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Abstract

The inclusion of high-dimensional covariate data in prediction models
has become a well-studied topic in the last decades. Although most of
these methods do not account for possibly different types of variables in
the set of covariates available in the same dataset, there are many such
scenarios where the covariates can be structured in blocks of different
types. To date, there exist a few computationally intensive approaches
that make use of block structures of this kind. In this paper we present
priority-Lasso, an intuitive and practical analysis strategy for building
prediction models based on Lasso that takes such block structures into
account. It requires the definition of a priority order of blocks of data.
Lasso models are calculated successively for every block and the fitted
values of every step are included as an offset in the fit of the next step.
We apply priority-Lasso with different settings on a dataset of acute
myeloid leukemia (AML) consisting of clinical variables, cytogenetics,
gene mutations and expression variables, and compare its performance
on an independent validation dataset to standard Lasso models. The
results show that priority-Lasso is able to keep pace with Lasso in
terms of prediction accuracy. Variables of blocks with higher priorities
are favored over variables of blocks with lower priority, which results
in an easily useable and transportable model for clinical practice.

∗Corresponding author. Email: simonklau@ibe.med.uni-muenchen.de.
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1 Introduction

Many cancers are heterogeneous diseases regarding biology, treatment re-
sponse and outcome. For example, in the context of acute myeloid leukemia
(AML), a variety of classifiers and recommendations were published to guide
treatment decisions (Döhner et al., 2016). We and others have recently
shown that gene expression markers as well as mutational profiling are able
to improve risk prediction based on standard clinical markers (Li et al., 2013;
Ng et al., 2016; Pastore et al., 2014; Walter et al., 2015). Other types of
biomarkers such as copy number variation data or methylation data may
also be used for this purpose in the future. However, irrespective of the
considered specific end point (e.g., overall survival, resistant disease, early
death) no model is currently able to precisely predict the outcome of AML
patients. To date, the most powerful prognostic models are based on cyto-
genetics and gene expression markers (Wang et al., 2017).

In the present paper, we use the term “omics” to denote molecular
biomarkers measured through high-throughput experiments. Beyond the
example of AML mentioned above, the integration of multiple types of omics
biomarkers with the aim of improved prediction accuracy has been a focus
of much attention in the past years, see for example Boulesteix et al. (2017)
and references therein. While prediction modelling using a single type of
omics markers is a well-studied topic, it is not clear how different types of
biomarkers should be handled simultaneously when deriving a prediction
model.

In addition to the highly important topic of prediction accuracy, encom-
passing both discrimination ability and calibration, clinical reality requires
analysts to take aspects related to usability into account when developing
prediction models for clinical practice. Firstly, a model including several
hundreds/thousands of variables is much more difficult to implement in clin-
ical practice than a model including only a handful of variables. Sparsity
is thus an important aspect of the model which contributes to its practi-
cal utility in clinical settings. Secondly, a model including variables that
are already included in routine diagnostics — such as genetic alterations
as recommended by the European LeukemiaNet (ELN) in the case of AML
(Döhner et al., 2016), or variables that can be easily assessed such as age
or common clinical variables — are more likely to be accepted by physi-
cians than a model including variables measured with new and/or expensive
technologies, maybe even at the expense of a slightly lower prediction accu-
racy. These two points are arguments in favor of models that (preferably)
include a small number of variables selected from particular “favorite” sets
of variables — as opposed to, say, a large number of variables selected from
genome-wide data.

Another aspect related to practical usability is the transportability of a
prediction model, i.e. the possibility for potential users to apply the predic-
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tion model to their own data based on information provided by the model de-
velopers (Boulesteix and Schmid, 2014). Penalized regression methods yield-
ing sparse models typically yield better transportable models than black-box
machine learning algorithms (Boulesteix and Schmid, 2014; Boulesteix et al.,
2016). For example, to apply a Lasso logistic regression model (Tibshirani,
1996) for making predictions for their own patients, users only need the fit-
ted regression coefficients and names of the selected variables to compute
the score and, if they want to compute predicted probabilities, the fitted
intercept. In contrast, a prediction tool constructed using, for example, the
random forest algorithm, can be applied by other researchers or clinicians
only if they have access to a software object (such as the output of the R
function ’randomForest’ if the package of the same name is used) or the
dataset and the code used to construct it — which may become obsolete
after a few years. In this sense, Lasso logistic regression is preferable to
random forest as far as transportability and sustainability are concerned.
Note that model interpretation is also particularly easy with sparse penal-
ized regression methods.

Finally, coming back to prediction accuracy, we note that medical experts
often have some kind of prior knowledge regarding the information content
of different sets of variables. For example, they often expect (a particular
set of) the clinical variables to have high prediction ability and a large pro-
portion of the gene expression variables to be useless. Such prior knowledge
should ideally be taken into account while constructing a prediction model.

Motivated by the need, in the context of AML research and other fields,
for sparse transportable models selecting preferably variables that are easy
to collect or expected to yield good prediction accuracy, we suggest priority-
Lasso, a simple Lasso-based approach. Priority-Lasso is a hierarchical re-
gression method which builds prediction rules for patient outcomes (e.g.,
a time-to-event, a response status or a continuous outcome) from different
blocks of variables including high-throughput molecular data while taking
clinicians’ preference into account. More precisely, clinicians define “blocks”
of variables (which may simply correspond to the type of data, e.g., the block
of methylation variables or the block of gene expression variables) and order
these blocks according to their level of priority. The prediction model is then
fitted in a stepwise manner: In turn, each block of variables is considered as
a covariate matrix in Lasso regression, in the sequence of priority specified
by the clinician; see the Methods section for more details.

The priority-Lasso procedure is fast and simple. It can cope with all
the types of outcome variables accepted by Lasso and, more generally, in-
herits its properties. The hierarchical principle of priority-Lasso can essen-
tially also be applied to extensions of Lasso, including but not limited to
elastic net (Zou and Hastie, 2005), adaptive Lasso (Zou, 2006) or stability
selection (Meinshausen and Bühlmann, 2010). Last but not least, priority-
Lasso yields models giving more weight to the variables favored by clinicians.
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Whether this leads to a loss of accuracy or not depends on whether the vari-
ables that are favored by clinicians are the most informative variables in
terms of prediction. In the end, the clinician may have to decide between
a model including his/her favorite variables at the price of a (slight) loss
of accuracy and a model that is optimal in terms of accuracy but includes
variables that s/he would prefer to leave out.

The rest of this paper is structured as follows. Section 2 presents the
priority-Lasso method and its implementation in detail. In Section 3, the
method is illustrated with different settings through an application to AML
data and compared to standard Lasso in terms of accuracy and included
variables. The considered outcome is the survival time and the considered
types of data are comprised of clinical data, the mutation status of several
genes and gene expression data. Most importantly, prediction models are
fitted on a training dataset and subsequently validated on an independent
dataset following the recommendations by Royston and Altman (2013).

2 Methods

We first provide a non-technical introduction into the principles of priority-
Lasso in Section 2.1 to make these concepts accessible to readers without
strong statistical background and to give a succinct overview. We present
the method formally in Section 2.2, treat its implementation in Section 2.3,
and describe in Section 2.4 the validation strategy inspired from Royston
and Altman (2013) adopted in our illustrative example.

2.1 Concept of priority-Lasso

Priority-Lasso is a method that can construct a prediction model for a clin-
ical outcome of interest (e.g., a time to event or a response status and con-
tinuous outcome) based on candidate variables, using an available training
dataset.

2.1.1 Defining blocks

Suppose that the variables considered as candidates for entering the predic-
tion model are grouped into blocks. A block may be of a particular data
type, for example “clinical data”, “gene expression data” or “methylation
data”, but the classification of variables into blocks may also be finer. For
example, clinical data may be divided into two blocks, for example the de-
mographic data (e.g., age or sex) in a first block and clinical data related to
the tumor in the second block.

Once the blocks of variables are defined, the clinician orders them ac-
cording to their level of priority. The term “priority” refers to the presumed
relevance with respect to the prediction of the considered outcome. For
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achieving as high as possible prediction accuracy, high priority should be
given to blocks which are expected to include the most information on the
outcome variable. From a practical point of view, high priority should be
given to blocks which are easy or/and cheap to collect or are already rou-
tinely collected in clinical practice. In practice, the ordering chosen by the
user will often result from considering a compromise between these two crite-
ria, depending on the clinical context and the availability of prior knowledge.

2.1.2 Principle

Once the priority order is defined, the prediction model is fitted in a stepwise
manner. In the first step, a Lasso model is fitted to the block with highest
priority. The goal of this step is simply to explain the largest possible part
of the variability in the outcome variable by the covariates from the block
with highest priority. In the second step, a Lasso model is fitted to the block
with second highest priority using the linear score from the first step as an
offset, i.e., this linear score is forced into the model with coefficient fixed
to 1. In the special case of a metric outcome, this corresponds to fitting a
second Lasso model (without the offset) to the residuals from the first Lasso
model using the block with second highest priority as covariate matrix. The
goal of this second step is thus to use the variables from the second block
to explain remaining variablility in the outcome variable that could not be
explained by covariates from the first block.

In the third step, a Lasso regression is fitted to the block with third
highest priority using the linear score from the second step as offset. The
special case of a metric outcome is correspondingly equivalent to fitting a
Lasso model to the residuals from the second Lasso model using the block
with third highest priority. This procedure is iterated until all blocks have
been considered in turn. Thus, in the case of a metric outcome, at each step
the current block is fitted to the residuals of the previous step. Generalizing
to other types of outcome variables, in each step the current block is fitted to
the outcome conditional on all blocks with higher priority considered in the
previous steps. In this way, blocks of variables with low priority enter the
model only if they explain variability that is not explainable by blocks with
higher priority. Compared to non-hierarchical approaches, priority-Lasso
tends to yield models in which variables from the most prioritized blocks
play a more important role.

Now that we have exposed the principle of priority-Lasso, let us come
back to the notion of priority defined in the previous section. Why should
a block expected to contribute much to prediction accuracy (termed “good
block” here) be accorded high priority? Imagine that, on the contrary, we
give this good block a low priority. In this setting it is likely that variables
from the blocks with higher priority, but lower value for prediction, would
be selected which would not have been selected if the good block had been
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considered first. The final model would then be less accurate, since a part
of the observed variability in the values of the outcome variable would be
captured by noise variables from the blocks with higher priority and some
of the influential variables from the good block might not be selected into
the model. Moreover, the higher number of noise variables would probably
also lead to a less sparse model.

2.2 Formalization of priority-Lasso

In the following description, we consider M blocks of continuous or binary
variables that are all to be penalized, and a continuous outcome variable for
the sake of simplicity. Extensions to time-to-event and binary outcomes are
straightforward using the corresponding variants of Lasso (Cox Lasso and
logistic Lasso, respectively, see Tibshirani (1997) and Tibshirani (1996),
Zhu and Hastie (2004)). The extension to multicategorical variables is also
straightforward using an appropriate coding of the variables.

Let xij denote the observed value of the jth variable (j = 1, ..., p) for the
ith subject (i = 1, ..., n) and yi denote the observed outcome of subject i.
For simplicity it is assumed that each variable is centered to have mean zero
over the n observations. The standard Lasso method originally proposed
by Tibshirani (1996) estimates the regression coefficients β1, . . . , βp of the p
variables by minimizing the expression

n∑

i=1

(yi −
p∑

j=1

xijβj)
2 + λ

p∑

j=1

|βj |

with respect to β1, . . . , βp, where λ is a so-called penalty parameter. This
method performs both regularization (shrinkage of the estimates) and vari-
able selection (i.e., some of the estimates are shrunken to zero, meaning
that the variable is excluded from the model). The amount of shrinkage is
determined by the parameter λ, which is considered as a tuning parameter
of the method and is in practice most often chosen using cross-validation.

We now adapt our notation to the case of variables forming groups that is
considered in this paper. From now on, the observations of the pm variables

from block m for subject i are denoted as x
(m)
i1 , ..., x

(m)
ipm

, for i = 1, . . . , n and
m = 1, . . . ,M . The number of blocks M usually ranges from 2 to, say, 10
in practice, while the number pm of variables often varies strongly across
the blocks. For example, blocks of clinical variables typically include a very
small number of variables, say, pm ≈ 10, while blocks of molecular variables
from high-throughput experiments may include several tens or hundreds of
thousands of variables.

Similarly to the definition of x
(m)
ij , β

(m)
j denotes the regression coefficient

of the jth variable from block m, for j = 1, . . . , pm, while β̂
(m)
j stands for its

estimated counterpart.
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Let us further denote as π = (π1, . . . , πM ) the permutation of (1, . . . ,M)
that indicates the priority order: π1 denotes the index of the block with
highest priority, while πM is the index of the block with the lowest priority.
For example, if M = 4, π = (3, 1, 4, 2) means that the third block has highest
priority, the first block has second highest priority, and so on. Conversely,
the priority level of a given block is indicated by the position of its index in
the vector π.

In the first step of priority-Lasso, the variables from block π1 are used to

fit a Lasso regression model. The coefficients β
(π1)
1 , . . . , β

(π1)
pπ1

are estimated
by minimizing

n∑

i=1

(yi −
pπ1∑

j=1

x
(π1)
ij β

(π1)
j )2 + λ(π1)

pπ1∑

j=1

|β(π1)j |.

The linear predictor fitted in step 1 is given as

η̂1,i(π) = β̂
(π1)
1 x

(π1)
i1 + ...+ β̂(π1)pπ1

x
(π1)
ipπ1

.

In section 2.1.2 we noted that this linear predictor is used as an offset in
the second step in which we fit a Lasso model to block π2. However, the
linear score η̂1,i(π) tends to be over-optimistic with respect to the informa-
tion usable for predicting yi that is contained in block π1. The reason for
the latter is that yi was part of the data used for obtaining the estimates

β̂
(π1)
1 , . . . , β̂

(π1)
pπ1

, which are then used to calculate η̂1,i(π). This overoptimism
is essentially similar to the well-known overoptimism that results from es-
timating the prediction error of a prediction rule using the observations in
the training dataset. When using this over-optimistic estimate η̂1,i(π) as an
offset in the second step, the influence of block π2 conditional on the influ-
ence of block π1 will tend to be underestimated. The reason for this is that
by considering the over-optimistic estimate η̂1,i(π) as an offset, a part of the
variability in yi is removed that is actually not explainable by block π1 but
would possibly be explainable by block π2. As noted above, this problem
results from the fact that yi is contained in the training data used for esti-

mating β
(π1)
1 , . . . , β

(π1)
pπ1

. As a solution to this problem we suggest estimating
the offsets η1,i(π) using cross-validation in the following way: 1) Split the
dataset S randomly into K approximately equally sized parts S1, . . . , SK ;

2) For k = 1, . . . ,K: obtain estimates β̂
(π1)
S\Sk,1, . . . , β̂

(π1)
S\Sk,pπ1

of the Lasso

coefficients using the training data S \ Sk and for all i ∈ Sk (k = 1, . . . ,K),
calculate the cross-validated offsets as

η̂1,i(π)CV = β̂
(π1)
S\Sk,1x

(π1)
i1 + ...+ β̂

(π1)
S\Sk,pπ1

x
(π1)
ipπ1

.

In the second step the coefficients of the variables in block π2 are thus
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estimated by minimizing

n∑

i=1

(yi − η̂1,i(π)CV −
pπ2∑

j=1

x
(π2)
ij β

(π2)
j )2 + λ(π2)

pπ2∑

j=1

|β(π2)j |.

Using η̂2,i(π) = η̂1,i(π)CV + β̂
(π2)
1 x

(π2)
i1 + ... + β̂

(π2)
pπ2

x
(π2)
ipπ2

as an offset in the

third step in which we fit a Lasso model to block π3 could again lead to
underestimating the influence of block π3 conditional on the influences of
blocks π1 and π2. This is because, analogously to the first step, the estimates

β̂
(π2)
1 , . . . , β̂

(π2)
pπ2

used to calculate η̂2,i(π) are overly well adapted to the resid-
uals yi− η̂1,i(π)CV. Therefore, we again suggest to calculate cross-validated
estimates, η̂2,i(π)CV, of the offsets analogously to the first step.

Priority-Lasso proceeds analogously for the remaining groups until the
final (Mth) fit, where the following linear predictor is obtained:

η̂M,i(π) =

M∑

m=1

pπm∑

j=1

β̂
(πm)
j x

(πm)
ij .

Note that when the offsets are not estimated by cross-validation but the
estimates η̂1,i(π), . . . , η̂M−1,i(π) are used, the effects described above of un-
derestimating the conditional influences of the individual blocks accumulate.
Thus, the influences of blocks with higher priority are underestimated to a
less stronger degree than are blocks with low priority. This eventually could
lead to the exclusion of blocks with lower priority, although they might in-
crease prediction performance if included. We nevertheless also include the
version of priority-Lasso without cross-validated offsets in our application
study (see Section 3) — firstly, because the version with cross-validated
offsets is more computationally intensive, and thus might not be easily ap-
plicable in all situations and, secondly, in order to illustrate, as discussed
above, that this version tends to accredit more influence to the blocks with
lower priority than does the version without cross-validated offsets. In ad-
dition, the suspected tendency of the version without cross-validated offsets
to exclude blocks with lower priority might be advantageous in applications
in which these blocks contain data types that are expensive to collect or not
well established.

2.3 R package ’prioritylasso’

The priority-Lasso method (for continuous, binary, and survival outcomes)
is implemented in the function ’prioritylasso’ from our new R package of
the same name (version 0.2), which is publicly available from the “Compre-
hensive R Archive Network” repository. This package uses the implementa-
tion of Lasso regression provided by the R package ’glmnet’ (see Friedman,
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Hastie, and Tibshirani (2010), and for the special case of Cox-Lasso, see
Simon et al. (2011)).

TheM penalty parameters λ(π1), . . . , λ(πM ) are chosen via cross-validation
in the corresponding steps. As in ’glmnet’, two variants are implemented:
The penalty parameter can be chosen either in such a way that the mean
cross-validated error is minimal (denoted as ’lambda.min’), or in such a way
that it yields the sparsest model with error within one standard error of
the minimum (denoted as ’lambda.1se’). The latter option yields sparser
models. It is moreover possible in our package to specify a maximum num-
ber of non-zero coefficients for each block to further enforce sparsity at the
convenience of the clinician.

Furthermore, the function ’prioritylasso’ offers the option to leave the
block with highest priority unpenalized (i.e., to set λ(π1) to 0), provided
the number of variables pπ1 in this group is smaller than the sample size n.
Depending on the outcome, the estimation is then performed via generalized
linear regression or via Cox regression (Cox, 1972). Another variant of the
priority-Lasso method is implemented in the function ’cvm prioritylasso’,
which makes it possible to take more than one vector π as the input and
choose the best one through minimizing the cross-validation error. This
variant is useful in cases where it makes sense to take the group structure
into account but the clinician does not feel comfortable assigning clear-cut
priorities to each of the groups.

2.4 Validation

In Section 3, we apply the priority-Lasso method as well as the classical
Lasso to fit prediction models for a time-to-event on a training dataset and
subsequently evaluate these models on a validation dataset; see Section 3.1
for a description of the data used in this analysis. The present section
briefly describes the criteria considered to assess prediction accuracy and
the procedures used for validation of the considered models, following the
recommendations of Royston and Altman (2013). These authors emphasize
in their paper that validation comprises both discrimination and calibration.
Hence, we perform both in our analysis and focus on the methods denoted
as methods 3, 4, 6, and 7 in their paper.

Firstly, following method 3, we present some measures of discrimination.
Instead of Harrell’s C-index, a common measure to quantify the goodness
of fit, we show the results of the C-index by Uno et al. (2011), an adapted
version of Harrell’s C-index that accounts for censored data and is thus
more appropriate in our context. Another useful measure is the integrated
Brier score (Graf et al., 1999) assessing both calibration and discrimination
simultaneously, which we calculate over two different time spans: up to two
years and up to the time of the last event. To visualize the results, we
also show the corresponding prediction error curves obtained using the R
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package ’pec’ (Mogensen, Ishwaran, and Gerds, 2012).
Secondly, following method 4 of Royston and Altman (2013), we display

Kaplan-Meier curves that can be useful for both discrimination and cali-
bration. For each considered prediction model, we define three risk groups,
which corresponds to standard practice in the AML context. See for exam-
ple the newest European Leukemia Net (ELN) genetic risk stratification of
AML, which classifies patients into a low-, intermediate-, and a high-risk
group (Döhner et al., 2016) and will be referred to as ELN2017 score in the
sequel. To build three groups based on a considered score, we choose the
two cutpoints that yield the highest logrank statistic in the training data.
We then present the Kaplan-Meier curves of the three risk groups for both
training and validation sets. Good separation of the three curves in the
validation dataset indicates good discrimination.

These three Kaplan-Meier curves observed for the validation dataset can
also be compared to the predicted curves for the three risk groups in the
validation dataset (Royston and Altman’s method 7). By “predicted curve
for a risk group”, we mean the average of the individual predicted curves of
the patients within this risk group. Good agreement between observed and
predicted curves suggests good calibration. Thirdly, as an extension of the
graphical check for discrimination, we also examine the hazard ratios across
risk groups (method 6 of Royston and Altman (2013)).

Beyond these methods from Royston and Altman (2013), we report the
AUC, the true positive rate (TPR, also known as sensitivity) and the true
negative rate (TNR, also known as specificity) of each score at two years
after the diagnosis. This time point was chosen because its ratio of cases to
survivors is the closest to 1. The true positive and the true negative rate
are calculated with the median of each score as a cutoff for categorizing
the scores into two groups. Furthermore, we consider a modified version
of method 1 by Royston and Altman (2013). They suggest performing a
regression with the linear predictor from the model as the only covariate.
For a standard Cox model the resulting coefficient is exactly 1 in the train-
ing data and should be approximately 1 in the validation data to indicate a
good model fit. However, since we perform penalized regression this method
is not applicable to our model. Therefore, we modify this criterion in cal-
culating the calibration slopes in both training and validation data. The
difference between the slope obtained using the training data and the one
obtained using the test data is a measure for the extent of the overoptimistic
assessment of discrimination ability that is obtained using the training data.
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3 Results

The section starts with a brief description of the AML example dataset (Sec-
tion 3.1). Then we present four models fitted using priority-Lasso (Section
3.2) and compare them with the current clinical standard model and with
two models fitted through standard Lasso (i.e., without taking the block
structure into account) in terms of included variables (Section 3.3) and per-
formance in the independent validation data (Section 3.4). These models are
all fitted with a restricted number of selected variables. The same models
without restrictions to the number of variables are presented in Supplemen-
tary Material 1 for additional comparisons. The complete R code written
to perform the analyses is available from Supplementary Material 2.

3.1 AML data

In this study we use two independent datasets, denoted training set and val-
idation set hereafter, including variables belonging to different blocks (see
details below). All patients included in the analysis received cytarabine
and anthracycline based induction treatment. The training set consists of
447 patients randomized and treated in the multicenter phase III AMLCG-
1999 trial (clinicaltrials.gov identifier NCT00266136) between 1999 and 2005
(Büchner et al., 2016, 2006). The patients are part of a previously pub-
lished gene expression dataset (GSE37642) analyzed with Affymetrix arrays
(Herold et al., 2014). All patients with a t(15;17) or myelodysplastic syn-
drome (MDS) are excluded, as well as patients with missing data.

The validation set consists of all patients with available material treated
in the AMLCG-2008 study (NCT01382147) (Kreuzer et al., 2013), a random-
ized, multicenter phase III trial (n = 210) and additional n = 40 patients
that had resistant disease and were treated in the AMLCG-1999 trial. We
select the patients of the AMLCG-1999 trial by including all patients with
resistant disease that are not part of the training set and have sufficient
material for analysis. The dataset is publicly available at the Gene Expres-
sion Omnibus repository (GSE106291). The patients of the validation set
were analyzed by RNAseq. For comparability, all continuous variables are
standardized to a mean zero and variance one. All study protocols are in ac-
cordance with the Declaration of Helsinki and approved by the institutional
review boards of the participating centers. All patients provided written
informed consent for inclusion on the clinical trial and genetic analyses.

3.2 Results of priority-Lasso

We apply priority-Lasso on the training dataset (n = 447, described in Sec-
tion 3.1) corresponding to four scenarios. These scenarios differ in the way
the score ELN2017 is included in the analysis and whether or not the offsets
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are cross-validated (see Section 2.2). We always apply the ’lambda.min’ pro-
cedure and 10-fold-cross-validation for the choice of the penalty parameter
in each step. Furthermore, we allow for a maximum of 10 gene expression
variables for each scenario as we want to keep the resulting model as simple
as possible and experience has shown that in survival prediction for AML
patients only a few gene expression values have a considerable influence on
the outcome. Furthermore, gene expression values are not easy to imple-
ment in clinical routine. We define the following blocks and corresponding
priorities:

• Block of priority 1: the score ELN2017 (Döhner et al., 2016). It can
be represented in different ways which are explained in the definition
of the scenarios.

• Block of priority 2: 8 clinical variables measured at different scales

• Block of priority 3: 40 binary variables, each of which represents the
mutation status for a certain gene

• Block of priority 4: 15809 continuous variables, each of which is the
expression value of a certain gene

The different scenarios and the chosen variables are briefly presented
below.

3.2.1 Scenario pl1A

In the first scenario, the block of priority 1 consists of the three-categorical
ELN2017 score represented by two dummy variables. We do not penal-
ize this block and do not use cross-validated offsets. In this scenario the
selected model includes only 7 variables represented by 8 coefficients: the
dummy variables ELN2017 2 and ELN2017 3, equaling 1 for the interme-
diate and the high-risk category, respectively, and 0 otherwise, are selected
by definition, because they result from a fit of a standard Cox model with-
out penalization. Moreover, age, the Eastern Cooperative Oncology Group
performance status (ECOG) (Oken et al., 1982), white blood cell count
(WBC), lactate dehydrogenase serum level (LDH), hemoglobin level (Hb)
and platelet count (PLT) are selected. The selected variables and their co-
efficients are displayed in the second and third column of Table 1. Variables
from blocks with priority 3 (mutation status of 40 genes) and 4 (gene ex-
pression) are absent from the model, yielding a particularly sparse model
based on variables which are easy to access.

3.2.2 Scenario pl1B

This scenario is very similar to pl1A with the difference that the offsets are
cross-validated as described in Section 2.2. Because there are no offsets in
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Block Variable Coef. pl1A Coef. pl1B

1
ELN2017 2 0.8552 0.8552
ELN2017 3 1.4324 1.4324

2

Age 0.3540 0.3556
ECOG (> 1) 0.2794 0.2768
WBC 0.1029 0.1019
LDH 0.1744 0.1763
Hb 0.0529 0.0532
PLT -0.0788 -0.0800

4

PHGDH 0.1242
FAM171B 0.0726
SH3PXD2B 0.0192
F12 0.0097
CD109 0.0599
FAM92A1 0.0193
LAPTM4B 0.0079
FAM24B 0.0378
DDIT4 0.0424
DOCK1 0.0295

Table 1: Variables selected by priority-Lasso in scenarios pl1A and pl1B.
Column 1: priority of the block the variable is included in. Column 2:
variable name. Column 3 and 4: coefficient of the variable in the Cox Lasso
model.

the first step of the model fit, the coefficients of pl1A and pl1B are the same
for the block of priority 1 (see Table 1, column 4). For the block of priority
2, the same variables are selected with small differences in their coefficients.
While both models do not select variables from the block of priority 3, model
pl1B additionally includes 10 gene expression markers - all with only small
influence though. Nevertheless, the fact that gene expression markers are
included in the model with cross-validated offsets, but not in the model
without cross-validated offsets, illustrates the conjecture made in Section
2.2: When using the priority-Lasso version with cross-validated offsets more
influence tends to be accredited to the blocks with lower priority compared
to when using the version without cross-validated offsets.

3.2.3 Scenario pl2A

As an alternative approach, considered as sensitivity analysis in the present
paper, one may also replace ELN2017 with the 19 variables that are used for
its calculation. Because of the far higher number of variables, we penalize
this block of priority 1. The results of the scenario without cross-validated
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offsets (scenario pl2A) are displayed in the third column of Table 2, showing
that 14 of these 19 variables are selected. While the selected variables from
block 2 are almost the same as in scenario pl1A (except the additional
inclusion of sex), now there are 8 gene expression variables selected from
the block of priority 4. We can see that these gene expression variables are
not necessarily the same as in scenario pl1B.

3.2.4 Scenario pl2B

Analogously to scenarios pl1A and pl1B, scenario pl2B is the same as pl2A,
except that the offsets are calculated with cross-validation. Column 4 of
Table 2 contains the results from this model, showing only small differences
in the block of priority 2, but again large differences in the selected gene
expression markers.

3.3 Quantitative comparison: included variables

For quantitatively assessing the fitted models with respect to the selected
variables, we consider as a reference two standard Lasso models fitted to the
training data using the whole set of variables without taking any block struc-
ture into account. The two models differ in the way ELN2017 is treated. In
the first Lasso model (variant ’Lasso1’) it is considered as the score repre-
sented by two dummy variables. In the second Lasso model it is represented
by the 19 variables which are used for its definition (variant ’Lasso2’). In or-
der to allow for a fair comparison, we again use the ’lambda.min’ procedure
and 10-fold-cross-validation to choose the penalty λ. Moreover, we allow the
selection of a maximum number of variables which is equivalent to the num-
ber of all variables in blocks 1-3 for priority-Lasso plus 10. This corresponds
to the fact that we did not restrict the number of variables of blocks 1-3 for
priority-Lasso, but set the maximum number of gene expression variables to
10. The resulting models (not shown) clearly select more variables than the
models obtained with priority-Lasso. Especially the number of gene expres-
sion variables is much higher (43 for Lasso1 and 52 for Lasso2), whereas only
age for both models and ELN2017 3 for Lasso1 are selected variables from
other types of data. Hence, priority-Lasso favors variables from blocks with
high priority compared to standard Lasso and yields models that include
considerably less variables.

In many settings this feature of priority-Lasso can be seen as a major ad-
vantage over competing approaches. However, priorization of certain blocks
can also be disadvantageous, namely in situations where it leads to a strong
reduction of prediction accuracy — the definition of the term “strong” being
context dependent. In the next section we compare the six approaches and
the raw ELN2017 score with respect to prediction accuracy.
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Block Variable Coef. pl2A Coef. pl2B

1

t(8;21)(q22;q22) -1.0289 -1.0289
inv(16)(p13.1q22) -1.5444 -1.5444
NPM1 mut/FLT3-ITD neg or low -1.0181 -1.0181
biCEBPA -1.2240 -1.2240
NPM1 wt/FLT3-ITD pos or low -0.4358 -0.4358
t(9;11)(p21;q23) 0.4635 0.4635
Other aberrations -0.4376 -0.4376
KMT2A rearrangements -0.5440 -0.5440
Complex karyotype 0.2970 0.2970
Monosomal karyotype 0.0313 0.0313
NPM1 wt/FLT3-ITD pos 0.1712 0.1712
RUNX1 mutations 0.3065 0.3065
ASXL mutations -0.1224 -0.1224
TP53 mutations 0.4306 0.4306

2

Age 0.2957 0.2617
Sex -0.1011
ECOG (> 1) 0.3147 0.3206
WBC 0.0990 0.0589
LDH 0.1681 0.2371
Hb 0.0700 0.0671
PLT -0.0960 -0.0578

4

ZBTB37 0.0047 0.0025
MFI2 0.0090
SH3PXD2B 0.0013 0.0418
PDK3 -0.0187
FAM24B 0.0248
SIK3 -0.0063
OR7A17 0.0039
TBC1D17 -0.0172
PHGDH 0.0488
FAM171B 0.0134
FGD5 0.0359
F12 0.0238
IRX1 -0.0090
FAM92A1 0.0239
DDIT4 0.0769
HSPA2 0.0169

Table 2: Variables selected by priority-Lasso in scenarios pl2A and pl2B.
Column 1: priority of the block the variable is included in. Column 2:
variable name. Column 3 and 4: coefficient of the variable in the Cox Lasso
model. Variables from the block of priority 4 also appearing in Table 1 are
marked in bold.
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3.4 Qualitative comparison: prediction accuracy

In order to compare the different approaches we follow the procedures de-
scribed in Section 2.4 − the results are shown in Table 3. It can be seen that
pl1A and pl1B reach the highest sensitivity among the scenarios (0.672),
whereas especially the raw ELN2017 score is associated with a far lower
value (0.556). In contrast, the specificity is 0.723 for ELN2017, whereas
all other scenarios are associated with a specificity between 0.64 and 0.67.
However, these results represent only one of many possible time points and
cutoffs, so their use is doubtful in our context. The other measures − the
AUC, the C-indices, and the integrated Brier score − do not show great
differences across the scenarios either. Only ELN2017 is an exception with
considerably poorer results. For the AUC, pl1B yields the best result with a
value of 0.731, but scenarios pl2B, Lasso1 and Lasso2 are not far worse. For
CUno, the highest value is 0.664, which is reached by pl2B. The integrated
Brier score is calculated over two different time spans (up to 2 years and up
to 4.4 years, the latter being the time to the last event). After two years,
the priority-Lasso fit with cross-validated offsets is clearly better than the
other models - no matter how ELN2017 is treated. Over the whole time
period, Lasso1 and pl2B give the lowest IBS, followed by Lasso2, indicat-
ing a lower prediction error for the Lasso models in the second half of the
whole time period. This can also be observed in Figure 1. Scenarios pl1B
and pl2B perform best in the first two years but they are outperformed by
Lasso afterwards. As expected, priority-Lasso with cross-validated offsets is
always better than without. All fitted models are associated with a much
lower prediction error than ELN2017 alone. The results from the prediction
error curves do not differ substantially between the two panels of Figure 1,
that is, they are robust with regard to the handling of ELN2017.

The Kaplan-Meier curves for training and validation data are shown
in Figure 2. The discrimination by Lasso is obviously very good in the
training data, but worse in the validation data. Especially the difference
in survival between intermediate and high risk is not very clear. For both
representations of ELN2017, the priority-Lasso models with and without
cross-validated offsets feature a similar discrimination, where, however, the
results obtained using the version with cross-validated offsets are slightly
better. For the scenario with all ELN2017 variables, the priority-Lasso
models give the best results in the validation data among all scenarios.
In contrast, ELN2017 discriminates less well between the three risk groups.
The results concerning Lasso indicate systematic overfitting in the training
data. This is consistent with the results seen in Section 3.3 where Lasso
included much more variables than the other methods. It can also be seen
from the row ’optimism’ of Table 3. The difference of the slopes between
training and validation data is the largest for Lasso models, indicating that
this method is associated with the highest overoptimism.
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Figure 1: Prediction error curves. Left panel: Scenarios with ELN2017 as
categories. Right panel: Scenarios with all ELN variables.

A possible way of quantifying the results seen in Figure 2 is to consider
the hazard ratios across risk groups in the validation set as shown in the
lower half of Table 3. The intermediate group serves as a baseline here.
The result of the likelihood ratio test is significant for all models. The
discrimination between low and intermediate group is worst for the ELN2017
score. As already seen in Figure 2, the discrimination between the low
and intermediate group is better for Lasso than priority-Lasso. In contrast,
priority-Lasso has a higher hazard ratio for the high risk group, in particular
when using all ELN variables.

Finally, we present the Kaplan-Meier curves for calibration in Figure 3.
For all the scenarios there are groups that reveal some miscalibration. For
the Lasso models, especially the high risk groups differ between predicted
and observed validation curves. The scenarios pl2A and pl2B show more
differences between predictions and observations in the low risk groups than
the other scenarios - the same fact applies to pl1A and pl1B in the interme-
diate risk group.
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Figure 2: Kaplan-Meier curves for training and validation data in three risk
groups.

4 Discussion

We introduced priority-Lasso, a simple Lasso-based intuitive procedure for
patient outcome modelling based on blocks of multiple omics data that in-
corporates practical constraints and/or prior knowledge on the relevance of
the blocks. The procedure essentially inherits most properties of Lasso. Its
basic principle is however not limited to Lasso and could be easily adapted
to recently developed variants of penalized regression.

In our illustrative example from leukemia research priority-Lasso was
able to reach better prediction accuracy than Lasso. This applies especially
to the version of priority-Lasso with cross-validated offsets, however, at the
cost of more computation time and more selected variables than without
cross-validated offsets. But even without cross-validated offsets, the models
are not substantially worse than Lasso as far as accuracy is concerned. More-
over, they offer considerable advantages in terms of increased sparsity and
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pl1A pl1B Lasso1 pl2A pl2B Lasso2 ELN2017

TPR 0.672 0.672 0.651 0.640 0.658 0.643 0.556

TNR 0.667 0.658 0.661 0.647 0.664 0.653 0.723

AUC 0.711 0.731 0.726 0.713 0.727 0.725 0.663

CUno 0.653 0.660 0.658 0.658 0.664 0.656 0.619

IBS2 0.175 0.172 0.176 0.175 0.172 0.177 0.181

IBS4.4 0.197 0.192 0.191 0.197 0.191 0.193 0.204

Optimism 0.393 0.289 0.920 0.377 0.243 0.984

CILlower 0.339 0.304 0.247 0.387 0.327 0.177 0.418

HRL 0.536 0.455 0.363 0.605 0.566 0.286 0.669

CILupper 0.849 0.652 0.535 0.946 0.981 0.461 1.074

CIHlower 1.175 1.098 0.948 1.515 1.534 0.974 1.314

HRH 1.751 1.651 1.385 2.208 2.199 1.386 1.954

CIHupper 2.612 2.483 2.022 3.216 3.151 1.972 2.907

p-valueLR 1.11e-08 1.05e-8 2.22e-10 1.07e-08 1.74e-08 4.99e-11 1.36e-07

Table 3: Validation results for the model scenarios with restrictions to the
number of selected variables. L and H in the superscript indicate the low
and the high risk groups, respectively.

composition of the models: they include less variables that are currently not
included in the recommended diagnostic workup at initial diagnosis, which
is an advantage from a practical perspective. Priority-Lasso offers more flex-
ibility than Lasso: it allows the user to define block structures, where for
each block a maximum number of selected variables can be specified.

The obtained models can be seen as compromises between “what the
data tells us” and what is more realistic and easy to implement in clini-
cal routine. Model fit and accuracy thus directly depend on the level of
agreement between the data and practical criteria. As an extreme variant
of priority-Lasso, one could imagine the case of a practitioner fixing the
ordering of the variables completely, which amounts to considering blocks
of size 1 (each variable forms one block). The other extreme consists of
ignoring the block structure and simply fitting a model using Lasso to all
variables. The finer the block structure, the less data-driven is the model
selection. This also influences the maximum possible number of selected
variables in the final model. Since a maximum of n variables can be selected
in a Lasso regression, a selection of n variables is the maximum for every
block in priority-Lasso − hence the maximum possible number of variables
selected by priority-Lasso depends on the number of blocks.

In contrast to Bayesian methods, prior knowledge is taken into account
only through the definition and ordering of blocks. This feature makes the
method less flexible, but also easy to use and interpret for scientists without
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Figure 3: Observed and predicted Kaplan-Meier curves for the validation
data in three risk groups.

strong background in statistics. The user does not have to perform any com-
plicated choices in order to apply the method: The first choice to be made
is whether or not the offset should be cross-validated — the variant without
cross-validation giving more weight to blocks with high priority. Moreover,
the user may decide to leave the block with highest priority unpenalized in
case it satisfies pπ1 < n. By default it is treated like the other blocks of
data and is thus penalized. As for all penalized regression methods, one
can choose the procedure used for optimizing λ (in ’glmnet’: λmin or λ1se),
which amounts to deciding between a more complex model with potentially
slightly better accuracy and a sparser model. The default is λmin, that is,
the λ associated with the minimum cross-validation error in each step. Of
course there are additional parameters like the number of folds in the cross-
validation procedures that could be modified as well, but are not expected
to strongly affect the results.
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