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Abstract: The aim of this paper is to provide a minimalist axiomatic the-
ory of truth based on the notion of reference. To do this, we first give
sound and arithmetically simple notions of reference, self-reference, and
well-foundedness for the language of first-order arithmetic extended with a
truth predicate; a task that has been so far elusive in the literature. Then,
we use the new notions to restrict the T-schema to sentences that exhibit
‘safe’ reference patterns, confirming the widely accepted but never worked
out idea that paradoxes can be characterised in terms of their underlying ref-
erence patterns. This results in a strong, ω-consistent, and well-motivated
system of disquotational truth, as required by minimalism.
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1 Introduction5

The core of minimalism, one of the most popular versions of deflationism6

about truth nowadays, consist of the following two theses: first, that the7

meaning of the truth predicate is exhausted by the T-schema, this is8

Tpϕq↔ ϕ, (T-schema)

where T stands for the truth predicate, ϕ is a sentence and pϕq a quotational9

name for it.2 Second, that the truth predicate is just a logico-linguistic device10

that exists in the language solely to allow us to express certain things—main-11

ly generalisations—we simply cannot express otherwise. The latter prompts12

the construction of ‘logics’ or axiomatic theories of truth. The former thesis13

1I’m obliged to Eduardo Barrio, Volker Halbach, Hannes Leitgeb, Thomas Schindler, the
Buenos Aires Logic Group, and the MCMP logic group for their extremely useful comments,
suggestions, and corrections on previous stages of this work.

2Actually, Horwich (1998), the main exponent of minimalism, takes propositions to be truth
bearers rather than sentences. In his account pϕq should be understood as a canonical name of
the proposition expressed by ϕ.
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suggests the instances of the T-schema—i.e. the T-biconditionals—as ax-14

ioms.15

Unfortunately, as is well-known, if the language is capable of self-refer-16

ence and the underlying logic is classical, the full T-schema leads to para-17

dox. For we can formulate a liar sentence λ, that “says of itself” that it’s18

untrue. Thus, we have that19

λ↔ ¬Tpλq, (1)

which obviously contradicts the T-biconditional for λ. As a consequence,20

minimalists choose to let some T-biconditionals go, as follows:21

[. . . ] the principles governing our selection of excluded in-22

stances are, in order of priority: (a) that the minimal theory23

not engender ‘liar-type’ contradictions; (b) that the set of ex-24

cluded instances be as small as possible; and—perhaps just as25

important as (b)—(c) that there be a constructive specification26

of the excluded instances that is as simple as possible. (Hor-27

wich, 1998, p. 42)28

Theories consisting exclusively of instances of the T-schema are called29

disquotational. The search for a constructive and encompassing policy for30

selecting jointly-consistent instances of this principle is what we call the31

minimalist project.32

The task is not as easy as it may seem. The most natural option, namely33

letting the instances that lead to contradiction go, is not available, as McGee34

(1992) has shown. There is not one but many different maximal consistent35

sets of T-biconditionals, all of which are highly complex—not even arith-36

metically definable. A stricter criterion than mere consistency is needed.37

Horwich himself puts forward a plausible restriction:38

The intuitive idea is that an instance of the equivalence [T-]39

schema will be acceptable, even if it governs a proposition con-40

cerning truth (e.g. “What John said is true”), as long as that41

proposition (or its negation) is grounded—i.e. is entailed either42

by the non-truth-theoretic facts, or by those facts together with43

whichever truth-theoretic facts are ‘immediately’ entailed by44

them (via the already legitimised instances of the equivalence45

schema), or . . . and so on. (Horwich, 2005, p. 81)46
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However, he doesn’t specify in which way we should understand ‘grounded’47

or ‘entailed’. Moreover, the notions of grounding (Kripke, 1975) and depen-48

dence on non-truth-theoretic facts (Leitgeb, 2005) that are available in the49

literature, even though they can lead to a unique set of acceptable instances50

of the T-schema, are far from supporting a constructive specification.51

Perhaps the criterion that fares best so far is that of T -positiveness: only52

sentences in which the truth predicate occurs positively (i.e. under the scope53

of an even number of negation symbols) are allowed in the T-schema (Hal-54

bach, 2009). This is a recursive restriction that results in an ω-consistent55

powerful system when formulated over Peano arithmetic, called PUTB.356

However, T -positiveness is a highly artificial restriction. It leaves out many57

intuitively harmless instances of the T-schema, and is inconsistent with ap-58

pealing truth principles, like consistency and the fact that Modus Ponens59

and Conditional Proof preserve truth.60

According to the orthodox view on paradoxes driven by Poincaré, Rus-61

sell and Tarski, among others, semantic paradoxes and other pathological62

expressions are characterised by a common reference pattern, namely, self-63

reference. That certainly seems to be the case for liar sentences. This view64

has never been thoroughly investigated, mainly because of the elusiveness65

of a sound notion of reference for formal languages. If true, self-reference66

could be employed as a plausible restriction on the T-schema. Moreover,67

since reference has a syntactic vein, the resulting criterion could be in prin-68

ciple simple enough to give axiomatic disquotational theories.69

However, Yablo (1985, 1993) challenged the orthodox view with a prima70

facie non-self-referential semantic paradox. This antinomy gave rise to a71

lively debate on its referential status that put in evidence the lack of sound72

and precise notions of reference and self-reference in the literature to assess73

paradoxes in formal languages (cf. Cook, 2006; Leitgeb, 2002). Until we74

come up with such notions, neither the orthodox view nor the referential75

status of Yablo’s paradox can be evaluated properly.76

The first goal of this paper is to remedy this situation. After some77

technical preliminaries in section 2, section 3 provides precise and intu-78

itively appealing definitions of reference, and thus self-reference and well-79

foundedness, for formal languages of truth. As it turns out, according to80

3PUTB can relatively interpret the Ramified Theory of Truth up to the ordinal ε0, RT<ε0 , an
axiomatic version of Tarski’s hierarchy of semantic theories, and the Kripke-Fererman theory
KF, an axiomatisation of Kripke’s fixed-point semantic theory with the strong Kleene valuation
scheme. In fact, it can be show that all three systems have the same proof-theoretic power. For
an introduction to the systems and proofs of the quoted results see (Halbach, 2011), instead.
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our definitions, the orthodox view is wrong, for Yablo’s paradox isn’t self-81

referential. Nonetheless, we show it is still possible to characterise the se-82

mantic paradoxes in terms of their referential patterns: they are all non-well-83

founded, as Horwich notices. This will become evident in section 4. Since84

the new notions are of a proof-theoretic nature, we employ them in the con-85

struction of an axiomatic theory given by well-founded T-bicondicionals.86

We show that this system is sound and at least as strong as the best regarded87

axiomatic theories in the literature. Thus, in section 5 we conclude it’s a88

good candidate for minimalism, the second and main aim of this note.89

2 Technical preliminaries90

Let L be the language of first-order Peano arithmetic (PA), with ¬, →,∀91

and = as primitive logical symbols. Formulae containing ∧, ∨, ↔ and92

∃ are understood as abbreviations. L contains one individual constant 0,93

the successor function symbol S, and finitely many other function symbols94

for primitive recursive (p.r.) functions, to be specified. L has no predicate95

symbols besides identity. Other relation symbols such as < are mere abbre-96

viations. For each n ∈ ω, the complex term given by n occurrences of S97

followed by 0 is the numeral of n, which we note n̄. N is the standard model98

of L, with ω as its domain.99

LT , our language of truth, expands L with a new predicate symbol T100

for truth. PAT is the result of formulating PA in LT , taking all the instances101

of induction given by formulae of this language as axioms. If Γ ⊆ ω, let102

〈N,Γ〉 be the expansion of N to LT , assigning Γ to T as its extension.103

The expressions of LT can be codified with natural numbers à la Gödel,104

so that L and its extensions can be understood as talking about these ex-105

pressions and sequences (instead of numbers). Given a particular coding106

and an expression σ of LT , #(σ) is the code of σ and pσq is the numeral of107

this code. We assume a standard coding, this is effective and monotonic.4108

Usually, we identify expressions with their codes, for perspicuity.109

As is well known, for any n ∈ ω the (semi-)recursive subsets of ωn can110

be defined in L and (weakly) represented in PA.5 Let ClTerm(v) represent111

the recursive set of closed terms of LT . If TH ⊆ LT is a recursively axioma-112

tisable system, BewTH(v) weakly represents the set of its theorems. If TH is113

4I.e. if a string of symbols σ occurs in another string σ′, then #(σ) < #(σ′).
5Actually, this is possible already in Robinson arithmetic, a subsystem of PA. We use the

latter for uniformity.
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PA, we omit the subscript. We assume that all predicates BewTH(v) satisfy114

Löb’s derivability conditions (cf. Löb, 1955).115

For any expression σ, let ~σ abbreviate σ1, . . . , σn. The diagonalisation116

function, that takes a formula ϕ(v,~v) and returns ∀v(v = pϕq → ϕ), is117

represented in PA by Diag(u, v). The evaluation function, that takes a term118

t of LT and returns the numeral of the number it denotes, is also recursive119

and representable in PA by val(u, v).120

We assume L contains the following function symbols for p.r. functions,121

and PA their corresponding definitions: ¬. v for the function that maps ϕ into122

¬ϕ, u(v/w) for the substitution function, that takes a formula ϕ and two123

terms t and s and replaces s in ϕ with t, and v̇ for the numeral function that124

assigns to each number n its numeral n̄. L cannot contain a function symbol125

for the evaluation function for its own terms, on pain of triviality. However,126

we write u◦ = v for the evaluation function as short for val(u, v).127

Let ∀v(ψ(pϕ(v̇)q)) abbreviate ∀v(ψ(pϕq(v̇/puq))), which allows us to128

quantify over the free occurrences of v in ϕ[v/u] when ϕ is between corner129

quotes. Also, let ∀tϕ abbreviate ∀v(ClTerm(v) → ϕ). As before, instead130

of ∀t(ψ(pϕq(t/pvq))) we write ∀t(ψ(pϕ(t.)q)) to quantify over terms within131

Gödel quotes.132

Later it will become useful to have in mind the proof of the following133

well-known result.134

Theorem 1 (Weak diagonal lemma) For any formula ϕ(v,~v) ∈ LT there135

is a formula ψ(~v) ∈ L s.t.136

PAT ` ψ(~v)↔ ϕ(pψ(~v)q, ~v)

Proof. The result of applying the diagonalisation function to137

∀u(Diag(v, u)→ ϕ(u,~v))

is the formula138

∀v(v = p∀u(Diag(v, u)→ ϕ(u,~v))q→ ∀u(Diag(v, u)→ ϕ(u,~v))) (2)

Let a be the numeral of the Gödel code of (2). (2) is equivalent in PAT to139

∀u(Diag(p∀u(Diag(v, u)→ ϕ(u,~v))q, u)→ ϕ(u,~v))

which is equivalent to ϕ(a,~v).140

It’s possible to strengthen this result using function symbols as follows:141
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Theorem 2 (Strong diagonal lemma) For any formula ϕ(v,~v) of LT there142

is a term t s.t.143

PA ` t = pϕ(t, ~v)q

It is commonly thought that both diagonal lemmata deliver self-referen-144

tial expressions. For instance, applying strong diagonalisation to the predi-145

cate ¬Bew(v) we obtain a term g s.t.146

PA ` g = p¬Bew(g)q (3)

¬Bew(g) is a Gödel sentence of PA and it is usually understood as “saying147

of itself” that it isn’t provable in PA. As is well known, this sentence is true148

and therefore unprovable in PA.149

Finally, recall that formulae in L can be classified according to their150

quantificational—also called arithmetical—complexity into sets Σn,Πn and151

∆n ⊆ L, with n ∈ ω. These sets constitute the arithmetical hierarchy. If152

ϕ is logically equivalent to a formula where all quantifiers are bound, ϕ is153

both Σ0 and Π0. If ϕ is logically equivalent to a formula of the form ∀~vψ,154

where ψ ∈ Σn, then ϕ ∈ Πn+1. If ϕ is logically equivalent to a formula of155

the form ¬∀~vψ where ψ ∈ Πn, then ϕ ∈ Σn+1. Finally, if ϕ is both Πn and156

Σn, we say that ϕ ∈ ∆n. Note that the sets in the hierarchy are cumulative,157

for it’s always possible to add superfluous quantifiers at the beginning of a158

formula.159

Recursive sets can be defined in L by ∆0-formulae, and semi-recursive160

sets by Σ1-formulae. Non-semi-recursive sets can only be defined by more161

complex formulae, if at all. Every ∆0-formula is decidable in PA. If ϕ ∈ Σ1162

is true in the standard model, then PA ` ϕ, this is, PA is Σ1-complete. For163

other, more complex expressions, we have no guarantees.164

3 Alethic reference165

In this section we focus on the reference of sentences of LT to sentences166

of the same language. This isn’t just any kind of reference but reference167

through the truth predicate or, as we call it, alethic reference. Intuitively,168

an expression alethically refers to all sentences that syntactically fall, as it169

were, under the scope of the truth predicate. This will become clear soon.170

The notion we provide, is, as we show, of a low arithmetical complexity,171

though this doesn’t come without costs.172
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A sentence in a first-order language can refer to an object either by men-173

tioning it or by quantifying over it. In the first case, the expression must con-174

tain a term t that denotes the object. Since we’re only interested in alethic175

reference, we have the following definition.176

Definition 1 Let ϕ and ψ be sentences of LT . ϕ refers by mention to ψ,177

or m-refers, for short, iff ϕ contains a subsentence Tt and PA ` t = pψq.178

Note that if t actually denotes the code of ψ then PA will be able to prove179

it, for identity statements don’t contain quantifiers. Definition 1 covers many180

cases, like the liar sentence that obtains applying the strong diagonal lemma181

to ¬Tv, that is182

PA ` l = p¬T lq, (4)

that intuitively m-refers to itself. In general, any sentence that result from183

strongly diagonalising formulae that contain Tv as a subformula will m-184

refer to themselves. On the other hand, if we strongly diagonalise formulae185

that don’t satisfy this condition, we might not get self-referential expres-186

sions. For instance, diagonalising T¬. v we get187

PA ` l′ = pT¬. l′q. (5)

T¬. l′ is an alternative liar sentence that doesn’t refer to itself according188

to definition 1 but only to its negation. The latter is actually the self-m-189

referential one. This follows from (5) and the fact that ¬T¬. l′ contains T¬. l′190

as a subsentence.191

Sentences of LT can also refer to other sentences by quantifying over192

them. For instance,193

∀x(Bew(x)→ Tx) (6)

intuitively refers to all theorems of arithmetic, while194

∀xTx (7)

seems to refer to everything. Conditionals allow us to restrict reference195

by quantification. Thus, if a universal quantifier or a string of universal196

quantifiers is followed by a conditional expression, we would like to say197

that it refers to whatever satisfies the antecedent, and otherwise it refers to198

everything.199

However, things are not so simple. In the first place, talking about satis-200

faction introduces too much complexity into our notion, for to know whether201
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an arbitrary code satisfies a certain formula we would have to look into202

the set of arithmetically true statements, which is not arithmetically defin-203

able. Thus, we turn to the notion of provability instead. After all, what204

matters to avoid paradoxes is that we cannot derive a contradiction or an205

unsound claim. Consequently, the resulting notion of reference via quan-206

tification—or q-reference, for short—will be tied to a particular system, the207

system whose provability predicate we employ in the definition. We work208

in PA, but any extension of Robinson arithmetic works as well.209

Secondly, recall we’re only interested in alethic reference here, so what210

matters is what actually falls under the scope of T . While in (6) all theorems211

of arithmetic fall under the scope of T , in ∀x(Bew(x) → T¬. x) only their212

negations do. Analogously, in (7) all sentences fall under T but in ∀xT¬. x213

only negations do. And the same can be said of more complex expressions.214

For instance, in ∀x(Bew(x) → ∀y(y = ¬. x → ¬Ty)), again, only nega-215

tions of PA’s theorems fall under the scope of the truth predicate. Thus, we216

define q-reference recursively. Roughly, a universal expression q-refers to217

whatever its instances m- or q-refer to, unless the universal quantifier is fol-218

lowed by a conditional, in which case we consider only the instances given219

by numerals that provably satisfy the antecedent.220

Finally, note that if quantification is restricted by a conditional expres-221

sion in which the truth predicate occurs both in the antecedent and the con-222

sequent—e.g. ∀x(Tx→ Tx), our theory has no means to know which sen-223

tences fall in the scope of T ; since the idea is to axiomatise truth in terms224

of reference, not vice versa. Sentences of this kind could exhibit danger-225

ous reference patterns without us knowing. Therefore, we just treat them as226

non-conditional expressions.227

Now we turn to the formal definition of alethic q-reference.228

Definition 2 Let ϕ,ψ be sentences of LT . ϕ q-refers to ψ in PA iff T229

occurs in ϕ and one of the conditions 1-3 holds:230

1. ϕ := ∀~vχ and231

(a) χ := Tt or χ := ¬δ and, for some ~k ∈ ω, χ[~̄k/~v] q-refers to ψ232

or has a new occurrence of Ts as a subsentence s.t. PA ` s =233

pψq; or234

(b) χ := δ → γ and235

i. both δ and γ contain T and for some ~k ∈ ω, χ[~̄k/~v] q-refers236

to ψ or contains a new occurrence of Tt as a subsentence237

s.t. PA ` t = pψq, or238
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ii. only γ (δ) contains T and there exist ~k ∈ ω and 1 ≤ i ≤ n239

s.t. PA ` δ[~̄k/~v] (¬γ[~̄k/~v]) and (δ → γ)[~̄k/~v] q-refers to240

ψ or contains a new occurrence of Tt as a subsentence s.t.241

PA ` t = pψq.242

2. ϕ := ¬χ and χ q-refers to ψ.243

3. ϕ := χ→ δ and either χ or δ q-refer to ψ.244

By a new occurrence of Tt in χ[~̄k/~v] in the above definition we mean245

that Tt occurs in the result of replacing all occurrences of Tt in χ with246

0 = 0 (or any sentence not containing T ) and then instantiating the variables247

~v with ~̄k. This is needed to avoid cases of m-reference passing as cases of248

q-reference—e.g. in ∀xTpλq.249

According to definition 2, the liar sentence λ introduced in (1) q-refers250

to itself, as well as all sentences that are obtained by weakly diagonalising251

a predicate ϕ(v) containing Tv as a subformula. Looking at the proof of252

theorem 1, we see that the real form of these sentences is253

∀u(u = p∀v(Diag(u, v)→ ϕ(v))q→ ∀v(Diag(u, v)→ ϕ(v))) (8)

Applying the clause (b)ii. of definition 2 twice, we get that (8) is q-self-254

referential. But just like in the case of m-reference, if Tv isn’t a subformula255

of ϕ(v), our definition cannot guarantee that the weak diagonalisation of256

this predicate will be a self-referential expression.257

Note that the notion of q-reference could clash with some of our intu-258

itions. If g = p¬Bew(g)q as in (3), strongly diagonalising the predicate259

∀x(x = y ∧ ¬Bew(g)→ ¬Tx) delivers a term l∗ s.t.260

PA ` l∗ = p∀x(x = l∗ ∧ ¬Bew(g)→ ¬Tx)q (9)

Since ¬Bew(g) is true in the standard model, intuitively we would say261

∀x(x = l∗ ∧¬Bew(g)→ ¬Tx) q-refers to itself. However, we’re thinking262

about reference in PA, so this won’t be the case. For PA cannot prove its own263

Gödel sentence, on pain of triviality. This is a direct consequence of adopt-264

ing provability instead of satisfaction for defining reference. As we will see265

later, this issue can be circumvented to some extent.266

Putting the notions of m- and q-reference together isn’t enough to define
reference simpliciter. Consider the following identities:

l1 = pT l2q (10)
l2 = p¬T l1q.
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This statements can be proved in PA by slightly tweaking theorem 2. To-267

gether, they give rise to a paradox akin to the liar. Sentences T l2 and ¬T l1268

m-refer only to each other but, intuitively, also refer to themselves, though269

indirectly. Alethic reference is a transitive relation.270

Definition 3 Let ϕ,ψ be sentences of LT . ϕ directly refers to ψ in PA iff it271

m- or q-refers to ψ in PA.272

Definition 4 A sequence of sentences χ0, . . . , χn ∈ LT , n ∈ ω, is a chain273

of reference in PA iff, for each i < n, χi directly refers to χi+1 in PA.274

Definition 5 Let ϕ,ψ be sentences of LT . ϕ refers to ψ in PA iff there’s a275

chain of reference in PA starting with ϕ and ending with ψ.276

According to this definition, both T l2 and ¬T l1 refer to themselves, as277

we wanted.278

It’s worth noticing that the notion of reference we present is not exten-279

sional but hyperintensional: there are logically equivalent sentences that280

don’t refer to the same things. For instance, 0 = 0 and Tpλq ∨ ¬Tpλq are281

logically equivalent but, while the former doesn’t refer to anything, the lat-282

ter refers to λ. Unlike grounding or dependence, reference is based at least283

partly on syntactic features of sentences and, therefore, extensionality fails.284

The notion of reference we introduced can be used to define relevant285

reference patterns, such as the following two.286

Definition 6 A sentence ϕ ∈ LT is self-referential in PA iff it refers to287

itself in PA.288

According to this definition, sentences such as λ in (1), ¬T l in (4) and289

T l2 and ¬T l1 in (10) turn out to be self-referential.290

Definition 7 A sentence ϕ ∈ LT is well-founded in PA iff there is no in-291

definitely extensible chain of reference in PA starting with ϕ.292

Every self-referential expression is obviously non-well-founded. But293

there are also non-well-founded sentences that don’t refer to themselves.294

Yablo’s paradox (Yablo, 1985, 1993) consist of an infinite sequence of sen-295

tences, each of which says of the ones coming after that they are untrue.296

In LT , Yablo’s sentences can be formalised as ∀x > n̄¬Tυ(x), where297

υ(v) = p∀x > v̇¬Tυ(x)q. This identity statement is provable in PA by298

strong diagonalisation, guaranteeing the existence of the list in our formal299

setting.300
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According to definitions 6 and 7, no sentence in the sequence is self-301

referential, though they are all non-well-founded. It can be shown that an302

ω-inconsistency follows from the set of T-biconditionals for sentence in303

Yablo’s list, so the paradox is actually an ω-paradox (cf. Ketland, 2005).304

If our definitions are correct, this shows that the orthodox view on semantic305

paradoxes is mistaken: there are non-self-referential (ω-)paradoxes. But this306

doesn’t spell doom to our approach, for semantic paradoxes could share a307

reference pattern other than self-reference; for instance, non-well-founded-308

ness. Later we will see this is actually the case.309

It’s easily seen that m-reference is recursive. Since the only proper310

non-recursive notion involved in the definition of q-reference is the semi-311

recursive notion of provability, and it occurs only positively, q-reference is312

also semi-recursive. By a similar reasoning, direct reference, reference and313

self-reference are semi-recursive as well. Well-foundedness, on the other314

hand, is more complex. Nonetheless, all of these notions can be defined in315

L and most of them at least weakly represented in PA. This sets reference316

further apart from the usual notions of grounding and dependence, and is317

enough to allow our notion to play a role in a disquotational axiomatisation318

of truth.319

Being q-reference strictly semi-recursive, PA can prove all positive cases,320

but some negative ones won’t be provable. For instance, PA has no means to321

know that322

∀x(x = p0 = 0q→ Tx) (11)

does not q-refer to itself. That would mean PA knows that ¬Bew(p∀x(x =323

p0 = 0q → Tx)q = p0 = 0q), this is, its own consistency. Since we want324

to be able to determine which sentences exhibit safe referential patterns to325

take them as instances of the T-schema, and (11) clearly does, we must326

add axioms to inform our theory of some negative cases of q-reference—by327

Gödel’s theorem, it’s impossible to have them all. The simplest principle we328

can add is329

∀x(Bew(¬. x)→ ¬Bew(x)) (QR)

Since QR is true-in-N, PA + QR, or QR(PA) for short, is ω-consistent. Given330

that PA knows that p∀x(x = p0 = 0q→ Tx)q 6= p0 = 0q and, therefore, that331

Bew(p∀x(x = p0 = 0q → Tx)q 6= p0 = 0q), we can conclude in QR(PA)332

that ¬Bew(p∀x(x = p0 = 0q → Tx)q = p0 = 0q), which means that (11)333

doesn’t q-refer to itself.334
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4 Well-founded truth335

In the previous section we provided formal proof-theoretic notions of alethic336

reference, self-reference, and well-foundedness for sentences of LT in PA.337

The next step is to use them in the formulation of axiomatic disquotational338

theories of truth.339

In the spirit of Horwich’s (2005, p. 81) idea cited in the introduction, the340

most natural choice is to relativise the T-schema to the predicateWf(v) ∈ L341

that defines well-foundedness in PA according to definition 7. However, this342

wouldn’t result in a consistent system. Coming back to our example in (9),343

recall that ∀x(x = l∗ ∧ ¬Bew(g)→ ¬Tx) (= l∗) doesn’t refer to anything344

in PA, for PA 0 Bew(p¬Bew(g)q). Moreover, QR(PA) can prove this, by345

internalising a proof of Gödel’s theorem. Thus, QR(PA) ` Wf(l∗). But, as346

it turns out, the T-biconditional for ∀x(x = l∗ ∧ ¬Bew(g) → ¬Tx) leads347

directly to paradox. The reason is that this sentence is well-founded in PA348

but not in QR(PA), where it’s actually self-referential.349

To avoid this problem we restrict our attention to those sentences whose350

referenced expressions do not increase when we adopt more powerful sys-351

tems. We call them r-stable. To formally characterise them, we need the352

following auxiliary notion:353

Definition 8 A sentence ϕ ∈ LT is dr-stable iff all its subformulae of the354

form ψ → χ where a free variable occurs in the scope of T and exactly one355

of ψ, χ contains T are s.t. the one not containing T is ∆0.6356

For instance, Tp∀x(Bew(x)→ Tx)q and (11) are dr-stable, while

∀x(Bew(x)→ Tx)

isn’t, for Bew(v) /∈ ∆0. If a dr-stable sentence ϕ doesn’t directly refer to357

another sentence ψ in PA, ϕ cannot directly refer to ψ in a stronger theory358

either, since PA already decides all instances of ∆0-formulae.359

Definition 9 A sentence ϕ ∈ LT is r-stable iff it is dr-stable and refers360

only to dr-stable sentences.361

Thus, Tp∀x(Bew(x) → Tx)q isn’t r-stable, but (11) is, because it only362

refers to 0 = 0. R-unstable expressions bear a certain analogy with blind363

6By just considering ∆0-expressions and not also their PA-equivalents we’re leaving behind
many sentences which have a stable direct reference. However, this doesn’t matter for our
purposes, since in the axioms of our truth system the restriction on the T-schema will be closed
under PAT-equivalence.
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truth ascriptions: in both cases we don’t know what we are asserting and, a364

fortiori, if it’s a paradox or not. Only for r-stable sentences we can be sure365

that their reference patterns are safe.366

Since the set of ∆0-expressions is obviously semi-recursive, so is the set367

of dr-stable sentences. Given that reference is also semi-recursive, r-stability368

has Π2-complexity. Let RSt(v) ∈ Π2 define this set. The theory we intro-369

duce next restricts the T-schema to r-stable and well-founded sentences and370

their equivalents in a uniform way.371

Definition 10 WFUTB ⊆ LT extends QR(PA) with the new instances of in-
duction for LT -formulae and the following schema, where ϕ ∈ LT contains
exactly n free variables:

∀~t∀x(RSt(x(~t)) ∧Wf(x(~t))∧
∧BewPAT(pϕ(~t.)q↔. x(~t))→ (Tpϕ(~t.)q↔ ϕ(~t◦)))

WFUTB—for Well-founded Uniform Tarski Biconditionals—allows in-372

stances of the T-schema given, uniformly, by all sentences that are equiva-373

lent in PAT to an r-stable well-founded sentence. This includes of course,374

all r-stable well-founded expressions, but also, for example, ∀x((T l →375

T l)∧x = p0 = 0q→ Tx) and¬∀x(Tx→ Tx), which are not well-founded376

in PA. On the other hand, it excludes many intuitively safe instances, such377

as the one given by ∀x(Bew(x)→ Tx). We get the following results:378

Proposition 1 WFUTB is ω-consistent.379

Proof. We just give a sketch. It can be shown that if a dr-stable sentence ϕ ∈380

LT doesn’t refer directly to another sentence ψ, then there’s a set Γ ⊆ LT381

on which ϕ depends s.t. ψ /∈ Γ, by induction on the logical complexity of382

ϕ.7 It follows as a corollary that all r-stable well-founded sentences belong383

to Leitgeb’s set Φlf of expressions that depend on non-semantic states of384

affairs (cf. Leitgeb, 2005, § 3), by transfinite induction on the ordinal level of385

the fixed-point construction that leads to Φlf . Since there’s a model 〈N,Γ〉386

of LT that verifies all instances of the T-schema given by sentences in Φlf387

(Leitgeb, 2005, theorem 17), 〈N,Γ〉 � WFUTB as well.388

Proposition 2 The theory of Ramified Truth up to ε0 RT<ε0 is relatively389

interpretable in WFUTB.390

7For a definition of dependence and its basic properties, see (Leitgeb, 2005).
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Proof. We just give an idea of the proof.8 We show that for each α < ε0391

there’s a predicate θᾱ(v) ∈ LT that satisfies in WFUTB the axioms that hold392

for Tα(v) in RT<ε0 .9 First, we obtain a binary predicate θy(x) ∈ LT by393

strongly diagonalising over the variable w a complex predicate that is ba-394

sically the disjunction of the axioms of RT<ε0 , where the predicates Tα(v)395

have been replaced by Tw(ẏ/pyq)(u̇/pxq) (and, correspondingly, α with y396

and v with u). Then we show by internal transfinite induction on α that the397

uniform T-schema holds in WFUTB for all predicates θᾱ(v), where α < ε0,398

which gives us the axioms of RT<ε0 . This is done by uniformly showing399

in WFUTB that all instances of the predicates θᾱ(v) given by sentences400

in which only predicates θβ̄(v) with β < α occur are r-stable and well-401

founded.402

As a corollary of propositions 1 and 2, WFUTB is a sound and powerful403

system. Since the Kripke-Feferman theory KF and PUTB have the same404

proof-theoretic strength as RT<ε0 , WFUTB is at least as strong as these three405

well-regarded systems.406

5 Conclusions407

In this paper we have provided sound, precise, and arithmetically simple408

notions of reference, self-reference, and well-foundedness. Moreover, these409

concepts have been proved useful in the assessment of semantic paradoxes410

and in the formulation of axiomatic theories of truth.411

We have also shown that a natural theory of disquotational truth that is412

ω-consistent, as powerful as KF and PUTB, and imposes only arithmetical413

restrictions on the T-schema is possible. Our system WFUTB is therefore (a)414

sound, (b) encompassing, and (c) employs a simple selective criterion of T-415

biconditionals. As a consequence, it’s a perfect candidate for the minimalist416

search.417

Perhaps other—more powerful—systems can be devised using the no-418

tions we introduced in section 3. It could well be that paradoxes shared419

more specific reference patterns than non-well-foundedness, which could420

be turned into broader selective criteria for instances of disquotation. We421

8The proof is similar to the demonstration of Halbach’s (2011, theorem 15.25).
9As is well known, natural numbers can codify ordinals up to ε0 (and beyond). If α < ε0,

ᾱ is the numeral of its code. PA is able to prove all instances of transfinite induction up to ε0.
For the details see (Pohlers, 2009, chapter 3).
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believe this note not only provides answers to several issues such as find-422

ing a natural minimalist theory or assessing the orthodox view on semantic423

paradoxes, but also opens a new line of research on these topics.424
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