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Interaction of Tricoordinated Phosphorus Compounds with Zeolites

Th. Bein, D. B. Chase, R. D. Farlee and G. D. Stucky
Central Research and Development Department, E. I. du Pont de Nemours and
Company, Experimental Station E262, Wilmington, Delaware 19898, USA

Vapor phase chemisorption of dimethylphosphine (DMP), tri-
methylphosphine and trimethylphosphite (TMP) in acidic
faujasite has been studied with in situ IR and MAS-NMR
techniques. Effects of pore filling on the spectral
properties of trimethylphosphine are discussed. Protonation
of DMP in a reversible acjd-base reaction with dry HY zeolite
is 1ndica£ed by a single ~ P resonance at -56 ppm due to
P(CH,) H, and by the appearence of different P-H stretching
modeS. An acid catalyzed Arbuzov rearrangement converts TMP
into dimethylmethylphosphonate which splits off methoxy
groups upon heat treatment in the zeolite.

INTRODUCTION

Phosphorus compounds have gained considerable interest in the surface
chemistry of metal oxides. Research activity encompasses chemisorption studies
[1-11], anchoring of phosphine ligands (see e.g., [12,13]), modification of
acidic surface properties [14-16], selective poisoning of acid sites [17],
titration of these properties [18,19], and fine tuning of zeolite pore
geometries for shape selective catalytic reactions [20-22].

The chemisorption and protonation of trimethg{phosphine in the acid form of
faujasites has been studied by means of IR and ~ P-NMR techniques [8,18,19].
Different paqsphonium species which depend on the degree of loading have been
reported. P MAS-NMR resonances between —-32 and -58 ppm were assigned to Lewis
acid-base complexes with acidic species like A1203 clusters generated upon
dehydroxylation of the HY zeolite [19].

In contrast to the acid-base reactions discussed above, details of the more
severe modifications of zeolites with other phosphorus compounds like P(OR).,
PCl, or phosphates are much less understood. The purpose of the present worg is
to understand in the above context the interaction of HY zeolite with DMP,
trimethylphosphine and with trimethylphosphite, respectively. The study also
emphasizes the value of solid state NMR and in situ IR techniques as powerful
diagnostic tools for phosphorus/zeolite systems.

EXPERIMENTAL
1. Materials

Vapor of dimethylphosphine (Alfa) was admitted into a storage flask with
dried molecular sieve 4A. Trimethylphosphite and trimethylphosphine (Strem
Chemicals) were stored over sieve 4A without further purification. NH, Y zeolite
with the composition Naa(NH4)47A1 5Si 37038 nH20 was obtained from Linde
(LZ-Y62). Prior to use, the amggnfum }orm oé the zeolite was degassed by heating
for 12 hours at 670 K under 10 ~ torr to yield the dry proton form (HY). The
linear heating rate was 2 K/min.
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2. Methods

Samples for solid state NMR experiments were prepared as follows. Batches of
dry HY were weighed into a small quartz holder, intrgguced into a tubular quartz
reactor and evacuated at a greaseless vacuumline (10 torr) for 30 min. A
degassed and frozen vial with the phosphine was allowed to warm up to 273 K and
dosed manometrically onto the zeolite. After equilibrating for 120 min at 295 K,
the zeolite was pumped off for 30 min, and weight changes were recorded in the
drybox. Heat treatments were done in the same reactor under vacuum, with a
heating,yate of,} K/min.

The P and C MAS-NMR spectra were obtained on a Bruker CXP-300 instrument.
Andrews type rotors were filled with ca. 200 mg of sample in the drybox and
introduced into the NMR probe in a glovebag under flowing nitrogen. Dry nitrogen
was used 3% the drive gas for the rotor to obtain spinning rates between 2 and 4
kHz, For P, a 30° to 90° pulse with 10 s risycle time was used, depending on
the T,, to obtain quantitative spectra. For C, 5 ms cross—-polarization with 1
to 10°s recycle time was used. "H-decoupling time was 20-60 ms in both cases.
Chemical shifts were referred to 857% H3P0 or (CH )ASi. No significant
oxidation of the phosphines was observéd éuring the NMR experiments.

In,situ infrared experiments, were done with self-supporting zeolite wafers (5
mg/cm”), compacted at 100 kg/cm”, in a controlled-atmosphere cell with CaF
windows connected to a Nicolet 7000 FT-IR spectrometer. Sample treatment was
similar to that of the NMR samples, with the exception of shorter temperature
cycles.

RESULTS AND DISCUSSION
1. Acid/base Reactions between Zeolites and P(CH3l,, PH(CH312
1.1. Reactions with trimethylphosphine =

Vapor of trimethylphosphine was dosed into the cage system of dry HY. The
qualitative details of our results are consistant with both IR and NMR data
reported in the literature3[8,l9].

In Fig. 1, a series of P MAS-NMR spectra of trimethylphosphine dosed on dry
HY to different degrees of loading is presented. At a temperature of 295 K, the
zeolite is saturated with 5.0 molecules of phosphine per supercage (5.0/s.c.). A
sharp resonance at -69 ppm (Fig. la) is assigned to physisorbed phosphine
(2.0/s.c.) and the broader band at -3.4 ppm, proton decoupled, represents 3.0
trimethylphosphonium ions per s.c. In a proton coupled spectrum, a doublet with
the typical P-H scalar coupling constant of ca. 500 Hz and strong sideband
intensity due to P-H dipolar coupling is observed (Fig. 1b).

IR data demonstrate that upon saturation less than 3.0 protons, per s.c.
represent thf accessible "supercage protons” observed at 3650 cm = since also
the 3550 cm ~ band is reduced in intensity.

If 2.8 molecules of trimethylphosphine per s.c. are dosed into the zeolite,
protonation is complete as shown in Fig. lc: only the phosphonium resonance
appears, shifted to -6 ppm with significantly reduced sideband intensity.
Degassing the sample at 570 K under vacuum for 60 min further narrows the
phosphonium resonance at -5 ppm with a well resolved doublet due to P-H scalar
coupling (Fig. 1d).

The results of the quantitative dosing and desorption experiments can be
understood in terms of the following model: At lower loadings of the phosphine,
there are only phosphonium ions present in the supercage. Weak repulsion between
these species as well as the space available in the cage account, for a
relatively high mobility of the ions which results in a narrow ~ P resonance. If
the loading exceeds the number of protons available, a crowded situation is
expected with trimethylphosphine filling up the remaining space and hindering
the mobility of3fhe phosphonium ion, thus changing the chemical shift of the ion
to -3 ppm. The ~ P chemical shift of the ion remains -6 ppm up to a loading of
2.8 per s.c. which closely corresponds to the maximum number of protons
available. No evidence can be found for different species due to different
origins of the protons as invoked in a former study [19]. The data obtained in
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a) H-decoupled

-3.4 -69

b) coupled

-3.4 ppm -69 ppm
61%,J=500 Hz || 39%
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100 0.0 -100
c) coupled
-6
d) coupled
-5, J=500 Hz
77 66 23
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Fig. 1. Effect of pore filling on the 31P

MAS-NMR spectrum of P(CH,), adsorbed in dry
Y zeolite. A, 5.0 per §.¢. at 295 K,
H-decoupled. B, spectrum f, H-coupled.

C, 2.8 per s.c. at 295 K, "H-coupled.

?, sample C, degassed at 570 K for 60 min,
H-coupled.

this study suggest that the chemisorption of trimethylphosphine in HY is
essentially an acid/ base reaction which is only reversible under severe

degassing conditions.

1.2. Dimethylphosphine as a probe for acid suface sites

Dimethylphosphine (DMP) is a weaker base compared to trimethylphosphine and
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different behavior in acid zeolites can therefore be anticipated. If HY zeolite
is saturated with DMP and sg?sequently degassed undgi vacuum at 295 K, only one
species is detected in the " 'P NMR at -56 ppm. The ~ P resonance of neat DMP is
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at -99 ppm. We assign the observed species to the dimethylphosphonium ion

(DMPH ) adsorbed in the zeolite (Fig. 2). In the IR experiment, DMP shows a
strong band at 2289 cm = due to the P-H stretching vibration. The intensity of
this band allows the determination of adsorbed quantities of the phosphine. Upon
adsorption of the molecule in HY zeolite, the band is broadened. (Fig. 3a). The
concomitant disappearence of the 3650 cm = band indicates complete proton
transfer in the supercage. Two new bands at 2495 and 2450 cm =~ appear. These
bands are interpre;ed as due to the symmetric and antisymmetric P-H stretching
vibrations of DMPH generated in the zeolite. Degassing experiments indicate
that adsorption and proton transfer are reversible with DMP (Fig. 3b). The
hydroxyl groups are restored to the original intensity, whereas both the P-H and
C-H bands dissappear.

These features demonstrate some advantages of DMP as a probe molecule for
acid sites on oxide surfaces compared to &rimethylphosphine: In the IR,
independent determination of DMP and DMPH is possible. In the NMR experiment,
DMP is a reversible probe for acid sites showing no interference with remaining
unprotonated species,

56 ppm
U S N WS S N U N WY S WS WS S U S (A WA U VRN W G U A SN SN N
100 0.0 -100
PPM
Fig. 2. (Top) 31? MAS-NMR of P(CH3)2H in HY,

degassed at 295 K, "H-decoupled.

2. Reactions of Trimethylphosphite with Zeolites
2.1, Adsorption at 295 K

If HY is saturated with 3.6 molecules3Erimethy1phosphite (TMP) per supercage,
one dominant species is observed in the P NMR at +36 ppm with a moderate
sideband intensity (Fig.4a) This resonance indicates a substantial change in
the isotropic shift as compared to the value of the starting phosphine at +140
ppm. A small amount of a second species which shows cross-polarization (CP) is
represe?sed by a resonance at +21 ppm.

The C NMR spectrum of the same system is dominated by resonances in the
methoxy-region at +55 and 53 ppm, in addition to a smaller peak at +8 ppm which
is assigned to P-CH, (Fig.4b). The key for understanding these results is a
rearrangement reaction of the TMP to yield tetracoordinated dimethylmethyl-
phosphonate (DMMP) adsorbed in the zeolite.

A reaction sequence is proposed which resembles the well-known Arbusov
rearrangement of trialkylphosphites:
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Fig. 3. IR spectra of a wafer of HY,
degassed at 670 K, loaded with P(CH,). H

A, 30 torr of the phosphine added ag %95 K.
B, degassed at 360, 440 and 610 K for 60 min.

A <
31-P decoupled 36

PPM

Fig. 4. NMR spectra of trimeS?ylphosphite
adsorbed on HY zeolite. A, P S-NMR of

HY, saturated with TMP at 295 K ( H-decoupled).
B, C spectrum of sample A, cross—polarized
and "H-decoupled. (X = rotor signal)
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H+ + H
(H3C0)3P —-—> H3C-0-P(0CH3)2 => (H3CO)3PCH3 + O=P(OCH3)2
/ \ [31P = +13 ppm]
(H3CO)3P (H3C0)2(CH3)PO +
[31? = 31 ppm]
+
[(H3CO)3PCH3]

Nucleophilic attack of TMP at a methoxy carbon of protonated TMP generates a
trimethoxymethylphosphonium ion which acts as chain propagating species.
Reaction of this ion with TMP results in DMMP. Dimethg}hydrogenphosphite is
expected to be a byproduct of this reaction, and the P resonance of this
molecule adsorbed into HY indeed resembles the second species observed upon
adsorbing TMP in HY. 31 13

If DMMP is adsorbed into HY, both the “ P and C NMR features are similar to
those obtained with TMP. This presents strong evidence for the reaction proposed
above.

2.2, Infrared results

A thin wafer of HY saturated with TMP has been studied in the infrared cell.
Proton transfer from both supercage and weaker acid sites towards the adsorbed
phosphorus g?mpounds is observed in the hydroxyl region (consumption of the 3650
and 3550 cm = bands). A new, broad band at ca. 2440 cm = is indicative for a P-H
interaction (Fig. 5a).

+13 ppm

S
= NP BT
é 0.0 -100
S PPM
@ 56 14 ppm
< X

YRS WS W WA WA U S SR N N | N 1 N 1 PR : J

3500 3000 2500 2000 1500 70 50 30 10 -10

FREQUENCY (CM~") PPM

Fig. 5. IR spectra of a wafer of Fig. 6. NMR spectra of TMP/HY
HY, degassed at 670 K, loaded with adduct, degfssed at 670 K for 12
TMP. A, loaded at 295 K(5.5 torr), ?ours. A, P Mé§-NMR of TMP/HY,
degassed at 295 K for 30 min. H-coupled. B, C MAS-NMR of
B, degassed at 440 K for 60 min. TMP/HY, cross—polarized

C, degassed at 610 K for 60 min. and "H-decoupled. (X = rotor)
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Evidence for the generation of DMMP is found in the C-H bending region: The
neglmethyl group 1s represented by a band at 1304, whereas a pair at 1460/30
cm accounts for the methoxy group. In addition, a shoulder at 1250 cm ~ can be
understood as being due to the newly generated P=0 double bond.

2.3. Thermal decomposition of the TMP/zeolite adducts

Heating the phosphine-loaded wafer in the infrared cell under vacuum (60 min
at 440 K and at 610 K) reduces the overall C-H intensity (Fig. 5b,c). However,
the hydroxyl bands are not restored as would be expected upon simple
dissociation of a phosphonium species. In contrast, the OH-intensity decreases
with heating time, indicating an irreversible reaction with the phosphorus
compound.

NMR data provide further evidence for the species obtained upon thermal
desorption treatments. If TMP adsorbed in partially exchanged HY is degassed at
670 K £ 12 hrs, the rearrangement product DMMP transforms to another species
with a “'P resonance at +13 ppm and strong anisotropy as indicated by the
sideban?3intensity (Fig. 6a).

The ~~C spectrum of TMP heated in HY at 570 K for 12 hrs substantiates the
findings of the IR experiments: The methoxy-bands are considerably smaller
compared to the system at 295 K, whereas a large fraction of methyl groups is
indicated by a resonance at 14 ppm (Fig. 6b).

Both IR and NMR results suggest that the rearrangement product DMMP reacts
irreversibly with the zeolite hydroxyl groups upon heating under vacuum. This
reaction is accompanied by a loss of methoxy groups which probably desorb from
the zeolite as methanol.

We propose the generation of stable condensation products between a
(-0),P(0)CH, unit and the zeolite framework. Similar behavior of DMMP upon
reacgion wigh the hydroxyl groups of Al,0, has been reported in the literature
[3,4]. Thermal desorption data together with chemical probing of the modified
zeolite will be required to confirm the nature of this reaction, including
possible oligomerization of organic fragments in the pore system.

A more detailed discussion of our studies on organophosphorus and
organosilicon chemistry in zeolites will be published in the near future [23].

The technical assistance of R.F. Carver and N. Rapposelli is gratefully
acknowledged.
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