# Better Ceramics Through Chemistry IV

Symposium held April 16-20, 1990, San Francisco, California, U.S.A.

EDITORS:

Brian J.J. Zelinski University of Arizona, Tucson, Arizona, U.S.A.

C. Jeffrey Brinker Sandia National Laboratories, Albuquerque, New Mexico, U.S.A.

David E. Clark University of Florida, Gainesville, Florida, U.S.A.

Donald R. Ulrich Air Force Office of Scientific Research, Washington, D.C., U.S.A.



MRS MATERIALS RESEARCH SOCIETY

100)

# Contents

| DEDICATION                                                                                                                                                                                         | xviii |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| PREFACE                                                                                                                                                                                            | xix   |
| ACKNOWLEDGMENTS                                                                                                                                                                                    | xxi   |
| MATERIALS RESEARCH SOCIETY SYMPOSIUM PROCEEDINGS                                                                                                                                                   | xxii  |
| PART I: REACTION MECHANISMS AND KINETICS                                                                                                                                                           |       |
| <pre>*SOL-GEL CHEMISTRY OF HYDROGENOSILICONATES: THE ROLE OF<br/>HYPERVALENT SILICON SPECIES<br/>V. Belot, R. Corriu, C. Guerin, B. Henner,<br/>D. Leclercq, H. Mutin, A. Vioux, and Q. Wang</pre> | 3     |
| HIGH PRESSURE RAMAN STUDY OF THE HYDROLYSIS REACTION OF<br>TMOS AND TEOS<br>G. Hoang, J. Watson, and T.W. Zerda                                                                                    | 15    |
| *CURRENT ISSUES IN SOL-GEL REACTION KINETICS<br>Roger A. Assink and Bruce D. Kay                                                                                                                   | 21    |
| *MOLECULAR ARCHITECTURE AND ITS ROLE IN SILICA SOL-GEL<br>POLYMERIZATION<br>P.C. Cagle, W.G. Klemperer, and C.A. Simmons                                                                           | 29    |
| SYNTHETIC AND STRUCTURAL STUDIES OF BISMUTH/COPPER<br>ALKOXIDES<br>William J. Evans and John H. Hain, Jr.                                                                                          | 39    |
| PART II: PRECURSOR EFFECTS AND AQUEOUS CHEMISTRY                                                                                                                                                   |       |
| *MOLECULAR STRUCTURE OF METAL ALKOXIDE PRECURSORS<br>C. Sanchez, P. Toledano, and F. Ribot                                                                                                         | 47    |
| <pre>*MOLECULAR ROUTES TO TIN OXIDES<br/>T.A. Wark, E.A. Gulliver, L.C. Jones,<br/>M.J. Hampden-Smith, A.L. Rheingold, and<br/>J.C. Huffman</pre>                                                  | 61    |
| TAILORED MOLECULAR PRECURSORS OF YTTRIUM OXIDE USING<br>FUNCTIONAL ALCOHOLS AND ACETYLACETONE AS MODIFIERS<br>Liliane G. Hubert-Pfalzgraf, Olivier Poncelet,<br>and Jean-Claude Daran              | 73    |
| NMR SPECTROSCOPIC INVESTIGATIONS OF PbTiO <sub>3</sub> SOL-GEL<br>PROCESSING<br>S.D. Ramamurthi and D.A. Payne                                                                                     | 79    |

| *REVIEW OF HYDROLYSIS BEHAVIOR OF IONS IN AQUEOUS<br>SOLUTIONS<br>R.E. Mesmer and C.F. Baes, Jr.                                                                           | 85  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| *HYDROLYSIS OF ALUMINUM - ARE ALL GELS CREATED EQUAL?<br>T.E. Wood, A.R. Siedle, J.R. Hill, R.P. Skarjune,<br>and C.J. Goodbrake                                           | 97  |
| SMALL-ANGLE NEUTRON SCATTERING AND 27AL NMR STUDIES ON<br>THE MICROSTRUCTURE AND COMPOSITION OF ALUMINA SOL-GELS<br>L.F. Nazar, D.G. Napier, D. Lapham, and<br>E. Epperson | 117 |
| SMALL ANGLE X-RAY SCATTERING STUDIES OF POLYMERIC<br>ZIRCONIUM SPECIES IN AQUEOUS SOLUTION<br>J.A. Jutson, R.M. Richardson, S.L. Jones, and<br>C. Norman                   | 123 |
| PART III: PROCESSING SCIENCE I: AGGREGATION,<br>PARTICLE GROWTH AND CONCENTRATED DISPERSION                                                                                |     |
| *PRECIPITATION OF UNIFORM PARTICLES: THE ROLE OF<br>AGGREGATION<br>C.F. Zukoski, M.K. Chow, G.H. Bogush, and J-L. Look                                                     | 131 |
| *SIMPLE MODELS FOR PARTICLE AGGREGATION, DEPOSITION AND<br>SEGREGATION<br>Paul Meakin                                                                                      | 141 |
| MECHANISMS OF SILICA AND TITANIA COLLOIDAL PARTICLE<br>FORMATION FROM METAL ALKOXIDES<br>Joseph K. Bailey and Martha L. Mecartney                                          | 153 |
| *SHEAR INDUCED ORDER OF CONCENTRATED DISPERSIONS<br>Bruce J. Ackerson and T.A. Morris                                                                                      | 159 |
| CONSOLIDATION OF COLLOIDAL SUSPENSIONS<br>Wei-Heng Shih, Seong Il Kim, Wan Y. Shih,<br>Christopher H. Schilling, and Ilhan A. Aksay                                        | 167 |
| *RHEOLOGY AND MICROSTRUCTURE OF CONCENTRATED SUSPENSIONS<br>Lisa A. Mondy and Alan L. Graham                                                                               | 173 |
| RHEOLOGICAL AND RELATED COLLOIDAL ASPECTS OF AQUEOUS<br>PROCESSING THAT AFFECT THE DEVELOPMENT OF MICROSTRUCTURE<br>Alan Bleier and C. Gary Westmoreland                   | 185 |
| PREPARATION OF MULTICOMPONENT CERAMIC POWDERS BY SOL-GEL<br>PROCESSING<br>J.R. Bartlett and J.L. Woolfrey                                                                  | 191 |
| PART IV: PROCESSING SCIENCE II:<br>GELATION, AGING AND DRYING                                                                                                              |     |
| *FRACTAL STRUCTURE AND FRACTAL TIME IN SILICA SOL-GELS<br>James E. Martin and Jess Wilcoxon                                                                                | 199 |
| *Invited Paper                                                                                                                                                             |     |

| <sup>29</sup> Si NMR STUDY OF SILICON ALKOXIDES: FROM THE<br>CONDENSATION KINETICS IN SOLUTION TO THE DETERMINATION<br>OF THE FRACTAL DIMENSION IN AEROGELS<br>F. Devreux, J.P. Boilot, F. Chaput, and<br>A. Lecomte | 211 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| LOW WAVENUMBER RAMAN SCATTERING IN SILICA AND<br>SILICOPHOSPHATE AEROGELS<br>Barbara L. Walden, Else Breval, and<br>William B. White                                                                                 | 217 |
| BASE-CATALYZED SILICA GELS: STRUCTURE AND CHEMISTRY<br>Garry J. Garvey and Bruce E. Smith                                                                                                                            | 223 |
| SOLUTION CHEMISTRY IN THE Al <sub>2</sub> 0 <sub>3</sub> -SiO <sub>2</sub> SYSTEM<br>W.G. Fahrenholtz, S.L. Hietala, D.M. Smith,<br>A.J. Hurd, C.J. Brinker, and W.L. Earl                                           | 229 |
| *IN-SITU PORE STRUCTURE ANALYSIS DURING AGING AND<br>DRYING OF GELS<br>Douglas M. Smith, Pamela J. Davis, and<br>C. Jeffrey Brinker                                                                                  | 235 |
| RELATIONSHIP BETWEEN STRAINED SILICON-OXYGEN BONDS AND<br>RADIATION INDUCED PARAMAGNETIC POINT DEFECTS IN<br>SILICON DIOXIDE<br>W.L. Warren, P.M. Lenahan, C.J. Brinker,<br>and C.S. Ashley                          | 247 |
| MOLECULAR ORBITAL MODELING OF WATER ADSORPTION ON A<br>TETRASILOXANE RING<br>J.K. West and S. Wallace                                                                                                                | 255 |
| PART V: POSTER SESSION: SOLUTION CHEMISTRY,<br>PROCESSING SCIENCE, ELECTRICAL AND OPTICAL PROPERTIES,<br>THIN FILMS AND FIBERS                                                                                       |     |
| CATALYTIC CONTROL OF SIO <sub>2</sub> SOL-GEL KINETICS - A<br>MECHANISTIC STUDY OF BASES<br>Jorge Sanchez, Mary Reese, and Alon McCormick                                                                            | 263 |
| ORGANIC CATALYSTS IN THE SILICA SOL-GEL SYSTEM<br>T.A. Gallo, B.L. Simms, and V.T. Brice                                                                                                                             | 269 |
| THE INFLUENCE OF CATIONS ON GROWTH KINETICS OF SILICA<br>AGGREGATES<br>Theo P.M. Beelen, Peter W.J.G. Wijnen,<br>Kees P.J. Rummens, and Rutger A. van Santen                                                         | 273 |
| SOLVENT SELECTION AND THE CONTROL OF SOL-GEL REACTIONS<br>K. Jones, J.M. Boulton, and H.G. Emblem                                                                                                                    | 277 |
| INVESTIGATION OF THE SILICA NETWORK DURING THE<br>SOL TO GEL TRANSITION AND FINAL XEROGEL PROPERTIES<br>Paul R. Soskey, Randall E. Nikles,<br>George F. Fattman, Robert M. Mininni,<br>and Deborah A. Gerenza        | 283 |
| *Invited Paper                                                                                                                                                                                                       |     |

| FORMATION OF SPINEL IRON OXIDE IN SOLUTION<br>Jean Pierre Jolivet, Elisabeth Tronc,<br>Philippe Belleville, and Jacques Livage                                                                        | 289 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| RELIABLE ELECTROKINETIC CHARACTERIZATION PROCEDURES<br>FOR CERAMIC POWDERS<br>Jiun-Fang Wang, Richard E. Riman, and<br>Daniel J. Shanefield                                                           | 293 |
| FRACTAL CONCEPTS AND AGGREGATION OF IRON OXIDES<br>R. Amal, J.A. Raper, and T.D. Waite                                                                                                                | 299 |
| S.A.N.S. STUDY OF FRACTAL ALUMINO-SILICATE AEROGELS<br>F. Chaput, J.P. Boilot, A. Dauger, F. Devreux,<br>and A. de Geyer                                                                              | 305 |
| CHARACTERIZATION OF PARTIALLY CONDENSED SILICA FORMED<br>FROM THE PARTIAL HYDROLYSIS OF TMOS<br>T.M. Tillotson and L.W. Hrubesh                                                                       | 309 |
| CHARACTERIZATION OF ULTRALOW-DENSITY SILICA AEROGELS<br>MADE FROM A CONDENSED SILICA PRECURSOR<br>Lawrence W. Hrubesh, Thomas M. Tillotson, and<br>John F. Poco                                       | 315 |
| MICROSTRUCTURAL DEPENDENCE OF AEROGEL MECHANICAL<br>PROPERTIES<br>J.D. LeMay, T.M. Tillotson, L.W. Hrubesh, and<br>R.W. Pekala                                                                        | 321 |
| POSITRONIUM DECAY IN SILICA SOL-GELS<br>B. Hopkins, C.A. Quarles, and T.W. Zerda                                                                                                                      | 325 |
| A COMPARISON OF TIO <sub>2</sub> -SIO <sub>2</sub> AEROGELS AND XEROGELS<br>G. Cogliati, M. Guglielmi, T.M. Che, and<br>T.J. Clark                                                                    | 329 |
| THE EFFECTS OF HYDROLYSIS CONDITIONS, AND ACID AND<br>BASE ADDITIONS, ON THE GEL-TO-CERAMIC CONVERSION IN<br>SOL-GEL DERIVED PbTIO <sub>3</sub><br>Robert W. Schwartz, C.D.E. Lakeman, and D.A. Payne | 335 |
| EFFECTS OF TRIOXANE ON SILICA GEL<br>Xiaoming Li and P.F. Johnson                                                                                                                                     | 341 |
| EFFECT OF DOPANTS ON THE CRYSTALLIZATION OF ZIRCON<br>FROM ZIRCONIUM SILICATE GELS<br>J.D. Barrie and M.J. Meshishnek                                                                                 | 347 |
| EFFECT OF SnO <sub>2</sub> ON THE MECHANICAL PROPERTIES OF<br>SiO <sub>2</sub> /SnO <sub>2</sub> GEL-DERIVED COMPOSITES<br>R. Dal Maschio, S. Dire', R. Campostrini,<br>G.D. Soraru, and G. Carturan  | 351 |
| CRYSTALLIZATION AND PHASE TRANSFORMATION OF ZrO <sub>2</sub> -SiO <sub>2</sub><br>GELS<br>Xiaoming Li and P.F. Johnson                                                                                | 355 |

| PREPARATION OF THE POROUS SUPPORTS WITH SiO <sub>2</sub> -ZrO <sub>2</sub> -Na <sub>2</sub> O<br>COMPOSITION<br>Y. Tsurita and K. Wada                                                             | 361 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| STUDIES IN THE Ba-Ca-Al-O SYSTEM CHEMICAL MODIFICATION<br>OF ALUMINUM ALKOXIDE BY PROPIONIC ACID<br>V. Hebert, S. Vilminot, and D. Brion                                                           | 365 |
| SOL-GEL SYNTHESIS OF THIN FILMS FOR USE AS PLANAR<br>WAVEGUIDES<br>G.W. Dale, H.H. Fox, Brian J.J. Zelinski, and<br>Laura Weller-Brophy                                                            | 371 |
| PROCESSING OF SiO <sub>2</sub> -TiO <sub>2</sub> THIN FILM WAVEGUIDES<br>L. Weisenbach, T.L. Davis, B.J.J. Zelinski,<br>R.L. Roncone, and L.A. Weller-Brophy                                       | 377 |
| OPTICAL INTERFERENCE FILTERS BY SOL-GEL PROCESSING<br>J.L. Keddie and E.P. Giannelis                                                                                                               | 383 |
| TITANIA/SILICA SOL-GEL FILMS: COMPARISON OF TECHNIQUES<br>FOR THIN FILM THICKNESS MEASUREMENT<br>S.M. Melpolder, A.W. West, M.P. Cunningham, and<br>R. Sharma                                      | 387 |
| HETEROMETALLIC ALKOXIDES AS PRECURSORS TO MULTICOMPONENT<br>OXIDES<br>Liliane G. Hubert-Pfalzgraf, Renee Papiernik,<br>Marie-Cecile Massiani, and Bernard Septe                                    | 393 |
| STABILIZATION, CHARACTERIZATION AND OPTICAL APPLICATIONS<br>OF NIOBIUM AND TANTALUM OXIDE SOLS PREPARED VIA ALKOXIDE<br>ROUTES<br>Stephen Parraud, Liliane G. Hubert-Pfalzgraf,<br>and Herve Floch | 397 |
| MICROWAVE PROCESSING OF SOL-GEL DERIVED POTASSIUM<br>NIOBATE<br>Z. Fathi, I. Ahmad, and D.E. Clark                                                                                                 | 401 |
| DIELECTRIC CHARACTERIZATION OF POLYCERAM FILMS<br>G. Teowee, J.M. Boulton, H.H. Fox, A. Koussa,<br>T. Gudgel, and D.R. Uhlmann                                                                     | 407 |
| SOL-GEL THIN FILM ELECTRONIC PROPERTIES<br>W.L. Warren, P.M. Lenahan, C.J. Brinker,<br>G.R. Shaffer, C.S. Ashley, and S.T. Reed                                                                    | 413 |
| SOL-GEL SYNTHESIS OF LEAD TITANATE FIBRES FOR USE IN<br>THE FABRICATION OF PIEZOCERAMIC-POLYMER COMPOSITES<br>H. Janusson, C.E. Millar, and S.J. Milne                                             | 421 |
| MICROSTRUCTURAL EVOLUTION OF TIO, SOL-GEL THIN FILMS<br>J.L. Keddie and E.P. Giannelis                                                                                                             | 425 |
| ELECTRON DIFFRACTION ANALYSIS OF THE STRUCTURE OF<br>SiO <sub>2</sub> GEL-FILM<br>Hisashi Ohsaki, Michel A. Aegerter, and<br>Takaki Shichiri                                                       | 429 |

| PROPERTIES OF FILMS PREPARED FROM LOW SURFACE AREA/<br>DENSITY ALUMINA-SILICA<br>S.L. Hietala, D.M. Smith, V.M. Hietala,<br>G.C. Frye, A.J. Hurd, and C.J. Brinker        | 433 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| THIN ANISOTROPIC COATINGS BASED ON SOL-GEL TECHNOLOGY<br>S. Randall Holmes-Farley and Lynn C. Yanyo                                                                       | 439 |
| PARTICLE GROWTH AND DEVELOPMENT DURING THE IN-SITU<br>PRECIPITATION OF SILICA IN A POLYMERIC MATRIX<br>Ping Xu, Shuhong Wang, and James E. Mark                           | 445 |
| SOL-GEL DEPOSITION OF ELECTRONIC CERAMIC FILMS<br>J.M. Bell, B. Ben-Nissan, M. Anast, B.O. West,<br>L. Spiccia, J. Cullen, I. Watkins, D. deVilliers,<br>and G. Johnston  | 453 |
| THE FORMATION OF THIN FILMS AND FIBERS OF TIC FROM A<br>POLYMERIC TITANATE PRECURSOR<br>S-J. Ting, C-J. Chu, E. Limatta, J.D. Mackenzie,<br>T. Getman, and M.F. Hawthorne | 457 |
| CERAMIC FIBER COATING BY A NON-AQUEOUS SOL-GEL PROCESS<br>F.C. Montgomery, H.H. Streckert, R.O. Harrington,<br>J.L. Kaae, S.P. Paguio, and D.R. Wall                      | 461 |
| IMPROVEMENT OF BUILDING MATERIALS PERFORMANCE BY<br>SOL-GEL DERIVED COATINGS<br>Wolfram Beier and Ivan Odler                                                              | 467 |
| GLASSES AND MULTI-COMPONENT SOL-GELS FOR USE AS<br>HIGH-TEMPERATURE PROTECTIVE COATINGS<br>Lauri J. DeVore and Nora R. Osborne                                            | 473 |
| CHARACTERIZATION OF CERIA STABILIZED ZIRCONIA COATINGS<br>ON METAL SUBSTRATES<br>Rosa Di Maggio, Paolo Scardi, and Andrea Tomasi                                          | 481 |
| SOL-GEL PROCESSING OF PbTiO <sub>3</sub> FIBERS<br>S.I. Aoki, S.C. Choi, D.A. Payne, and H. Yanagida                                                                      | 485 |
| EVOLUTION OF SURFACE AREA DURING THE CONTROLLED GROWTH<br>OF SILICA SPHERES<br>Gregory H. Bogush, C.J. Brinker, P.D. Majors,<br>and D.M. Smith                            | 491 |
| PART VI: PROCESSING SCIENCE III:<br>DRYING, DENSIFICATION AND CRYSTALLIZATION                                                                                             |     |
| THE CRACKING OF SOL-GEL FILMS DURING DRYING<br>Terry J. Garino                                                                                                            | 497 |
| *EFFECT OF INCLUSIONS ON SHRINKAGE<br>George W. Scherer                                                                                                                   | 503 |

| *HYBRID GELS DESIGNED FOR MULLITE NUCLEATION AND<br>CRYSTALLIZATION CONTROL<br>Jeffrey C. Huling and Gary L. Messing                                                                                                                | 515 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| MOLECULARLY MODIFIED ALKOXIDE PRECURSORS FOR SYNTHESIS<br>OF DIELECTRIC CERAMICS<br>Pradeep P. Phule and Farida Khairulla                                                                                                           | 527 |
| EFFECT OF PRECURSORS ON LITHIUM INFILTRATED SILICA GELS<br>STUDIED BY XPS<br>S.F. Ho and L.C. Klein                                                                                                                                 | 533 |
| PHASE TRANSFORMATIONS IN ZrO <sub>2</sub> -SiO <sub>2</sub> GELS<br>J. Campaniello, E.M. Rabinovich, P. Berthet,<br>A. Revcolevschi, and Nonna A. Kopylov                                                                           | 541 |
| CRYSTALLIZATION OF IN-SITU SIC-MULLITE COMPOSITES FROM<br>MULTICOMPONENT ALUMINA-SILICA GELS<br>S. Jagota and A. Parvizi-Majidi                                                                                                     | 547 |
| PART VII: THIN FILMS AND FIBERS                                                                                                                                                                                                     |     |
| *RHEOLOGY FOR BETTER SOL-GEL FIBER AND FILM FORMATION<br>C.W. Macosko, M.L. Mecartney, and L.E. Scriven                                                                                                                             | 555 |
| THE PROCESS OF GEL FIBER FORMATION<br>N. Taneda, T. Kawaguchi, D. Arai, and K. Matsuzaki                                                                                                                                            | 569 |
| *SOL-GEL FILM FORMATION BY DIP COATING<br>Alan J. Hurd and C. Jeffrey Brinker                                                                                                                                                       | 575 |
| *SOL-GEL COATINGS ON ACOUSTIC WAVE DEVICES: THIN<br>FILM CHARACTERIZATION AND CHEMICAL SENSOR DEVELOPMENT<br>Gregory C. Frye, C. Jeffrey Brinker,<br>Antonio J. Ricco, Stephen J. Martin,<br>Janice Hilliard, and Daniel H. Doughty | 583 |
| *OXOMETALATE-GLASS COMPOSITES AND THIN FILMS<br>Karin Moller, Thomas Bein, and C. Jeffrey Brinker                                                                                                                                   | 595 |
| INHOMOGENEITIES IN SOL-GEL COATINGS<br>B.D. Fabes, D.L. Klein, and L.J. Raymond                                                                                                                                                     | 605 |
| DENSIFICATION AND CRYSTALLIZATION OF THIN TRANSITION<br>METAL OXIDE COATINGS FROM METAL ALKOXIDES<br>H. Hirashima, R. Muratake, T. Yamashita, and T. Chiba                                                                          | 611 |
| PART VIII: CERAMIC PROCESSING OF NATURAL SYSTEMS                                                                                                                                                                                    |     |
| *BIOMIMETIC CERAMICS<br>Paul Calvert                                                                                                                                                                                                | 619 |
| *BIOMIMETIC PROCESSING OF CERAMICS AND CERAMIC-METAL<br>COMPOSITES<br>M. Yasrebi, G.H. Kim, K.E. Gunnison, D.L. Milius,<br>M. Sarikaya, and I.A. Aksay                                                                              | 625 |

<sup>\*</sup>Invited Paper

| *SYNTHESIS OF NANOCERAMIC PARTICLES BY INTRAVESICULAR<br>PRECIPITATION<br>Suhas Bhandarkar, Iskandar Yaacob, and Arijit Bose                                                                                                                                                            | 637 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| PART IX: STRUCTURE/PROPERTIES I: ELECTRICAL                                                                                                                                                                                                                                             |     |
| *WET CHEMICAL DERIVED FILMS FOR ELECTRICAL APPLICATIONS<br>D.R. Uhlmann, G. Teowee, J.M. Boulton, and<br>B.J.J. Zelinski                                                                                                                                                                | 645 |
| CRYSTALLIZATION KINETICS OF METALLO-ORGANICS DERIVED<br>PZT THIN FILM<br>K.C. Chen and J.D. Mackenzie                                                                                                                                                                                   | 663 |
| EVOLUTION OF MOLECULAR STRUCTURE IN ALKOXIDE-DERIVED<br>LITHIUM NIOBATE<br>Dennis J. Eichorst and D.A. Payne                                                                                                                                                                            | 669 |
| PREPARATION OF SINGLE-PHASE KNbO <sub>3</sub> USING BIMETALLIC<br>ALKOXIDES<br>Mostafa M. Amini and Michael D. Sacks                                                                                                                                                                    | 675 |
| *INTERCALATION CHEMISTRY: A NOVEL APPROACH TO MATERIALS<br>DESIGN<br>E.P. Giannelis, V. Mehrotra, and M.W. Russell                                                                                                                                                                      | 685 |
| PREPARATION OF COPPER AND COPPER-BARIUM-YTTRIUM SOLS<br>FROM METAL 2-(2-ETHOXYETHOXY)ETHOXIDES AND CONVERSION<br>OF COPPER-BARIUM-YTTRIUM ALKOXIDE PRECURSORS TO<br>Ba <sub>2</sub> YCu <sub>3</sub> O <sub>7-δ</sub><br>Mary Rose Scozzafava, Wendell E. Rhine,<br>and Michael J. Cima | 697 |
| ION-IMPLANTATION EFFECTS ON SPIN-ON-GLASS (SOL-GEL)<br>SiO <sub>2</sub> FILMS<br>Y. Shacham-Diamand, N. Moriya, and R. Kalish                                                                                                                                                           | 703 |
| CHEMICAL SYNTHESIS OF ALUMINUM NITRIDE POWDERS<br>Phillip R. Coffman, William T. Petuskey, and<br>Sandwip K. Dey                                                                                                                                                                        | 709 |
| PART X: STRUCTURE/PROPERTIES II: OPTICAL                                                                                                                                                                                                                                                |     |
| *GRIN ROD OF LARGE DIAMETER AND LARGE DELTA-N<br>Masayuki Yamane, Atsuo Yasumori, Mitsunobu Iwasaki,<br>and Kazutaka Hayashi                                                                                                                                                            | 717 |
| STUDIES ON THE REPRODUCIBLE PRODUCTION OF GRIN (GRADIENT<br>INDEX) GLASS RODS BY A SOL-GEL PROCESS<br>J. Brian Caldwell, Tessie M. Che, Richard W. Cruse,<br>Robert M. Mininni, Randall E. Nikles,<br>Victor N. Warden, and Mark A. Banash                                              | 727 |

| LIGHT HARVESTING MOLECULAR ASSEMBLIES IN THE DESIGN OF<br>HIGHLY LUMINESCENT SOL-GEL DERIVED GLASSES<br>Joel I. Dulebohn, Béatrice Van Vlierberge,<br>Kris A. Berglund, Ronald B. Lessard, Jeong-a Yu,<br>and Daniel G. Nocera | 733 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| *SOL-GEL PROCESSED INORGANIC AND ORGANICALLY MODIFIED<br>COMPOSITES FOR NONLINEAR OPTICS AND PHOTONICS<br>Paras N. Prasad                                                                                                      | 741 |
| INCORPORATION OF POLYANILINE INTO A SILICA GEL VIA THE<br>SOL-GEL TECHNIQUE<br>F. Nishida, B. Dunn, E.T. Knobbe, P.D. Fuqua,<br>R.B. Kaner, and B.R. Mattes                                                                    | 747 |
| OPTICAL SWITCHES BASED ON VANADIUM DIOXIDE FILMS GROWN<br>BY THE SOL-GEL PROCESS<br>Richard S. Potember and Kenneth R. Speck                                                                                                   | 753 |
| VANADIUM PENTOXIDE GELS: STRUCTURAL DEVELOPMENT AND<br>RHEOLOGICAL PROPERTIES<br>J.K. Bailey, T. Nagase, G.A. Pozarnsky, and<br>M.L. Mecartney                                                                                 | 759 |
| PART XI: POSTER SESSION: NOVEL PROCESSING, SUPERCONDUCT                                                                                                                                                                        | ORS |
| PREPARATION OF PHENYLSILOXANE FILMS VIA SOLUTION<br>DEPOSITION TECHNIQUES<br>E.W. Burkhardt, R.R. Burford, and J.H. Deatcher                                                                                                   | 767 |
| SYNTHESIS AND STRUCTURAL CHARACTERISTICS OF<br>POLYCERAMS<br>J.M. Boulton, H.H. Fox, G.F. Neilson, and<br>D.R. Uhlmann                                                                                                         | 773 |
| POLYMERIZATIONS OF ALKENYLSILANES USING EARLY<br>TRANSITION METAL CATALYSTS<br>John Masnovi, Xin Y. Bu, Paula Conroy,<br>A. Harry Andrist, Frances I. Hurwitz, and<br>Doug Miller                                              | 779 |
| HIGH RESOLUTION TEM OF ORGANIC AEROGELS AND INORGANIC<br>AEROGELS<br>George C. Ruben and Richard W. Pekala                                                                                                                     | 785 |
| A NEW SYNTHETIC ROUTE TO ORGANIC AEROGELS<br>R.W. Pekala and C.T. Alviso                                                                                                                                                       | 791 |
| CRYSTALLIZATION OF PYROLYZED POLYSILAZANES<br>Roger L.K. Matsumoto                                                                                                                                                             | 797 |
| PRE-RESONANCE RAMAN CHARACTERIZATION OF METAL-ORGANIC<br>FILMS FROM TITANIUM ALKOXIDE CARBOXYLATE COMPLEXES<br>Charles D. Gagliardi, Dilum Dunuwila, and<br>Kris A. Berglund                                                   | 801 |

| STABILITY OF BORON NITRIDE COATINGS ON CERAMIC<br>SUBSTRATES<br>Abhaya K. Datye, Xiaomei Qui, Theodore T. Bo<br>Robert T. Paine, and Lawrence F. Allard                             | 807<br>orek,       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| XPS CHARACTERIZATION OF MIXED CARBIDES OBTAINED<br>POLYMER PRECURSORS<br>Gaetano Granozzi, Antonella Glisenti, and<br>Gian D. Soraru                                                | FROM 811           |
| MIXED CARBIDES VIA POLYMER ROUTE<br>Gian D. Soraru, Florence Babonneau, and<br>John D. Mackenzie                                                                                    | 815                |
| LASER DENSIFICATION MODELING<br>Taipau Chia, L.L. Hench, Chaobin Qin, and<br>C.K. Hsieh                                                                                             | 819                |
| THE USE OF SOLUBLE METAL-POLYSELENIDE COMPLEXES<br>PRECURSORS TO BINARY AND TERNARY SOLID METAL SEL<br>S. Dhingra and M.G. Kanatzidis                                               | AS<br>JENIDES 825  |
| CHEMICALLY DERIVED YTTRIA-STABILIZED ZIRCONIA FO<br>PLASMA-SPRAYING<br>Fawzy G. Sherif and H. Herman                                                                                | )R<br>831          |
| EMULSION PRECIPITATION AND CHARACTERIZATION OF Z<br>Lieh-Jiun Shyu and Frank M. Cambria                                                                                             | IRCONIA 837        |
| TRANSPIRATION COOLED POROUS TYPE VI SILICA ROCKE<br>WINDOWS<br>Albert G. Fosmoe II and Larry L. Hench                                                                               | 2 <b>T</b><br>843  |
| PLASMA SYNTHESIS OF FINE CERAMIC POWDERS BY A NO<br>COUNTER-FLOW LIQUID INJECTION METHOD<br>P. Kong, T.W. Or, L. Stachowicz, and E. Pfen                                            | VEL<br>849<br>nder |
| MORPHOLOGY CONTROL IN PRECURSOR CERAMIC POWDER<br>PRODUCTION BY THE ELECTRICAL DISPERSION REACTOR<br>Michael T. Harris, Timothy C. Scott,<br>Osman A. Basaran, and Charles H. Byers | 853                |
| DC PLASMA SYNTHESIS OF ALUMINUM NITRIDE CERAMIC<br>Z.P. Lu and E. Pfender                                                                                                           | POWDERS 857        |
| EFFECT OF NITROUS OXIDE GAS ON CVD DIAMOND FILM<br>DEPOSITION<br>H. Koinuma, M. Yoshimoto, Y. Takagi, A.B. Sa<br>T. Hashimoto, T. Nagai, and T. Shiraishi                           | 861<br>waoka,      |
| SUPERCONDUCTING FIBERS FROM ANHYDROUS METAL<br>CARBOXYLATES<br>Richard M. Laine, Kay A. Youngdahl,<br>Richard A. Kennish, Martin L. Hoppe,<br>Zhi-Fan Zhang, and D. Jean Ray        | 865                |
| FABRICATION OF SUPERCONDUCTING Bi-Sr-Ca-Cu-O OXI<br>FILMS USING THE METAL ALKOXIDE METHOD<br>Shingo Katayama and Masahiro Sekine                                                    | :DE 873            |

| POLYFUNCTIONAL CARBOXYLIC ACIDS AS COPRECIPITATING<br>AGENTS FOR BARIUM, YTTRIUM, AND COPPER<br>Robert B. Hallock, P.O. Rexer, M.S. Jolly,<br>W.E. Rhine, and M.J. Cima                                                                                        | 877 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| SYNTHESIS OF SUPERCONDUCTING THIN FILMS BY<br>ORGANOMETALLIC DECOMPOSITION<br>Christophe Barbe and Terry A. Ring                                                                                                                                               | 883 |
| CHEMICAL PREPARATION OF SUPERCONDUCTING OXIDES USING<br>CONVENTIONAL CHELATING AGENTS<br>Cyril Chiang and C.Y. Shei                                                                                                                                            | 889 |
| SYNTHESIS OF SUPERCONDUCTING PEROVSKITE BY<br>COPRECIPITATION OF HYDROXIDES<br>I. Valente-Campion, P. Barboux, L. Mazerolles,<br>D. Michel, R. Morineau, and J. Livage                                                                                         | 893 |
| SUPERCONDUCTING YBa <sub>2</sub> Cu <sub>3</sub> O <sub>7-x</sub> FIBERS FABRICATED BY THE<br>SOL-GEL METHOD USING METAL ALKOXIDES<br>Shingo Katayama and Masahiro Sekine                                                                                      | 897 |
| SOL-GEL PROCESSING OF THE Tl <sub>2</sub> Ca <sub>1</sub> Ba <sub>2</sub> Cu <sub>2</sub> O <sub>8+x</sub> HIGH Tc<br>SUPERCONDUCTING PHASE<br>M.R. Teepe, D.S. Kenzer, G.A. Moore, and G. Kordas                                                              | 901 |
| PREPARATION OF SUPERCONDUCTING YBa <sub>2</sub> Cu <sub>3</sub> O <sub>7-x</sub> COMPOUNDS<br>BY WATER EXTRACTION VARIANT OF SOL-GEL PROCESS<br>A. Deptula, W. Lada, T. Olczak, T. Źdltowski,<br>and A. Di Bartolomeo                                          | 907 |
| METALLO-ORGANICS DERIVED TRACTABLE RESINS FOR YBCO<br>SUPERCONDUCTING FIBER FABRICATION<br>K.C. Chen, A.Y. Chen, and K.S. Mazdiyasni                                                                                                                           | 913 |
| PREPARATION OF Bi-Pb-Sr-Ca-Cu-O SUPERCONDUCTOR BY<br>THERMAL DECOMPOSITION OF AN EDTA COLLOID<br>H.S. Koo, C.K. Chiang, Y.T. Huang, and G.C. Tu                                                                                                                | 917 |
| SOLUBLE AND VOLATILE PRECURSORS FOR THE PREPARATION<br>OF SUPERCONDUCTING FILMS<br>Nancy N. Sauer, Eduardo Garcia, and Robert R. Ryan                                                                                                                          | 921 |
| KINETIC STUDY OF HIGH TC Bi-Pb-Sr-Ca-Cu-O SYSTEM<br>WM. Hurng, Y.T. Huang, C.Y. Shei, C. Chiang,<br>H.S. Koo, S.F. Wu, and P.T. Wu                                                                                                                             | 925 |
| SOLUTION-DERIVED YBa <sub>2</sub> Cu <sub>3</sub> O <sub>7-δ</sub> THIN FILMS AND BARRIER<br>LAYERS<br>G.E. Whitwell, J.H. Wandass, F.M. Cambria, and<br>M.F. Antezzo                                                                                          | 929 |
| PREPARATION, THERMAL PROCESSING BEHAVIOR AND<br>CHARACTERIZATION OF POWDERED AND BULK YBa <sub>2</sub> Cu <sub>3</sub> O <sub>7-x</sub><br>FROM FREEZE DRIED NITRATE SOLUTIONS<br>N. Coppa, A. Bura, J.W. Schwegler, R.E. Salomon,<br>G.H. Myer, and J.E. Crow | 935 |

| TEN MINUTE PREPARATION OF YBa <sub>2</sub> Cu <sub>3</sub> O <sub>7-x</sub> USING BARIUM<br>HYDROXIDE<br>N. Coppa, A. Kebede, J.W. Schwegler, I. Perez,<br>R.E. Salomon, G.H. Myer, and J.E. Crow                          | 941  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| EVALUATION OF YBa <sub>2</sub> Cu <sub>3</sub> O <sub>7-δ</sub> SOL-GEL DERIVED FILMS ON<br>SAPPHIRE SUBSTRATES PRODUCED FROM DIFFERENT Cu(II)<br>ALKOXIDE GROUPS<br>D.S. Kenzer, M.R. Teepe, G.A. Moore, and G. Kordas    | 947  |
| CHARACTERIZATION OF AMORPHOUS GEL TO SUPERCONDUCTING OXIDE CONVERSION FOR SOL-GEL PRODUCED $Y_1Ba_2Cu_3O_{7-x}$ G.A. Moore, D. Kenzer, M. Teepe, and G. Kordas                                                             | 953  |
| PART XII: NOVEL PROCESSING I                                                                                                                                                                                               |      |
| *ASPECTS OF CHEMISTRY AND CHEMICAL PROCESSING OF<br>ORGANICALLY MODIFIED CERAMICS<br>Helmut K. Schmidt                                                                                                                     | 961  |
| ARYL-BRIDGED POLYSILSESQUIOXANES - NEW MICROPOROUS<br>MATERIALS<br>Kenneth J. Shea, Owen Webster, and Douglas A. Loy                                                                                                       | 975  |
| RUBBERY ORMOSILS<br>Young J. Chung, Su-Jen Ting, and John D. Mackenzie                                                                                                                                                     | 981  |
| NON-LINEAR ORGANIC DYES IN POLYCERAM HOSTS<br>J.M. Boulton, J. Thompson, H.H. Fox, I. Gorodisher,<br>G. Teowee, P.D. Calvert, and D.R. Uhlmann                                                                             | 987  |
| INORGANIC-ORGANIC COMPOSITES (ORMOCERS) AS STRUCTURED<br>LAYERS FOR MICROELECTRONICS<br>Michael Popall, Henning Meyer, Helmut Schmidt,<br>and Jochen Schulz                                                                | 995  |
| RAPID THERMAL PROCESSING OF HIGH TEMPERATURE<br>SUPERCONDUCTING FIBER<br>J.W. Halloran, M.J. Neal, D.S. Ginley,<br>E.L. Venturini, J.F. Kwak, R.J. Baughman,<br>M.A. Mitchell, B. Morosin, S.N. Basu, and<br>T.E. Mitchell | 1003 |
| PREPARATION OF POROUS OXIDE BEADS USING POLYMERIC<br>BEADS TO CONTROL BEAD SIZE AND SHAPE<br>Anne B. Hardy, Wendell E. Rhine, and<br>H. Kent Bowen                                                                         | 1009 |
| PART XIII: NOVEL PROCESSING II                                                                                                                                                                                             |      |
| *NEW CHEMICAL ROUTES TO METAL NITRIDES                                                                                                                                                                                     | 1017 |

Wayne L. Gladfelter, Jen-Wei Hwang, John F. Evans, Scott A. Hanson, Klavs F. Jensen, and Kwok-Lun Ho

| BORON NITRIDE AND COMPOSITE AEROGELS FROM BORAZINE<br>BASED POLYMERS<br>David A. Lindquist, Douglas M. Smith,<br>Abhaya K. Datye, Gregory P. Johnston,<br>Theodore T. Borek, Riley Schaeffer, and<br>Robert T. Paine | 1029 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| SPECTROSCOPIC CHARACTERIZATION OF A PRE-CERAMIC<br>POLYMER FOR SIC/TIC SYSTEM<br>Florence Babonneau, Patrice Barre, Jacques Livage,<br>and Michel Verdaguer                                                          | 1035 |
| CHEMICAL REACTIONS DURING THE THERMAL PROCESSING OF<br>BORAZENE POLYMERS<br>R.R. Rye, T.T. Borek, D.A. Lindquist, and<br>R.T. Paine                                                                                  | 1041 |
| LASER DENSIFICATION OF SOL-GEL COATINGS<br>D.J. Taylor, B.D. Fabes, and M.G. Steinthal                                                                                                                               | 1047 |
| *ELECTRODEPOSITION OF NANOMODULATED CERAMIC THIN FILMS<br>Jay A. Switzer, Michael J. Shane, and<br>Richard J. Phillips                                                                                               | 1053 |
| *THE CHEMICAL PROCESSING OF SILICATES FOR BIOLOGICAL<br>APPLICATIONS - A REVIEW<br>L.L. Hench and June Wilson                                                                                                        | 1061 |
| PART XIV: LATE PAPERS ACCEPTED                                                                                                                                                                                       |      |
| MAGNETIC RESONANCE AS A STRUCTURAL PROBE OF A<br>URANIUM (VI) SOL-GEL PROCESS<br>Charles M. King, R. Bruce King, A. Ronald Garber,<br>Major C. Thompson, and Bruce R. Buchanan                                       | 1075 |
| OXYGEN-17 NMR STUDIES OF URANIUM (VI) HYDROLYSIS AND<br>GELATION<br>R. Bruce King, Charles M. King, and<br>A. Ronald Garber                                                                                          | 1083 |
| *MECHANICAL PROPERTIES OF SILICA ALCOGELS AND AEROGELS<br>T. Woignier, J. Phalippou, H. Hdach, and<br>G.W. Scherer                                                                                                   | 1087 |
| AUTHOR INDEX                                                                                                                                                                                                         | 1101 |
| SUBJECT INDEX                                                                                                                                                                                                        | 1107 |
| MATERIALS RESEARCH SOCIETY SYMPOSIUM PROCEEDINGS                                                                                                                                                                     | 1113 |

# OXOMETALATE-GLASS COMPOSITES AND THIN FILMS

Karin Moller\*, Thomas Bein\* and C. Jeffrey Brinker\*\* \*Department of Chemistry and Center for Micro-Engineered Ceramics, University of New Mexico, Albuquerque, NM 87131 \*\*Sandia National Laboratories, P. O. Box 5800, Albuquerque, NM 87185

#### ABSTRACT

New glass-composites with ion exchange properties have been developed. Ammonium 12-molybdophosphate (AMP)  $(NH_4)_3PMo_{12}O_{40}$ , and ammonium 12-tungstophosphate (AWP)  $(NH_4)_3PW_{12}O_{40}$ , known for their ion exchange capabilities, are included either in preformed aerogels with defined pore size, or are added to sol-gel mixtures during the process of gel formation. Characterization is carried out by FTIR, Raman and EXAFS spectroscopy. Ion exchange capacities for the oxometalate precursors are determined for silver and rubidium and are compared to those of the glass composites. Glass composites show high ion exchange capacity, but some portion of the metalate complexes leaches from the glass during the procedure. This is in contrast to thin composite films, which have almost no porosity and do not show loss of metalate. EXAFS spectroscopy demostrates that the oxometalate microstructure is maintained in glass composites and that rubidium ions after ion exchange in glasses occupy similar cation positions as in the precursor compounds.

# INTRODUCTION

The combination of different functional properties in glass-based composites offers great potential for the design of tailored materials. Examples include sol-gel derived glass-organic composites, glass-included laser dyes, catalysts, and nonlinear optical materials.

In view of the increasing demand for stable, ion-selective sensors we have initiated a program aimed at the design of tailored thin films with selective ion exchange capabilities. In combination with highly sensitive acoustic devices, it is envisioned that inexpensive, rugged ion sensors for process and environmental monitoring can be designed. The concept is based upon the encapsulation of oxometalate clusters in porous, sol-gel derived glasses. The resulting materials combine selective ion exchange sites with tailored porosity, such that ultimately large fractions of unwanted species (e.g., organics, biological matter) are screened from the ion exchange sites. The following benefits are expected from this approach: The design of *ion exchange composites* allows independent adjustment of both ion selectivity through the choice of different oxometalates, and porosity through the choice of sol-gel chemistry. Furthermore, the resulting inorganic films are temperature stable up to at least 300°C and not subject to fouling.

Heteropoly oxometalates such as anions with the Keggin structure are known since the last century, but their crystal structure was first solved by Keggin in 1934. Figure 1 depicts the Keggin anion structure and a defect structure with one  $MO_6$  octahedron missing. These materials find numerous applications in catalysis, analytical chemistry and biochemical or medical areas. Their ability to exchange their counter cation for alkali ions was first recognized by Smit<sup>1</sup> and has since been used in column chromatography and in paper chromatography. Keggin ions have been used to exchange alkali cations as well as radioactive pollutants. General reviews are available.<sup>2,3,4,5</sup>



Figure 1: Idealized Keggin structure XM<sub>12</sub> (a) and defect Keggin structure XM<sub>11</sub>
(b). The central XO<sub>4</sub> tetrahedron is not shown. O<sub>a</sub> = oxygen shared by 3
MO<sub>6</sub> and the central XO<sub>4</sub> tetrahedron, O<sub>b</sub> and O<sub>c</sub> = oxygen shared by corner and edge linked MO<sub>6</sub>, O<sub>d</sub> = terminal unshared oxygen

This communication reports on the design of 12-molybdophosphate and 12tungstophosphate ions encapsulated in silicate glass bodies in bulk form. FTIR, FT-Raman, EXAFS, and ion exchange data demonstrate the feasibility of creating intact intra-glass oxometalate ions that are accessible for ion exchange through the pore system of the matrix.

EXPERIMENTAL:

1. Sample Preparation

a) Ammonium 12-molybdophosphate (AMP) (NH4)<sub>3</sub>PMo<sub>12</sub>O<sub>40</sub>. Highest yield (82 - 95% after work-up) is obtained by stepwise combining stoichiometric amounts of Na<sub>2</sub>MoO<sub>4</sub>, H<sub>3</sub>PO<sub>4</sub>, and NH<sub>4</sub>NO<sub>3</sub> (in 0.1 M HNO<sub>3</sub>) under acid conditions. 1 molar aqueous solutions were added in a volume ratio 12:1:3 after acidifying the sodium molybdate solution with 13 M HNO<sub>3</sub> to pH 1.6. The slightly yellow color of the molydate turned to strong yellow immediately after addition of phosphoric acid. Precipitation of the ammonium salt occured promptly.

b) Ammonium 12-phosphotungstate (AWP) (NH<sub>4</sub>)<sub>3</sub>PW<sub>12</sub>O<sub>40</sub>. Sodium tungstate is insoluble in acid solutions and forms a thick white precipitate when acidified with HNO<sub>3</sub>. Thus, 10 ml WO<sub>4</sub><sup>2-</sup> and 0.9 ml 1 M NaOH and 0.9 ml of 1 M H<sub>3</sub>PO<sub>4</sub> are combined, followed by addition of 2.5 ml NH<sub>4</sub>NO<sub>3</sub> at pH 7 and acidification to pH 1.5. AWP precipitates as a white solid (yield 92%). The corresponding white silver salt is prepared by adding AgNO<sub>3</sub> before acidification (Yield 50%).

c) Assembly of AMP within pores of aerogels. To a slurry of 1g TEOS-derived B2-Aerogel (pore size 10-500 Å) in 10 ml H<sub>2</sub>O, 4 ml of 1 M Na<sub>2</sub>MoO<sub>4</sub> and 2 ml of 13 M HNO<sub>3</sub> are added. The slurry is stirred for 10 minutes before adding 0.33 ml of 1 M H<sub>3</sub>PO<sub>4</sub>, and finally, 1 ml of 1 M NH<sub>4</sub>NO<sub>3</sub>. A green color resulting from reduction of the AMP was reversed to yellow upon adding 2 ml 30% H<sub>2</sub>O<sub>2</sub>. After filtration the yellow solid was dried at 85°C.

# d) Preparation of glasses containing oxometalates

<u>HMP-Glass.</u> 3 g of crystalline 12-molybdophosphoric acid (H<sub>3</sub>PMo<sub>12</sub>O<sub>40</sub>; HMP) and 7.3 ml EtOH and 1 ml 0.1 M HNO<sub>3</sub> and 7.3 ml TEOS and 2 ml 0.05 M NaOH are combined in this sequence (molar ratio of HMP:SiO<sub>2</sub> = 1:20). The suspension was sonicated for 3 minutes and left at room temperature. After two days a greenish gel had formed.

<u>AMP-Glass</u>. Synthetic AMP + TEOS + EtOH in a molar ratio of AMP:SiO<sub>2</sub> = 1:20: Stoichiometric amounts of 1 M Na<sub>2</sub>MoO<sub>4</sub> (40 ml) and 1 M H<sub>3</sub>PO<sub>4</sub> (3.33 ml) solutions (at pH = 1.5, 6 ml 13 M HNO<sub>3</sub>) were combined. Water was evaporated at 75 C to about half the volume (25 ml) until a yellow cloudiness indicated the starting point for precipitation. 14.6 ml TEOS were added to the warm, clear solution under strong stirring, and immediately stoichiometric amounts of NH<sub>4</sub>NO<sub>3</sub> in ethanol were added (1.1 g in 1 ml 0.1 M HNO<sub>3</sub> plus 14.6 ml EtOH). A cloudy yellow color appeared. Stirring was continued under slow cooling of the slurry. A thick paste was formed after 2 hours. After 1 day ethanol was partially removed by heating in a water bath. A hard, yellow glass formed.

# 2. Characterization

Metal contents of glasses were determined by atomic absorption. The samples were analyzed as-synthesized and after each subsequent treatment by FT-IR in the form of KBr pellets. For FT-Raman experiments, a Spectrum SL301 Nd:YAG laser (1064 nm, ca. 1.0 W) was focused on a 1-mm capillary containing the powdered sample. Light collection was done with a modified Mattson Polaris interferometer, detection with an InGaAs detector (EPITAXX). EXAFS measurements were peformed at the X-11A beamline at NSLS (Brookhaven National Laboratories) with an electron energy of 2.5 GeV and ring currents between 90 and 180 mA. Data were collected with a Si(400) crystal pair monochromator at the Mo K-edge (20,000 eV) and at the W L<sub>1II</sub>-edge (10,207 eV) at ca. 100 K. Rubidium-exchanged samples were also examined at the Rb K edge (15,200 eV). Data analysis was performed following standard procedures.<sup>6</sup>

#### 3. Ion exchange

Ion exchange was performed on bulk oxometalates as well as on glass composites by adding stoichiometric or excess amounts of AgNO<sub>3</sub> or RbNO<sub>3</sub> in acid solutions (e.g., 500 mg AWP and 50 ml of 0.01 M RbNO<sub>3</sub> in 0.1 M HNO<sub>3</sub>). Samples were stirred for ca. two hours in exchange solutions, filtered and further analyzed. Back-exchange capabilities were examined on bulk oxometalates by adding varying amounts of NH<sub>4</sub>NO<sub>3</sub> in acid solution.

#### RESULTS AND DISCUSSION

# Bulk oxometalates

Characteristic modes of the M-O and P-O vibrations appear between 200 and 1100 cm<sup>-1</sup> in the IR and Raman spectra. The main IR vibrations at 1064, 964, 875, 795 and 595 cm<sup>-1</sup> of the molybdate ions, or, 1081, 990/982, 890, 805 and 535 cm<sup>-1</sup> of the tungstate ions are assigned as the asymmetric P-O, M-O<sub>d</sub> (O<sub>d</sub> = terminal oxygens), and M-O-M vibrations according to Rocchiccioli-Deltcheff.<sup>7</sup> Raman spectra show mainly the symmetric M-O<sub>d</sub> band around 1000 cm<sup>-1</sup> and a convolution of the symmetric P-O and asymmetric M-O<sub>d</sub> band around 990 cm<sup>-1</sup>.

#### Inclusion of Keggin ions in preformed aerogel

The preparation of oxometalates in preformed glasses resulted in a loading of ca. 8 wt% Mo in B2-aerogel and a yellow color indicated formation of AMP. The IR spectrum is shown in Figure 2. The silica support blocks out a region between 1350 and ca. 1000 cm<sup>-1</sup> and obscures an even wider range in the IR. However, the main bands of the Keggin ions (1064, 970, 875, 795 cm<sup>-1</sup>) are still visible as superimposed peaks when compared with the precursor included in the Figure.



Figure 2: FTIR spectrum of the preformed aerogel with included (NH<sub>4</sub>)<sub>3</sub>PMoO<sub>40</sub> in comparison to the precursor

When a part of this sample was washed with a small amount of water at room temperature, the color changed from yellow to white and no Keggin ions were detectable in the solid. Heat treatment in air up to 200 C was thought to favour condensation reactions between the aerogel and the Keggin ions. A similar washing procedure as above still reduced the molybdenum content, but left ca. 50% attached to the solid. After a subsequent ion-exchange experiment with silver nitrate, all remaining molybdenum ions were found in the wash solution.

# Inclusion of Keggin ions during gellation

To avoid or reduce the loss of molybdenum from supported samples upon washing, a different strategy for encapsulation of Keggin ions was developed: Oxometalate complexes were synthesized in the presence of sol-gel precursors for the silicate matrix. It was anticipated that bottleneck pores develope which restrict mobility of the Keggin ions but render access for smaller cations. Several different glasses were prepared varying in the sol-gel route and/or the Keggin ion present. A representative IR spectrum is shown in Figure 3 (AMP in TEOS + EtOH). The high loading of ca. 38 wt% of Mo allows for ready detection of the Keggin vibrations which confirm that the Keggin structure is maintained in the glass. The thermal stability of this glass was tested by heating up to 400  $^{\circ}$  C in oxgen. Raman spectra of a representative experiment are shown in Figure 4. It is clearly visible that decomposition occurs between 200 and 400  $^{\circ}$  C. Aging temperatures were therefore restricted to 200  $^{\circ}$  C.



Figure 3: FTIR spectra of "In-situ" formed composite TEOS + EtOH + (NH<sub>4</sub>)<sub>3</sub>PMoO<sub>40</sub> in comparison to the precursor (NH<sub>4</sub>)<sub>3</sub>PMoO<sub>40</sub> and H<sub>3</sub>PMoO<sub>40</sub>



- Figure 4: FT-Raman spectra of the thermal degradation of "In-situ" formed composite TEOS + EtOH + (NH<sub>4</sub>)<sub>3</sub>PMoO<sub>40</sub>. Wavenumbers are given (the laser line is at 9388 cm<sup>-1</sup>). Stokes shifts are as follows (subscripts see Figure 1<sup>9</sup>:):
  - (1) 989 cm<sup>-1</sup>: Mo-Od symmetric stretch
  - (2) 879 cm<sup>-1</sup>: Mo-Ob-Mo asymmetric stretch
  - (3) 600 cm<sup>-1</sup>: Mo-O<sub>c</sub>-Mo symmetric stretch
  - (4) 381 cm<sup>-1</sup>: Mo-O-Mo bending
  - (5) 250 cm<sup>-1</sup>: Mo-O<sub>a</sub>-Mo symmetric stretch
  - \* : NO3-

#### lon exchange

The bulk oxometalates were ion exchanged with rubidium and silver by offering stoichometric amounts of the cations at room temperature. AMP, AWP and the respective silver salt exchange under these conditions 50% of their cations for rubudium, while AMP and AWP exchanged only 12-15 % of their ammonium ions for silver. However, a 100% exchange is achieved upon offering excess of silver nitrate.

When silver salts of the molybdenum and tungsten Keggin ions were exposed to ammonium ions, back-exchange to the ammonium form occured for AgMP up to 92% and for AgWP up to 54% in a 3 M NH<sub>4</sub>NO<sub>3</sub> solution.

The glass composites exchanged larger fractions of their protons or ammonium cations, e.g., 12 - 76% for Ag and 42 - 92% for Rb. However, some leaching of the oxometalates was observed for all different porous glasses. Composites made with TEOS showed a loss of 30 - 58% Mo or W, while glasses made from A2 solutions (TEOS + EtOH refluxed at 60 C for several hours) showed a loss from 16 - 35%. The preformed aerogel lost up to 98% after two successive exchange cycles. The loss of Keggin ions is effectively suppressed in thin films of similar compositions which were found to be non-porous. Multicomponent glasses which retain porosity even in thin films are presently studied.

#### EXAFS analysis

EXAFS measurements were performed on the bulk oxometalates as well as on glass composites before and after ion exchange. EXAFS allows to determine the local structure around the X-ray absorbing atom of choice and can provide detailed information about bond distances, coordination numbers and types of atoms in the nearest neighbor shells. Figure 5 shows Fourier transformed molybdenum EXAFS data of the precursors AMP and HMP, overlayed with the respective composites formed with these Keggin ions. A large peak indicating the oxygen environment of the molybdenum atoms is visible between 0.5 and 2 Å (Bond distances appear at ca. 0.5 Å to lower bond distances due to phase shift effects). The mean bond distances obtained from X-ray diffraction are 1.70 Å for the terminal oxygens, 1.92 Å for oxygens bridging the molybdenum octahedra, and 2.43 Å for the oxygen linked to the central phosphorus atom. The second and third shells arise from Mo-Mo bonds at 3.42 Å from edge-shared octahedra and at 3.70 Å from corner-shared octahedra. It can clearly be seen that precursor and glass composites have the same local structure. A quantitative analysis of these data is in progress.

When a HMP/TEOS composite is analyzed after rubidium exchange, the Moedge EXAFS data do not show any sign of degradation (see Figure 6; the imaginary parts of the Fourier transformations are shown in addition to the magnitudes. The former give valuable information about the nature of neighbors or overlap of peaks). The rubidium edge data show a large contribution around 2.5 Å (uncorrected for phase shift) which indicates a Rb-O interaction, while the peak around 3.9 Å arises from the Rb-Mo bond. This spectrum is identical to that taken from the bulk rubidium phospho molybdate and indicates that the rubidium ions occupy identical cation positions in both compounds. When fitted with adequate reference compounds a bond distance of ca. 4.4 Å can be expected. To our knowledge the only complete determination for cation positions in Keggin ions is done with combined neutron- and X-ray diffraction by Brown et al.<sup>8</sup> Their distance of hydrated protons to molybdenum atoms agrees closely with the above observations.



Figure 5: Molybdenum EXAFS data: top: Fourier transformation of the precursor (NH<sub>4</sub>)<sub>3</sub>PMo<sub>12</sub>O<sub>40</sub> data (solid line) as compared to the aerogel composite broken ine). Bottom: Fourier transformation of the precursor H<sub>3</sub>PMo<sub>12</sub>O<sub>40</sub> data (solid line) as compared to the TEOS composite (broken line)



Figure 6: EXAFS data: top: Mo-edge Fourier transformation of the composite TEOS + H<sub>3</sub>PMo<sub>12</sub>O<sub>40</sub> after Rb ion exchange. Bottom: Rb-edge: corresponding Fourier transformation of the above composite

This study shows that Keggin ions can be occluded in glassy substrates with no side products, by either assembling the components in the pores of pre-formed glass, or by in-situ formation in precursor gels. In porous glasses, ion exchange similar to bulk reactions is observed, and cations are shown to be coordinated to the metalate framework. These glass composite offer a potential for the design of thin films with ion exchange capability.

# ACKNOWLEDGMENT

Financial support is gratefully acknowledged from Sandia National Laboratories (K. M., T. B.). A portion of the work was performed at Sandia National Laboratories and supported by the U.S. Departmenty of Energy under contract number DE-AC-04-76DP00789. The operational funds for NSLS beamline X-11A are supported by DOE grant DE-AS-05-80ER10742.

<sup>2</sup> Weakley, T. J. R. in "Structure and Bonding", Vol. 18, Ed. Dunitz, J. D. Springer Verlag, Berlin 1974

- <sup>4</sup> Pope, M. T. "Heteropoly and Isopoly Oxometalates", Springer Verlag, Berlin 1983
- <sup>5</sup> Misono, M. Catal. Rev. Sci. Eng. 1987, 29, 269
- 6 Lee, P. A.; Citrin, P. H.; Eisenberger, P.; Kincaid, B. M., Rev. of Modern Physics, 53 (1981) 769-806
- <sup>7</sup> Rocchiccioli-Deltcheff, C.; Thouvenot, R.; Franck, R. Spectrochim. Acta 1976, 32A, 587
- <sup>8</sup> Brown, G.M.; Noe-Spirlet, M.-R.; Busing, W. R.; Levy, H. A. Acta Cryst. 1977 B33, 1038

<sup>&</sup>lt;sup>1</sup> Smit, J. v. R. *Nature* **1958**, *181*, 1530

<sup>&</sup>lt;sup>3</sup> Tsigdinos, G. A. in "Topics in Current Chemistry", Ed. Dewar, M. J. S. et al., Springer Verlag, Berlin 1978