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SYNTHESIS OF OLIGO- AND POLYTHIOPHENES IN ZEOLITE HOSTS
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ABSTRACT

Oligomers and polymers of thiophene derivatives were synthesized in the channeis of
zeolite Y and mordenite. Intrazeolite oxidation of monomers such as thiophene, 3-
methylthiophene, and bithiophene by Fe(lll) or Cu(ll) ions results in formation of insoluble
polymers that have spectroscopic properties similar to the corresponding bulk polymers. The
zeolites containing the polymers are nonconducting, but when extracted from the host, the
polymers show d.c. conductivities typical for the bulk materials. Oligothiophene species with well-
defined electronic transitions could be produced in acidic zeolite Y.

INTRODUCTION

The synthesis of molecule-based conducting materials has attracted growing interest due
to their potential for applications in microelectronics and electrical components such as batteries.!
Work in this laboratory has recently demonstrated the encapsulation of conjugated polymers such
as polypyrrole, polyaniline and polythiophene in the crystalline channel systems of large-pore
zeolites.2 Precursor monomers are introduced into the zeolite hos:t and are subsequently
polymerized by appropriate oxidants in the pore system.

Other inclusion techniques, e.g., growth of polymer fibers in membranes,3 and
intercalation of pyrrole in layered vanadium oxide4 have recently been explored.
Methylacetylene gas was found to react with the acid sites in zeolites L, Y, beta, ZSM-5, omega,
mordenite, and SAPO-5 to form reactive, conjugated oligomersS. Short-chain oligomers of
polythiophene were prepared in Na-pentasil zeolitesS. In the latter study it was found that the
presence of aluminum in the zeolite framework is essential for oxidation, but the cause for the
formation of the cationic species remained unresolved.

The present article addresses the polymerization of different thiophenes and the
question of the active site in the formation of oligothiophene species in large-pore zeolites.
Spectroscopic measurements show that the presence of Bronsted sites is essential for the
formation of the same oligothiophene species as observed by Caspar et al. in ZSM-58

In the chemical synthesis of polythiophene (PTh)7.8, the direct oxidation of the
monomers with Fe(ClO4)3 or Cu(ClO4)2, produces the corresponding doped polymers. The
polymerization reaction involves removal of 2.25 to 2.50 electrons per molecule of thiophene.
The resulting polymer is produced in the oxidized state with 0.25 to 0.50 positive charges per
thiophene unit, depending on the synthesis conditions.

From the Proceedings of the 9th International Zeolite Conference, Montreal 1992, Eds. R. von Ballmoos et al.,
© 1993 by Butterworth-Heinemann, a division of Reed Publishing (USA) Inc. All rights reserved.
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EXPERIMENTAL

NaY (LZY-52), NH4Y (LZY-62), and Na-mordenite (LZ-M5) were generously donated by
the Union Carbide Corporation. Zeolite A (5A) was obtained from Alfa. The zeolites were
dehydrated in a flow of oxygen (1 °C/min to 100 °C, 10 h at 100 °C, and 8 h at 400 °C (4 h under
vacuum). Fell and Cull zeolites were prepared according to conventional ion-exchange and
oxidation techniques®. The resulting zeolite unit cell compositions are: Cully:
Cu1sNa26(Al102)s6(Si02)136, Fellly: Fei12Na32(A102)56(Si02)136, CullM:
Cuz 5Nag(AlO2)g(SiOz)40, Cu''A: CugNago(AIO2)96(Si02)192.

2,2'-Bithiophene (BTh) and terthiophene (TTh) were introduced into the zeolites from a
hexane solution. The zeolites used were NaY, HaY, HgY (2 and 6 protons per supercage/B-cage),
and Fellly. Typically, 0.5 g of zeolite was mixed with 20 ml of hexane containing 0.01 g of the
oligomer (0.06 mmol 2,2'-bithiophene, or 0.04 mmol terthiophene), stirred for 12 hours, washed
with an excess of hexane, and dried under nitrogen. The other monomers were introduced into
the zeolites from solutions in water, chloroform, acetonitrile, hexane, toluene, or from the vapor-
phase. Bulk-like polymers could be recovered from the zeolites after dissolution of the framework
with a 25% aqueous solution of HF. Polythiophene and poly(3-methylthiophene) are not
attacked in acidic media'4. Additionally, a blank experiment shows that the monomers do not
polymerize after exposure to acids for 24 hours. Bulk polymers were prepared chemically by
oxidative polymerization with Fe(ClO4)3 in MeCN.

RESULTS AND DISCUSSION

Intrazeolite polymerization. If thiophene monomers are admitted into the Fe!l! or Cull forms
of zeolites Y or mordenite from the vapor phase or from hexane and toluene solutions (Table 1),
the colors of the resultant adducts change slowly (within 30-120 min) from white to different
shades of blue or dark green. These cclor changes cerrespend to those observed in bulk
polymerization. Thiophene monomers in zeolite containing only sodium ions do not react to form
polymers, due to the absence of oxidation centers.

No polymer formation is observed with CullA, with a pore size of 4.1 A, which is too small
for the thiophene monomers. The monomers have a kinetic diameter of approximately 6 A and
can not diffuse into the zeolite cavities, where the majority of the oxidant ions are located. In
contrast to trends observed in the bulk polymerization reactions, polar solvents such as water,
acetonitrile, and chloroform do not favor the intrazeolite polymerization of thiophene and 3-
methylthiophene. The intrazeolite metal ions are probably screened by the polar solvent
molecules. From the estimated surface capacity of the zeolite crystals, 0.2 molecules per unit cell
of zeolite Y (based on 1 um crystals), and the observed monomer loadings (Table 1), it can be
concluded that most of the monomer molecules are introduced into the pore system of the zeolite
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host. Scanning electron micrographs indicate no evidence of polymer covering the surfaces of
zeolite/polymer crystals. Pyrolysis mass spectrometry detects considerably less monomer
evolution from the zeolite/polymer samples than from those containing unreacted monomers in
the Na-forms, as expected if polymerization has taken place. The above observations
demonstrate that the polythiophene chains form within the zeolite pore systems.

After dissolution of the framework (Cu'lY-3MTh-V) with an aqueous solution of HF, a black
powder is obtained with a 16 % yield, based on the amount of monomer loaded into the zeolite. In
the case of Cu'lY-3MTh-V, this value corresponds to 5 molecules of 3-methylthiophene reacted
per unit cell of zeolite, which corresponds well to the 2.3 to 1 ratio of oxidant to monomer
necessary for oxidative polymerization.

Table 1: Zeolite/thiophene and 3-methylthiophene samples

Sarpe Monomer loaded per unit cell Product color
Tha 3MTh2
NaY-V 37 30.5 white
NaY-H 5.6 (6.5)" 5.6 (6.5)" white
cu'ly--v 35 32 dark blue
cully-w 5.6 (6.5) 56(6.5)  white
cully-H 5.4 (6.5) 57 (6.5  dark blue
Fellly--v 29 25 dark green
NaM--v 2 2 white
NaM--H 1(1)* 1(1)* white
CullM--v 1.5 1 blue-grey
Cul'mM-w 1(1)* 1(1)* white
Cu''M--H 1(1) 1(1)* blue
FellM--v 1 1 grey-green
culla--v 0.2 light blue
a Abbreviations: Y, zeolite Y; M, mordenite; Th, thiophene; 3MTh, 3-methylthiophene; V, vapor;
H, hexane (similar with toluene); and W, water (similar with acetonitrile, chloroform).
* The numbers in parentheses correspond to the amount of monomers dosed from solution to
achieve 2.3:1 oxidant to monomer stoichiometry.

Spectroscopic characterization. The IR spectra of Fe!lly-3MTh-V and of CullY-3MTh-v2b
show typical vibrations of poly(3-methyithiophene)10.11. The weak band at 1506 cm™! is assigned
to aromatic C=C stretching vibrations, and two strong bands around 1400, and 1331 cm™! are
related to the heterocycle C-N stretching vibrations (Figure 1). The presence of the intense, fairly
broad bands at 1400 and 1331 cm" indicates that the polymer chains are in the oxidized form. At
higher energy (not shown), the spectra also exhibit a characteristic tail of the electronic transition
correlated with the presence of free carriers in highly conducting poly1hiophenes1 2 The IR
spectra of the black agglomerated products extracted from the zeolites and those of the
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zeolite/polythiophene samples are comparable to the IR spectra of chemically synthesized bulk
materials.

Neutral poly(3-methyithiophene) (and polythiophene) films formed electrochemically
show absorption in the visible region at about 2.5 eV, associated with the x -> =* transition of long
conjugated polymer chains13.14, When the bulk polymer is oxidized, two intra-gap absorptions
associated with bipolarons develop at about 0.65 and 1.6 eV. With progressive oxidation, the 2.5
eV absorption decreases in intensity. A representative zeolite sample, Cu'ly-Th-V, shows
corresponding features at about 440 nm (ca. 2.8 eV), 670 nm (1.9 eV), and a broad absorption
between ca. 1.4 and 0.25 eV (see also Figure 2C). Similar features are observed with the Felll-
containing hosts and with 3MPTh-loaded zeolites. If the NIR absorption of these samples is
compared with data for thiophene nonamers (92+)8, it can be concluded that the intrazeolite
polymer chains should be much longer than 10 units.
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Figure 1. FTIR spectra of poly(3-methylthiophene) samples. (A) NaY, (B) Fellly-3MTh-v, (C)
Cully-3MTh-V, and (D) bulk poly(3-methylthiophene).

Solid State
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The ESR spectra of the Cull-PTh samples present signals at g=2.0027. This value is
typical of a delocalized carbon-based radical'S. The signals are rather broad, with bandwidths
greater than 6 Gauss, characteristic of localized radical spins and an indication of interaction of the
encapsulated polymer with the zeolite hosts. The presence of only about 2.0 x 10-3 spins per
monomer is consistent with the existence of bipolarons as charge carriers. Pressed
zeolite/polymer pellets show no significant 'bulk’ conductivity, with ¢ < 108 Scm1. Therefore,
there is no significant deposition of polymer on the external crystal surfaces. Agglomerated
P3MTh recovered from CullY-3MTh-V after dissolution of the host shows a conductivity of about
0.0t Scm'!. This value is close to that obtained for poly(3-methylthiophene) synthesized by
chemical methods.

Stabilization of thiophene oligomers within zeolites. In a recent study, thiophene
oligomers were formed within the channels of zeolite beta and Na-ZSM-56. Charged short-chain
oligomers are inherently reactive species, and in the particular case of polythiophene, oxidized
oligomers are unstable with respect to further oligomerization in solution. Thus, the zeolite is an
excellent matrix to stabilize them. One of the questions that the above study did not address
relates to the nature of the reactive sites and the reaction mechanism in the zeolite, since the
oligomers were formed without any traditional oxidant, such as ferric or cupric ions.

A related polyheterocycle, polypyrrole, is known to form in the presence of protonic
acids'8. Accordingly, one might assume that the formation of polythiophene could proceed
through the same mechanism as in polypyrrole. We propose that the presence of acid groups in
the zeolite is responsible for the formation of the thiophene oligomers. To test this assumption,
short oligomers of thiophene (Th), bithiophene (BTh) and terthiophene (TTh), were loaded from
hexane into the acid and Fe!ll forms of zeolite Y. Different concentrations of protons per unit cell
of zeolite Y, HigNasoY (H2Y) and HagNagY (HgY) were used to study the effect of proton
stoichiometry on the products formed. After a few minutes a change in color was noticeable in the
zeolites, but to drive the reaction to completion, it was continued for 12 hours. NaY-monomer
adducts produced only minor but detectable spectral changes.

HoY and HgY zeolites loaded with bithiophene yield a yellow-green complex. The same
zeolites loaded with terthiophene produce an intense purple complex. These colors are very
different from the green-black color obtained when thiophene, bithiophene, or terthiophene
were loaded in Fe!lly, where polymerization to polythiophene takes place. The main features of
the UV/VIS/NIR reflectance spectra (Figure 2) and their assignments to different oligomer cations
according to ref. [6] are summarized in Table 3. It is not quite clear if the species observed here
are radical cations, dications, or rather protonated heterocycles. Related studies!? on these and
other monomers suggest the formation of protonated species.
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Figure 2. UV/VIS/NIR reflectance spectra of thiophene oligomers in acid zeolites.

(A) HBY-TTh-H, (B) H6Y-BTh-H, and (C) Fe(lll)Y-BTh-H.
The feature at 850 nm is an artifact due to change of detectors.
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Table 3: UV/VIS/NIR bands for thiophene oligomers in zeolite Y2
Sample Band Positions (nm) and Assignments (after reference 6, in parentheses)
Fellly-Th-H 470sh broad NIR band
n-n* in neutral PTh oxidized PTh
NaY-BTh-H 308s 402sh 678w
2(300) 2°+(407) 82+(661)
HoY-BTh-H 308s 408s 668s 1274 broad
2 20+ 82+ 82+...(1383)
HgY-BTh-H 308s 408s 668s 1300 broad
2 20+ 82+ 82+, ..
Fellly-BTh-H broad NIR band
oxidized PTh
NaY-TTh-H 370s 528sh
3(354) 3°%(522)
HoY-TTh-H 360s 532s 788s broad NIR band
3 30+ 6°+(775) oxidized PTh
HgY-TTh-H 360s 528s 804s 1024 + broad NIR
3 3o+ 6°+ or 32+(833) 62+ +ox. PTh
Felly-TTh-H broad NIR band

oxidized PTh

a2, neutral bithiophene; 2*, bithiophene radical cation; 3, neutral terthiophene; 3+, terthiophene
radical cation; 6+, hexathiophene radical cation; 62+, hexathiophene dication; 82+, octathiophene
dication. H, hexane; sh, shoulder; s, strong; and w, weak.

The strong bands at about 308 nm for the bithiophene loaded zeolites and at 360 nm for
the terthiophene loaded zeolites correspond to the band gap transition in the neutral oligomer®.
In the spectra of NaY zeolites loaded with these monomers, the above bands are dominant.
Distinctive bands at lower energies, only present in the acid zeolites, are tentatively assigned to
radical cations and dications typical of the thiophene oligomers. Bithiophene can form a stable
radical cation, 2°*, in acid zeolites as shown by the band at 408 nm. Additionally, two bands at 668
nm and at about 1300 nm, assigned to the octamer dication 82+ are present in the spectra (Figure
2, B). For terthiophene, a band at 528 nm assigned to the radical cation 3°*, and a band around
800 nm related to the hexamer 6+ are observed (Figure 2, A). The spectra of Fe!'Y-BTh and
Fellly-TTh are very similar to the spectrum of Fellly-Th, in which the main spectral characteristic is
a broad absorption band extending into the near-IR, assigned to the oxidized form of
polythiophene (Figure 2, C). It is important to note that the spectra of the adducts in acid zeolite
show also the broad near IR absorption typical for the polymer, which indicates the concomitant
formation of oligomers and polymers in the zeolites.

The distinctive bands related to radical cations and dications of short oligomers of
thiophene in zeolites are only observed in the presence of protons. These results can also
explain the formation of the same species in Na-ZSM-5 since this zeolite can contain a small
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amount of protons as well. However, the reactivity of the thiophene species in proton vs. Felll
zeolite forms is still not completely understood. If a strong oxidant ion is present in the zeolite,
such as Felll, the oxidation is driven to completion forming oxidized polymers. The reaction
pathway is apparently a function of the oxidation potential of the oxidant.

CONCLUSIONS

In summary, this study demonstrates that it is possible to polymerize thiophene, 3-
methylthiophene, and small oligomers within the channel systems of zeolites, analogous to the
oxidative coupling of thiophene and 3-methylthiophene in solution in the presence of cull and
Fe!ll oxidants. Oligomerization and polymerization reactions proceed to different degrees in
acidic and oxidant-containing zeolites.
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