
Approximations for a Multi-Step Processing of Spatial Joins 

Thomas Brinkhoff and Hans-Peter Kriegel 

Institute for Computer Science, University of Munich 
Leopoldstr. 11 B, D-80802 Miinchen, Germany 

e-mail: {brink.kriegel}@informatik.uni-muenchen.de 

Abstract. The basic concept for processing spatial joins consists of two steps: 
First, the spatial join is performed on the minimum bounding rectangles of the ob­
jects by using a spatial access method. This step provides a set of candidates 
which consists of answers (hits) and non-answers (false hits). In the second step, 
the exact geometry of the candidates is transferred from secondary storage into 
main memory and is tested against the join predicate. This step is called refine­
ment step. It causes the main cost for computing a spatial join. In this paper, we 
introduce an additional filter step in order to reduce the cost of the refinement 
step. In this filter step more sophisticated approximations are used to identify hits 
as well as to filter out false hits from the set of candidates. For this purpose, we 
investigate various types of conservative and progressive approximations. The 
performance of the approximation approach is evaluated with data sets from real 
cartographic applications. The results show that this approach considerably re­
duces the total execution time of the spatial join. 

1 Introduction 
Recently, several spatial database systems (spatial DBSs), particularly designed for or­
ganizing spatial data of a geographic information system (GIS), have been developed 
for applications such as cartography, environmental science and geography. For these 
applications, the data volume is extremely high, the spatial objects show a very complex 
structure and the computation of spatial operators is time-intensive. Therefore, the re­
quirements on a spatial DBS are particularly related to efficient query processing. 

A spatial object consists of (at least) one spatial attribute that describes the geometry 
of the object. A typical spatial query is the window query which computes all objects of 
a given set of spatial objects (map) whose geometric component overlaps with a given 
rectilinear query rectangle. In contrast to a window query, the spatial join is defined on 
two maps. The spatial join computes a subset of the Cartesian product. It combines spa­
tial objects according to their geometric attributes, i.e. these attributes have to fulfill a 
spatial predicate. One of the most frequently used spatial joins is the intersection join 
where pairs of objects are computed whose geometry intersects. 

In order to improve the performance of the spatial join, we favor to process the join 
in three steps. Each step uses a different representation of the objects: 
• First, instead of using an exact representation, the minimum bounding rectilinear 

rectangle (MBR) is used for computing the so-called MBR-join. This step returns a 
candidate set that contains answers (hits) and additionally elements of the Cartesian 
product which do not fulfill the join predicate (false hits). This step should be sup­
ported by spatial access methods (SAMs). Recently, several papers on MBR-joins 
using SAMs were published, e.g. [BHF 93], [Giin 93], [BKS 9Ja], and [LR 94]. 

• In the second step (approximation step), more accurate approximations are ex­
ploited for filtering out false hits from the candidate set. Moreover, approximations 
can also be used to identify hits without accessing the exact representation of the 



26 

spatial objects. The more candidates are identified as hit or false hit, the less expen­
sive becomes the last step. 

• Finally, in the third step (refinement step [Ore 89]), all remaining members of the 
candidate set are examined for being answers to the spatial join. This step requires 
access to the exact representation of the spatial objects. In the context of spatial join 
processing, the refinement step is discussed e.g. in [BG 90) and [BKSS 94). 

In this paper, the approximation step is investigated for intersection joins. The approx­
imation of objects based on a raster representation was already examined in [OM 88] 
using sets of z-values and in [Sam 90] using PR-quadtrees. In contrast to these ap­
proaches, we assume that the geometry of the approximations as well as the objects 
themselves are represented by polygonal areas; i.e. the data model is the same for the 
approximation and for the exact geometry. Obviously, there exists a great variety of 
such approximations and the question arises what kind of approximations are most suit­
able to query processing and in particular to spatial join processing. 

The paper is organized as follows. In section 2, several approximations are intro­
duced for performing the approximation step. The impact of using additional approxi­
mations on the performance of the MBR-join is investigated in section 3. The total per­
formance improvements are discussed in the fourth section. Section 5 concludes the pa­
per and gives an outlook to future work. 

2 Approximations 
A spatial access method organizes the spatial objects according to a geometric key. The 
minimum bounding rectangle (MBR) is the most popular geometric key. Using the 
MBR, the complexity of an object is reduced to four parameters where the most impor­
tant features of the object (position and extension) are maintained. A further important 
advantage of the MBR is the fast execution of spatial operations like the point-in-MBR 
test or the test for intersection. Consequently, the MBR is widely used. 

Real cartography objects are only roughly approximated by MBRs. As a conse­
quence, the exact object representation is often unnecessarily loaded into main memory 
and tested with costly computational geometry algorithms. In order to investigate the 
potential of using additional approximations, we performed empirical tests with real 
cartography data. As basic data we used two maps: Europe (counties in West Europe) 
and BW (municipalities in Baden-Wtirttemberg). In order to obtain suitable test series, 
we pursue two strategies: Performing strategy A, the original map is joined with a sec­
ond map which is generated by shifting the objects of the first map in x- and y-direction. 
The test series generated following strategy A are called Europe A and BW A. The other 
strategy B generates two maps per test series randomly shifting and rotating the objects 
of the original map. Additionally, the polygons are scaled in such a way that the sum of 
the object areas is equal to the area of the data space. The test series generated following 
strategy B are called Europe Band BW B. Table 1 depicts their characteristics. 

test series # objects # points per # intersecting # hits # false 
per map polygon MBRs hits 

Europe A 810 84 1858 1273 585 

Europe B 810 84 4816 3203 1613 

BWA 374 527 2253 1504 749 

BWB 374 527 2562 1684 878 

Tab. 1. Test data 



27 

Table 1 demonstrates that about one third of the object pairs computed by the MBR-join 
are false hits, i.e. although the MBRs of the objects intersect, the objects themselves do 
not intersect. The reason for the high number of false hits is the rough approximation of 
the MBRs. Consequently, there is a great potential to improve the processing of spatial 
joins by using approximations which describe the spati!ll objects more exactly than the 
MBR. In the next subsections, we present a detailed investigation of such approxima­
tions for intersection joins. 

2.1 Reducing the number of false hits 

In order to identify more false hits, we examine several conservative approximations. 
An approximation is called conservative iff each point inside the contour of the original 
object is also in the conservative approximation. The basic idea is to perform the test 
for the join predicate on additional conservative approximations. This is expected to be 
much cheaper than reading the complete objects from secondary storage and perform­
ing the tests on their exact geometry. 

We investigated five convex conservative approximations: the rotated minimum 
bounding rectangle (RMBR), the convex hull (CH), the minimum bounding m-corner 
(m-C), the minimum bounding circle (MBC), and the minimum bounding ellipse (MBE). 
Figure 1 visualizes the selected approximations using Great Britain as an example. 
These approximations differ especially in their accuracy and number of parameters 
which is given in brackets. The convex hull has on the average the highest storage re­
quirement (and best accuracy) and the circle the lowest storage requirement [BKS 93b]. 

Fig. 1. Different approximations of an object 

Quality of iUtering using conservative approximations 
As mentioned before, if conservative approximations of two objects do not intersect, it 
follows that also the objects do not intersect. For intersection joins, we expect to iden­
tify considerably more false hits by using additional approximations. This expectation 
is confirmed by the test results depicted in table 2. It is assumed that the approximation 
is stored in addition to the MBR. . 

MBC RMBR MBE 4-C 5-C CH 

17.7 40.9 43.5 55.3 67.6 81.3 

Tab. 2. Percentage of false hits identified by additional approximations (average on all test series) 

The columns give the percentage of identified false hits. The results demonstrate that a 
high percentage of false hits can be identified by using these approximations. For ex­
ample, the 5-C detects about 68% of the false hits. Thus, only 32% of the non-intersect­
ing objects whose MBRs intersect, must be transferred into main memory and investi­
gated in the exact geometry test. 

In figure 2, we depict the quality of an approximation and the percentage of identified 
false hits for the Europe B test series. For defining a quality measure for approxima­
tions, we consider the false area which is the difference between the area of an object 



28 

and of its approximation. Because the approximation is stored additionally to the MBR, 
we use the MBR-based false area as a measure for the approximation quality. That 
means, we first compute the intersection I of the approximation and the MBR and then 
the false area between the object and the intersection I. This is necessary because the 
approximatien may cover parts of the data space which are not covered by the MBR. 
For comparability, the MBR-based false area is normalized to the object area. 

100% 
Identified 
false hits 

80% 

60% 

40% 

20% 

0% 

'/ 

.I.\bject 

~ 
5-CX 

4-f' RMBR 
X)< MBE 

= MEtC 

= A 

= ~R 
1 1 1'1' 

0.0 0.2 0.4 0.6 0.8 
MBR-based false area (normalized to object area) 

1.0 

MBR-based false area normal­
ized to the object area (fan): 

fi
a (ob") = area(I) - area(obj) 

n '1 area(obj) 

1= appr(obj) n MBR(obj) 

obj: object 
appr(obj): its approximation 
MBR(obj) its MBR 

Fig. 2. Dependency between the approximation quality and the percentage of identified false hits 

The results show that the more parameters are available for the representation of an ad­
ditional approximation, the better is its approximation quality. The area of the 5-corner 
is nearly as accurate as the area of the convex hull. The MBR-based false areas of a 
RMBR and of an MBE are also considerably less than the one of the MBR. Considering 
in the MBR, the MBC, the RMBR, the 4-C, and the object itself, we recognize that the 
dependency is almost linear. However, the deviation of the 5-C, the MBE, and the con­
vex hull demonstrates that not only the false area, but also the adaptability to the object 
is an important property of an approximation for identifying non-intersecting objects. 

Because of its good approximation quality, the convex hull shows the best results. 
However, its number of vertices varies extremely and its average storage requirements 
are by factors higher than the requirements of the other approximations: the CH needs 
on the average 26 parameters for Europe and 46 for BW whereas the 5-C requires only 
10 parameters. Therefore, it is problematic to store the CH in the data pages of a spatial 
access method which requires high numbers of entries within its data pages in order to 
achieve a good query performance. Overall, the 5-corner seems to be a good compro­
mise: it needs much less storage, but it has a very good approximatioh quality and de­
tects about two thirds of the non-intersecting object pairs delivered from the MBR-join. 

2.2 Identifying hits in geometric fdtering 

In the previous subsection, we strived for reducing the number of false hits. As depicted 
in table 1, the number of hits clearly exceeds the number of false hits. After avoiding a 
large percentage of false hits, the ratio false hits to hits approaches 1 to 5. Therefore, it 
is not reasonable to invest more time in identifying further false hits. Instead, we exam­
ine techniques which identify intersecting objects (hits) without inspecting the exact ge­
ometry. In this subsection, three techniques are presented. 

The cross test 
A simple technique to determine a hit using MBRs is the cross test: if the intersecting 
MBRs form a cross, the objects must intersect. The assumption that the area of a spatial 



29 

object is contiguous is essential for the cross test. Figure 3 shows an example. Unfortu­
nately, for real test data this test is very seldom successful. In our experiments, the cross 
test identifies only between 0.27% and 0.78% of the hits. Nevertheless, it is worth to 
execute the cross test because it needs only a few floating-point operations and no ad­
ditional parameters. 

The false-area test 

Mbr(Obh)~Mbr(Obj[) 

LU ::::}obj[{]obh"l:0 

Fig. 3. Cross test 

For two intersecting polygonal objects obit and obiz, the following property holds 
(jaApp,.{obj) denotes the false area of the approximation Appr(obj)): 

Appr(obh) n Appr(obh) > !aApp,.{obh) + !aApp,.{obh) => obh n obh;;/:. 0 
To say it in words, if the area of the intersection of the approximations is larger than the 
sum of the false areas of the objects, it follows that the objects intersect. This property 
can be exploited for processing spatial joins if the false area is stored additionally to the 
approximation for each object. This requires only one additional parameter. Now, the 
most interesting question is how many hits can be identified by the false-area test. 
Table 3 gives the percentage of identified hits in our experiments for various approxi­
mations. 

5-C I CH I 
Tab. 3. Percentage of hits identified by the false-area test (average on all test series) 

Due to its bad approximation quality, the false-area test does not payoff for the MBR: 
almost no hit can be identified. Performing the test with the 5-corner about 6% of the 
hits are identified. These results motivate to look for a test which identifies more hits 
than the false-area test. For such a test, we allow a higher number of parameters. 

Progressive approximations 
In addition to conservative approximations which were discussed before, we will now 
consider another type of approximations. For identifying hits progressive approxima­
tions are adequate. A polygonal object is progressively approximated if the point set of 
the approximation is a subset of the point set of the object. When the low-cost test for 
progressive approximations is successful, we obtain a definite answer; only a failed op­
eration triggers the costlier operation on the exact object description. For the intersec­
tion join this implies that if two progressive approximations intersect, it follows that the 
objects intersect. 

It may be intuitively clear that it is more expensive to compute progressive approxi­
mations than conservative ones. This holds especially true if a maximum enclosed ap­
proximation is computed. In the following, we investigate three progressive approxima­
tions. 

Enclosed circle 
The simplest progressive approximation is the maximum enclosed circle (EC). It can 
be computed for a simple polygon by using the Voronoi diagram of its edges (for the 
computation of such a diagram see e.g. [For 87]). One of the nodes of the diagram is the 
center of the maximum EC. The computation is illustrated in figure 4. 



30 

maximumEC 
~~~ 

polygon 

Fig. 4. EC-approximation 

Enclosed rectangle 

An obvious alternative to the EC is the maximum enclosed rectangle (ER). In order to 
simplify the computation of such a rectangle, we restricted the investigation to rectan­
gles which fulfill the following two properties: 1. they intersect the longest enclosed 
horizontal connection h starting in a vertex of the polygon and 2. the x- and the y-coor­
dinates of the rectangles are x- and y-coordinates of vertices of the polygon. The ER is 
computed as follows: Based on a trapezoid decomposition [AA 83], the rectangles are 
computed which are visible from h. Using these rectangles as starting points, enclosed 
rectangles are constructed. Finally, the largest enclosed rectangle is selected. This pro­
cess is illustrated in figure 5. 

visible from h 
(covered by tested rectangles) 

longest horizontal connection h 

,:~ ER-approximation 

Fig. 5. ER- and EL-approximations 

Enclosed line segments 
The EC- and the ER-approximations are areas. However, it is also possible to use lines 
and line segments as progressive approximations. In this paper, we investigate a pair of 
maximum enclosed rectilinear line segments (EL). Since non-area approximations can­
not be used for query conditions which test whether another object is enclosed or not, 
in the following the EL-approximation will be considered in combination with the 
ER-approximation (ER&EL). An example is given in figure 5. 

Quality offiltering using progressive approximations 
As mentioned before, progressive approximations allow us to identify hits. Table 4 
shows the percentage of identified hits according to our experiments. The results in the 
column 'EC' demonstrate that almost 32% of the hits are identified by the EC-approx­
imation without accessing the exact geometry. The ER-approximation even allows us 
to find around 35% of the hits. These percentages are considerably higher than those 
gained by the false-area test which identifies only about 6% using the 5-corner. The 
combination of the ER- and EL-approximation identifies up to 60% of the hits. 

test series EC ER ER&EL 

Europe A 31.4 36.2 59.2 

Europe B 31.8 35.3 57.7 

BWA 31.6 34.3 59.0 

BWB 32.6 33.6 59.7 

Tab. 4. Percentage of identified hits using progressive approximations 



31 

Further experiments demonstrate that a combination of progressive approximations and 
the false-area test does not substantially improve the rate of identified hits. Therefore, 
it is not reasonable to use the false-area test in addition to progressive approximations. 

3 The Impact of Additional Approximations on the MBR-Join 

The last section has demonstrated the potentials induced by using conservative and pro­
gressive approximations. For a final assessment of those results, the impact of storing 
additional approximations on the MBR-join will be evaluated in this section. It is as­
sumed that the approximations are stored in addition to the MBR (see [BKSS 94]) and 
that the MBR-join is performed by using R*-trees [BKSS 90]. 

Using additional conservative and progressive approximations, we need more param­
eters than in the traditional approach which is based on MBRs. The increased storage 
requirements decrease the capacity of a data page in the R*-tree, and hence worsen the 
performance of the MBR-join. 

In order to investigate this effect, we joined two maps of real world objects each con­
sisting of about 130,000 objects. As a result, 86,000 pairs of MBRs intersect. These data 
were already used in [BKS 93a]. The size of a page is 4 KB and the LRU-buffer holds 
32 pages. The cost for a page access is 16 msec and the size of the entries varies between 
46 and 206 Byte. Figure 6 depicts the results of this experiment. 

500 
sec 
400 

300 --+---+---+--~I!!!iW""---+----I 

200 -4----+--::~~IIl!!:----+---_+_-__I 

100 --+----~~--_4----_4----_4----~ 

o --+'-rr~.-rr~.-rr~"rr~~rr~ 

o 50 100 150 200 250 
size of a page entry (in Byte) 

- total cost 

..... I/O-cost 

Fig. 6. The cost of the MBR-join depending on the size of the entries 

The results show a linear dependency between the size of the page entries and the 
JlO-cost of the MBR-join. The CPU-cost of the MBR-join decreases with increasing en­
try sizes. Since we use the optimization techniques presented in [BKS 93a], the JlO-cost 
dominates the total cost for performing the MBR-join. As a consequence, the storage of 
larger page entries has a considerable impact on the cost of the MBR-join. 

Therefore, we suggest to combine several physical pages (blocks) on secondary stor­
age to one larger logical data page according to the enlargement of the page entries. The 
blocks of an enlarged data page are consecutively stored on the disk. The blocks of one 
enlarged data page cannot be individually read into main memory; reading the data page 
requires to access all its blocks. In this case, the transfer time for reading or writing a 
data page increases. However, the seek and latency time - which cause the major cost 
of a page access - will not be increased for reading or writing the page. Figure 7 dem­
onstrates that the JlO-cost is only slightly affected by using additional approximations 
when larger data pages are used. For larger entries, the total execution time is consider­
ably less than in figure 6. For the experiments, 9 msec are assumed for an average seek, 
6 msec for the latency time and 1 msec for transferring 4 KB of data. These parameters 
are standard values for current disks [HS 94]. 



200 
sec 

150 

100 

50 

o 

32 

= = .. 
= = -. !.a 

= - total cost 

= - I/O-cost 

= = 
I I I I I I 

o 50 100 150 200 250 
size of a page entry (in Byte) 

Fig. 7. The cost of the MBR-join depending on the size of the entries using enlarged data pages 

4 The Impact of Additional Approximations on the Join 

In this section, we investigate the impact of additional approximations with respect to 
the total execution time of an intersection join. Using the same test data as in the section 
before, we joined two maps. It is assumed that each description of an object stored in 
an R*-tree needs 16 Byte for the MBR and 32 Byte for additional information. One pa­
rameter of an approximation needs 4 Byte to be stored and the size of a directory page 
is 4 KB; the size of data pages depends on the size of the entries. The LRU-buffer holds 
32 pages of the R *-tree and 1,600 pages for buffering the exact geometry of the objects. 
The average size of the description of the exact geometry of an object is 2.8 KB, i.e. on 
the average a polygon consists of 175 vertices. 

The same seek, latency and transfer time as presented in the last section are assumed. 
The CPU-time spent in the approximation step for testing the intersection of two ap­
proximations is neglected. We assume that the exact geometry of two objects is tested 
for intersection by using a plane-sweep algorithm. Such a test needs 13.5 msec on an 
HP720-workstation. 

We performed the joins with different combinations of approximations. Starting 
point of our investigation is the version which uses no additional approximations. The 
left column in figure 8 demonstrates that the cost for transferring the object into main 
memory (object access) and for testing the exact geometry for intersection (exact test) 
dominates the total execution time. 
3500 
sec 

3000 

2500 

2000 

1500 

1000 

500 

o 
RMBR MBE 4-C 5-C CH 

• MBR-join 

11 object access 

[j] exact test 

Fig. 8. Total execution time using different conservative approximations 

The other columns in figure 8 depict the total execution time when different conserva­
tive approximations are used in addition to the MBR. Both, the object access and the 
exact intersection test are accelerated whereas the cost for the MBR-join is slightly in­
creased. The results show the best performance for the convex hull. However, if other 
operations are also considered which do not take advantage of additional conservative 



33 

approximations (e.g. the window query), the 5-corner is the best compromise between 
approximation quality and storage requirements. 

The next diagram shows the performance of the intersection join using different pro­
gressive approximations. Now, only the cost of the exact geometry test is decreasing. 
The combination of the ER- and the EL-approximation has the best performance. 

3500 --=:1-----,------,----.----, 
sec 

3000 

2500 

2000 

1500 

1000 

500 

o 
EC ER ER&El 

• MBR-join 

11 object access 

EillI exact test 

Fig. 9. Total execution time using different progressive approximations 

Finally, we investigated the performance gains when the 5-corner and the combination 
of ER- and EL-approximation are used. The left diagram in figure 10 shows the execu­
tion time of the join which was investigated in the previous experiments. The total ex­
ecution time is decreased by 30%. The right diagram shows the performance of an in­
tersection join between similar maps. However, the selectivity is different: about 1.2 
million pairs of MBRs intersect. In this case, the gain is almost 40%. 

3500 25000 
sec sec 3000 

20000 
2500 

2000 15000 

1500 10000 

1000 
5000 

500 

0 0 
only MBR 5-C,ER,El only MBR 5-C,ER,El 

Fig. 10. Total execution time using conservative and progressive approximations 

5 Conclusions 
We investigated the problem of efficient spatial join processing using the intersection 
predicate. Our basic idea for efficient spatial join processing is to perform the join in 
several steps: In the first step, an MBR-join is performed. The approximation step 
works as a geometric filter and, finally, in the refinement step, the exact geometry is 
tested against the join predicate. 

In this paper, we concentrate on the approximation step which detects a high fraction 
of false hits using conservative approximations in addition to the MBR. According to a 
detailed experimental investigation, we recommend to use the minimum bounding 
5-corner of objects as an additional approximation. The 5-corner combines a high ac­
curacy with a small storage overhead. In our experiments, about two thirds of the false 
hits in the candidate set computed by the MBR-join are identified by using the 5-corner. 
In order to detect hits in the candidate set (still without accessing the exact geometry), 



34 

we propose to use simple progressive approximations, e.g. enclosed rectangles and en­
closed line segments. A common intersection of two progressive approximations im­
plies a common intersection of the corresponding objects. In our experiments, about 
60% of the hits are detected by using the combination of enclosed rectangles and en­
closed line segments as a progressive approximation. 

The use of conservative and progressive approximations considerably accelerates the 
execution of an intersection join. Both, the performance of the object access and the per­
formance of the exact intersection test, are improved. 

In addition to the approximation step, we investigated the other steps for a multi-step 
processing of spatial joins: the MBR-join was examined in [BKS 93a], the test of the 
exact geometry of the objects and some other aspects of approximations in [BKSS 94], 
and the transfer of the objects from secondary storage into main memory in [BK 94]. 

So far, we assumed a conventional computer architecture. However, since the fast ex­
ecution of spatial joins is extremely important, another task is to consider CPU- and 
I/O-parallelism in future work. 

References 
[AA 83] Asano Ta., Asano Te.: 'Minimum Partition of Polygonal Regions into Trapezoids', Proc. 

24th IEEE Annual Symp. on Foundations of Computer Science, 1983, pp. 233-241. 
[BG 90] Blankenagel G., Gtiting H.: 'Internal and ExtemalAlgorithmsfor the Points-in-Regions 

Problem - the INSIDE Join of Geo-Relational Algebra', Algorithmica, 1990, pp. 251-276. 
[BHF 93] Becker L., Hinrichs K., Finke U.: 'A New Algorithm for Computing Joins with Grid 

Files', Proc. 9th Int. Conf. on Data Engineering, Vienna, Austria, 1993, pp. 190-197. 
[BK 94] BrinkhoffT., Kriegel H.-P.: 'The Impact of Global Clustering on Spatial Database Sys­

terns', Proc. 20th Int. Conf. on Very Large Data Bases, Santiago de Chile, Sept. 1994. 
[BKS 93a] Brinkhoff T., Kriegel H.-P., Seeger B.: 'Efficient Processing of Spatial Joins Using 

R-trees', Proc. ACM SIGMOD Int. Conf. on Management of Data, Washington, DC, 1993, 
pp. 237-246. 

[BKS 93b] Brinkhoff T., Kriegel H.-P., Schneider R: 'Comparison of Approximations of Com­
plex Objects used for Approximation-based Query Processing in Spatial Database Systems', 
Proc. 9th Int. Conf. on Data Engineering, Vienna, Austria, 1993, pp. 40-49. 

[BKSS 90] Beckmann N., Kriegel H.-P., Schneider R, Seeger 8.: 'The R*-tree: An Efficient and 
Robust Access Method for Points and Rectangles', Proc. ACM SIGMOD Int. Conf. on Man­
agement of Data, Atlantic City, NI, 1990, pp. 322-331. 

[BKSS 94] Brinkhoff T., Kriegel H.-P., Schneider R, Seeger B.: 'Multi-Step Processing of Spa­
tial Joins', Proc. ACM SIGMOD Int. Conf. on Management of Data, Minneapolis, MN, 
1994,pp.209-220. 

[For 87] Fortune S. I.: 'A Sweep line Algorithm for Voronoi Diagrams', Algorithmica, Vol. 2, 
1987. 

[GUn 93] GUnther, 0.: 'Efficient Computation of Spatial Joins', Proc. 9th Int. Conf. on Data Engi­
neering, Vienna, Austria, 1993, pp. 50-59. 

[HS 94] Hilgefort U., Schneider R: 'Rundablagen: Leistungsschau 47 neuer Festplatten', c't, 
No. 3, 1994, pp. 102-111. 

[LR 94] Lo M.-L., Ravishankar C.V.: 'Spatial Joins Using Seeded Trees', Proc. ACM SIGMOD 
Int. Conf. on Management of Data, Minneapolis, MN, 1994, pp. 209-220. 

[OM 88] Orenstein lA., Manola F.A.: 'PROBE Spatial Data Modeling and Query Processing in 
an Image Database Application', IEEE Trans. on Software Engineering, Vol. 14, No. 5, 
1988, pp. 611-629. 

[Ore 89] Orenstein l A.: 'Redundancy in Spatial Databases', Proc. ACM SIGMOD Int. Conf. 
on Management of Data, Portland, OR, 1989, pp. 294-305. 

[Sam 90] Samet H.: 'Applications of Spatial Data Structures', Addison-Wesley, 1990. 


