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Abstract: Benchmark experiments produce data in a very specific format. The ob-
servations are drawn from the performance distributions of the candidate algorithms
on resampled data sets. In this paper we introduce a comprehensive toolbox of ex-
ploratory and inferential analysis methods for benchmark experiments based on one
or more data sets. We present new visualization techniques, show how formal non-
parametric and parametric test procedures can be used to evaluate the results, and,
finally, how to sum up to a statistically correct overall order of the candidate algorithms.
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1. Introduction

In statistical learning, benchmark experiments are empirical experiments with the aim of com-
paring and ranking algorithms with respect to a certain performance measure. New benchmark
experiments are published on almost a daily basis; it is the primary method of choice to evaluate
new learning algorithms in most research fields with applications related to learning algorithms.
However, there are surprisingly few publications on how to evaluate benchmark experiments, some
newer exceptions are Hothorn et al. (2005), Demsar (2006), Yildiz and Alpaydin (2006) and Hornik
and Meyer (2007).

Hothorn et al. (2005) use the bootstrap as sampling scheme such that the resulting performance
observations are independent and identically distributed (iid) and can be analyzed using standard
statistical methods. However, their paper describes a general framework, not precise instructions
for a concrete benchmark experiment. To use a metaphor, it describes how to cook in general, but
contains no recipes for a nice dinner. Using the foundations layed out by the general framework,
our goal is now to implement a toolbox of exploratory and inferential methods for the analysis of
benchmark experiments.

This article is organized as follows: in Section 2 we review the design of a benchmark experiment
following Hothorn et al. (2005). We also introduce an exemplar benchmark experiment which is
used through out the article to illustrate our methods. In Section 3 we present the exploratory
and inferential analysis of benchmark experiment based on one data set, and the establishment
of an overall order based on different performance measures. Section 4 generalizes the benchmark
experiment for the comparison of the candidate algorithms on more than one data set. As in
the case of one data set, we present exploratory and inferential ways of analyses, and an overall
order over all data sets and all performance measures, respectively. The article is concluded with
a summary and an outlook for further developments in Section 5.

1



All computations are performed using R (R Development Core Team, 2008), the corresponding R
functions are part of an R package for the analysis of benchmark experiments which is currently un-
der development and will be released on CRAN in due course. Preliminary versions of the functions
and all data used in this article are available from http://www.statistik.lmu.de/~eugster/.

2. Design of benchmark experiments

Following Hothorn et al. (2005), we set up a benchmark experiment according to their real world
situation. Given is a data set L = {z1, . . . , zm}. We draw B learning samples using some resampling
method, e.g. sampling with replacement (bootstrapping):

L1 = {z1
1 , . . . , z1

n}
...

LB = {zB
1 , . . . , zB

n }

Another possibility is cross-validation. Furthermore we assume that there are K > 1 candidate
algorithms ak (k = 1, . . . ,K) available for the solution of the underlying problem. For each
algorithm ak the function ak(· | Lb) is the fitted model based on the sample Lb. This function
itself has a distribution Ak as it is a random variable depending on Lb:

ak(· | Lb) ∼ Ak(L), k = 1, . . . ,K

The performance of the candidate algorithm ak when provided with the training data Lb is mea-
sured by a scalar function p:

pkb = p(ak,Lb) ∼ Pk = Pk(L)

The pkb are samples drawn from the distribution Pk(L) of the performance measure of the algorithm
k on the data set L.

In this paper, we illustrate the analysis of benchmark experiments by means of supervised
learning problems. The observations z are of the form z = (y, x) where y denotes the response
variable and x describes a vector of input variables. The aim of this learning task is to construct a
learner ŷ = ak(x | Lb) which, based on the input variables, provides us with information about the
unknown response. The discrepancy between the true response y and the predicted response ŷ for
one observation z is measured by a scalar loss function L(y, ŷ). The above introduced performance
measure p is in this case defined by some functional µ of the distribution of the loss function:

pkb = p(ak,Lb) = µ(L(y, ak(x | Lb))) ∼ Pk(L)

For classification, common loss functions are the misclassification and the entropy. The missclas-
sification error, for example, incur loss 1 if x is wrongly classified:

L(y, ŷ) =

{
0 y = ŷ

1 otherwise

For regression, the absolute error and the squared error are common loss functions. Both measure
the amount by which the estimator differs from the quantity to be estimated. In case of the squared
error, loss then incur quadtratic:

L(y, ŷ) = (y − ŷ)2
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An adequate choice for the functional µ is the expectation E. The misclassification performance
measure is then given by

pkb = Eak
Ez=(y,x)L(y, ak(x | Lb))

with L the misclassification loss. Another conceivable choice of µ is the median, corresponding to
the absolut loss. As, in most cases, we are not able to calculate µ analytically, we have to use the
empirical analogue µT based on a test sample T:

p̂kb = p̂(ak,Lb) = µT(L(y, ak(x | Lb))) ∼ P̂k(L)

For our analyses, independent observations of the performance measure are required. K-fold cross-
validation results in dependencies between the different folds, therefore we use bootstrapping and
define T in terms of out-of-bootstrap observations: T = L \ Lb. Based on p̂kb, we estimate the
empirical performance distribution P̂k(L) for each candidate algorithm ak and compare them with
exploratory data analysis tools and formal inference procedures.

Example. To demonstrate our methods, we use an exemplar benchmark study. The primary goal
of this example is to illustrate general interesting aspects of benchmark experiments; not necessarily
using up-to-date classifiers. Because of the replaceability of the data set and the algorithms, we
just introduce the setup and then encode them with letters and colors. The learning problem is the
binary classification problem monks3 (encoded with I) from the UCI Machine Learning repository
(Asuncion and Newman, 2007). It consists of 6 nominal attributes and 554 observations. The
candidate algorithms used are linear discriminant analysis ( , orange), naive bayes classifier
( , yellow), k-nearest neighbour classifier ( , purple), classification trees ( , red), support
vector machines ( , blue), and neural networks ( , green) (all, e.g. Venables and Ripley, 2002;
Hastie et al., 2001). Appendix B lists detailed information about the data set and the candidate
algorithms. Misclassification error is used as performance measure, and the number of bootstrap
samples B is 250.

The execution of this benchmark experiment results in 250 misclassification measures per candi-
date algorithm. These measures are the estimated empirical misclassification distributions of the
candidate algorithms on data set I and are the base for the comparison of the algorithms right up
to the arrangement of an order relation.

3. Analysis of a benchmark experiment

The first step is to analyse the benchmark experiment in an exploratory way. Based on findings
in this step, the second step tests hypothesis of interest and yields a statistically correct order
relation of the candidate algorithms.

3.1. Exploratory analysis

Common analyses of benchmark experiments consist of the comparison of the empirical perfor-
mance measure distributions based on some summary statistics: algorithm au is better than algo-
rithm av iff φ(P̂u) < φ(P̂v). φ is a scalar functional and for example a measure of central tendency,
statistical dispersion or shape. Additionally, confidence intervals can indicate the significance of
differences.

3



φ = Mean SD Median Max
blue 0.0110 0.0059 0.0100 0.0340
red 0.0116 0.0080 0.0100 0.0561

green 0.0293 0.0123 0.0273 0.0631
yellow 0.0344 0.0118 0.0340 0.0707
purple 0.0352 0.0094 0.0350 0.0561
orange 0.0353 0.0094 0.0350 0.0561

Table 1: Performance estimations based on common summary statistics φ: based on the B boot-
strap samples, the mean, standard deviance (SD), median and maximum (Max) values of the
empirical misclassification distributions are calculated.
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Figure 1: Visualisation of the 95% mean performance confidence intervals: the difference in the
mean performances of two algorithm is not significant, if their intervals intersect.

Example (cont.). Table 1 shows the most established summary statistics for performance estima-
tions. Based on the mean performance values (the other performance values are in an analogous
manner), the order of the candidate algorithms is

blue < red < green < yellow < purple < orange.

The corresponding 95% confidence intervals are calculated by Mean ± 1.96 ∗ SD/
√

B and shown
in Figure 1. The confidence intervals of blue, red and yellow, purple, orange intersect, the
differences between them are not significant.

Order relation. In cases of non-significant differences, we can not define a strict total order < or
a total order ≤ between the candidate algorithms. To model this circumstance, and to use further
analyses methods in a consistent way, we define a reflexive and symmetric order relation ≈: two
algorithms are ≈-related if their difference in a performance measure p is not significant.

Example (cont.). The candidates order based on the mean performance values then is

blue ≈ red < green < yellow ≈ purple ≈ orange.

Worst-case scenario. A further analysis is based on the worst-case scenario and focus on the
limitation of damage. Using the maximal performance values (Table 1, column Max), one can
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apply the minimax rule for minimizing the maximum possible loss. To make the minimax-order
more robust against outliers, the m-worst performance values can be used; specify m, for example,
according to the 95% quantiles of the performance distributions. To ignore very small differences
in the values, one can define an ε-neighborhood in which all values are seen as equal. A more
sophisticated approach is to additionally calculate the confidence intervals using bootstrapping.

Example (cont.). The order based on the worst performance values is

blue < red = purple = orange < green < yellow.

The m-worst values for m = 12 are

blue red green yellow purple orange
0.0200 0.0202 0.0510 0.0545 0.0495 0.0495

The minimax-order with exact equality is:

blue < red < purple = orange < green < yellow

With the definition of a neighborhood where we ignore differences behind the third decimal place,
i.e. ε = 0.001, the difference between blue and red disappears:

blue = red < purple = orange < green < yellow

Basic plots. In many cases, these analyses based on the heavily compacted numbers of Table 1
are the only basis for a ranking of the algorithms. But in doing so, one loses a lot of interesting
and primarily important information about the experiment. A first step towards a deeper analysis
is the usage of common visualizations: dot plots (with the algorithms on the abscissa and their
performances on the ordinate, represented with a dot for each benchmark run) allow the exami-
nation of the raw performances distributions; box plots summarize the performance distributions
and allow the identification of outliers; histograms and density estimates as estimations of the
unobservable underlying performance density function.
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Figure 2: (a) Dot plot of the benchmark experiment result: the performance of each algorithm
on each benchmark run is shown as a dot. (b) Box plot of the benchmark experiment result: the
performance of each algorithm is aggregated by the five-number summary. Outliers are identified.
In comparison to the dot plot, information about local minima is lost.

5



Example (cont.). Figure 2(a) and Figure 2(b) show the dot and box plot, respectively. Looking
at the dot plot in, it can be seen that that the distributions for blue and red are not only skewed,
but also multimodal. The algorithms often get stuck in local minima. The box plot supports this
assumption, as we can see that the median is approximately equal to the first quantile. All other
algorithms seems to be unimodal, and green slightly skewed.

The figures also allow an analysis of the overall order of the algorithms. blue and red have
basically the same performance, the small differences in mean performance are caused mostly by a
few outliers. Their performances somehow define the lower misclassification range from about 0 to
0.02. In this range, all algorithms find local minima with similar performance values, they present
the same patterns. green, yellow, purple and orange mostly are in the upper misclassification
range with some results in the lower one. purple, orange and yellow have the same performance,
whereby the latter has some outliers including the worst performance at all. green has a huge
variance. It has an outlier close to the best value of blue and red, and also results near to the
worst performance.

One massive problem of the dot plot is the overdrawing of dots. For example, the impression
of the order between purple and yellow; it seems that purple is better than yellow, but if we
take a look at the summary statistics in Table 1, we see that the mean and median performances
of yellow are slightly better. Additionally, the standard dot plot suggests the independence of
the bootstrap samples. Indeed we know that, for example, blue and red perform similar over
all benchmark runs, but we do not know their ranking per benchmark run, which algorithm is
on which rank and how often. One possibility to avoid the first problem, is the usage of box
plots. As we can see in Figure 2(b), the impression of the order is correct and it leads to similar
conclusions, but we lose the information about the local minima. Another possibility is to jitter the
dot plots, i.e., adding some random noise to the data. But both do not solve the second problem.
The benchmark experiment plot was developed to overcome these limitations and to get a better
understanding of benchmark experiments.

Benchmark experiment plot. Instead of random jittering, we use the ranks of the algorithms
on each bootstrap sample to horizontally “stretch out” the dots. For each benchmark run, the
algorithms are ordered according to their performance value: rij denotes the rank of pij in the
joint ranking of pi1, . . . , piK , ties are broken at random. We draw separate dot plots for each rank.
This can be seen as creating a “podium” with K places, and having separate dot plots for each
podium place. The following pseudocode outlines the calculation of the benchmark experiment
plot podium:

Input: pij = matrix of performance values with K columns and B rows;

Output: wk
ij = list of K podium places: each place is a matrix with K columns and B rows;

for i = 1 . . . B do
for j = 1 . . .K do

rij = rank of pij in the joint ranking of pi1, . . . , piK , ties are broken at random;

w
rij

i,j = pij ;
end

end

Example (cont.). Figure 3 shows the benchmark experiment plot. It supports the assumption
(given by Table 1 and Figure 2) that blue and red perform similar and significant better than
all others. Both are almost equally often on place 1, but we see that red has some results on the
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Podium

Figure 3: Benchmark experiment plot of the example: the abscissa is a podium with 6 places. For
each benchmark run, the algorithms are sorted according to their performance values and a dot is
drawn on the corresponding place. To visualise the count of an algorithm on a specific position, a
bar plot is shown for each of podium places.

lower places. This is an aspect that is impossible to infer from the marginal distributions of the
performance measures alone (regardless if displayed by dot plots, box plots, histograms, or density
estimates). An example, where the impression of similar performances is not supported, is given in
Eugster and Leisch (2008). According to the mean performance, yellow is on the fourth place, but
we see that yellow has most last places. Similar things for green, even it is clearly the algorithm
with most third places, it has its second-most results on the last one.

“Full” benchmark experiment plot. The “dots” in the displayed plots are not independent from
each other, because all algorithms were evaluated on each bootstrap sample. This dependency can
be displayed by connecting the dots corresponding to one bootstrap sample with a line, resulting
in a modified version of a parallel coordinates plot.

In our implementation, the line segment between two podium places is drawn with the color of the
algorithm in the lower position, to overcome the problem of overdrawing line we use transparency
(alpha shading).

Example (cont.). In this “full benchmark experiment plot” one can also see correlations between
algorithm performances (parallel vs. crossing lines). As an example, red and blue find the same
local minima on almost all bootstrap samples. Another interesting fact between those two algo-
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Figure 4: “Full” benchmark experiment plot: the benchmark experiment plot is extended to rep-
resent the dependency of the dots of one bootstrap sample with a line between them.

rithms is that whenever red performs well, blue performs well too: only horizontal lines going
out of red dots in the first place. But this is not always true the other way round: there are non-
horizontal lines going out of blue dots in the first place where red dots are even not on the second
place. Further interesting analyses would explore these bootstrap samples and see if there are
any noticeable characteristics which lead to this circumstance. The analysis of such coherences is
simplified with an interactive version of the benchmark experiment plot with brushing techniques;
our current work contains approaches in this direction.

The major goal of benchmark experiments is to derive an order of the candidate algorithms.
Based on the two versions of the benchmark experiment plot we suggest:

red ≈ blue < green < yellow ≈ orange ≈ purple.

3.2. Inference

To make a statistically correct order and ranking we need more formal tools; statistical inference
and primarily the testing of hypothesis provides them. The design of a benchmark experiment is
a random block design. This type of experiment has two classification factors: the experimental
one, for which we want to determine systematic differences, and the blocking one, which represents
a known source of variability. In terms of benchmark experiments, the experimental factor is the
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set of algorithms and the blocking factor is that all algorithms perform an the same bootstrap
samples. The random block design is basically modelled by

pij = κ0 + κj + bi + εij ,
i = 1, . . . , B, j = 1, . . . (K − 1),

with the set of candidate algorithms modelled as κj , and the sampling modelled as bi. Now,
different methods take different assumptions on κj , bi and εij . The null hypothesis is that of no
algorithm differences,

H0 : κ1 = · · · = κK−1 = 0,
HA : ∃j : κj 6= 0.

Common methods for testing the differences between the candidate algorithms are non-parametric
(or distribution-free) tests.

Friedman test. A global test, whether there are any differences between the algorithms at all,
can be performed using the Friedman test (e.g. Demsar, 2006; Hollander and Wolfe, 1999). This
test takes the assumptions

∑B
i=1 bi = 0,

∑K−1
i=0 κj = 0, εij are mutually independent and each one

comes from the same continuous population.
The Friedman procedure uses the ranks rij defined in the section about the benchmark experi-

ment plot, but ties are averaged. Set Rj =
∑B

i=1 rij , R.j = Rj

n , R.. = K+1
2 and compute the test

statistic

S =
12B

K(K + 1)

K∑
j=1

(R.j −R..)2.

When H0 is true, the statistic S has an asymptotic (B tending to infinity) χ2 distribution based
on K − 1 degrees of freedom. We reject H0, for a given significance level α, if S ≥ χ2

K−1,α. The
distribution of the test statistic under the null hypothesis clearly depends on the (mostly) unknown
distribution of the data and thus is (mostly) unknown as well. Hence we use permutation tests,
where the unknown null distribution is replaced by the conditional null distribution, i.e., the
distribution of the test statistic given the observed data (Hothorn et al., 2006).

Example (cont.). In case of our example benchmark experiment the exploratory analysis indicates
that there are differences between the algorithms. Using this test, we can formally ensure that
indications. The measures have been calculated as:

blue green orange purple red yellow
R1 R2 R3 R4 R5 R6

393.5 955.5 1176.5 1175.5 413.5 1135.5

The test statistic S is 888.5657 and the p-value is < 2.2 × 10−16 (numerically zero). The test
rejects the null hypothesis for all meaningful significance levels. We can proceed with a test with
all pairwise comparisons and find the algorithms which actually differ.

Wilcoxon-Nemenyi-McDonald-Thompson test. This test is based on the Friedman’s within-
blocks ranks and is designed to make decisions about individual differences between pairs of treat-
ments, i.e., algorithms (Hollander and Wolfe, 1999). The assumptions are the same as for the
Friedman test.
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Given the Rj , the procedure calculates the K(K − 1)/2 differences Ru −Rv, u = 1, . . . (K − 1),
v = u, . . . , K. At an experimentwise error rate α, the test then reaches its pairwise decisions,
corresponding to each (κu, κv), by the criterion

Decide κu 6= κv if |Ru −Rv| ≥ rα; otherwise decide κu = κv,

where the constant rα is chosen to make the experimentwise error rate equal to α. As before, the
test is used in a permutation procedure.

Example (cont.). The measures Ru −Rv haven been calculated as

yellow red purple orange green
R6 R5 R4 R3 R2

blue R1 742 20 782 783 562
green R2 180 −542 220 221
orange R3 −41 −763 −1
purple R4 −40 −762

red R5 722

and the corresponding p-values

yellow red purple orange green
blue 0.000 0.996 0.000 0.000 0.000
green 0.000 0.000 0.000 0.000
orange 0.907 0.000 1.000
purple 0.916 0.000

red 0.000

The null hypothesis of no difference is rejected for all pairs of candidate algorithms, except (blue,
red), (orange, purple), (orange, yellow) and (purple, yellow).

Topological sort. Between pairs with significant differences we can establish a strict total order
<, pairs with non-significant differences are ≈-related. An overall order of the algorithms is then
defined using a topological sort. In general, a topological sort describes the sequence of elements
with predefined dependencies accomplished (e.g., Knuth, 1997). In our case, the dependencies are
the strict total orders between pairs of algorithms defined through the pairwise tests.

Example (cont.). The topological sort of the pairwise test results of the Wilcoxon-Nemenyi-
McDonald-Thompson procedure is:

blue ≈ red < green < orange ≈ purple ≈ yellow.

Nemenyi-Wilcoxon-Wilcox-Miller test. The above test compares all algorithms against each
other, i.e.,

(
K
2

)
comparisons. Another scenario is the existence of a reference algorithm where

we compare some algorithms with, i.e., (K − 1) comparisons. An example for this situation is a
present reference implementation of method and some new implementations in different program-
ming languages. The non-parametric procedure of choice is the Nemenyi-Wilcoxon-Wilcox-Miller
test, we refer to Hollander and Wolfe (1999) for the concrete definition.
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Mixed effects model. Using these non-parametric tests we indeed get answers for our hypothesis
of interest, i.e., the p-values, but we do not really model the random block design and thus get
no estimates for the parameters κj , bi and εij . We are not aware of any non-parametric method
applicable in this situation. However, the parametric mixed effects models (e.g. Pinheiro and
Bates, 2000) do, and since we are able to draw as many random samples B from the performance
distributions as required, we can rely on asymptotic normal theory. κj is now a fixed, bi a random
effect. The assumptions are bi ∼ N(0, σ2

b ) and εij ∼ N(0, σ2). Hence, we estimate only one
parameter σ2

b for the effect of the data set. A modelling, by contrast, with the effect of the data
set as main effect, would have lead to B parameters.

The most common method to fit the linear mixed effects model is to estimate the “variance
components” by the optimization of the restricted maximum likelihood (REML) through EM
iterations or through Newton-Raphson iterations (see e.g. Pinheiro and Bates, 2000).

Example (cont.). The estimates for the parameters have been calculated as

σ̂b = 0.0052, σ̂ = 0.0082

and

Intercept (blue) ∆green ∆orange ∆purple ∆red ∆yellow

β̂0 β̂1 β̂2 β̂3 β̂4 β̂5

0.0110 0.0184 0.0243 0.0243 0.0007 0.0235

where ∆ denotes the difference between the Intercept and the corresponding algorithm. The
global test, whether there are any differences between the algorithms which do not come from the
sampling, can be performed with ANOVA and the F -test. For our model this test rejects the null
hypothesis that all algorithms have the same performance with a p-value < 2.2 × 10−16. This is
the equivalent to the non-parametric test procedure with a reference algorithm.

To test for pairwise differences, we use Tukey contrasts. As a major advantage compared to the
non-parametric methods, can calculate simultaneous confidence intervals (Hothorn et al., 2008).
Figure 5 shows the corresponding 95% family-wise confidence intervals. The differences between
(red, blue), (purple,orange), (yellow,orange) and (yellow,purple) are not significant, the cor-
responding confidence intervals intersect zero and overlap each other. In analogous manner as
described in the non-parametric case, we establish an algorithm order:

blue ≈ red < green < orange ≈ purple ≈ yellow.

The order is equivalent to the non-parametric Wilcoxon-Nemenyi-McDonald-Thompson test, indi-
cating the validity of the assumptions made when applying the linear mixed effects model.

3.3. Overall analysis

The exploratory and inferential analyses lead to different orders based on different standards of
knowledge and questions of interests. We now use ranking and order mechanisms to sum up and
gain an overall analysis.

Example (cont.). Amongst others, the last two sections led to the following most interesting
orders: Rw, based on the minimax rule with m = 12,

blue < red < purple = orange < green < yellow,
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Figure 5: Simultaneous 95% confidence intervals for multiple comparisons of means using Tukey
constrast based on the mixed effects model of the example experiment.

and Rm, based on the mixed effects model,

blue ≈ red < green < orange ≈ purple ≈ yellow.

The minimax order as estimation of the worst performance and the mixed effects model order as
estimation of the mean performance. Additionally we consider the computation time. Figure 6
shows the mean computation times of the candidate algorithms, which leads to the following order
Rc:

red < purple < orange < yellow < green < blue

It is possible indeed to consider others like memory requirements, personal preferences or any
other performance measure p. A lot of possibilities exist to create an overall analysis, we introduce
two methods, the hierarchical order and the consensus ranking.

Hierarchical order. The hierarchical order h is a simple mechanism: starting from a base order,
ties are broken by further ones. So, the sequence of the considered orders matters.

Example (cont.). Suppose, that we want an overall ranking where the mean performance is most
important, then comes the worst performance and least important is the computation time, i.e.,
h(Rm, Rw, Rc). Starting from Rm, the first step uses Rw to break the ties blue ≈ red and yellow
≈ (orange ≈ purple). The second step uses Rc to break the last tie orange ≈ purple. The
resulted hierarchical order is:

blue < red < green < purple < orange < yellow

Consensus. A method where all orders are equally relevant is the consensus. In general the
consensus is the aggregation of preferences of voters, Hornik and Meyer (2007) adapt this for
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Figure 6: Mean computation time of the candidate algorithms in seconds. The benchmark experi-
ment run on a workstation with a AMD Sempron 3400+ (2.00 gigahertz) processor and 1 gigabyte
main memory.

application on benchmark experiments featuring more than one data set. We take up the idea, but
instead of different data sets we apply on different performance measures. The consensus ranking
R is a suitable aggregation of an ensemble of relations {R1, . . . , Rr}. Hornik and Meyer (2007)
present different methods, so-called constructive, axiomatic and optimization approaches. As the
optimization approach formalizes the natural idea of describing consensus relations, we apply this
one. This approach minimizes a criterion function

L(R) =
r∑

i=1

wid(R,Ri),

where R is element of a class C of admissible consensus relations. This class C describes the
requirements on the ranking, e.g. a linear order (complete, antisymmetric, and transitive) or a
complete preorder (complete and transitive). d is the symmetric difference distance between two
relations, i.e. the cardinality of the symmetric difference of the relations, or equivalently, the
number of pairs of algorithms being in exactly one of the two relations. wi is the case weight given
to Ri. For the concrete solution, this problem is reformulated as an integer program, we refer to
the original publication for details.

Example (cont.). We have the relations {Rm, Rw, Rc}, as class C we define the family of linear
orders. The ranking may not be unique, for example the consensus based on Rm and Rw results
in 6 relations with minimal criterion L(R):

blue < red < green < orange < purple < yellow

blue < red < green < purple < orange < yellow

blue < red < orange < green < purple < yellow

blue < red < orange < purple < green < yellow

blue < red < purple < green < orange < yellow

blue < red < purple < orange < green < yellow

If we take a look at Rm and Rw we can explain the result. The ties blue ≈ red and yellow ≈
(orange ≈ purple) in Rm are broken by their fix order in Rw. This results in the fix positions of
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these three algorithms. The different combinations of the remaining three algorithms yield through
the fact that no order breaks the tie between orange and purple, and green is in one order in
front and in the other order behind them. As next step we take the computation time into account,
the consensus ranking reduces to two relations:

red < blue < purple < orange < green < yellow

blue < red < purple < orange < green < yellow

The different combinations from the previous consensus are now clarified, but with the computation
time a new order in respect to blue and red is introduced which leads to the two relations. To
gain a unique solution we weight the relations, e.g. we decide that worst case performance is more
important than computation time and mean performance (wm = 1, ww = 1.2 and wc = 1); the
overall analysis according to our requirements then provides the ranking:

blue < red < purple < orange < green < yellow

4. Analysis of a benchmark experiment with more than one data
set

Besides the analysis of a set of candidate algorithms on one data set, the extension to a set of data
sets is obvious. The benchmark experiment then features M data sets D = {L1, . . . ,LM}. Clearly,
the analysis depends on the specific collection of data sets and is primarily conditional on D. But
even with no algorithm being able to uniformly outperform all others for all possible data sets, this
analysis still is interesting within a small problem domain. For the sake of clearness, we declare a
benchmark survey as a benchmark experiment with more than one data set.

Example (cont.). For illustration purposes we extend the exemplar benchmark experiment intro-
duced in the previous section to a benchmark survey. D is made up of 21 binary classification
problems originated from the UCI Machine Learning repository (Asuncion and Newman, 2007).
See Appendix B.2 for the concrete data sets, their descriptions and encodings. Assume that for
each of the M data sets a benchmark experiment and an analysis as shown in the last section
is made. We rely the following analyses on mixed effects models, the usage of non-parametric
methods instead is analogue.

4.1. Exploratory analysis

Trellis displays (Becker et al., 1996) can give a rough overview of such a benchmark surveys. They
contain one or more panels, arranged in a regular grid-like structure. For each data set one panel
is used and a certain type of graph is displayed. As example, Figure 7 shows a trellis plot with box
plots. But, actually, we have more information then the raw performance measures, we have an
analysis of each single benchmark experiment corresponding to the last section. We can use these
information to display a more specific picture of the benchmark survey.
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Figure 7: Grouped box plots (Trellis display): the raw performance measures of the candidate
algorithms are grouped by the data sets and aggregated by five-number summaries. Each five-
number summary is displayed as a box plot in a panel.

Benchmark survey plot. Let {R1 . . . , RM} be the set of candidate algorithm orders based on linear
mixed effects models. The benchmark survey plot visualizes the orders and an additional summary
statistic of the benchmark experiments in a regular grid-like structure. The x-axis represents the
data sets, the y-axis the podium. For each data set Li, the podium places are painted according
to the corresponding order Ri with “light” colors. Additionally, performance estimates are shown
as percental “dark” bars and the significant difference between two algorithms is shown with a
black border. In case of equivalent algorithms, the ties are broken using the summary statistic,
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Figure 8: Explanation of the benchmark survey plot idea: the abscissa represents the data sets,
the ordinate the podium. Podium places are colored according to the corresponding algorithms,
the bars show performance estimates. A significant difference between two algorithms is shown
with a black border, which is missing in case of non-significance.

but their non-significant difference is shown with the missing of the black border between them.
See Figure 8 for a visual explanation of the benchmark survey plot idea.

For the x-axis we want “similar” data sets close together. We determine the order of the data
sets by the similarity of the corresponding orders of the candidate algorithms. Concerted to the
similarity measure d used for the consensus ranking, we define similarity in terms of the symmetric
difference distance, too. The similarity of the order relations is then determined by the hierarchical
clustering of the distance matrix, and the data set order on the x-axis of the benchmark survey
plot corresponds to the leafs of the resulting dendrogram.

Example (cont.). Figure 9 shows the benchmark survey plot in case of our example survey with the
mean performance as dark bars. Table 2 shows the distance matrix, and Figure 10 the appropriate
dendrogram computed by complete-linkage clustering.

The benchmark survey plot shows that blue has most first places (13 times) and is never worse
than a third place. purple has second most first places (8 times), some last places, and it is the
algorithm with the highest performance value (on data set O). orange has 6 first places, and is the
algorithm with most last places (9 times). yellow, red and green have one or two first places.
Besides that, they dominate the middle places, whereas red seems to be better than green, and
green seems to be better than yellow.

Benchmark survey graph. Another representation method of the benchmark survey based on
the distance matrix is a graph. The graph is a complete one, i.e., every pair of distinct vertices
is connected by an edge. The vertices represent the data sets, the edges the distance between the
data sets. Both graph elements can be used to show additional information, e.g., fill vertices with
the colors of the winner algorithms.
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Figure 9: Benchmark survey plot: this plot visualizes the order relations of the candidate algorithms
(the podium on the ordinate) on all data sets (the abscissa). The podium places are painted in
the corresponding colors of the algorithms, significance is shown with black borders. An additional
performance measure (e.g., the mean misclassification) is displayed with percental bars.

Example (cont.). Figure 11 shows the graph in case of the exemplar benchmark survey. The
layout of the graph is calculated with the Kamada-Kawai algorithm implemented in the Graphviz
software (Gansner and North, 2000). To avoid a too complex and unclear graph, we only show
the first 15 of 24 distance levels with different colors and line widths (from broad dark green to
strait light grey). Vertices whose data sets have a unique winner are filled with the color of the
algorithm. If there are more then one first-placed algorithms, vertices are not colored.

The graph shows kind of two territories: right from the K node, there is the blue territory and
left there is the purple territory. In combination with the benchmark survey plot in Figure 9,
we see that in their territory the corresponding algorithm performs best on each data set. This
information can be used, for example, in a problem domain to chose “the best” algorithm for a
subset of problems or for some meta analyses.

4.2. Consensus

Hornik and Meyer (2007) determine an overall order by the derivation of a consensus ranking based
on the individual benchmark data sets. We used the consensus method in section 3.3 to aggregate
different performance measures, now we use it in the original sense and derive a ranking over the
M data sets and based on a specific performance measure.
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K J U O N D B G F E I H L A P C Q R M T
S 5 12 21 16 13 4 8 16 22 16 21 13 6 14 15 16 19 8 14 19
T 16 19 8 7 16 23 17 15 9 15 12 10 23 15 18 3 6 15 11
M 17 8 7 14 5 14 12 4 8 4 11 11 14 16 17 10 15 12
R 7 12 15 12 13 12 2 16 16 16 15 13 14 8 9 14 17
Q 16 19 8 5 18 19 19 15 7 15 8 8 21 15 14 5
C 13 18 7 4 15 20 16 14 8 14 11 7 20 14 17
P 12 13 10 13 16 11 7 17 9 17 8 16 13 3
A 9 16 11 10 17 14 6 20 12 20 11 17 16
L 11 6 19 22 9 2 12 10 18 10 17 13
H 10 11 12 11 14 13 15 11 11 11 14
I 20 11 4 11 10 17 15 9 3 9
E 21 4 9 18 3 12 16 0 8
F 21 12 1 10 11 18 16 8
G 21 4 9 18 3 12 16
B 7 12 15 14 13 10
D 9 8 19 20 11
N 18 3 10 19
O 11 22 9
U 20 13
J 17

Table 2: Pairwise distances between the data sets: the distance between two data sets is the sym-
metric difference distance between the corresponding order relations of the candidate algorithms.
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Figure 10: The dendrogram displays the similarity of the data sets based on the distance matrix
in Table 2. It is estimated by hierarchical cluster analysis using the complete-linkage method.

Example (cont.). Let, as before, {RA, . . . , RU} be the set of candidate algorithm orders based on
linear mixed effects models. The consensus (with C the family of linear orders) results in two
relations with minimal criterion L(R):

blue < purple < red < green < orange < yellow

blue < purple < red < green < yellow < orange

The two relations indicate that orange and yellow perform equal and the overall ranking based
on the consens is

blue < purple < red < green < yellow ≈ orange.

By means of the benchmark survey plot in Figure 9, the consensus is a sum up along the x-
axis, whereat only the background colors (i.e., the algorithms) count and the bars (i.e., the mean
performances) are not heeded.
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Figure 11: Benchmark survey graph: another representation of the distance matrix. The first 15
distance levels are shown, the color and the with of the edges represent them. Vertices are filled
according to the winner algorithm if there is a unique one.

4.3. Inference

The design of a benchmark survey is a design with two experimental factors and their interactions,
and blocking factors at two levels (e.g. Pinheiro and Bates, 2000). It is modelled by

pijk = κ0 + κj + γk + δjk + bk + bki + εijk

i = 1, . . . , B, j = 1, . . . , (K − 1), k = 1, . . . , (M − 1),

with the set of algorithms modelled as κj , the set of data sets as γk, and the interactions between
algorithms and data sets as δjk. The random effects of the data sets are modelled as bk, the
sampling within the data sets as bki and the systematic error as εijk. Similar to the case of on
data set, the general hypothesis is that of no algorithm differences,

H0 : κ1 = · · · = κK−1 = 0,
HA : ∃j : κj 6= 0.
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Mixed effects model. With linear mixed effects models, the assumptions on the random effects
are bi ∼ N(0, σ2

1), bik ∼ N(0, σ2
2) and εijk ∼ N(0, σ2). Therefore, we estimate two parameters

σ2
1 and σ2

2 for the effect of the data sets and the sampling within the data sets, respectively.
Additionally, 1 + (K − 1) + (M − 1) + (K − 1)(M − 1) fixed effects parameters are estimated.

Example (cont.). In case of our exemplar benchmark survey these are 3 + 126 parameters, see
Appendix A.2 for the parameters and a model summary. The global test with ANOVA and the
F-test rejects the null hypothesis that all algorithms have the same performance on all data sets.
Using Tukey contrasts we test pairwise differences and calculate simultaneous confidence intervals.
Figure 12 shows the 95% family-wise confidence intervals. The only Non-significant difference is
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Figure 12: Simultaneous 95% confidence intervals for multiple comparisons of means using Tukey
constrast based on the mixed effects model of the example experiment.

between orange and green). An interesting aspect appears, blue is a lot better than all other
algorithms. We establish the algorithm order

blue < red ≈ orange ≈ green < yellow < purple.

By means of the benchmark survey plot in Figure 9, this order mechanism heeds the background
colors (i.e., the algorithms) and the bars (i.e., the mean performances). This explains the differences
between this and the consensus order. As example, purple is second-ranked by the consensus
ranking and last-ranked by this ranking. The reason is that purple performs well only if all other
algorithms perform well too. In case of data set E wins purple against green, but only with a
small mean performance difference; in case of data set Q is green the winner against purple and
the mean performance difference is huge. This pattern is visible through all comparisons, and with
the consensus ranking it is not possible to model this circumstance.
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4.4. Overall analysis

In a similar manner to the overall analysis of a benchmark experiment, an overall analysis of a
benchmark study is possible too. Again, one can sum up orders based on different performance
measures with the mechanisms introduced in section 3.3.

5. Summary and future work

In this paper we present exploratory and inferential analyses of benchmark experiments based on
one or more data sets. We introduce several new visualisation methods, the benchmark experiment
plot, the benchmark survey plot and the benchmark survey graph. Parametric and non-parametric
procedures are introduced to formally analyze benchmark experiments and surveys. In case of the
benchmark experiment the design is a random block design and we show non-parametric procedures
based on the Friedman test, and model the design using mixed effects, a parametric approach. In
case of the benchmark survey the design has two experimental factors, their interactions and
blocking factors at two levels; we model it using mixed effects. The formal procedures allow to
test various hypothesis of interest, amongst others, the pairwise differences. We introduce an order
relation for algorithms with non-significant differences, and infer a statistically correct order of the
candidate algorithms, even in cases with more than one performance measure.

Future work contains work in all three (abstract) levels of the benchmarking process: Setup,
Execution and Analysis. We want to use sequential testing to reduce computation time and study
other modelling mechanism like mixture and hierarchical models. Furthermore, we want to examine
the methodology of benchmarking and see if there are even any differences if one replaces a element
of the benchmarking process by another one, e.g., uses the parametric test procedures instead of
the non-parametric ones.
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A. Summary of the fitted mixed effects models

A.1. Benchmark experiment with data set I
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Figure 13: Mixed effects model of the exemplar benchmark experiment: (a) box plot of the fitted
values and (b) box plot of the residuals.

In section 3.2 we fit a linear mixed effects model for the inferential analysis of the exemplar
benchmark experiment. Figure 13(a) shows a box plot of the fitted values grouped by the candidate
algorithms. In comparison with Figure 2(b), the box plot of the raw performance values, no serious
differences are visible. Figure 13(b) shows a box plot of the residuals. All mean values are near
zero and except algorithm green all deviations are symmetric.

A.2. Benchmark survey with data sets A, ..., U

In section 4.3 we fit a linear mixed effects model for the inferential analysis of the exemplar
benchmark experiment with more than one data set. The estimates for the model parameters have
been calculated as

σ̂1 = 0.0015, σ̂2 = 0.0130, σ̂ = 0.0349

and

Intercept ∆green ∆orange ∆purple ∆red ∆yellow ∆J ∆U
β0 β1 β2 β3 β4 β5 γ1 γ2

0.0310 0.0173 −0.0040 0.0134 0.0330 0.0090 0.1223 0.0248

∆O ∆N ∆D ∆B ∆G ∆F ∆E ∆I
γ3 γ4 γ5 γ6 γ7 γ8 γ9 γ10

−0.0236 0.2414 0.1762 0.1151 0.0186 0.0340 0.3162 −0.0201

∆H ∆L ∆A ∆P ∆C ∆Q ∆R ∆M
γ11 γ12 γ13 γ14 γ15 γ16 γ17 γ18

0.0465 0.2349 0.0953 −0.0151 0.1221 −0.0303 0.0988 −0.0245

∆T ∆S ∆green:J ∆orange:J ∆purple:J ∆red:J ∆yellow:J ∆green:U
γ19 γ20 δ1,1 δ2,1 δ3,1 δ4,1 δ5,1 δ1,2

0.1824 −0.0048 0.1827 0.0758 -0.0299 −0.0336 0.2052 −0.0082

∆orange:U ∆purple:U ∆red:U ∆yellow:U ∆green:O ∆orange:O ∆purple:O ∆red:O
δ2,2 δ3,2 δ4,2 δ5,2 δ1,3 δ2,3 δ3,3 δ4,3
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0.1243 0.0413 −0.0219 0.0477 0.0139 0.0633 0.4694 0.0158

∆yellow:O ∆green:N ∆orange:N ∆purple:N ∆red:N ∆yellow:N ∆green:D ∆orange:D
δ5,3 δ1,4 δ2,4 δ3,4 δ4,4 δ5,4 δ1,5 δ2,5

0.0081 −0.0055 0.0248 −0.0454 −0.0274 0.0591 0.2258 −0.0364

∆purple:D ∆red:D ∆yellow:D ∆green:B ∆orange:B ∆purple:B ∆red:B ∆yellow:B
δ3,5 δ4,5 δ5,5 δ1,6 δ2,6 δ3,6 δ4,6 δ5,6

−0.0530 −0.0035 0.2085 0.0156 0.0073 0.0262 0.0300 0.0524

∆green:G ∆orange:G ∆purple:G ∆red:G ∆yellow:G ∆green:F ∆orange:F ∆purple:F
δ1,7 δ2,7 δ3,7 δ4,7 δ5,7 δ1,8 δ2,8 δ3,8

−0.0081 0.0532 −0.0334 −0.0331 0.0223 0.0475 0.1130 0.0654

∆red:F ∆yellow:F ∆green:E ∆orange:E ∆purple:E ∆red:E ∆yellow:E ∆green:I
δ4,8 δ5,8 δ1,9 δ2,9 δ3,9 δ4,9 δ5,9 δ1,10

0.0157 0.0732 0.0108 0.1009 −0.0266 −0.0230 0.0330 0.0010

∆orange:I ∆purple:I ∆red:I ∆yellow:I ∆green:H ∆orange:H ∆purple:H ∆red:H
δ2,10 δ3,10 δ4,10 δ5,10 δ1,11 δ2,11 δ3,11 δ4,11

0.0283 0.0109 −0.0324 0.0145 0.2966 0.2053 0.1530 0.1449

∆yellow:H ∆green:L ∆orange:L ∆purple:L ∆red:L ∆yellow:L ∆green:A ∆orange:A
δ5,11 δ1,12 δ2,12 δ3,12 δ4,12 δ5,12 δ1,13 δ2,13

0.0655 0.0664 −0.0124 −0.0446 −0.0373 0.0513 0.0335 0.0089

∆purple:A ∆red:A ∆yellow:A ∆green:P ∆orange:P ∆purple:P ∆red:P ∆yellow:P
δ3,13 δ4,13 δ5,13 δ1,14 δ2,14 δ3,14 δ4,14 δ5,14

0.1640 0.0916 0.1321 0.2461 0.0003 0.3432 0.1339 0.3503

∆green:C ∆orange:C ∆purple:C ∆red:C ∆yellow:C ∆green:Q ∆orange:Q ∆purple:Q
δ1,15 δ2,15 δ3,15 δ4,15 δ5,15 δ1,16 δ2,16 δ3,16

0.0511 0.1734 0.1181 0.1088 0.0275 0.0927 0.5038 0.4851

∆red:Q ∆yellow:Q ∆green:R ∆orange:R ∆purple:R ∆red:R ∆yellow:R ∆green:M
δ4,16 δ5,16 δ1,17 δ2,17 δ3,17 δ4,17 δ5,17 δ1,18
−0.0018 −0.0088 0.0183 0.0265 0.0246 0.1470 0.0906 0.0454

∆orange:M ∆purple:M ∆red:M ∆yellow:M ∆green:T ∆orange:T ∆purple:T ∆red:T
δ2,18 δ3,18 δ4,18 δ5,18 δ1,19 δ2,19 δ3,19 δ4,19

0.2919 −0.0034 0.0584 0.1556 −0.0172 0.0164 −0.0052 −0.0257

∆yellow:T ∆green:S ∆orange:S ∆purple:S ∆red:S ∆yellow:S
δ5,19 δ1,20 δ2,20 δ3,20 δ4,20 δ5,20
−0.0095 −0.0071 −0.0007 −0.0173 0.1525 −0.0019

Figure 14 shows box plots of the fitted values, first grouped by data sets and then grouped by
algorithms. Again, in comparison with the box plot of the raw performance measures, Figure 7,
no serious differences are visible. The residual plot, Figure 15, shows that all mean values are near
zero and all deviations are symmetric, except algorithm green in some cases, e.g., data set J.
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Figure 14: Mixed effects model of the exemplar benchmark survey: box plot of fitted values,
grouped by data sets.
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Figure 15: Mixed effects model of the exemplar benchmark survey: box plot of the residuals,
grouped by data sets.
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B. Components of the exemplar benchmark experiment

B.1. Algorithms

The candidate algorithms are:

linear discriminant analysis: encoded as , orange; available through the function lda in package
MASS.

naive bayes classifier: encoded as , yellow; available through the function naiveBayes in pack-
age e1071.

k-nearest neighbour classifier: encoded as , purple; available through the function knn in pack-
age class. The hyperparameter k (the number of neighours) is determined with cross-
validation between 1 and

√
n, n the number of observations.

classification trees: encoded as , red; available through the function rpart in package rpart.
The fulled tree is pruned according to the 1-SE rule (e.g., Venables and Ripley, 2002; Hastie
et al., 2001).

support vector machines: encoded as , blue; available through the function svm in package
e1071. We use the C-classification machine, which has two hyperparameters γ (the cost of
constraints violation) and c (the kernel parameter). Following Meyer et al. (2003) the best
choices are determined with a grid search over the two-dimensional parameter space (γ, c),
γ ranges from 2−5 to 212 and c from 2−10 to 25.

neural networks: encoded as , green; available through the function nnet in package nnet.
The hyperparameter is the number of hidden units. The best value is searched with cross-
validation between 1 and log(n), n the number of observations (following Meyer et al., 2003).

B.2. Data sets

The benchmark survey is made up of 21 binary classification problems originated from the UCI
Machine Learning repository (Asuncion and Newman, 2007):

Problem #Attributes #Samples Class
nominal continuous complete incomplete distribution (%)

promotergene A 57 106 50.00/50.00
hepatitis B 13 6 80 75 20.65/79.35
Sonar C 60 208 53.37/46.63
Heart1 D 8 5 296 7 54.46/45.54
liver E 6 345 42.03/57.97
Ionosphere F 1 32 351 35.90/64.10
HouseVotes84 G 16 232 203 61.38/38.62
musk H 166 476 56.51/43.49
monks3 I 6 554 48.01/51.99
Cards J 9 6 653 37 44.49/55.51
BreastCancer K 9 683 16 65.52/34.48
PimaIndiansDiabetes L 8 768 65.10/34.90
tictactoe M 9 958 34.66/65.34
credit N 24 1000 70.00/30.00
Circle (*) O 2 1200 50.67/49.33
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ringnorm (*) P 20 1200 50.00/50.00
Spirals (*) Q 2 1200 50.00/50.00
threenorm (*) R 20 1200 50.00/50.00
twonorm (*) S 20 1200 50.00/50.00
titanic T 3 2201 67.70/32.30
chess U 36 3196 47.78/52.22

Table 4: The 21 problems used for illustration. Problems marked with (*) are artificially created.
The list ist sorted by the number of samples. The letters are codes for plots which deal with these
problems.
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