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Abstract: This paper concentrates on how to capture harmony in sequent
calculi. It starts by considering a proposal made by Tennant and some ob-
jections to it which have been presented by Steinberger. Then it proposes a
different analysis which makes use of a double-line presentation of sequent
calculi in the style of DoSen and it shows that this proposal is able to dismiss
disharmonious operators without thereby adopting any global criterion.
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1 Introduction

Logical inferentialism maintains that the meaning of a logical operator $
should be explained solely in terms of the rules of inference governing its
behaviour. But, as shown by Prior’s (1960) infamous operator tonk, not
any set of rules introduces a meaningful operator. Thus, many different
provisos have been provided to rule out tonkish operators, both in natural
deduction (ND) and in sequent calculi (SC). One idea that has received much
attention is the claim that the rules of inference for $ must be in harmony,
i.e. that there must be ‘a certain consonance between the two aspects [i.e.
introduction and elimination rules in ND and right and left rules in SC] of
the use of a given form of expression’ (Dummett, 1973, p. 397). There
has been little agreement on how to make precise this intuitive notion of
harmony. In the literature there have been four kinds of explication. We
may talk of (i) global harmony when harmony is explicated in terms of
conservativity and uniqueness (Belnap, 1962); (ii) intrinsic harmony when
it is explicated in terms of reduction procedures (Dummett, 1991; Prawitz,
1965); (iii) general elimination harmony when the elimination rules can be
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read off the introduction rules (Negri & von Plato, 2015; Read, 2000); and
(iv) harmony as deductive equilibrium when harmony is explicated directly
in terms of an equilibrium between the two kinds of rules (Tennant, forth.).

One point of agreement between most proposals is that the rules gov-
erning an operator can be disharmonious in two different ways. The lack
of consonance between the right and left rules in SC—or, equivalently, be-
tween the introduction and elimination rules in ND—may depend either (i)
on the left rules being too strong with respect to the right ones, or (ii) on their
being too weak. Following (Steinberger, 2011b) we talk of S-disharmony in
the first case and of W-disharmony in the second one. A paradigmatic case
of S-disharmony is Prior’s fonk (A), which is an operator having the left
rules of conjunction and the right ones of disjunction.” A paradigmatic case
of W-disharmony is its dual knot (¥), which is an operator having the left
rule of disjunction and the right one of conjunction. A satisfactory analysis
of harmony must rule out both fonk and knot.

Even though harmony is usually considered in the context of ND, when
considering logics other than intuitionistic logic SC behave better. One ad-
vantage of SC is that they allow for multiple conclusions which are use-
ful for some logics—e.g. for classical logic—and, possibly, essential for
some others—e.g. for linear logic and for dual-intuitionistic logic. An-
other advantage is that SC allow to capture many modal logics which have
no (known) formulation in ND. Furthermore, SC represent deductions more
appropriately for those who take the concept of consequence as more funda-
mental than truth, (Schroeder-Heister, 2012). Thus, it is important to discuss
the notion of harmony in SC.

In the context of SC, the analysis of harmony which is more widespread
is the one in terms of global harmony. Belnap’s seminal paper (1962) was
precisely devoted to the introduction of global harmony in SC. Similar pro-
posals have been given by Hacking (1979) for classical logic and, more
recently, by Wansing (1998) for modal logics. Nevertheless, the global
harmony of an operator $ may depend on whether some other operator is
present, and we prefer to analyse the harmony of $ in terms of the rules gov-
erning its behaviour and independently of other operators—i.e. we opt for a
so-called local analysis of harmony.

The local analyses in terms of intrinsic harmony and of general elimi-
nation harmony seems to be tailored for ND. Thus, this paper concentrates

2Usually fonk is defined by taking only rules L Ao and RA1 from Table 2. We prefer this
equivalent and more symmetric version.



Double-Line Harmony in a Sequent Setting

Table 1: {V, 3}-fragment of LK

A, T = A Ay, ' = A I'= AA; .
LV Rv;,i€{1,2}
A1 VA, T — A I'= A A1V A
Aly/z],T = A I' = A, Alt/z]
—————————— 13, y fresh _
Jz AT — A I' = A,3zA
Ref = AA AT = A/ o = A -
A=A T — A, A YT — AL A

Table 2: Rules for A and ¥

A, D= A = AA;
—— LaA;,1e{1,2} —————— RA;,1€{1,2}
A1AA2,FZ>A FﬁA,AlAAQ
A, T = A A, T = A 5 I'= AA; = A, Ay
A VA, T — A M T — A, A1 VA, '

on how to capture harmony as (local) deductive equilibrium in SC (as will
be presented in Definition 1). It starts by considering a proposal made by
Tennant (2010, forth.) and some objections to it which have been presented
in (Steinberger, 2009, 2011a). Then it proposes a different analysis which
makes use of a double-line presentation of SC in the style of (Dosen, 1989)
and it shows that this proposal, which is purely local, avoids Steinberger’s
objections to Tennant’s proposal. Without loss of generality, we will con-
sider only the {V, 3}-fragment of Gentzen’s LK with context-as-sets and
we consider a standard first-order language, see (Negri & von Plato, 2001).
Table 1 gives the rules of this calculus and Table 2 gives the rules of the
operators tonk and knot which will be used here as test for disharmony.?

3All we will say works equally good for the single conclusion intuitionistic calculus L.J.
The addition of negation to L K is not a problem to our approach.
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2 Harmony in sequent calculus

Tennant analyses harmony in SC as a deductive equilibrium between left
and right introduction rules for an operator.* Harmony is ‘a kind of Nash
equilibrium between introduction and elimination rules’ (Tennant, forth.,
p- 22). Roughly, for a monadic $, the idea is that $A has to be the strongest
formula derivable by R$ and the weakest one derivable by L$ (and vice
versa), or equivalently:

Definition 1 (H-DE) If we take L$ as primitive, then R$ has to allow us
to derive no more (no less) sequents than those already derivable from a
possible premiss of R$ (conclusion of L$).
Notice that H-DE contains a no-gain condition, which is given by its ‘no
more. ..  clause and which is meant to rule out S-disharmonious operators,
and it contains a no-loss condition, which is given by its ‘no less. ..’ clause
and which is meant to rule out W-disharmonious operators. This will be
extremely important in section 3 of this paper.

Tennant (2010) makes this precise by requiring that the rules for $ satisfy
three constraints: harmony, maximality and admissibility. The constraint of
harmony is based on the following Fregean definition of (logical) strength:

a proposition ¢ is at least as strong as 1) iff the derivability of
the sequent ¢, I" = A entails the derivability of ¢,I' = A.

This allows Tennant to define harmony of $, h(R$, L$), as follows:

(S) If 1) satisfy the conditions on $A in rule R$, then by making full use
of L$ and no use of R$ we can show that $ A is at least as strong as ).

(W) If ¢ satisfy the conditions on $A in rule L$, then by making full use
of R$ and no use of L$ we can prove that $A is at least as weak as ).
It is immediate to notice that harmony holds for V and 3. To illustrate, if
I = A, Alt/x]
_— Ry
= A¢
then we can prove that the rules for 4 comply with (S) as follows:

Aly/el = A/l
Aly/z) = U, = A ot (1)
Aly/z],T = A ’

Jz AT = A

4Tennant’s (forth.) analysis is in terms of ND and he introduces a SC-version in his (2010)
to show that Steinberger’s (2009) objection goes wrong.

we take a ¢ with the following right introduction rule:

L3
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Aly/z],IT = A

and, by taking a ¢ with the following left rule: T A v fresh,
we can prove (W) as follows:
Ref
Aly/z] = Aly/a] __
Aly/z] = 3zA JzA T = A )
Aly/2),T = A o
P, ' = A

The notion of harmony eliminates some S-disharmonious operators, as
it is witnessed by the fact that in trying to prove that (S) and (W) hold for
tonk we cannot make full use of the rules for A—e.g. in a proof of (S) we
can use only one of the rules LA, and LAs:

—  Ref
Ai - A1 )
Ra;

A= U, = A
Al,F:>A
A1AA T — A

Moreover, harmony eliminates some W-disharmonious operators, as it is
witnessed by the fact that there is no way of proving either (S) or (W) for
knot— e.g. if 1) satisfies the conditions on AV B in rule LV, we have the
following failed proof-attempt of (W)

Cut

LA;

A=— A me B— B el
A B= A A,B=— B
A, B— AVB B AYBT— A
A BT — A cut
9

Thus, harmony helps in determining harmonious operators, which is much
in line with Tennant’s aim. Nevertheless, he argues that this constraint is
necessary but not sufficient for H-DE because it doesn’t determine uniquely
the rules of the operators. To wit, harmony is satisfied not only by the rules
for ordinary disjunction (V) but also by the ones for quantum disjunction

():

A1:>A A2:>A Iy F:>A,AZ Ry (3)
A1 Y Ay — A I'= A A Y A, '

In fact a proof that V satisfies (S) and (W) is, at the same time, a proof
that Y satisfies them. Given that it is well known that it is problematic to
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have a calculus with both standard and quantum disjunction, Tennant wants
to rule out one of the two operators, and, therefore, he ensures the unique
determination of the operators of LK by requiring maximality:

RS has to be the strongest right rule that is in harmony with L$;
and L$ the strongest left rule that is in harmony with R$.

This condition forces the adoption of standard disjunction and the dismissal
of quantum disjunction since (i) these two operators have the same right
rules and (ii) the rule LV is stronger than LY in that any sequent derivable
with the latter is derivable with the former, but not vice versa.

The joint requirement of harmony and maximality eliminates all forms
of W-disharmony. But, as shown in (Steinberger, 2009), they introduce
some form of S-disharmony for the quantifiers because, instead of the exis-
tential quantifier 3, they pick up the rogue quantifier 3, whose rules are

Alt/z),T = A I = A, Alt/a]

4
AT —=A “° TT—A 34 “®

with no variable condition on the left rule. Given that the variable restric-
tion on L3 played no major role in the proofs given in (1) and (2), these
proofs show also that 3 satisfies (S) and (W). Moreover, maximality forces
us to adopt 3 in place of 3 given that (i) they have the same right rule and
(ii) 3 has a stronger left rule which allows to derive the schematic sequent
Als/z] = A[t/x] for any pair of terms s, t. This last fact means that 3 is
S-disharmonious in that it has a left rule that is unduly too permissive with
respect to its right rule.

Tennant (2010) argues that the S-disharmonious operator 3 is ruled out
by the admissibility constraint: the existence of a syntactic proof of cut-
elimination.> This constraint rules out 3 since the rules of this operator do
not satisfy even the weaker requisite of cut-inductiveness—i.e. eliminability
of a cut with cut formula principal in both premisses—as it is witnessed by
the fact that the following cut

I = A, Als/x] Alt/z], 1 = % s

T— A 324 AT =5 ®)
[1— A,% "

SWe have transformed Tennant’s request for a proof of cut-admissibility into the request for
a proof of cut-elimination. The two requisites are equivalent in the present setting and we have
chosen to follow Gentzen in taking cut as a primitive rule of inference of LK.
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is not eliminable whenever s # ¢ and ¢ occurs free in II, ..

Steinberger (2011a) argues that the problems with admissibility are that
(i) it makes the notion of harmony redundant and that (ii) it is a global
criterion. It is known that cut-inductiveness disposes of S-disharmonious
operators—such as A—and maximality disposes of W-disharmonious ones—
such as ¥. Thus, we can replace the two constraints of harmony and admis-
sibility with the local one of cut-inductiveness. Steinberger claims that an
analysis of H-DE in terms of cut-inductiveness and maximality behaves bet-
ter than Tennant’s one in that (i) it eliminates the same disharmonious op-
erators, but (ii) it is not redundant and (iii) it is does not contain the global
requisite of admissibility.

Even though we may agree that cut-inductiveness behaves better than
harmony-+admissiblity, we do not think that Steinberger’s analysis is purely
local because maximality is not a local criterion. If we consider again the
case of V and Y, we see immediately that maximality rules out Y precisely
because of the existence of the stronger V—i.e. it goes global in that it
sanctions an operator as disharmonious because of the existence of another
one. Dicher (2016) argues that no local (extensional) criterion is able to rule
out Y. If this is true, we have to look for an analysis which rules out both S-
and W-disharmonious operators without thereby ruling out also Y.

To sum up, we are looking for a purely local analysis of harmony as
H-DE in SC. Tennant (2010) analyses H-DE in terms of harmony, maxi-
mality and admissibility, and Steinberger (2011a) in terms of maximality
and cut-inductiveness. H-DE has the following advantages w.r.t. other well
known explications of harmony: (i) in banning both rules that are too strong
and rules that are too weak it allows to determine one rule from the other in
a unique way—this doesn’t hold for intrinsic harmony; and (ii) it is in prin-
ciple a local analysis since it refers only to the rules of the operator under
consideration—this doesn’t hold for global harmony.

We believe that H-DE is on the right track. However, we also believe
that a purely local analysis of harmony as deductive equilibrium has to differ
from Tennant’s and from Steinberger’s proposals.

3 Double-Line harmony

We want to capture H-DE in a way that (i) ensures the unique determination
of one rule from the other without thereby (ii) having to adopt the global
requirement of maximality. In ND this is feasible thanks to the generalized
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inversion principle (GIP): ‘whatever follows from the direct grounds for de-
riving a proposition must follow from that proposition’ (Negri & von Plato,
2001, p. 6). Already in (Prawitz, 1965) the inversion principle has been
the essential element for defining harmony in ND. Even though Prawitz’s
formulation is not strong enough to ensure the unique determination of the
elimination rules, GIP allows us to determine the (generalized) elimination
rules as unique functions of the introduction rules (Negri & von Plato, 2015,
p. 243); see also (Moriconi & Tesconi, 2008) on inversion principles. This
fact lies at the core of general elimination harmony. We are now going to
show how to give an explication of H-DE in SC which exploits something
like GIP.

Dosen (1989) introduces double line rules to show the logicality of oper-
ators, where a double-line rule —= t1= 1is a rule that can be applied both in
downward (J R) and in upward (T R) direction. As emphasised in (Dosen,
2015, p. 151), the possibility of formulating SC via double-line rules is in-
timately related with the inversion principle. Thus, it should be possible
to express H-DE by means of double-line rules. Nevertheless, as shown
in (Bonnay & Simmenauer, 2005), formulating SC in terms of double-line
rules does not in itself capture any notion of harmony. Roughly, the problem
is that, unless we uses G3-style calculi, each operator has only either the left
or the right rule that is invertible. The source of this problem points directly
to its solution: we have to exploit the possibility of formulating either L$ or
RS$ as a double-line rule as a kind of GIP that allows to determine the unique
set of rules R$ or L$ that are in deductive equilibrium with it. This idea can
be captured formally as follows:

Definition 2 (dl-harmony) The rules for an operator $ are in dl-harmony
whenever either L$ or RS is the unique set of rules that has the same deduc-
tive strength of the 1 direction of the (respectively right or left) double-line
rule for $. More precisely

(dI-S) we have to derive an arbitrary instance of (some) LS (resp. R$) from
any instance of $ 1, and

(dl-W) we have to derive an arbitrary instance of $ 1 from an instance of
(some) L$ (resp. RS).

Notice that dl-harmony contains both a no-gain condition—given by dI-S—
and a no-loss condition—given by dl-W—and that these two conditions are
precisely the constituents of H-DE. Thus, we propose that the rules for $ are
in H-DE whenever they satisfy dl-harmony.
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In order to substantiate our claim, we will show (i) that the operators
of the {V, 3}-fragment of LK satisfy dl-harmony, and (ii) that none of the
disharmonious operators A, ¥, and 3 satisfies it. In order to prove (i), let us
consider the following double-line rules for V and for 3

A T=A AT = A Aly/a)l = A
A% _——

—————————— 43, y fresh (0)
A1V A, T = A AT = A Rk

For V we have to prove that the bottom-up rule 1 V is interderivable with
the rules RV;.5 We have the following proof of the no-gain condition dI-S:

ef
ALV Ay — A,V A, W

F:>A,A1 Al = A1V As . @)
I = A, A VA, "

and we have the following proof of the no-loss condition dI-W:

A1 :>A1 el
———————— RVjy
Al = A1V Ay Al\/AQ,F:>A 8)

AT —A ot

When we come to the proof of the no-loss condition dI-S for the existential
quantifier, we have to make essential use of the facts that (i) the double-line
rule has a variable condition and that (ii) the rule of substitution of terms
for variables’ is (height-preserving) admissible in LK. The proof goes as
follows:

drA — dzA el
A — dzA
ly/x] vA )
I' = A, Alt/z] Alt/z] = FzA
I — A,3zA cut

Finally, we have the following proof of the no-loss condition dI-W for 3:

Ref
Aly/z] = Aly/7]

Aly/z] = JzA " JzA, T = A (10)
Cut
Aly/z], T = A

In order to prove (ii), we consider the disharmonious operators A, V,
and 3. For the S-disharmonious A, it is immediate to notice that it does

SWithout loss of generality, we consider only the ‘left half’ of 1 V and RV1.
7With the usual proviso to avoid capture of free variables.
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not satisfy dl-harmony because there is no single double-line rule that deter-
mines it. Suppose that we take the double-line version of either RA; or of
RA-, that is we take either

= A A I' = A, A

1A or TLAg (11)
I' — A7A1A1A2 I' — A,AlAQAQ

then with either rule, even if we can prove the no-loss condition, we cannot
prove the no-gain condition. If we start with 1| A; we can prove the no-
gain condition only for L A1 and, vice versa, if we start with 7| A5 we can
prove the no-gain condition only for LAy. This shows that the only left
rules that are in dl-harmony—i.e. interderivable—with the rules in (11) are,
respectively

A1,F:>A A, T = A
LA and LAy

A1A1A27F2>A A1A2A27F2>A

and in neither case we determine the disharmonious operator A. These sets
of rules determine, respectively, the harmonious first-projection operator A1
and second-projection operator Az. Roughly, the paradoxicality of tonk is
explained as an equivocation between two distinct projection operators.

For the W-disharmonious operator V¥, the following problem would arise
with the double-line version of any of its rules. Suppose that we start with
the double-line version of its right rule

F:>A,A1 F:>A,A2
' = A,AlvAQ

v (12)

then we can prove that LV satisfies the no-gain condition but not that it
satisfy the no-loss condition since we are at best able to prove

—— Ref ——— Ref
A1 — A1 w A2 — AQ
A1:>A1,A2 A2:>A1,A2
I' — A, A1 VA, A1AA; — Al, Ao

‘ut

I' = A,A1,A2

whose conclusion is not, and cannot be transformed into, the desired con-
clusion of ¥. We conclude that also ¥ is sanctioned as disharmonious by
dl-harmony.3

8Without using the rule of weakening, the rule 1 ¥ given in (12) would determine the left
rules of conjunction of LK, thus transforming ¥ into (a notational variant of) conjunction.

10
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Finally, we consider the S-disharmonious rogue quantifier 3. The double-
line rule 1 3 is like the one given in (6) for the existential quantifier except
that it does not have the variable restriction.® On the one hand, this opera-
tor satisfies the no-loss condition of dl-harmony. In fact the proof of dI-W
given in (10) for 3 made no use of the variable condition and, therefore, it
works also for 3. On the other hand, 3 does not satisfy the no-gain condition
and, therefore, is not in dl-harmony. This can be shown as follows. First,
we reduce the search-space by noticing that if dI-S holds for 3, it has to be
provable as we did in (9) for 3. That is, we have to transform
Ref

32A = 32A 43

Aly/z] = 3zA
I'= A, Alt/x] (Aly/z])[t/y] = (3zA)[t/y]
I' = A, (3zA)[t/y]

(/9]

into a proof showing that 3 satisfies dI-S. But this would be possible only if
either y is ¢ or if y does not occur free in 2.A.'° The latter assumption is
feasible (without loss of generality) just in case 3 satisfies the same variable
condition as 3. The former assumption—i.e. the idea of exemplifying T 3
directly with the term ¢ and not with an arbitrary term y—does not work
because in proving the no-gain condition we cannot rely on a specific in-
stance of 1 3. It might be objected that the instance of 1 3 which concludes
Alt/z] = 3zA is a legal one. Nevertheless, we do not accept it because
the double-line rule for 3 talks of all terms and not of a particular one and,
therefore, in proving dl-harmony we have to apply it in all its generality. In
a sense the quantifiers without variable condition that can be shown to be
in dl-harmony are, for any given ¢, the innocuous ¢-specific quantifier 3°
which is like 3 save that its rules are applicable only for the given term t.
These rules give us an harmonious and meaningful operator, whose meaning
implies that A[t/x] is equivalent to 3'zA.

We have thus shown that dl-harmony gives the expected results—i.e. it
is satisfied by V and 3 and it is not satisfied by A, ¥, and 3. One nice aspect
of dl-harmony is that it has a no-gain condition—i.e. dI-S—that rules out
S-disharmonious operators such as A and 3 and it has a no-loss condition—
i.e. dI-W—that rules out W-disharmonious operators such as ¥. Moreover

9Nothing essential relies on taking the double-line version of the left rule; by taking the
right one we obtain the rogue universal quantifier.

10Notice that these two are the very same moves that would transform (5) into an effective
proof of cut-inductiveness for 3. Notice also that the admissibility of the rule of substitution
depends essentially on the variable restriction of the rules for the quantifiers, see (Negri & von
Plato, 2001, p. 69).

11
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dl-harmony is a purely local requisite in that it relies only on the rules gov-
erning the operator under examination and on the structural rules of Cut and
of Reflexivity. Notice that these two structural rules are necessary to prove
its no-gain condition. For the no-loss condition it would be enough to have
these rules as admissible. For example we could have proved dl-W also in
the calculus LK without the rule of C'ut since this rule is admissible in it.
On the other hand, these two structural rules are not eliminable from the
proofs of dI-S. These considerations show that dl-harmony could not hold
for the operators of non-reflexive or non-transitive substructural logics. We
don’t take this as a severe limitation.

4 Conclusions

It has been shown that it is possible to give a purely local analysis of har-
mony as H-DE in SC by imposing the requisite of dl-harmony. As opposed
to both Tennant’s and Steinberger’s proposals, the requisite of dl-harmony
guarantees that the quantum disjunction operator Y is harmonious. This
happens because the proofs given in (7) and (8) still work if we replace the
rule 1) V by the following one

A= A Ay — A
ALY Ao = A

Ty

where the left-context is empty. This will be taken as a limitation of our
approach by anyone who is inclined to consider Y as (intuitively) disharmo-
nious. We are not disturbed by this since we take Y as a perfectly harmo-
nious operator. Its only problem might be that it interacts badly with V, but
for anyone who takes harmony to be a purely local matter, as we did, this
should not be relevant for assessing whether it is harmonious or not.!!

All in all, the analysis of harmony as H-DE in terms of dl-harmony dif-
fers from both Tennant’s and Steinberger’s in that it is a purely local analysis
which is based on the inversion principle. Neither the requisite of maxi-
mality nor that of admissibility are acceptable in a purely local analysis of
harmony. Notice that even if Tennant and Steinberger were to agree that
Y is harmonious, they cannot drop the global requisites from their analyses
since (i) Tennant needs admissibility to rule out 3 and (ii) Steinberger needs
maximality to rule out ¥. This is not intended by us as a criticism of their

1See Dicher (2016) for a critical presentation of many proposals that disagree with us on
this point.

12
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proposals inasmuch as they have not asked for a purely local analysis and,
therefore, can use global requisites.

Like other approaches based on GIP, the present proposal satisfies a no-
tion of unique determination which differs from the one given by maximal-
ity. With maximality unique determination holds in the sense that there can-
not be two harmonious operators sharing some rule, as it happens for V and
Y. With dl-harmony unique determination holds in the sense that starting
from the double-line rule governing an operator we determine one unique
set of rules that are in harmony with it. A more comprehensive analysis of
the relationship between dl-harmony and other concepts of harmony which
are based on GIP—such as the ND-based ones in terms of general elimina-
tion harmony (Negri & von Plato, 2015; Read, 2000) and the SC-based ones
in terms of so-called reflection principles (Sambin, Battilotti, & Faggian,
2000; Schroeder-Heister, 2007)—goes beyond the scope of this paper and
we leave it to future research.

The present approach to harmony can be extended beyond the {V,3}-
fragment of LK. At the present stage it is already clear that it can be ex-
tended to logics containing any additive or multiplicative operator of linear
logic and to their extensions with the structural rules of weakening and con-
traction. It is also clear that it cannot be extended to Tennant’s core logic
(C); because, from the present perspective, the operators of C are not harmo-
nious in that they are not determinable according to GIP. For example, the
rules for conjunction in C are the right rule for multiplicative conjunction
and (a version of) the left rules for additive conjunction, neither of which
is invertible. One natural future line of research is to give dl-harmonious
rules for the operators of many modal logics by means of generalizations of
Gentzen’s SC such as display logics (Wansing, 1998) and labelled calculi
(Negri & von Plato, 2015).
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