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Abstract

In most surveys, one is confronted with missing or, more generally, coarse data.
Many methods dealing with these data make strong, untestable assumptions, e.g. coars-
ening at random. But due to the potentially resulting severe bias, interest increases in
approaches that only include tenable knowledge about the coarsening process, leading
to imprecise, but credible results. We elaborate such cautious methods for regression
analysis with a coarse categorical dependent variable and precisely observed categor-
ical covariates. Our cautious results from the German panel study “Labour market
and social security” illustrate that traditional methods may even pretend specific signs
of the regression estimates.

Keywords: coarse data, (cumulative) logit model, missing data, partial identification,
PASS data, (profile) likelihood
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1 Introduction: How to respect the (lack of) knowledge
about incompleteness

In almost all surveys the problem of item-nonresponse occurs [e.g. 19, 40]. One of the
principal challenges in the statistical analysis of missing data is the impossibility to test
the associated missingness mechanism without adding strong assumptions [e.g. 20]. De-
spite the awareness of this problem, frequently untestable assumptions on the missingness
process are still included in situations where the validity of these assumptions might ac-
tually be doubtful. Examples are the missing at random assumption [introduced by 34]
or approaches relying on a specific pattern-mixture or selection model [e.g. developed by
12]. In this way, point-identifiability, i.e. uniqueness of parameters, is forced, which is
an important prerequisite for the applicability of traditional statistical methods, as for
instance the EM algorithm or imputation techniques [e.g. 22].
Especially due to the substantial bias induced by wrongly imposing such point-identifying
assumptions, a proper reflection of the available information about the underlying miss-
ingness assumption is indispensable [e.g. 23]. To this end, one departs from insisting on
point-identifying assumptions by turning to strategies that only include the achievable
knowledge, typically ending up in set-valued estimators. In this way, approaches based
on the methodology of partial identification start with no missingness assumptions at all,
but then add successively assumptions compatible with the obtainable knowledge [e.g.
23]. A practical example is given in [1], where the worst-case bounds for the HIV rate
resulting from an approach without any assumptions about the missingness are then re-
fined by exploiting the longitudinal nature of the data. Similarly, sensitivity analyses for
selection models take several different models of missing data processes into account [e.g.
14, 21, 45]. Recently, (author?) [24] gave a new impetus to this topic by stressing the
advantage of reliable, so to say interval-valued point estimates for official statistics with
survey nonresponse.
Against this background, we rely on cautious likelihood-based strategies for incomplete
data [similarly as in 6, 8, 21, 47], and pursue the goal of determining regression estimators
reflecting the available information about the incompleteness in a careful way.1 Motivated
by the two considered examples regarding the income questions from the German panel
study “Labour market and social security” [PASS, 42], the focus is set on the logit model
for binary response data and the cumulative logit model for ordinal response data. In
doing so, we not only restrict to the issue of nonresponse, but also look at the problem
of missingness more generally: Apart from fully observed and fully unobserved values, we
additionally consider partially observed values where subsets of the full sample space are
observed, thus addressing the coarse data problem [e.g. 13]. Consequently, coarse data
contain more information than missing data, wherefore we argue in favor of collecting
coarse data in case of a preceding nonresponse. Throughout, we restrict to cases of coarse
categorical response variables and precisely observed categorical covariates.
Although analysts might be aware of the consequences of traditional approaches mostly
making simplified assumptions such as coarsening at random, they frequently prefer them
to cautious approaches for pragmatic reasons. To face this dilemma, we provide an estima-
tion technique that includes all available information about the coarsening in a very natural
and flexible way. There are already several methods that try to exploit additional infor-

1While in (author?) [32] first considerations have already been presented for the special case of a
multinomial logit model that included all interactions between the covariates, we here investigate general
model specifications.
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mation about the incompleteness, as e.g. knowledge about the number of failed-contact
attempts in (author?) [46] or prior expert beliefs about the differences between responders
and nonresponders in (author?) [19]. But since these approaches are mostly restricted to
either give a precise result or no answer at all, they are incapable to make use of potential
available partial knowledge about the missingness that is not sufficient to point-identify
the parameters of interest [e.g. 39]. Consequently, the users might conceive the explicit
allowance of partially identified parameters as an advantage, since partial knowledge no
longer has to be left out of consideration. In our data example we show how partial in-
formation about the coarsening such as “respondent with a high income rather tend to
give a coarse answer compared to respondents with a low income” can refine the initial
results without coarsening assumptions. Furthermore, we give the opportunity to consider
“coarsening at random” instead of “exact coarsening at random” models improving the
credibility of classical approaches.
The relevance of such a cautious approach, and hence the need of quantifying the un-
derlying uncertainty due to incompleteness, is also apparent from the following latest
practical example: Results on the job-seeking refugees in Germany without school-leaving
qualification were published by the Federal Employment Agency and provoked a heated
debate, mainly reasoned by a different dealing with item-nonresponse. While ignoring
the 24.7% nonresponders leads to the result that 34.3% job-seeking refugees are without
school-leaving qualification and assumes the refusals to be made randomly, the newspaper
“Bild” disseminates an extreme interpretation of the Federal Institute for Vocational Edu-
cation and Training’s (BIBB) conjecture that job-seeking refugees without school-leaving
qualification rather tend to disclose their answer and simply counted all nonresponders to
this group, hence speaking of 59% in this context [cf., e.g., 15, 4]. A clear communication
of the underlying uncertainty would have avoided the discussions and should generally be
part of every trustworthy data analysis. As a reaction to the incident several statistical
agencies pointed to the importance of reflecting about the reasons why the respondents
refused their answers [cf., e.g., 5]. The cautious approach presented in this paper is able to
express the underlying uncertainty attributed to nonresponse and could potentially derive
weak, but tenable knowledge about the coarsening from the main reasons for nonresponse.
In fact, we not only deal with the uncertainty associated to the incompleteness of the data
leading to imprecise results, but also two further kinds of uncertainty: By constructing
confidence intervals, we capture the uncertainty arising from the availability of a finite
sample only. Studying regression models, we additionally address model uncertainty aris-
ing from the parametric assumptions implied by non-saturated regression models. The
interaction between the different kinds of uncertainty will be a further aspect of investi-
gation in this paper.
Our paper is structured as follows: In Section 2 we motivate the collection of coarse data,
introduce the running example based on the PASS data, explain the way we look at the
problem and briefly show the principal idea of the two methods to determine cautious
regression estimates that we present and discuss in this paper. Both methods are firstly
developed in context of a data example with a binary response variable reducing to the
missing data problem in Section 3, where also a way to obtain respective likelihood-based
confidence intervals is given. The synergy of the included parametric assumptions on the
regression model and the observed data strongly determines the type of results, where
three substantially differing cases are elaborated. Afterwards, the applicability of the pre-
vious major developments is discussed in the context of coarse data in the strict sense
in Section 4. In Section 5 we turn to situations where we benefit from weak auxiliary
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information about the coarsening. Section 6 concludes by giving a summary and some
remarks on further research.

2 Coarse categorical data
In most surveys, respondents can choose between several predetermined options to answer.
Nevertheless, providing answers associated to a specific level of accuracy may be considered
as problematic for different reasons: Firstly, respondents might be able to give a more
precise answer, but there is no possibility to express it. Secondly, the other way round,
respondents potentially may at most be able to decide for a set of categories, but not for
the one category they actually belong to, since they are not acquainted enough with the
topic of the question. Thirdly, respondents may deliberately refuse their precise answer
for reasons of data privacy. While the consequence in the first situation is (only) loss of
information, in the second and third situation non-ignorable nonresponse or measurement
errors occur in a classical questionnaire design. All these problems could be attenuated
by asking in different ways allowing the respondent to report in the required level of
accuracy. An example for such an explicit collection of coarse categorical data is given in
the following section by introducing the setting of the running example.

2.1 The running data example
Since the income question is known to be highly affected by nonresponse [e.g. 41], the
German Panel study “Labour market and social security” [PASS study2, 42] intends to
mitigate this problem by using the following questioning technique illustrated in Figure 1:
Respondents refusing to disclose their precise income (in the following called nonrespon-
ders) are asked to answer additional questions starting from providing rather large income
classes (e.g. < 1000 e or not) that are successively narrowed (e.g. < 500 e).3 In this way,
answers with different levels of coarseness are received by simultaneously ensuring the
individual degree of data privacy demanded by the respective respondent. This strategic
questioning technique to increase response rates is sometimes referred to as non-response
follow-up [e.g. 30, where this is distinguished from “follow-up attempts”, i.e. repeated
efforts to contact respondents]. Depending on the research question, various ways to in-
tegrate the answers from the respondents reporting their precise, non-categorical income
are conceivable, where we first point to some general options before we mention how we
proceed here: To include all answers in the most precise level inferable from the data, a
mixture model [e.g. 25] may be used differentiating between nonresponders and respon-
ders. In some situations, as e.g. in the context of poverty measurement, an answer on a
certain ordinal level might be sufficient, hence the precise answers could be classified to the
most precise income categories reported by the nonresponders, allowing a joint analysis.
An alternative might be a joint likelihood approach accounting for responders, nonrespon-
ders and different groups of partial responders by distinct likelihood contributions [cf. 10,
who use an imputation based technique and illustrate their results by the PASS data as
well]. Restricting to the answers of the nonresponders, here we consider the most precise
collectable categorical income as the true income category, ignoring that a (quasi-) contin-
uous variable is underlying. In a second step a mixture model or a comparative analysis

2Here we rely on the data from wave 1 to 4
3For ease of presentation, we here restrict to the granularity of categories given in Figure 1. In fact,

the PASS data partly provide even finer categories.
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Figure 1: In the PASS study for nonresponders the income questions are individually
adjusted, providing for instance categories abbreviated by “< 500 e”, “< 750 e” (actually
meaning < 750 e and ≥ 500 e) and “≥ 750 e” (≥ 750 e and < 1000 e) to original
nonresponders who already reported to be in class < 1000 e in an earlier question. The
notation in brackets refers to Example 2, introduced later on, where the cardinality of
the sets gives some indication about the level of accuracy.

to the responders could follow.
Our main goal will be the investigation of some covariates’ impact on a true categorical
response variable partly observed in a coarse way. In the example, the true categorical
income is used as a response variable distinguishing the following two settings, referred to
as “Example 1” and “Example 2” later on:

Example 1: Binary response variable
Here we restrict the available income data to the answers obtained from the first question.
Thus, categories “< 1000 e”, “≥ 1000 e” and “no answer” (i.e. coarse answer “either
< 1000 e or ≥ 1000 e”) are observed, reducing the coarsening probem to the missing
data problem. When we consider Example 1, the categories are abbreviated by “<”,
“≥” and “na” in the following.
Example 2: Ordinal response variable
Here we account for the whole ordinal structure inherent in the data, and the observed
income variable includes different levels of coarseness. In the context of Example 2, the
abbreviations given in brackets in Figure 1, i.e. categories “{a}” to “{a,b,c,d,e,f,g}”, are
utilized, where the latter one is interpreted as “either a or b or . . . or g”.

In this way, we constructed one data situation with a binary and one with an ordinal true
response variable (with values “< 1000 e” and “≥ 1000 e” and values “{a}” to “{g}”,
respectively) in order to exemplify the results obtained by the two considered models. In
Section 3, we use Example 1 to illustrate the respective proposals, while in Section 4 the
applicability of the previous ideas for coarse data, not reducing to the missing data case,
is studied by referring to Example 2.
We use the highest school leaving certificate (first covariate) and age (second covariate)
as covariates. Both variables are dichotomized, thus showing values “Abitur no (0)” and
“Abitur yes (1)”4 as well as “< 40 (0)” and “≥ 40 (1)”, respectively. Since the categorical
income questions are only directed to respondents refusing to disclose their precise income,

4The “Abitur” is the general qualification for university entrance in Germany.

5



Table 1: Contingency table for the data of Example 1 (Binary response variable).
Observed income class

Abitur age < ≥ na
no (0) < 40 (0) 97 63 102

≥ 40 (1) 69 115 131
yes (1) < 40 (0) 33 50 41

≥ 40 (1) 38 79 59

Observed income class
Abitur age {a} {b} {c} {a,b,c} {d} {e} {d,e} {f} {g} {d–g} {f,g} {a–g}
no (0) < 40 (0) 50 17 18 12 22 11 * 9 * 9 * 102

≥ 40 (1) 24 18 21 6 23 18 6 16 9 33 10 131
yes (1) < 40 (0) 21 * * * 10 7 5 7 8 9 4 41

≥ 40 (1) 20 9 * * * 9 * 14 20 17 10 59

a group expected to be small in a study concerning the labour market, the number of in-
dividuals included in our analysis is comparably small. The contingency tables in Table 1
and Table ?? summarize the considered unweighted data including information of 877
individuals. To comply with our data access contract and the non-disclosure regulations
of the Federal Employment Agency [cf. 3], we have to prohibit any back-calculations and
delete all frequencies that are ≤ 3, here marking them by “*”. In each line of Table ?? the
sums of the frequencies referring to the categories {a}, {b}, {c} and {a, b, c} (group 1) as
well as to {d}, {e}, {d, e}, {f}, {g}, {d − g} and {f, g} (group 2) can be inferred from
Table 1. For that reason, we additionally hide the next smallest entry in each group show-
ing deleted entries; to increase possibilities of potential replacements, one further entry is
marked by “*”, whenever the sum of the frequencies in the deleted entries is smaller than
seven. All frequencies are > 0 (cf. assumptions in Section 2.2).

2.2 The general view of the problem
To frame the problem of coarse data technically, we distinguish between an observed and
a latent world.
Let (x11, . . . , x1p, y1), . . . , (xn1, . . . , xnp, yn) be a sample of n independent realizations
of categorical random variables (X1, . . . , Xp, Y ). Unfavorably, some values yi are not
known precisely, hence the random variable Y refers to the latent world. Instead, we only
observe a sample (x11, . . . , x1p, y1), . . . , (xn1, . . . , xnp, yn) of n independent realizations
of (X1, . . . , Xp, Y), where the random set Y [e.g. 28] belongs to the observed world. We
lay a special focus on the variable Y with sample space ΩY and the random set Y with
sample space ΩY ⊂ P(ΩY ), where we assume the empty set to be generally excluded, but
all precise categories {y} to be included. Since we aim for a regression analysis here, we
are interested in the estimation of the probabilities πxy = P (Y = y|X = x), y ∈ ΩY , given
the – assumed to be – precise values x = (x1, . . . , xp)T ∈ ΩX of categorical covariates
X1, . . . , Xp. The associated dependence on the covariates is described by an appropriate
response function, πxy = h(ηxy), with linear predictor ηxy = β0y + d(x)Tβy, where d fills
the role of transferring the covariates into appropriate dummy-coded ones [cf., e.g. 11,
p. 31]. Our main goal will be a cautious estimation of the regression coefficients β0y and
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βy that only includes the available information about the coarsening process.
By means of the law of total probability that includes coarsening parameters qy|xy =
P (Y = y|X = x, Y = y) with x ∈ ΩX , y ∈ ΩY and y ∈ ΩY (cf. Section 3.1.1), we
formalize the connection between both worlds, i.e. the latent world with parameters πxy,
y ∈ ΩY , x ∈ ΩX and the observed world with parameters pxy = P (Y = y|X = x), y ∈ ΩY ,
x ∈ ΩX . Apart from requiring error-freeness in the sense that the true value is contained
in the coarse value, y 3 y, and distinct parameters [cf. 34], we mainly refrain from making
assumptions about the coarsening, only discussing in Section 5 how frequently available
weak knowledge about the coarsening can be included in a powerful way. Considering the
contingency table framework, nxy and nx represent the counts within the respective cells.

2.3 Two ways of approaching the problem
In this paper, we discuss two procedures to determine cautious maximum likelihood esti-
mators for the regression coefficients:

• Two-step method: We firstly estimate the bounds of the latent variable distribu-
tion πxy = P (Y = y|X = x), y ∈ ΩY , x ∈ Ωx, from which the cautious regression
estimates are determined in a second step.

• Direct method: We rely on the (relative) profile log-likelihood for the regression
coefficients of interest, where the set of maxima gives the cautious regression esti-
mates.

Being interested in maximum likelihood estimators of the regression coefficients, maxi-
mizing the corresponding (profile log-) likelihood, i.e. the direct method, represents the
natural procedure, which is always applicable. In specific situations – which we will char-
acterize here – a two-step method will turn out as a useful alternative. Additionally, the
way through the estimation of the latent variable distribution shows to be beneficial when
we study how the parametric assumption on the regression model affects the estimated
coarsening parameters, since we can implicitly control for the compatibility with the ob-
served data. Nevertheless, it is important to point out that there are situations where
only the direct method is worthwhile and hence the two methods cannot be regarded as
at the same level.
Both ways aim at the cautious maximum likelihood estimators for each component of the
vector of regression coefficients. Consequently, we gain an impression about the magni-
tude of each effect when no assumptions about the coarsening are imposed, but we cannot
directly infer which one-dimensional regression estimates are combinable to achieve the
maximum of the likelihood.

3 Cautious estimation of regression coefficients
An important contribution of this paper consists of elaborating how the presence of para-
metric assumptions on the regression model – in the sense that at least one effect or
interaction of the saturated model is set equal to zero – can affect the assumptions about
the coarsening process. By comparing the results from a two-step method (cf. Section 2.3)
for the case with and without any parametric assumptions on the regression model, in-
teresting insights with regard to this point can be gained. For that reason, we firstly
devote ourselves to the case of a saturated model that includes all interactions between
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the covariates (cf. Section 3.1) and account for the uncertainty induced by parametric
assumptions on the regression model only afterwards (cf. Section 3.2).
If a saturated model is chosen, a two-step method appears to be quite natural and hence
we will restrict to this way here: Since there is no reduction of the parameter space and
the latent variable distribution basically represents the same information as the regression
estimators, we can determine the cautious regression estimators (cf. Section 3.1.2; also
cf. 32, where the multinomial logit model is used in this context) by simply transforming
the bounds of the latent variable distribution obtained in a first step (cf. Section 3.1.1).
Things become substantially different in the presence of parametric assumptions on the
regression model, i.e. if a non-saturated model is specified. Now, due to the reduction of
the parameter space a transformation as in the saturated model is no longer valid and
the direct approach (cf. Section 2.3) is becoming more important. Nevertheless, basing
considerations on a two-step method in some cases still may be useful and we formulate
a constraint optimization problem that incorporates the bounds of the latent variable
distribution (cf. Section 3.1.1).

3.1 The saturated model
3.1.1 Maximum likelihood estimation for the latent variable distribution

In order to estimate the latent variable distribution, we basically split the argumentation
by completing three steps [32]: Firstly, we use the random set perspective interpreting all
elements in ΩY as categories of their own. Thus, in contrast to the situation in the la-
tent world, knowledge about the “precise” values in the observed world is available, which
allows to determine the maximum likelihood estimator (MLE) for the observed variable
distribution pxy, x ∈ ΩX , y ∈ ΩY based on the n = ∑

x∈ΩX
nx observations. Since for

fixed covariate values x ∈ ΩX , the cell counts (nxy)y∈ΩY are multinomially distributed,
the MLE for the observed variable distribution is uniquely obtained by the respective con-
ditional relative frequency, i.e. p̂xy = nxy

nx
, x ∈ ΩX , y ∈ ΩY , assuming that nx > 0.

Secondly, the information from the observation model relating the latent to the observed
world is included. For this purpose, a mapping Φ : γ 7→ ϑ, with γ = (πxy, qy|xy)x∈ΩX ,y∈ΩY ,y∈ΩY

and ϑ = (pxy)x∈ΩX ,y∈ΩY , is defined. This mapping describes the transfer between the
parametrization in terms of the components of γ and the ones of ϑ by using the theorem
of total probability. Consequently, the prescription of the reparametrization is given by

pxy =
∑

y∈y
πxy · qy|xy , (1)

for all x ∈ ΩX , y ∈ ΩY . Since we already calculated the MLE of ϑ and may express it
as a function of the parameter of interest γ, i.e. ϑ = Φ(γ), by virtue of the invariance of
the likelihood we can thirdly determine the MLE of γ as the inverse image of ϑ̂ under
the function Φ. Since the mapping Φ is generally not injective, there are several γ̂, all
leading to the same maximum value of the log-likelihood. Thus, we obtain the set-valued
estimator

Γ̂ = {γ̂ | Φ(γ̂) = ϑ̂} (2)

by replacing the left hand side of (1) by the MLEs p̂xy of the observed world, already
calculated in the first step, and the right hand side by the empirical analogues of the
respective parameters.
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Table 2: Estimation of the parameters of the latent world (Example 1).
π̂x< q̂na|x< q̂na|x≥
π̂00< ∈ [0.37, 0.76] q̂na|00< ∈ [0, 0.51] q̂na|00≥ ∈ [0, 0.62]
π̂01< ∈ [0.22, 0.63] q̂na|01< ∈ [0, 0.66] q̂na|01≥ ∈ [0, 0.53]
π̂10< ∈ [0.27, 0.60] q̂na|10< ∈ [0, 0.55] q̂na|10≥ ∈ [0, 0.49]
π̂11< ∈ [0.22, 0.55] q̂na|11< ∈ [0, 0.61] q̂na|11≥ ∈ [0, 0.43]

Throughout the paper, instead of giving the set-valued estimator Γ̂ in (2) itself, we il-
lustrate it by building its one-dimensional projections. Thus, estimators for the single
components of γ are obtained, here represented as

π̂xy∈
[
nx{y}
nx

,

∑
y3y nxy

nx

]
, q̂y|xy∈

[
0, nxy
nx{y} + nxy

]
, (3)

for all x ∈ ΩX , y ∈ ΩY and all y ∈ ΩY such that {y} ( y, with nx > 0 and 0
0 := 1. It is

important to keep in mind that points in these intervals are constrained by the restrictions
in (1). The result in (3) can be shown to correspond to the one obtained from cautious
data completion, plugging in all potential precise sample outcomes compatible with the
observations [cf. 2, §7.8].
For sake of illustration, we apply this approach to Example 1, where four subgroups
result from splitting by the different values of the two covariates, hence we consider x ∈
ΩX = {“00”, “01”, “10”, “11”} interpreted as “age=0, Abitur=0”, “Abitur=0, age=1”,
“Abitur=1, age=0” and “Abitur=1, age=1”, respectively. Using Table 1 and referring to
the data of the first subgroup, one uniquely obtains

p̂00< = n00<
n00

= 97
262 , p̂00≥ = n00≥

n00
= 63

262 and p̂00na = n00na
n00

= 102
262 ,

with n00 = n00< + n00≥+ n00na. There are indeed multiple γ̂, i.e. estimated combinations
of coarsening parameters and latent variable distributions, that are compatible with the
restriction in (1) and thus lead to this estimated observed variable distribution. Different
scenarios for the estimation of π00< are conceivable ranging from attributing all coarse
categories “na” to “≥” to including them all in category “<”,5 thus obtaining (cf. (3))

π̂00< ∈ [π̂00<, π̂00<] with π̂00< = 97
262 ≈ 0.37 and π̂00< = 97 + 102

262 ≈ 0.76 .

The resulting estimators (i.e. the one-dimensional projections of Γ̂) in Example 1 are
shown in Table 2.

[47] presented an approach based on the profile likelihood to describe statistical evidence
with missing data without imposing untestable assumptions, hence allowing for an alter-
native way to achieve the results in (3). Compared to the global log-likelihood l(·) in
dependence of all parameters, the profile log-likelihood is a function of the parameter of
interest only and arises from the global log-likelihood by considering all other parameters
as nuisance parameters [cf., e.g. 31, p. 80]. In our case, a specific parameter πxy or qy|xy,
x ∈ ΩX , y ∈ ΩY , y ∈ ΩY might be of interest and the profile log-likelihood follows as

l(πxy) = max
ξ
l(πxy, ξ) or l(qy|xy) = max

ξ
l(qy|xy, ξ) (4)
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Figure 2: Referring to the the data of Example 1, the (relative) profile log-likelihood
function for every parameter in γ is depicted.

with nuisance parameters ξ corresponding to γ without πxy and qy|xy, respectively. Thus,
we can graphically represent the profile log-likelihood by varying the values of the pa-
rameter of interest on a grid and evaluating the log-likelihood at each fixed value for the
parameter of interest and the nuisance parameters maximizing the log-likelihood in this
case. Figure 2 shows the (relative) profile log-likelihood for Example 1, obtained by shift-
ing the profile log-likelihood by the maximum value of the log-likelihood function along
the y-axis. The range of the plateau characterizes the maximum likelihood estimator for
the parameter of interest and hence is in accordance with the results in Table 2. The
explicit formula for the profile log-likelihood for πxy is given in [6].

3.1.2 Maximum likelihood estimators for the regression coefficients

Whenever a saturated model is used, the reparametrization in terms of the regression
coefficients means no reduction of the dimension and the link function g(πxy) is bijective.
Since it is also continuous, [cf., e.g. 11, p. 304], the bounds of the estimated regression
coefficients can be calculated as a direct transformation of the bounds of the latent variable
distribution (cf. Section 3.1.1).
To illustrate the procedure, we refer to the data situation of Example 1, where the logit
model with the response function

πx< = P (Y = “ < ” |x) = exp(β0 + d(x)Tβ)
1 + exp(β0 + d(x)Tβ) (5)

for the category of interest, here “<”, and

πx≥ = 1
1 + exp(β0 + d(x)Tβ) , (6)

for the reference category, here “≥”, is appropriate. Equivalently, the logit model can be
described by the link function

g(πx<) = ln
( πx<

1− πx<

)
= β0 + d(x)Tβ . (7)

5This is technically related to the Dempster-Shafer Theory [cf. 36].
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Table 3: Regression estimates obtained without parametric assumptions (Example 1).
interactions: β̂12 ∈ [−2.76, 3.64] (cautious estimation), β̂12 = 0.63 (traditional)
cautious estimation β̂0 ∈ [−0.53, 1.15] β̂1 ∈ [−2.16, 0.92] β̂2 ∈ [−2.42, 1.08]
traditional procedure β̂0 = 0.43 β̂1 = −0.85 β̂2 = −0.94

Considering a saturated model, we specify the linear predictor as β0+β1 ·Abitur+β2 ·age+
β12 · age*Abitur. The bounds of the four regression coefficients are then determined by
transforming the bounds of the four estimators π̂00<, π̂01<, π̂10< and π̂11<, hence obtaining

β̂0 ∈
[

ln
( π̂00<

1− π̂00<

)
, ln

( π̂00<
1− π̂00<

)]
, (8)

β̂1 ∈
[

ln
( π̂10<

1− π̂10<

)
− β̂0, ln

( π̂10<
1− π̂10<

)
− β̂0

]

β̂2 ∈
[

ln
( π̂01<

1− π̂01<

)
− β̂0, ln

( π̂01<
1− π̂01<

)
− β̂0

]
,

β̂12 ∈
[

ln
( π̂11<

1− π̂11<

)
− β̂1 − β̂2 − β̂0, ln

( π̂11<
1− π̂11<

)
− β̂1 − β̂2 − β̂0

]
.

For Example 1 the cautious regression estimates are given in Table 3, where they can also
be compared to the results from a traditional procedure6 assuming uninformative coars-
ening (in the sense of coarsening at random; more details follow in Section 5). Although
the estimates from the traditional procedure are generally included in the result from
the cautious estimation, they do not express the lack of knowledge about the coarsening
mechanism, also pretending specific signs.

3.2 The non-saturated model
We now study non-saturated regression models, where parametric assumptions are in-
cluded in the regression model in the sense that certain interactions are set equal to zero.
In this way, the number of parameters that have to be estimated is reduced and the regres-
sion coefficients are generally no longer able to reproduce the latent variable distribution.
We focus on the setting with the binary response variable of Example 1, thus choosing
the response function in (5) and (6) and link function in (7) again, but now the vector
of regression coefficients does not contain any interactions, i.e. β12 = 0. In Section 4, we
discuss to which extent the obtained results can be transferred to coarse data, not reducing
to the missing data problem.
In this here considered setting, we now present both methods to determine cautious re-
gression estimators, which were already briefly announced in Section 2.3: At first, we
turn to the two-step method, which allows for a direct comparison to the procedure and
results of the saturated model, and hence we can investigate the impact of the parametric
assumption on the regression model. Furthermore, this way gives a first insight into the
type of possible situations that have to be distinguished, also including cases where the
two-step method is unrewarding. For that reason, we subsequently also present the direct
method. The general roles and advantages of the two methods are only then discussed in
Section 4.

6First of all, we calculated the estimated latent variable distribution under coarsening at random [cf.,
e.g. 33, Equation (10)] and then transformed it via (8).
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Due to the inclusion of parametric assumptions on the regression model, we can no longer
rely on a bijective link function, justifying the direct transformation of the bounds of the
latent variable distribution (cf. (8)). Nevertheless, a two-step procedure can still be use-
ful, firstly estimating the latent variable distribution (cf. Section 3.1.1), thus applying (3)
to e.g. obtain π̂00< and π̂00<, and secondly trying to minimize/maximize the regression
parameters under the condition that this estimated latent variable distribution (cf. Sec-
tion 3.1.1) can be produced. This leads us to the following optimization problem, here
referring to πx< = h(β0 +β1 ·Abitur+β2 · age) of Example 1 with the response function
in (5) and (6) and presented for the determination of the bounds of the effect of Abitur,
i.e. β1 and β1:

β1 → min/max given (9)

π̂00< ≤
exp(β0)

1 + exp(β0) ≤ π̂00<, π̂10< ≤
exp(β0 + β1)

1 + exp(β0 + β1) ≤ π̂10<,

π̂01< ≤
exp(β0 + β2)

1 + exp(β0 + β2) ≤ π̂01<, π̂11< ≤
exp(β0 + β1 + β2)

1 + exp(β0 + β1 + β2) ≤ π̂11< .

In fact, in more general cases it is not sufficient to include inequalities for the bounds
of the estimated latent variable distribution only. This and related consequences will be
discussed in Section 4. By using the link function in (7), this optimization problem can
be transformed into one with linear constraints:

β1 → min/max given (10)

ln
( π̂00<

1− π̂00<

)
≤ β0 ≤ ln

( π̂00<
1− π̂00<

)
, ln

( π̂10<
1− π̂10<

)
≤ β0 + β1 ≤ ln

( π̂10<
1− π̂10<

)
,

ln
( π̂01<

1− π̂01<

)
≤ β0 + β2 ≤ ln

( π̂01<
1− π̂01<

)
, ln

( π̂11<
1− π̂11<

)
≤ β0 + β1 + β2 ≤ ln

( π̂11<
1− π̂11<

)
.

Considering optimization problems as in (9) or (10) with the objective function chosen
as the respective regression coefficient of interest, the following types of results have to
be distinguished, where π̂xy and π̂xy represent the estimated bounds obtained without
parametric assumptions on the regression model (cf. Section 3.1.1), while π̂∗xy and π̂

∗
xy

denote the bounds achievable under the parametric assumptions7:
1. There is a solution.

(a) Regression estimators are obtainable that are able to produce the estimated
bounds of the latent variable distribution calculated without parametric as-
sumptions (i.e. π̂∗xy ∈ [π̂xy, π̂xy]).

(b) The resulting regression estimators can only represent tighter bounds of the
estimated latent variable distribution (i.e. π̂∗xy ∈ [π̂∗xy, π̂

∗
xy] with π̂∗xy > π̂xy

and/or π̂∗xy < π̂xy), hence the inequalities are not satisfied with equality.

2. There is no solution.8

7For instance, the bounds π̂∗10< and π̂
∗
10< are determined by choosing β0 + β1 as objective function

in the optimization problem (10). Generally, we use the superscript “∗” only when we explicitly want
to distinguish the respective parameter/estimator from the one without parametric assumptions on the
regression model.

8In general, corresponding optimization problems are not solvable in the precise case either: Here,
the parametric assumption on the regression model is too strong and hence prevents that the estimated
response probability can be reproduced by means of the regression estimators.
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Table 4: Regression estimates with parametric assumptions (Example 1).
cautious estimation β̂0 ∈ [−0.53, 1.15] β̂1 ∈ [−1.84, 0.92] β̂2 ∈ [−1.68, 1.08]
traditional procedure β̂0 = 0.35 β̂1 = 0.05 β̂2 = 0.00

By rearranging the system of inequalities in (10), we can derive the following necessary
and sufficient condition for the existence of a solution of the linear optimization problem
(situation 1):

ln
( π̂11<

1− π̂11<

)
+ ln

( π̂00<
1− π̂00<

)
≤ ln

( π̂10<
1− π̂10<

)
+ ln

( π̂01<
1− π̂01<

)
(11)

ln
( π̂10<

1− π̂10<

)
+ ln

( π̂01<
1− π̂01<

)
≤ ln

( π̂11<
1− π̂11<

)
+ ln

( π̂00<
1− π̂00<

)

It turns out that Example 1 is classified to situation 1, and more specifically to 1(a); the
corresponding results for cautious regression estimates are given in Table 4. Again, we can
conclude that results from a traditional procedure (assuming coarsening at random) have
to be treated with caution: While this approach would suggest no effect of age, avoiding
specific coarsening assumptions could also indicate a negative or positive effect. Compar-
ing the results with the ones from Table 3 gives some indication about the impact of the
parametric assumption on the regression model.
In the saturated model, the regression estimators are obtainable by a simple transforma-
tion (cf. Section 3.1), hence they reveal the same information as the estimated parameters
determining the latent variable distribution. This is not the case in the non-saturated
model, where further restrictions are included induced by the loss of flexibility from the
lack of several interactions. Consequently, under parametric assumptions on the regression
model tighter bounds for the regression estimators may result, but they are never wider.
In this way, there is a synergy of the uncertainty associated to the coarse data problem
and the one due to the parametric assumption on the regression model, which we study
next for situation 1 by comparing the estimation of the coarsening parameter from the
saturated model to the one from the non-saturated model.
For this purpose, we can exploit the relation between the parameters of the observed
and the latent world expressed by (1). When the optimization problem in (10) is solv-
able (i.e. in situation 1), then the estimators of the latent variable distribution fit to the
data in the sense that the estimators for the parameters of the observed world, i.e. p̂xy,
x ∈ ΩX , y ∈ ΩY , are unaffected by the parametric assumptions and are still calculated
by the (conditional) relative frequency (cf. Section 3.1.1). Since in situation 1(a) also the
estimated bounds of the latent variable distribution coincide with the ones obtained with-
out parametric assumptions, the estimated bounds of the coarsening parameters remain
unchanged by the parametric assumption as well. Thus, for Example 1, q̂y|xy and q̂y|xy
can still be inferred from Table 2, even if parametric assumptions are included. In situa-
tion 1(b), by applying the relation in (1) for the binary case and solving for the coarsening
parameters the following estimated bounds are achievable:

q̂na|x< ∈
[
1− p̂x<

π̂∗x<
,
π̂
∗
x< − p̂x<

π̂
∗
x<

]
and q̂na|x≥ ∈

[
1− p̂x≥

π̂∗x≥
,
π̂
∗
x≥ − p̂x≥
π̂
∗
x≥

]
, (12)

with 0
0 := 1. Whenever π̂∗x< = π̂x<, then π̂∗x< = p̂x< is valid, such that the lower bound

of q̂na|x< stays zero and is thus not refined (while analogous conclusions can be made for
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Figure 3: We restrict ourselves to data situations 1(b): In some cases the parametric
assumption on the regression model induces a noticeable reduction of the coarsening in-
tervals, while in others that are close to situation 1(a) the refinement is hardly recognizable.

the lower bound of q̂na|x≥). Due to π̂∗xy ≥ π̂xy and/or π̂∗xy ≤ π̂xy, the bounds in (12) are
generally not wider than those received without parametric assumptions. This is in line
with the tenor in [17], who holds the view that model selection and the “disambiguation”
of the incomplete data should go “hand in hand” in the sense that precise values that are
consistent with the observation, but appear to be implausible under the model assump-
tion, should no longer be under consideration. However, on the other hand from taking
the model assumptions seriously several difficulties may occur, as the problem of possible
ill-conditioning of the obtained set-valued estimators under such strong parametric as-
sumptions, shortly discussed for the case of linear regression in (author?) [35, Section 6.1
and Appendix A therein].
We further investigate how the parametric assumption on the regression model may af-
fect the estimated coarsening parameters in situation 1(b) by simulating different data
situations, arising from assuming the same marginal distribution for the covariates as in
Example 1 and then varying the parameters of the observed variable distribution on a
grid of values. Figure 3 shows the development of the intervals for the estimated coars-
ening q̂na|x< under the parametric assumption for those datasets that are classified into
situation 1(b). As a by-product of this simulation study, we gain a first insight about
the frequency of the different situations: From the 100 data sets we considered, 35 were
classified into situation 1(a), 44 into situation 1(b) and 21 into situation 2. This already
indicates that the number of cases where the optimization problem is not solvable is not
negligible, which leads us to continue with investigating the direct approach next.

We consider the (relative) profile log-likelihood again, now not in dependence of a spe-
cific πxy (cf. (4)), but of the regression coefficient of interest. The global log-likelihood
l(β0, β1, β2, qna|00<, qna|00≥, . . . , qna|11≥) is obtained from the one depending on the pa-
rameters determining the latent variable distribution and the coarsening parameters by
replacing all parameters πxy by the chosen response function. The profile log-likelihood
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Figure 4: The left-hand part refers to the data situation of Example 1 classified into Sit-
uation 1(a). An arbitrary data situation where the condition is not satisfied is underlying
the right-hand part.

function of e.g. β1 is then given by

l(β1) = max
ξ
l(β1, ξ) , (13)

taking β0, β2, and all coarsening parameters as nuisance parameters ξ.
Figure 4 gives the (relative) profile log-likelihood for two data situations, one corresponds
to the one in Example 1 and is thus in accordance with the condition in (11), while
the other is not (n00< = 60, n00≥ = 10, n00na = 10, n10< = 30, n10≥ = 40, n10na =
5, n01< = 20, n01≥ = 50, n01na = 2, n11< = 40, n11≥ = 10, n11na = 5). The ranges of the
plateaus within the left plot corroborate the respective intervals for the regression esti-
mators presented in Table 4.9 It appears that precise maximum likelihood estimators are
obtained, when the condition is not satisfied, while otherwise imprecision is still inherent
(cf. Figure 3).
This systematic difference with regard to the nature of the result (imprecise versus precise
results in situation 1 and 2, respectively) represents a particularity ascribable to the inter-
action of the parametric assumption on the regression model and the coarse data problem:
While the parametric assumption on the regression model generally brings us into situ-
ation 2, whenever all data are precisely observed, the availability of coarse data and the
associated flexibility due to the variety of possible underlying precise data scenarios can
allow to “repair” the incompatibility with the observed data. This gives us the opportu-
nity not only to assess whether the observed data fit to the model assumptions, but also to
actively decide about the inclusion of additional coarsening or model assumptions, when
the solvability of the optimization problem represents our claim.

3.3 Likelihood-based confidence intervals
Taking the cautious analysis seriously, the recognition of the sampling error induced by
the absence of an infinite sample is crucial. There have already been several proposals to

9This is invisible to the naked eye, but the results from numerical optimization are quite exact.
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Figure 5: While the δ-cut is symbolized by the solid line, the black dashed lines mark the
bounds of the confidence interval, here with α = 0.1. The extent of the sampling uncer-
tainty is visible by comparing these bounds with the bounds of the maximum-likelihood
estimator characterized by the gray lines.

Table 5: Likelihood-based confidence intervals for the regression coefficients (Example 1).
for β0 : [−0.75, 1.40] for β1 : [−2.20, 1.29] for β2 : [−2.11, 1.35]

attach value to both sources of uncertainty and confidence intervals for the latent variable
distribution have been constructed [also cf. 18, 16, 37, 43]. To give confidence intervals for
the regression parameters, we can tie on one of the here presented methods and either rely
on a two-step method by reparametrizing the confidence intervals for the latent variable
distribution via the relation formalized by the link function or base our considerations on
the profile-log likelihood, where we here decide for the second option. These likelihood-
based confidence intervals are appealing due to their (compared to Wald intervals) better
performance in case of a small sample size [cf. e.g. 27].
Generally, likelihood-based confidence intervals are constructed by cutting the (relative)
profile (log-)likelihood function at level δ with δ = (−0.5χ2

1,1−α) [cf., e.g. 44]. The confi-
dence interval is then specified by regarding all parameters of interest whose value of the
profile likelihood is larger than the value of δ. Likelihood-based confidence intervals in
the presence of coarse data are already studied for πxy, x ∈ ΩX , y ∈ ΩY , relying on the
profile likelihood presented in Section 3.1 [cf. 6, 47]. By referring to the (relative) pro-
file (log-)likelihood for the regression coefficients, we can analogously proceed and define
asymptotic (1− α) confidence intervals by using these δ-cuts.
In Figure 5, we exemplify the construction of likelihood-based confidence intervals for the
Abitur effect β1 by using the data in Example 1. The result with regard to the other
coefficients can be inferred from Table 5. By comparing these intervals with the ones in
Table 4 an impression about the magnitude of the sampling uncertainty can be gained.
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4 Studying the data application with coarse data in the
strict sense (Example 2)

Since we up to now focused on a setting reducing to the missing data situation, a discussion
from a more general viewpoint and an illustrative study of a situation with coarse data
as present in Example 2 is of interest. In the saturated model, the cautious regression
estimators can generally be determined by a two-step procedure that gives us the cautious
regression estimators by transforming the bounds of the latent variable distributions in a
direct and easy way. In the non-saturated model, the preferable method (cf. Section 2.3)
is not that clear. Thus, we now address the advantages and limitations of both ways,
throughout turning to a non-saturated model.
To account for the ordinal structure of the response variable in Example 2, we base our
analysis on the cumulative logit model [cf., e.g. 11, p. 334–337]. This model is based on
the notion that the ordinal response categories are received due to the impossibility to
collect the values of a latent continuous variable Ỹ , thus introducing a second layer of
latency. For this variable a regression model Ỹ = −d(x)Tβ + ε with ε ∼ F is assumed,
where F is the logistic distribution function. The connection to our categorical variable
of interest Y is given by Y = y(l) ⇐⇒ β0y(l−1) < Ỹ ≤ β0y(l) , l = 1, . . . ,m, where y(l) is
the lth category within the ordered categories y(1), . . . , y(l), . . . , y(m), and −∞ = β0y(0) <
β0y(1) < · · · < β0y(m) =∞. In this way, the intercepts are increasing with the order of the
respective category. While the intercepts are category-specific, the regression coefficients
β are not in this model, also referred to as proportional-odds assumption. The ordinal
structure is included by basing the analysis on the cumulative probabilities describing the
distribution function F (·), hence considering the response function

P (Y ≤ y(l) |x) = F (β0y(l) + d(x)Tβ), with (14)

F (β0y(l) + d(x)Tβ) =
exp(β0y(l) + d(x)Tβ)

1 + exp(β0y(l) + d(x)Tβ) , and with

πxy(l) = P (Y = y(l) |x) = F (β0y(l) + d(x)Tβ)− F (β0y(l−1) + d(x)Tβ), l = 1, . . . ,m,

[cf., e.g. 11, p. 335].
In the context of Example 1 we already noticed that the proposed two-step method is
unrewarding, whenever we are in situation 2. Now, we will additionally find that even
when we are in situation 1, this procedure not necessarily simplifies the calculation as
it did in Example 1. For given values of the covariates x ∈ ΩX , the optimization
problem considered in connection with Example 1 only included estimated bounds for
one parameter, i.e. only for πx<. Since a given π̂x<, x ∈ ΩX , refers to a specific precise
scenario uniquely determining the compatible coarsening estimators q̂na|x< and q̂na|x<, in
situation 1 we can be sure that the cautious regression estimators obtained by the two-step
method (cf. (9) and (10)) indeed maximize the respective profile log-likelihood. To fully
determine the distribution in generalized probability theory, it is not sufficient to have
the probability assessments on each elementary event only, but knowledge for all subsets
is needed [cf., e.g., 36]. Thus, relying on the cumulative logit model, we have to include
inequalities for each subset Q of ΩY , where the lower and upper bounds (of the confidence
in Q in a given group x ∈ ΩX) can (again) be calculated by the estimated belief and
plausibility of Q, respectively. 10 While the theory behind is out of the scope of this

10In this way, we calculate the estimated belief of a specific Q, by including all respondents that report
categories in P(ΩY ) that support Q for sure and hence are fully contained within Q, while the estimated
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Figure 6: Relying on the data in Table ??, for all regression coefficients the respective
profile-likelihood is shown.

paper, a quick look at Example 2, where this leads to 27 · 4 · 2 + 5 = 1029 inequalities11,
already clarifies that a way through the optimization problem may no longer simplify
the calculation.12 Additionally, it is not possible anymore to transform the obtained
constraints, such as

π̂00c ≤
exp(β0c)

1 + exp(β0c)
− exp(β0b)

1 + exp(β0b)
− exp(β0a)

1 + exp(β0a)
≤ π̂00c

π̂10c ≤
exp(β0c + β1)

1 + exp(β0c + β1) −
exp(β0b + β1)

1 + exp(β0b + β1) −
exp(β0a + β1)

1 + exp(β0a + β1) ≤ π̂10c

π̂01c ≤
exp(β0c + β2)

1 + exp(β0c + β2) −
exp(β0b + β2)

1 + exp(β0b + β2) −
exp(β0a + β2)

1 + exp(β0a + β2) ≤ π̂01c

π̂11c ≤
exp(β0c + β1 + β2)

1 + exp(β0c + β1 + β2) −
exp(β0b + β1 + β2)

1 + exp(β0b + β1 + β2) −
exp(β0a + β1 + β2)

1 + exp(β0a + β1 + β2) ≤ π̂11c ,

when choosing Q to be “c” as example13 (cf. (14)), into linear ones, further preventing a
facilitation of computation.

Next, we turn to the direct method. The log-likelihood for the regression coefficients can
again be written down by relying on the log-likelihood l(π00a, . . . , π11f , q{abc}|00a, . . . , q{abcdefg}|g)
and replacing the latent variable distribution by the respective connection to the regression

plausibility accounts for all respondents giving answers that possibly support and thus intersect Q [cf.
36, 7]. This only extends the special case of Example 1, where only singletons Q were considered, but the
calculation of the lower and upper bound corresponded to the estimated belief and plausibility (of query
set “<” in the respective group x ∈ Ω), cf. Footnote 5.

11Cross-classifying the two covariates gives us four groups (“00”, “10”, “01” and “11”) and hence we
consider four inequalities (as in Example 1) for every of the 27 subsets of Y . Additionally we obtain
inequalities for the lower and upper bounds, respectively and five further inequalities are given by β0a <
β0b < · · · < β0f induced by the cumulative logit model.

12Even if some constraints may be eliminated – theory [cf., e.g. 36] tells us that we e.g. do not need
inequalities for the empty set and the ones for a set and its complement are equivalent – a high number of
inequalities remains.

13This can be similarly written down for the other subsets Q.
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coefficients, for the cumulative model given by the response function in (14). In Figure 6
the (smoothed) (relative) profile log-likelihood functions for all regression parameters are
depicted, where we here refer to one possible data scenario that is compatible with the
data in Table ??.14 From a substance matter view this is sufficient, since the results from
all data scenarios closely resemble each other. The maximum likelihood estimators for
the regression coefficients are again received by considering the maxima/maximum of the
respective function. Due to numerical problems that occur in the optimization we can
again not be sure about the kind of results, i.e. whether the optimum is indeed unique –
as Figure 6 suggests – or not. Solving these computational challenges should be part of
further research.
To sum up, whenever a saturated model is of interest, basing considerations on a two-step
method gives us direct formulas to calculate the cautious regression estimates. Referring
to non-saturated models, the (nonparametrich) latent variable distribution and the regres-
sion coefficients do not bear the same information anymore; however, we could indeed find
a way to rely on a two-step method. Although the two-step method of that kind showed
to be helpful to investigate the role of the parametric assumption on the regression model
in the “disambiguation” of the coarse data, it should and can be applied only in particular
situations: In a setting with a binary response variable (as in Example 1), the two-step
method turned out to be very simple – in the sense that we obtain a manageable number
of linear constraints. However, when we are in situation 2 (for setting of Example 1, we
could derive a proper criterion), we have to draw on the direct method also in these simple
cases. Depending on the setting and the chosen response function, the direct method may
lead to technical difficulties (as already met in context of Example 2), here left as an
open problem.

5 Incorporation of auxiliary information
Although results obtained from a cautious analysis as described in Section 3 and Section 4
at a first glance may be regarded as practically unappealing due to an unsatisfactory infor-
mation content, one should generally avoid conjuring information just to force an ability
to act. However, there are frequently situations where some tenable auxiliary information
about the incompleteness is obtainable, refining the results in the spirit of partial iden-
tification and sensitivity analysis [e.g. 21, 23]. For the missing-data problem, literature
already reveals some possibilities to incorporate (partial) knowledge, mostly by restricting
either the distribution of the incompleteness or the response propensities [e.g. 24]. By for-
mulating constraints on qy|xy, we concentrate on the first option in the context of coarse
data. For this purpose, we start by considering two specific, quite strict, assumptions:
Coarsening at random (CAR) and subgroup independence (SI). Afterwards, we look at
generalizations to have a medium to include also other kind of knowledge, including weak
knowledge about the coarsening process.
(author?) [13] introduced the concept of CAR, which requires constant coarsening prob-
abilities qy|y regardless of the true underlying value y as long as it matches with the fixed
observed value y. Adapting this assumption for our contingency table framework, the
requirement has to be valid for all subgroups split by the considered covariates. An al-
ternative type of coarsening is characterized by the independence from the corresponding
covariate values. In [33] we called this assumption subgroup independence (SI) and stud-

14We attribute a higher selection probability to scenarios that are similar to the true one.
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Table 6: Reliable regression estimates and confidence intervals under qna|x< < qna|x≥
(Example 1).
point estimation β̂0 ∈ [−0.53, 0.35] β̂1 ∈ [−0.73, 0.05] β̂2 ∈ [−0.85, 0.00]
confidence interval for β0 : [−0.74, 0.64] for β1 : [−1.17, 0.52] for β2 : [−1.35, 0.34]

ied it in more detail in the setting considered there.
(author?) [29] suggests a possibility to generalize the MAR assumption by including the
ratio between missing mechanisms into the analysis of non-randomly missing and mis-
classified data. In [32] we applied this idea by making assumptions about the coarsening
ratios

Rx,y,y′,y =
qy|xy
qy|xy′

, y ∈ ΩY , y, y′ ∈ y, x ∈ ΩX , (15)

defined for all pairs of directly successive categories y and y′, where the special case of
CAR is expressed by setting all these ratios equal to 1. Analogously, assumptions about
the ratios

Rx,x′,y,y =
qy|xy
qy|x′y

, y ∈ ΩY , y ∈ y, x,x′ ∈ ΩX , (16)

defined for all x and x′ with two directly successive covariate values and equal other covari-
ate values may be imposed, with Rx,x′,yy = 1, ∀x, x′ ∈ ΩX , y ∈ ΩY , y ∈ ΩY representing
the case of SI [cf. 33]. If all coarsening ratios in (15) were known, the parameter of interest,
i.e. all parameters determining the latent variable distribution, would be point-identified,
hence a particular coarsening scenario would be considered. In this way, these coarsening
ratios can be regarded as sensitivity parameters in the sense of [43]. In specific cases this
is also valid for the coarsening ratios in (16), studied in more detail in [33].
In most practical cases it is unrealistic to claim knowledge about the exact value of the
ratios. Nevertheless, it seems quite realistic that former studies or substance-matter con-
siderations allow rough statements about the magnitude of the ratios. In order to investi-
gate how to include such weak knowledge about the coarsening process into the cautious
estimation of the regression coefficients presented in the previous sections, we start by
taking a closer look at some results under a specific partial assumption in the setting of
Example 1, before we discuss some more general partial assumptions in context of Ex-
ample 2.

Example 1: Frequently, there are situations, where assumptions as “respondents with a
high income rather tend to give no answer compared to the ones with a low income” might
be justified from an application standpoint. This weak knowledge about the missingness
can be formalized as qna|x< < qna|x≥ or Rx,<,≥,na ∈ [0, 1[. Consequently, we can still rely
on the consideration of the (relative) profile log-likelihood by simply adding this linear
constraint on the coarsening parameters into the original optimization problem. Figure 7
shows the obtained (relative) profile likelihood functions, also indicating the δ-cut for the
construction of asymptotic 90% confidence intervals. By comparing the results in Table 6,
giving the estimated regression coefficients and respective confidence intervals under the
auxiliary information about the missingness, to the ones without auxiliary information in
Table 4 and Table 5, one notes a remarkable refinement of the results.

Example 2: Assumptions of that kind can also be included in the presence of coarse
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Figure 7: Based on the auxiliary information qna|x< < qna|x≥ and the data of Example 1,
the (relative) profile log-likelihood is determined. The δ-cut is marked by the horizontal
line.

data in the strict sense, hence incorporating for instance q{a,b,c}|xa < q{a,b,c}|xb < q{a,b,c}|xc.
More generally, Rx,y,y′,y (or analogously Rx,x′,y,y) can be assumed to be in the interval
[R, R] with R,R ∈ R+

0 , where one can practically incorporate this information by adding
the linear constraints qy|xy ≥ qy|xy′ ·R and qy|xy ≤ qy|xy′ ·R into the optimization problem.
As a special case, there are several practical situations where CAR or SI is principally
conceivable, but their exact satisfaction is rather questionable. Then the inclusion of
specific neighborhood assumptions [as e.g. addressed in 24, for MAR] is desirable, re-
quiring that the coarsening probabilities lie in the environment of the CAR or SI case.
This corresponds to choosing Rx,y,y′,y or Rx,x′,y,y to lie within the interval [ 1

τ1
, τ2], where

τ1, τ2 ≥ 1 specify the neighborhood. Further research should be devoted to the incor-
poration of auxiliary information in terms of comparable statements about the ratios (as
e.g. Rx,a,b,{a,b,c} ≤ Rx,b,c,{a,b,c}) leading to bilinear constraints and the investigation of the
impact of auxiliary information under the three situations (situation 1(a), (b), 2).

6 Concluding remarks
Most reports containing survey results, also including publications in official statistics, at
best point to the fact that non-sampling errors occured, but totally neglect to quantify
them [cf. 24]. This practice is especially undesirable since it not only bluffs certainty
leading to misinterpretation of results, but may also conduce to a substantial bias. Conse-
quently, communication of the underlying uncertainty should be part of every trustworthy
data analysis. Frequently, a considerable contribution to the non-sampling error is as-
cribable to the item nonresponse problem, which we tackled here by addressing the more
general situation of coarse data.
We explicitly departed from the goal of forcing a particular coarsening scenario to achieve
point-identified parameters. Allowing for partially identified parameters enables the user
to make an analysis driven by the available information about the coarsening process, in-
stead of – maybe unfoundedly chosen – optimization criteria or point-identifying coarsening
assumptions. By generalizing the coarsening at random and the subgroup independence
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assumptions, we could reveal a practical possibility how the user can include frequently
available rough statements about the coarsening to refine the results obtained from an
analysis based on no assumptions about the coarsening at all.
Aiming at a reliable categorical regression analysis in the presence of coarse data, two
different methods to determine cautious regression coefficients have been discussed in the
light of data examples: The first one is based on a two-step procedure, which turned out
to simplify things only in specific situations, such as cases with a binary response variable,
and is even then not always rewarding. Studying this procedure gave rise to various types
of results (situation 1(a), 1(b), 2). In this way, we figured out that the parametric assump-
tion on the regression model can induce a principally differing impact on the estimated
coarsening parameters, from no effect, via tighter bounds, through to point-identified pa-
rameters. The second method, here called direct method, relies on the (relative) profile
log-likelihood, where the estimated bounds of the regression coefficients are given by con-
sidering the set of all maxima. This procedure is natural, always applicable – although
the computation of the (relative) profile log-likelihood may be challenging – and offers a
simple way to construct confidence intervals. Having a closer look at response functions of
further categorical regression models and discussing the appropriateness of both methods
in this context should be part of further research.
We applied all findings to the PASS data. A comparison of the results of our cautious
approach to the ones of a traditional method relying on coarsening at random showed that
sometimes even certainty about the sign of the regression estimates would be pretended by
the latter procedure. Depending on the research question, our results might be assessed
as too little informative, especially if the confidence intervals are the focus of interest. But
this does not justify to return to traditional methods, which here would pretend certainty
about even the sign of the regression coefficients in some cases. Thus, a possibly small
content of information should not be regarded as a weakness of an approach based on
the methodology of partial identification, but associated to sparse additional knowledge.
Although the gain of information achieved by the explicit collection of coarse data is com-
parably small in our case, which is ascribable to the low proportion of coarse compared
to missing answers, the used questionnaire design for requesting the income of the PASS
study is recommendable, especially for sensitive topics.
The cautious likelihood approach for the latent variable distribution turns out to be a
fruitful field of study for further research: The connection between the latent and the ob-
served world gives the opportunity to transfer already existing likelihood-based methods
for precise categorical data [as e.g. statistical tests, as e.g. in 33] to the setting of coarse
data. Another promising topic is the application of our cautious approach to other prob-
lems relying on strong assumptions. A direct reference is conjectured for misclassification,
propensity score matching and statistical matching, where starting points are already pro-
vided in [26], [38] (who studied an approach based on partial identification to estimate
treatment effects without considering propensity scores), [9], respectively. Propensity
score matching and statistical matching traditionally rely on strict assumptions, namely
the strongly ignorable treatment assignment as well as the conditional independence as-
sumption, respectively, where a cautious strategy would allow for a relaxation of these
prerequisites.
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