11, 22] . Instead, we implement a  clustering  procedure  [11]  
and group the respective densities into 1 factor per set of parents.

  The Sum-Product Algorithm 
 Having set up a factor graph for each family, we then apply the 

sum-product algorithm to compute marginalizations of  f ( z ,  x ) at 
each variable node  z  i , i.e.,  f ( z  i ,  x ). In our setting, we restrict our-
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selves to family  trees , i.e., we do not allow for consanguineous mar-
riages (see Fig.  2 of Goddard et al.  [23]  for a counterexample), 
which would again lead to cycles in the corresponding factor 
graph.

  Let  μ  z   →   φ ( z ) denote the message sent from a variable node  z  to 
a factor node  φ , and let  μ  φ   →   z ( z ) denote the message sent from a 
factor node  φ  to a variable node  z . Furthermore, let  n ( v ) denote the 
set of neighboring nodes of a (factor or variable) node  v .

  We then define the messages from a variable node to a factor 
node, and from a factor node to a variable node, as follows  [11] :

\

\
,

z h z
h n z

z y
z y n z

z z

z Z y

�
�

� � �
�

	 	

	 � 	
 

  where  Z  φ  is the set of arguments of the factor  φ . If  h   ∈   n ( z )\{ φ } = 
{}, e.g., at a variable node of a final individual (the grandchildren 
 z  7 ,  z  8 , and  z  9  in  Figure 1 b), the product is defined as 1. The expres-
sion ∑ ∼  {  z  }  is adapted from Kschischang et al.  [11]  and denotes the 
 not-sum  (i.e., the sum over all variables except  z ). 

 Finally, the marginalization, or  termination step , computes the 
value of  g  i ( z  i ) = ∑ ∼  {  z i   }  g ( z ) as the product of all incoming messages 
on a variable node  z  i . The marginalized  g  i ( z  i ) are equal to  f ( z  i , 
 x    |    θ  (  t  ) ), i.e., proportional to the desired outputs  T   i  (  t  )  from the E-step 
in the EM algorithm. We show some example messages and mar-
ginalizations of the sum-product algorithm in the following sec-
tion. We provide a detailed computation and illustration of all pos-
sible messages in Appendix A5 and  Figure 2  and give a summa-
rized proof of correct convergence of our algorithm in Appendix 
A6.

  We implemented a sum-product algorithm for computing the 
marginals of an arbitrary pedigree in R  [24]  and made it available 
on GitHub (all scripts are available on GitHub, http://github.com/
AlexEngelhardt/sumproduct). The code creates 1 factor graph per 
family, and therein 1 factor node per founder, which contains
 φ  i ( z  i ) =  f ( x  i    |    z  i )       ·      P( z  i ). Furthermore, we create 1 factor per set of 
parents, which contains the product of all densities of all children 
(but not the parents):

   φ  j (Z j ) = Π i  ∈  K j     f ( x  i    |    z  i )       ·       P( z  i    |    z  ♂  i ,  z  ♀  i ),

  where  Z  j  represents all variables within the factor (parents and 
children), and  K  j  is the set of children variables connected to  φ  j . 

 Messages from a “large” factor containing parents and many 
children will be summed over all neighboring variable nodes ex-
cept the destination variable node. By iteratively exploiting the dis-
tributive law, this sum can be efficiently broken down from expo-
nential to linear runtime. For an example based on  Figure 1 b, see 
Appendix A7.

  Example Messages and Marginalizations of the Sum-Product 
Algorithm 
 We illustrate the sum-product algorithm by calculating 2 ex-

ample messages and 1 example marginalization from the pedigree 
of  Figure 1 b.

  Firstly, the message  μ  z  6   →   φ  789  ( z  6 ) from the variable node  z  6  to 
the factor node  φ  789  equals

   μ  z  6   →   φ  789  ( z  6 )  μ  φ  6   →   z  6  ( z  6 ).

  Secondly, the message  μ  φ  5   →   z  2  ( z  2 ) from the factor node  φ  5  to the 
variable node  z  2  equals 

 
5 2 1 5 5 5

1 5

2 5 1 2 5 1 5, , .z z z
z z

z z z z z z� � �	 � 	 	  .

  Lastly, we compute the example marginalization at the variable 
node  z  5  as 

  g  5 ( z  5 ) =  f ( z  5 ,  x    |    θ  (  t  ) ) =  μ  φ  5   →   z  5  ( z  5 )       ·        μ  φ  789   →   z  5  ( z 5).

  Then, 
 

5 5 789 5
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  This shows that the desired values  T   i  (  t  )  from the E-step are imme-
diately obtained as soon as all possible messages are computed. 

 Appendix A5 and  Figure 2  show the detailed derivation of all 
remaining messages.

  Convergence of the EM Algorithm 
 A common drawback among many estimation algorithms is 

the danger of converging into a local maximum. This also applies 
to the EM algorithm. However, we will show that the marginal 
likelihood function (Equation 4) is concave and thus the EM algo-
rithm will always converge to the global maximum of the margin-
al likelihood, irrespective of the initial parameter choice.

  A twice differentiable function is concave if its Hessian matrix 
is negative semidefinite. We first show that the Hessian of the 
complete log-likelihood function (Equation 3) is negative semi-
definite. Since the variables  α  and  p  1  are separated,  ∂  2 / ∂  α  ∂  p  1   l ( θ ;  x , 
 z ) = 0, and consequently the Hessian is a diagonal matrix. It suf-
fices to show that both its diagonal entries are zero or negative. 
We obtain 

  
2

2 2 2
1 1 1

| |
; , .

1
i ii F i Fz F z

l x z
p p p

�
�

� �
�

 
(10)

  2

2 2
1

; , .
n

i i

i

c zl x z�
� �

�
 

(11)

  Note that in Equation 10, ∑ z  i   ≤    |    F   |; hence, both terms on the 
right-hand side of this equation are negative or zero. This proves 
that the complete log-likelihood is concave. Since the exponential 
is strictly monotonically increasing and  l ( θ ;  x ,  z ) is strictly con-
cave, it follows that  L ( θ ;  x ,  z ) = exp( l ( θ ;  x ,  z )) has only 1 unique 
local and hence global maximum  [25] . Finally, the marginal log-
likelihood, as the sum ∑ z   l ( θ ;  x ,  z ) of concave functions, is also 
concave. This means that simpler but faster optimization algo-
rithms such as Nelder-Mead can be used for our model, and there 
is no need for more complex algorithms such as stochastic or 
constrained optimizers (e.g., L-BFGS-B  [26]  or simulated anneal-
ing  [27] ). 
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  Fig. 2.  Message passing during the sum-product algorithm. The messages are computed iteratively. Once all but 
1 incoming messages are calculated for a given node, a message is calculated and sent across the remaining edge. 
Note that by Kschischang et al.  [11] , the actual order in which the messages are calculated is irrelevant for the 
result. 
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 Application: Estimating the Probability of Being a Risk Family 
 Applying the sum-product algorithm directly implies a 

straightforward method to compute the probability of being a risk 
family.

  After we have estimated  p  1  and  α , we can estimate the prob-
ability that this family carries the risk factor for a new pedigree 
(or a pedigree from the original study, i.e., the training data). We 
define a  risk family  as a family in which at least 1 member is car-
rying the risk factor (i.e.,  z  i  = 1 for at least one  i ). This is exactly 
1 minus the probability that  no  family member carries the risk 
factor. If we restrict the data  x  and  Z  to just the family in ques-
tion, and define the event  R  as “The family is a risk family,” we 
can then compute

  P( R ) = 1 – P( Z  = 0   |    x ,  θ̂ ) (12)

  1 P 0 | , .i
i F

ˆZ x ��  (13)

  1 1 .t
i

i F
T� �  (14)

  The step from Equation 12 to Equation 13 is possible because the 
probability that  no family member  carries the risk factor equals the 
probability that  no founder  carries the risk factor, since the former 
is true if and only if the latter is true. Then, we can split up the joint 
probability that no founder carries the risk factor into the indi-
vidual probabilities P( Z  i  = 0   |    x ,  θ̂ ). This step is possible because we 
only consider the founders, and their risk probabilities are inde-
pendent of any other  z  i . 

 Since P( Z  i  = 0   |    x ,  θ̂ ) equals 1 –  T   i  (  t  )  by definition (Equation 5), 
we can simply run the E-step of the EM algorithm once on the new 
family to obtain these values. We then multiply over only those  T   i  (  t  )  
where  i   ∈   F  and obtain P( R ), an estimator for the familial CRC risk.

  Results 

 Simulation Study 
 We performed an in silico experiment by simulating 

data sets with a given  p  H ,  p  1 , and  α  and with a varying 
number of families ( N ) and pedigree size ( D ). The risk 
status  z  i  for each founder was randomly sampled with the 
probability P( z  i  = 1) =  p  1 , the statuses for all nonfounders 
were sampled according to Equation 1. The age at onset 
of CRC was then simulated according to a Weibull distri-
bution with the best fitting parameters according to Rieg-
er and Mansmann  [9] ,  λ  = 0.0058 and  k  = 4, and a risk 
increase for males of  β  = 2:

   f ( t  i    |    z  i ) =  h ( t  i )       ·        S ( t  i ) = [ k λ k  t    ik  –1     α  z i    β  m   i  ]       ·       exp(–( t  i  λ ) k   α  z i    β  m i  ).

  We then simulated a censoring age  u  i  from the following 
Gaussian distribution:  u  i   ∼ (125, 100). The rather opti-
mistic mean censoring age of 125 years was chosen to keep 
the ratio of censored subjects below 66%, since a higher 
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1e+01

1e+03

1e+05

0 50 100 150 200 250 0 50 100 150 200 250
Number of families (N)

Ru
nt

im
e,

 s

Family size (D)

5
9

15
17
19
21
31

Co
lo

r v
er

si
on

 a
va

ila
bl

e 
on

lin
e

  Fig. 3.  Runtime comparison of Nelder-Mead optimization (left) and the EM algorithm (right). Shown is the run-
time in seconds on the    y  axis (log scale) versus the number of families on the  x  axis. The effect of an increasing 
family size  D  is negligible with the EM algorithm, but exponential with the Nelder-Mead optimization. For the 
largest families of  D  = 31, only the EM algorithm could be run in a feasible time. The Nelder-Mead optimization 
would have taken around 2.7 years.                                 

D
ow

nl
oa

de
d 

by
: 

U
B

 d
er

 L
M

U
 M

ün
ch

en
   

   
   

   
   

   
   

   
   

   
   

   
 

12
9.

18
7.

25
4.

47
 -

 8
/2

0/
20

18
 8

:4
2:

09
 A

M



 Engelhardt/Rieger/Tresch/Mansmann

 

 Hum Hered 2016;82:1–15 
DOI: 10.1159/000475465

8

censoring rate would just necessitate a larger simulated data 
set to reach the same stability. Each subject’s censoring in-
dicator  c  i  was then set to 1 if  t  i    <  u  i  and 0 otherwise. A value 
of 0 therefore indicates a censored observation. If a subject 
is censored,  t  i  was replaced by  u  i , the age at censoring. 

 Runtime Improvement 
 We simulated data sets with different pedigree sizes to 

investigate the threshold pedigree size from which the 
EM algorithm is faster than a Nelder-Mead optimization. 
 Figure 3  and  Table  1  show the runtime of the Nelder-
Mead optimization versus the EM algorithm for different 
data sizes and pedigree sizes. The pedigrees used were:
  •  D  = 5: two parents with 3 children 
 •  D  = 9: four grandparents, 2 parents, 3 children ( Fig. 1 a) 
 •  D  = 15: four generations with only 1 final individual 
 •  D  = 17: the same pedigree as for  D  = 15, with 1 addi-

tional parent pair for 1 founder 
 •  D  = 19: one more parent pair in the same generation 

as for  D  = 17 
 •  D  = 21: one more parent pair in the same generation 

as for  D  = 19 
 •  D  = 31: five generations with 1 final individual. 

 The results suggest that using the EM algorithm is ad-
vantageous as soon as  some  families in the data set are 
large (more than around 17 members). For  D  = 31, we ex-
trapolated the runtime for the Nelder-Mead optimization 
to about 2.7 years, according to a log-linear regression of 
runtime against family size. This shows the dramatic im-
provement of using the EM algorithm as family sizes grow 
larger. A more advanced EM algorithm could even split 
the data into small and large pedigrees, and in the E-step 
use the sum-product algorithm for the larger families, and 
a “brute force” marginalization for smaller families.

  Our Algorithm Recovers True Parameters 
 We simulated 100 replicated data sets of 500 families 

of 9 persons as in  Figure 1 a. In each replication, we chose 
 p  1  = 0.2 and  α  = 4 as the parameters and let the Nelder-
Mead optimization and the EM algorithm estimate the 
parameters to investigate their level of agreement.  Figure 
4  shows scatterplots and Bland-Altman plots to compare 
the 2 methods and finds a strong agreement between 
them.  Table 2  shows summary statistics on both methods’ 
parameter estimates in the 100 replications.

  The Imputation of Noninformative Parents Works 
 When family members were randomly removed from 

the data set after simulation, the imputation procedure 
did not affect the results – both algorithms still converged 
to the correct result after imputing took place. The simu-
lation and estimation were performed as in  Figure 4 , but 
20% of the family members were randomly removed be-
forehand. The preprocessing then performed an imputa-
tion of missing members. After our imputing procedure, 
both algorithms still recover the true parameters (data 
not shown; reproducible scripts available on GitHub).

  Application: Estimating the Probability of Being a 
Risk Family 
 We computed the posteriori probability of being a 

CRC risk family for a simulated data set of 1,000 pedigrees 
with 9 persons each, according to Equation 14. The re-
sulting ROC curve is shown in  Figure 5 . The AUC of 0.74 
shows that risk families can be identified with a satisfy-
ingly good rate.

  Real Data 
 We applied our algorithm on a study exploring the fa-

milial CRC risk  [28] . In this study, patients diagnosed 
with CRC in the Munich region were recruited. Subse-

 Table 1.  Runtime ratio (Nelder-Mead over EM algorithm) over 
different family sizes D and different number of families N

 Family sizes (D)

 5 9 15 17 19 21

Number of families (N)
50 0.01 0.01 0.28 0.75 2.85 10.97

100 0.02 0.02 0.24 0.68 2.62 10.54
150 0.06 0.02 0.33 0.53 2.15 8.33
200 0.01 0.03 0.28 0.57 2.65 12.05
250 0.02 0.03 0.38 0.89 3.89 29.05

 The EM algorithm is faster for pedigrees of size 19 and above, 
regardless of the number of families in the data set.

 Table 2.  Five-point summary and mean values for the parameter 
estimates of the Nelder-Mead optimization (N-M) and the EM al-
gorithm, based on 100 simulated data sets

Mini-
mum

1st
quartile

Median Mean 3rd
quartile

Maxi-
mum

p̂1, N-M 0.1478 0.1740 0.1913 0.1929 0.2078 0.2864
p̂1, EM 0.1476 0.1739 0.1912 0.1929 0.2078 0.2865
α̂, N-M 2.888 4.036 4.347 4.310 4.656 5.297
α̂, EM 2.890 4.037 4.345 4.310 4.660 5.287

 The simulation parameters were p1 = 0.2 and α = 4.
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quently, each of these  index patients  was given a question-
naire with a blank pedigree to fill out data about all known 
relatives. With this obtained pedigree, the Munich Can-
cer Registry (MCR)  [29]  was consulted via an anony-
mized record-linkage procedure for any CRC diagnoses 
of the index patient’s relatives  [30] . The result was a ped-
igree of family data and CRC diagnoses per index patient. 
The study was active from September 2012 until June 
2014 and resulted in a data set of 611 families, of which 
181 were just individuals (a “pedigree” with only 1 per-
son).

  In the real data set, pedigrees were not always recorded 
in a directly useable manner. For observations with only 
1 available parent, we imputed the missing parent as non-
informative ( c  i  = 0,  t  i  = 0 and with the appropriate gender 
 m  i ). In cases where a family consisted only of siblings, we 
imputed both parents as noninformative observations to 
indicate the relatedness of the siblings. The remaining 
analysis was analogous to the in silico study described in 
the Methods.

  We estimated a prevalence of  p  1  = 0.901 and a risk fac-
tor increase of  α  = 5.723. We then performed a 100-fold 
bootstrapping of families to obtain bootstrap standard er-
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  Fig. 4.  Convergence of 100 replications of 
simulating and estimating data sets. Each 
replication used random uniform distrib-
uted starting values for    θ  = ( p                    1 ,  α ).  a ,  b  The 
final parameter estimates for the Nelder-
Mead optimization (   x  axis) and the EM al-
gorithm ( y  axis).  c ,  d  Bland-Altman plots 
where the    x  axis shows the average of the 
parameter estimates of the 2 methods and 
the  y  axis shows their difference. Horizon-
tal dashed lines are drawn at ±2 standard 
deviations of the difference. We see that 
both estimation methods agree with each 
other and converge close to the correct re-
sult of  p  1  = 0.2 and  α  = 4 regardless of start-
ing values.   
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  Fig. 5.  ROC curve for the probability of being a risk family, based 
on 1,000 simulated families with 9 persons (cf.  Fig. 1 a).                                                         
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rors. The values obtained were 0.0002 and 0.0229, respec-
tively.

  The rather high a priori probability may stem from a 
bias in the data set, since the collection procedure prefer-
ably selected patients and families that are already ex-
posed to risk. A more detailed discussion on the results is 
given in Rieger and Mansmann  [9] .

  The data set contained 3 families with at least 20 mem-
bers. For the largest family of 23 persons, using the EM 
algorithm with the sum-product algorithm instead of a 
Nelder-Mead optimization showed a reduction of the 
runtime to 16%.

  Discussion 

 Directly translating mathematical formulas into com-
puter code often results in a formally correct but slow so-
lution. In our case, a Nelder-Mead optimization would 
need multiple evaluations of the marginalized likelihood, 
which is unfeasible for larger families. An approach based 
on  peeling   [31–33] , however, could have been used to re-
duce the time for evaluating the likelihood. The disadvan-
tage of the Elston-Stewart peeling algorithm is that as 
soon as the pedigree contains loops, its runtime increases 
exponentially with the  cutset  (i.e., the number of mem-
bers that have to be considered jointly)  [13] . The EM al-
gorithm coupled with the sum-product algorithm can be 
extended to pedigrees with loops by applying the “loopy 
belief propagation” procedure  [11] . Furthermore, peeling 
algorithms need to find an optimal peeling order for each 
pedigree, a problem that still has no gold standard solu-
tion today  [33] . The sum-product algorithm, on the oth-
er hand, directly implies an efficient order of computing 
the messages, and thus elegantly circumvents this prob-
lem. Thompson and Shaw  [34]  showed that the EM algo-
rithm is a viable alternative to the peeling algorithm in 
polygenic models. Our approach differs from this in that 
we skip the detection of responsible genes and instead fo-
cus on estimating a family’s probability of carrying an 
(unspecified) CRC risk factor.

  The EM algorithm with an approximative Monte Car-
lo implementation of the E-step has previously been used 
on pedigrees for segregation analysis  [35] . We saw that 
the EM algorithm in our setting relied on a marginaliza-
tion over all possible risk vectors for each pedigree. This 
problem of calculating marginal densities in hierarchical 
data such as pedigrees has usually been tackled by Markov 
Chain Monte Carlo (MCMC) simulations and related 
sampling algorithms  [36, 37] . Due to the random sam-

pling, these methods all yield only approximative solu-
tions and may take a long time to reach stable results. We 
instead use the sum-product algorithm  [11]  within the 
EM algorithm to solve the necessary marginalization in 
the E-step in linear instead of exponential time. This pro-
vides a fast and exact solution and allows maximum-like-
lihood estimation with pedigrees of arbitrary size that, 
furthermore, is not dependent on an arbitrarily chosen 
number of MCMC simulations.

  In contrast to complex segregation analysis, our ap-
proach is less specific. In particular, we only model an 
unspecific risk “component,” not necessarily a gene or 
multiple genes, which is passed down to offspring with a 
certain predefined probability. We chose this phenotype-
based approach since the causes for familial occurrence 
of CRC are currently unknown. Our generic model is 
therefore not fully in line with mendelian transmission 
models. Only under the assumption of an autosomal 
dominant risk factor that is rare, so that an affected indi-
vidual can be assumed to have the genotype Aa instead of 
AA, is a constant inheritance probability of  p  H  = 0.5 jus-
tifiable. As an advantage, environmental risk factors such 
as nutrition, lifestyle, or place of residence can be mod-
eled by choosing  p  H  = 1. If one wants to account for a 
small probability of changing the place of residence, or a 
probability for children to not adopt the parents’ lifestyle, 
inheritance probabilities less than 1 can be used as well. 
However, if a large enough data set were available, it 
should also be possible to estimate  p  H  robustly enough.

  One limitation of the real data set in this study is the 
relatively small sample size. With around 600 families, 
the data set was not large enough to obtain stable esti-
mates. However, since the focus of this study is method-
ological, the data set can still be used to show the runtime 
improvement of our algorithm. The moderate gain in 
speed in the application to the real data set can be ex-
plained by 2 facts. First, the multiplicative time constant 
for the sum-product algorithm is larger than that for the 
calculation of the marginal likelihood, since the message 
passing needs more elementary operations than simple 
summation over all possible configurations of the family 
members (yet, as demonstrated in  Figure 3 , this disad-
vantage is soon compensated by the exponential increase 
in runtime of the Nelder-Mead method). Second, the 
families in the real data set are mostly small (median size: 
6 members), with the exception of a few larger families 
(maximum size: 23). Thus, the full power of the EM al-
gorithm will unfold in applications where more, larger 
families are investigated. The size of the families in such 
studies is likely to grow in the future, with the availabil-
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ity of more longitudinal data. Moreover, note that a sin-
gle, large family of more than, say, 25 members, will pro-
hibit the straightforward application of the marginaliza-
tion approach.

  It should also be noted that for small families, the lin-
ear runtime of the sum-product algorithm is  slower  than 
the exponential runtime of the marginalization, due to 
the overhead in setting up the factor graph ( Fig. 3 ). In our 
analysis, the sum-product algorithm had significant ben-
efits only as soon as a family consisted of more than 17 
members.

  It is possible to estimate further parameters in this 
model, such as the shape parameter  k . However, in our 
case, these parameters were external epidemiological in-
formation, and thus already available from more robust 
previous studies. Moreover, if additional parameters are 
estimated, it should then be reevaluated whether the Hes-
sian matrix is still negative semidefinite (i.e., whether the 
log-likelihood is still concave and unimodal).

  Our algorithm can of course also be extended to other 
models. For example, other penetrance models can be 
used, such as a “time shift” model, where the hazard rate 
is not multiplied by a factor  α , but instead shifted horizon-
tally, by adding a “risk advancement” of a specific number 
of years  [38] . It is also possible to use different response 
distributions besides a Weibull distribution. Furthermore, 
it is possible to extend our method to model true mende-
lian transmission, either by having  Z  i   ∈  {0, 1, 2} model the 
number of affected alleles, or by specifying  two  latent vari-
ables,  Z   ♂    ∈  {0, 1} and  Z   ♀    ∈  {0, 1} per individual, 1 for each 
allele. One would then need a transmission matrix to spec-
ify the probability of each possible outcome for offspring 
given the statuses of both parents. Ghahramani  [39]  pro-
vides a tutorial on how to extend a Bayesian network such 
as a pedigree to deal with multiple latent variables.

  When the number of possible genotypes (i.e., the num-
ber of possible values for  Z  i ) increases, both the EM algo-
rithm and the Nelder-Mead optimization suffer from ex-
ponential runtime increase. This is the case for example 
when one works with multilocus genotypes. The runtime 
of the EM algorithm is only linear respective to the fam-
ily size. However, since the genetic mechanism in our case 
is unknown, a dichotomized latent variable served our 
purpose well.

  Faster algorithms such as the one presented in this pa-
per also open the door for new analyses that were previ-
ously unfeasible. With the sum-product algorithm, we can 
now conduct large-scale simulation studies for power and 
sample size determination and extract further informa-
tion such as bootstrap confidence intervals from the data.

  Conclusion 

 In this paper, we developed an efficient algorithm for 
maximum likelihood estimation where the observations 
in the data are partially dependent. The rising size and 
complexity of modern data sets make it necessary to re-
visit popular algorithms for data analysis and develop im-
provements in their efficiency. Here, we considered clin-
ical data in the form of pedigrees, where the presence of 
latent and inheritable genetic risk factors greatly compli-
cated the analysis procedure. In our case, a standard im-
plementation of the EM algorithm results in a runtime 
that is still exponential regarding the family sizes, due to 
the inheritability of the latent variables.

  However, by considering the pedigree as a Bayesian 
network, and then factorizing it with a factor graph and 
reformulating the E-step by employing a sum-product al-
gorithm, the runtime could be reduced to linear in terms 
of the family size. Similar to the peeling algorithm  [31] , 
the sum-product algorithm in essence breaks down com-
plex pedigrees into  nuclear  families, each consisting of 
father, mother, and all children. The number of children 
does not cause exponential growth of runtime because 
the summation is again broken down between each child.

  In conclusion, the combination of an EM algorithm 
with the sum-product algorithm removes the restrictions 
that exponential runtime imposes on the analysis due to 
large families and opens the door for maximum likeli-
hood estimation on large pedigrees.

  As a next step, we plan to make this risk prediction al-
gorithm available as a web interface, so that clinicians can 
conveniently enter a family’s pedigree. It will then aid in 
assessing familial CRC risk of individual patients.
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  Appendix 

 This section contains extended derivations of the equations 
used in this paper.

  A1 The Complete Log-Likelihood (Equation 3) 
 The complete likelihood (Equation 2) becomes

   L ( θ ;  x ,  z ) =  f ( x ,  z ) = P( z )       ·        f ( x    |    z )

1
P P | |i i i i

i F i F
i

i

n

iz z z z, f x z. .   

1 1 1
1 1 1

1
1 1 exp .i i ii i i i i i

nz z kcz z z m z mk k
i i i

i F i F i
p p p p k t t� � � � � �..   

  Note that the relevant part for  α  includes all persons, and the part 
for  p  1  only includes the founders. The product over all  i  ∉  F  is in-
dependent of  θ  = ( α ,  p  1 ) and thus becomes irrelevant in the estima-
tion procedure. 

 The log-likelihood is then

1 1

1

1

log log 1

log 1 log 1

log log 1 log log log

respective to  and , this reduces to

const

i i

i i
i F i F

i i i i
i F
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i i i i
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k z m
i

i F

l ; x ,z z p | F | z p

z p z p

c k k (k ) t z m

t
p

z 1 1

1

log log 1

log .i i

i i
i F

n k z m
i i i

i

p | F | z p

c z t

  

  A2 Derivation of Equation 5 
 The expected value E Z     |     x  ,   θ  (  t  )  ( Z  i ) is equal to the marginalized 

expected value E z i      |      x  ,   θ  (  t  )  ( Z  i ) because of the following marginaliza-
tion steps from  Z  to  Z  i :

1

1 1 1 1

1 2

1 2
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E P |

P |

P

E

P 1| .

t

t
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i i n

t

i
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z
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Z z z x,
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Z x
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,

 

 |

i

|
  

  A3 Efficient Computation of Likelihoods and Marginalizations 
 Since we assume independence between families, the complete 

likelihood  L ( θ ;  x ,  z ) can be factorized into a product of  N   family 
likelihoods  [ 13 , Equation 1.4]. If one denotes the families in a data 
set by  I  = 1, …,  N  and their members by  d  = 1, …,  D  I , the index  i  
becomes a combined index  I ,  d  from the family index and the 
member index. We can further define the sub-vectors  x  I  and  z  I  to 
be the observed and latent data for only family  I . Note that using 
this notation, e.g.,  z  1  is now a vector of risk statuses for family 1, 
and not the risk status of just the first observation.

  Equation 2 then becomes

1 1

1 1
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d F

z zz z
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I d F d
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d F

L ; x, z f x , z z f x z

z , f xz , d z z

p p p

z

k t t

p
� �

�1

1

.
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mI

d

.

. .

.

.

  

  This notation now allows for computationally elegant marginal-
izations. 

 Summation in the Marginalized Likelihood in Equation 4 
 Keeping the notation for families and family members, we can 

rewrite Equation 4 into a more efficient marginalization:

1

1

1

1 1

1 1

1

1
P| .

N

N

I

I

z
N

I I
z I

N N
z z

N N
z z

N

I I
zI
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I I I
zI

L ; x L ; x, z

L ; x , z

L ; x , z L( ; x , z )

L ; x , z L ; x , z

L ; x , z

f x z , z

  

  This way, we do not sum over 2 n  possible values for  z , but instead  

12 IDN
I

 

  values, where  D  I  is the number of family members in family  I . 

 Marginalizing the Risk Carrier Probability  T  i  (  t  )  from Equation 5 
 The marginalization when computing  T  i  (  t  )   ≡  T  I  (  t  )   ,   d      can happen 

more efficiently, summing only over 1 specific family. Since a  Z  I  ,   d  
is independent of all  x  outside of its respective family’s  x  I , we can 
replace the condition on  x  by  x  I :

|

|

E

E

E
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P 1|

P

t

t
I , d

t
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I

( t )
I , d Z x , I , d
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Z x , I , d

t
I , d I

I , I
t

d I
z

Z x ,

z x

Z

z ,

T

Z

Z

 |
     

(Appendix A2)

  Therefore, the marginalizations of the factor graph can be ef-
ficiently computed for each family separately and combined at the 
end.
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  A4 Factor Functions φ j  for Equation 9 
 Since  g ( z )  ≡   f ( z ,  x ), the factors  φ  j  describe the following func-

tions:

   φ  1 ( z  1 ) =  f ( x  1    |    z  1 ) P( z  1 )
   φ  2 ( z  2 ) =  f ( x  2    |    z  2 ) P( z  2 )
   φ  3 ( z  3 ) =  f ( x  3    |    z  3 ) P( z  3 )
   φ  4 ( z  4 ) =  f ( x  4    |    z  4 ) P( z  4 )
   φ  5 ( z  1 ,  z  2 ,  z  5 ) =  f ( x  5    |    z  5 ) P( z  5    |    z  1 ,  z  2 )
   φ  6 ( z  3 ,  z  4 ,  z  6 ) =  f ( x  6    |    z  6 ) P( z  6    |    z  3 ,  z  4 )
    φ  789 ( z  5 ,  z  6 ,  z  7 ,  z  8 ,  z  9 ) =  f ( x  7    |    z  7 ) P( z  7    |    z  5 ,  z  6 )
      ·          f ( x  8    |    z  8 ) P( z  8    |    z  5 ,  z  6 )       ·        f ( x  9    |    z  9 ) P( z  9    |    z  5 ,  z  6 ).

  A5 All Messages of the Sum-Product Algorithm in  Figure 1 b 
 Here we show a detailed derivation of all messages for the sum-

product algorithm in  Figure 1 b. The messages are computed itera-
tively in 8 steps.  Figure 2  illustrates the messages computed in each 
step.

  Step 1 
 In step 1, only the “outermost” messages can be computed, 

since only they are not depending on any other messages. In par-
ticular, the following messages are computed:

   μ  φ  1     →     z  1 ( z  1 ) =  φ  1 ( z  1 )
   μ  φ  2     →     z  2 ( z  2 ) =  φ  2 ( z  2 )
   μ  φ  3     →     z  3 ( z  3 ) =  φ  3 ( z  3 )
   μ  φ  4     →     z  4 ( z  4 ) =  φ  4 ( z  4 )
   μ  z  7     →     φ  789 ( z  7 ) = 1
   μ  z  8     →     φ  789 ( z  8 ) = 1
   μ  z  9     →     φ  789 ( z  9 ) = 1.

  The definitions of each factor, e.g.,  φ  1 ( z  1 ), are available in Appen-
dix A4. 

 Step 2 
 In step 2 (see  Fig.  2 b), we have all information necessary to 

compute the following 4 messages:

   μ  z  1     →     φ  5 ( z  1 ) =  μ  φ  1     →     z  1 ( z  1 )
   μ  z  2     →     φ  5 ( z  2 ) =  μ  φ  2     →     z  2 ( z  2 )
   μ  z  3     →     φ  6 ( z  3 ) =  μ  φ  3     →     z  3 ( z  3 )
   μ  z  4     →     φ  6 ( z  4 ) =  μ  φ  4     →     z  4 ( z  4 ).

  Step 3 
 Now we can compute the messages  to  the parents  z  5  and  z  6 :
  

5 5 1 5 2 51 2

6 6 3 6 4 63 4

5 5 1 2 5 1 2

6 6 3 4 6 3 4 .

z z zz z

z z zz z

z z , z , z z z

z z , z , z z z

�

�� �

� �	 � 	 	

	 � 	 	

.

.

  Step 4 
 In step 4, we can only obtain 2 new messages:

   μ  z  5     →     φ  789 ( z  5 ) =  μ  φ  5     →     z  5 ( z  5 )
   μ  z  6     →     φ  789 ( z  6 ) =  μ  φ  6     →     z  6 ( z  6 ).

  Step 5 
 In step 5, we now have all incoming messages to  ϕ  789  available, 

which means we can compute all outgoing messages from  φ  789 :

789 5 6 7 8 9

6 789 7 789 8 789 9 789

789 5 5 7 8 9

6 789 7 789 8 789 9 789

789

789 5 6 7 8 9

5

6 7 8 9

789 5 6 7 8 9

6

6 7 8 9

z z z z z

z z z z

z z z z z

z z z z

z , z , z , z , z

z

z z z z

z , z , z , z , z

z

z z z z

5 5 6 8 9

5 789 6 789 8 789 9 789

789 8 5 6 7 9

5 789 6 789 7 789 9 789

789 9

789 5 6 7 8 9

7

5 6 8 9

789 5 6 7 8 9

8

5 6 7 9

9

z z z z z

z z z z

z z z z z

z z z z

z

z , z , z , z , z

z

z z z z

z , z , z , z , z

z

z z z z

z
5 6 7 8

5 789 6 789 7 789 8 789

789 5 6 7 8 9

5 6 7 8

.

z z z z

z z z z

z , z , z , z , z

z z z z

.

.

.

.

.

  

  Step 6 
 We can now start computing the  upward  messages from  φ  789 :

   μ  z  5     →     φ  5 ( z  5 ) =  μ  φ  789     →     z  5 ( z  5 )
   μ  z  6     →     φ  6 ( z  6 ) =  μ  φ  789     →     z  6 ( z  6 ).

  Step 7 
 Here, we compute the upward messages from the factors  φ  5 

and  φ  6 :

5 1 2 5 5 52 5

5 2 1 5 5 51 5

6 3 4 6 6 64 6

6 4 3 6 6 63 6

1 5 1 2 5 2 5

2 5 1 2 5 1 5

3 6 3 4 6 4 6

4 6 3 4 6 3 6 .

z z zz z

z z zz z

z z zz z

z z zz z

z z , z , z z z

z z , z , z z z

z z , z , z z z

z z , z , z z z

�

�

�

�

� �

� �

� �

� �

	 	 	

	 	 	

	 	 	

	 	

�

�

�

� 	

.

.

.

.

  

  Step 8 
 In the last step, we can compute the messages from the found-

er variables to their respective factors. For the marginalization step 
in the end, we do not need these messages, strictly speaking. For 
the sake of completeness, however, we show their computation 
nonetheless:

   μ  z  1     →     φ  1 ( z  1 ) =  μ  φ  5     →     z  1 ( z  1 )
   μ  z  2     →     φ  2 ( z  2 ) =  μ  φ  5     →     z  2 ( z  2 )
   μ  z  3     →     φ  3 ( z  3 ) =  μ  φ  6     →     z  3 ( z  3 )
   μ  z  4     →     φ  4 ( z  4 ) =  μ  φ  6     →     z  4 ( z  4 ).

  A6 Proof of Convergence of the EM Algorithm 
 To summarize, we showed that our EM algorithm converges 

correctly with the following 3 steps:
  (a) The EM algorithm converges to a local maximum of the 

marginal likelihood. By concavity of the marginal likelihood (see 
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Methods), this is also the global maximum, and thus, the maxi-
mum likelihood estimator.

  (b) The E-step in the EM algorithm for our problem reduces to 
computing the marginalized expected values  T   i  (  t  )  = E z i      |     x  ,   θ  ( t )  ( Z  i ).

  (c) The sum-product algorithm delivers the marginalized den-
sities  T   i  (  t  )  = P( Z  i  = 1   |    x ,  θ  (  t  ) ).

  (a) is clear from Dempster et al.  [16] , and (c) follows from 
Kschischang et al.  [11] . (b) can be shown as follows:

  By definition of the EM algorithm, the E-step consists of com-
puting  Q ( θ ;  θ  (  t  ) ) = E z     |     x  ,   θ  ( t )  [ l ( θ ;  x ,  Z )]. Since the complete log-like-
lihood  l ( θ ;  x ,  z ) is linear in the latent data  z , to obtain  Q ( θ ;  θ  (  t  ) ) it 
suffices to replace each  Z  i  by its conditional expectation given the 
observed data  x  and the current fit  θ  (  t  )  [ 17 , p. 21].

  We can see that  l ( θ ;  x ,  z ) is linear in  z  from Equation 3. The fac-
tor  α  z   i   can be replaced by the equivalent notation 1 +  z  i ( α  – 1) be-
cause  z  i   ∈  {0, 1}.

  A similar approach, called the Baum-Welch algorithm, is used 
for estimating the parameters of Hidden Markov Models (HMMs) 
 [40] . Since HMMs are a special case of Bayesian networks such as 
pedigrees, the same logic applies to our problem [ 17 , cf. pp. 73–76].

  A7 Evaluating Messages in Linear Time 
 For example, consider from  Figure 1 b the message

789 8
5 6 7 9

5 789 6 789 7 789 9 789

1 1 1 1

8 789 5 6 7 8 9
0 0 0 0

5 6 7 9                    .

z
z z z z

z z z z

z z , z , z , z , z

z z z z

�

� � � �

	 �

	 	 	 	.

  

  Since we can decompose  φ  789 ( z  5 ,  z  6 ,  z  7 ,  z  8 ,  z  9 ) into the product 
 f ( x  7    |    z  7 ) P( z  7    |    z  5 ,  z  6 )       ·            f ( x  8    |    z  8 ) P( z  8    |    z  5 ,  z  6 )       ·             f ( x  9    |    z  9 ) P( z  9    |    z  5 ,  z  6 ), the 
quadruple sum can be split up into 

789 8 5 789 6 789
5 6

7 789

7

9 789
9

7 7 7 5 6

1 1

8 5 6

8 8 8 5 6

0 0

1

7
0

1

9 9 9 69 5
0

|

|

P

P

P

|

.

| |

z z z
z z

z
z

z
z

z z z

f x z z z

f x z z z , z

f x z z

, z

z

z z , z

 

.

. .

.

 

  This representation of the marginalizing sum can now be evalu-
ated in linear time respective to the number of children. 
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