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Abstract. Self-reference has played a prominent role in the development of metamath-

ematics in the past century, starting with Gödel’s first incompleteness theorem. Given the

nature of this and other results in the area, the informal understanding of self-reference in

arithmetic has sufficed so far. Recently, however, it has been argued that for other related

issues in metamathematics and philosophical logic a precise notion of self-reference and,

more generally, reference, is actually required. These notions have been so far elusive

and are surrounded by an aura of scepticism that has kept most philosophers away. In

this paper I suggest we shouldn’t give up all hope. First, I introduce the reader to these

issues. Second, I discuss the conditions a good notion of reference in arithmetic must

satisfy. Accordingly, I then introduce adequate notions of reference for the language of

first-order arithmetic, which I show to be fruitful for addressing the aforementioned issues

in metamathematics.

§1. To prove his famous first incompleteness result for arithmetic, Gödel [5]
developed a technique called “arithmetization” or “gödelization”. It consists in
codifying the expressions of the language of arithmetic with numbers, so that
the language can ‘talk’ about its own formulae. Then, he constructed a sentence
in the language that he described as stating its own unprovability in a system
satisfying certain conditions,1 and showed this sentence to be undecidable in the
system. His method led to enormous progress in metamathematics and computer
science, but also in philosophical logic and other areas of philosophy where formal
methods became popular. Let’s take a closer look.

Let L be the language of first-order Peano arithmetic (PA). L contains =,
¬,∧,∨,→,∀, and ∃ as logical constants, 0 as the only individual constant, S as
a monadic function symbol, + and × as dyadic function symbols, and a stock of
extra function symbols for recursive functions to be specified. All other logical
and non-logical symbols are taken to be the usual abbreviations. We assume PA
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contains definitions for each extra function symbol. N is the standard model for
L , with ω as its domain. L is the main formal language we will work with
in this paper. Unless otherwise indicated, all symbols and formulae we use or
mention belong to L .

The individual term consisting of n occurrences of S followed by 0 is called
the “numeral” of n. We denote it by n. If σ is a string of symbols, #σ is its code
or Gödel number, and pσq the numeral of its code. To avoid certain difficulties
nonstandard codings can lead to (cf. Heck [12], Halbach and Visser [10, 11]), I
assume a fixed effective and monotonic coding. By “effective” I mean that given
a number n there is an algorithm to determine which expression it codifies and,
vice versa, given an expression σ there is an algorithm that delivers the code of
σ. By “monotonic” I imply that if σ is a subexpression of σ′, then #σ ≤ #σ′.
For perspicuity, when there’s no room for confusion I will talk about expressions
of L when what is really meant is their codes under our fixed coding.

Let Bew(x) be a formula defining and weakly representing provability in PA
in PA:2 for any sentence ϕ, Bew(pϕq) is provable in PA iff ϕ is a theorem as well.
Gödel showed there is a sentence γ of L such that the following equivalence is
a theorem of PA:

γ ↔ ¬Bew(pγq).(1)

γ, known nowadays as PA’s “Gödel sentence”, was characterized by Gödel himself
in the following terms:3 “We thus have a sentence before us that states its own
unprovability.”

Carnap [2] generalized Gödel’s construction to any formula with one free vari-
able, and proved what today is known as the “diagonalization” or “diagonal
lemma”.4 This result can be obtained already in Robinson arithmetic, Q—i.e.,
PA without induction, plus the axiom ∀x(x 6= 0→ ∃y(x = Sy)). For all recursive
functions are strongly representable in Q.

Theorem 1.1 (Diagonalization). For every formula ϕ(x) there is a sentence
ψ such that the following equivalence is a theorem of Q:

ψ ↔ ϕ(pψq).(A)

Proof. Let Diag(x, y) strongly represent the primitive recursive (p.r.) func-
tion “diagonalization”, that takes the code x of a formula ϕ(x) and returns the

2Recall that a formula ϕ(x1, . . . , xn) defines the relation R ⊆ ωn if and only if ϕ(k1, . . . , kn)

is true in N iff 〈k1, . . . , kn〉 ∈ R. If, additionally, ϕ(k1, . . . , kn) is provable in Th ⊆ L iff

〈k1, . . . , kn〉 ∈ R, we say that ϕ weakly represents R in Th. Finally, if it’s also the case that

¬ϕ(k1, . . . , kn) is provable in Th iff 〈k1, . . . , kn〉 /∈ R, we say that ϕ (strongly) represents R in
Th.

3The original, in German, reads: “Wir haben also einen Satz vor uns, der seine eigene
Unbeweisbarkeit behauptet.” (Gödel [5, p. 175]) The English translation is borrowed from
Halbach and Visser [10, p. 671].

4There is a more general version of this result due to Montague [23], for formulae containing

an arbitrary number of free variables. For the purposes of this paper Carnap’s version is general
enough. A stronger version of diagonalization will be introduced later in §3 (cf. Theorem 3.1),

in which any number of free variables is allowed to occur in ϕ. For more details on the history

of diagonalization, see Smoryński [27].
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code y of ∀x(x = pϕq→ ϕ) in Q.

∀x(x = p∀y(Diag(x, y)→ ϕ(y))q→ ∀y(Diag(x, y)→ ϕ(y)))(B)

is the result of applying the diagonalization function to ∀y(Diag(x, y) → ϕ(y)).
Notice that (B) is the ψ we were looking for. Let n be the Gödel code of (B).
By the laws of identity, (B) is logically equivalent to

∀y(Diag(p∀y(Diag(x, y)→ ϕ(y))q, y)→ ϕ(y)),(2)

which is equivalent in Q to ϕ(n). Thus,

Q ` ∀x(x = p∀y(Diag(x, y)→ ϕ(y))q→ ∀y(Diag(x, y)→ ϕ(y)))↔ ϕ(n).

a
This is the ‘universal proof’ of the diagonal lemma. A similar proof I call

“existential” can be given in terms of an alternative diagonalization function
strongly represented by Diag∃(x, y), mapping ϕ to ∃x(x = pϕq ∧ ϕ), and then

diagonalizing the predicate ∃y(Diag∃(x, y)∧ϕ(y)) to obtain ψ. This will become
relevant later.

Equivalences of the form (A) are known as “diagonal” sentences. Following
Gödel, every sentence ψ provably satisfying (A), also known as a provable “fixed
point” of ϕ, is commonly regarded as saying of itself that it has the property
expressed by ϕ (whatever that is). A fortiori, all fixed points ψ are considered
to be self-referential, and the diagonalization lemma is seen as the paradigmatic
mechanism for self-reference in arithmetic. I call this the “näıve view of self-
reference”.

Näıve view of self-reference: A sentence ψ refers to itself, and says of itself
that it has the property expressed by the formula ϕ(x), just in case ψ ↔
ϕ(pψq) is provable in Q.

This view involves extensional conceptions both of what it means for a sentence
ψ to say of itself that it has the property expressed by ϕ, and of self-reference
simpliciter.

Like most näıve notions in philosophical logic, näıve self-reference is trivial.
As noted by Leitgeb [19], every sentence ψ is provably equivalent to a sentence
of the form ϕ(pψq) by logic alone.5 Take ϕ(pψq) to be, for instance, pψq = pψq∧ψ.
However, the triviality of näıve self-reference simpliciter does not carry over the
näıve conception of what it means for a sentence ψ to say of itself that it has
the property expressed by ϕ(x), which is at the heart of Gödel’s construction.
To give an example, not every sentence ψ is provably equivalent to Bew(pψq).

Gödel’s construction inspired Kleene’s [17] recursion theorem, which led to
enormous progress in computability. It also had a great influence on investiga-
tions on truth and related notions in philosophical logic, prominently on the work
of Tarski [30, 31], but also in other areas of philosophy that work with sentential
predicates (e.g., knowledge in epistemology, grounding in metaphysics), and, of
course, in metamathematics. A salient case of the latter is Löb’s [21] theorem,
which establishes that only trivial instances of soundness (i.e., Bew(pϕq) → ϕ)

5Cook [3] and Heck [12] make similar points.



4 LAVINIA PICOLLO

are available in arithmetical theories (if Bew(x) satisfies certain conditions; cf.
Theorem 2.1).

Despite the triviality of näıve self-reference, to prove Gödel’s and Löb’s re-
sults the näıve conception of what it means for a sentence ψ to say of itself that
it has the property expressed by ϕ(x), this is, the availability of equivalences
of the form (A), suffices. The same can be said about other related phenom-
ena in metamathematics. As Smoryński [28] suggests, this, together with the
triviality of näıve self-reference, appears to be the main reason why not many
philosophers and almost no mathematicians have been really interested in the
notion of self-reference in arithmetic per se, with the exception of Kreisel. How-
ever, Halbach and Visser [10, 11] have recently shown that there are other issues
and questions in metamathematics that, unlike Gödel’s and Löb’s, cannot even
be properly formulated in terms of the näıve conception, but call for a rather
intensional understanding of self-reference. Moreover, Leitgeb [19] has argued
that the debate about whether all semantic paradoxes involve self-reference of
some sort goes adrift unless we have a proper, nontrivial notion of self-reference
simpliciter for the language of arithmetic extended with a truth predicate. This
debate originated in the Visser-Yablo paradox, an infinitary semantic paradox
in which there is prima facie no self-reference involved (cf. Visser [33], Yablo
[34, 35]).

The main purpose of this paper is, nonetheless, to provide a sound and precise
definition of reference or aboutness just for the language of first-order arithmetic.
Other languages or extensions of L with new primitive predicate symbols such
as the truth predicate are the subject of further work (cf. [author]). The resulting
notion will help us define salient reference patterns like self-reference, non-well-
foundedness, loops, etc. Furthermore, it will give the intuitively right verdict on
diagonal sentences obtained via diagonalization, and will overcome the difficulties
of the näıve notion and other previous attempts to define reference and self-
reference for formal languages. As a consequence, the notions I introduce will
prove themselves useful to properly formulate the metamathematical problems
that Halbach and Visser mention. They will also serve as a blue print for future
work on underlying reference patterns of sentences in languages with a truth
predicate. This notion, in turn, could help us give a definite answer to the
questions whether the Visser-Yablo paradox involves some kind of self-reference,
and whether all semantic paradoxes do so as well.

The paper is organized as follows. I first present the examples of Halbach and
Visser and explain why the näıve understanding of what it means for a sentence
to say of itself that it has a certain property cannot account for them. In §3 I list
some desiderata every notion of reference and, therefore, self-reference for the
language of arithmetic must satisfy. §4 gives new definitions of reference, self-
reference and well-foundedness, evaluates their pros and cons, and proves several
results that show the notions are adequate from a material point of view. Finally,
I indicate how the new notions could be used to provide exact formulations of
the examples given by Halbach and Visser.

§2. In this section I show that certain problems in metamathematics require
a more fine-grain view on self-reference than the näıve conception introduced
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in the previous section, even to be properly formulated. Both examples are
taken from Halbach and Visser [10, 11]. The first one is the question over the
provability, refutability or undecidability of ‘Henkin’ sentences formulated with
Rosser’s provability predicate. The second example is the question over the
status of truth tellers.

Gödel has shown that under normal circumstances a sentence asserting its
own unprovability in PA is undecidable in this system. So one might also wonder
about a sentence that states its own provability instead. Is it provable, refutable
or undecidable? This question is usually known as “Henkin’s problem”, and
sentences asserting their own provability are known nowadays as “Henkin sen-
tences”. In Henkin’s [13, p. 160] own words:

If Σ is any standard formal system adequate for recursive number
theory, a formula (having a certain integer q as its Gödel number)
can be constructed which expresses the proposition that the formula
with Gödel number q is provable in Σ. Is this formula provable or
independent in Σ?

I take Σ to be PA. Let Bew(x) be as before. According to the näıve view of self-
reference, a Henkin sentence would be any sentence η satisfying the equivalence

η ↔ Bew(pηq).(3)

Note however that, by the weak representability requirement, any theorem of PA
satisfies this equivalence. For instance, since 0 = 0 is a theorem, Bew(p0 = 0q)
is so too and, therefore, 0 = 0 ↔ Bew(p0 = 0q) is provable as well. Thus, this
‘Henkin sentence’ is decidable and provable.

Henkin was most likely very much aware of this fact and didn’t consider it as
an answer to his question. As Smoryński [28, p. 114] puts it, “Henkin did not
want to know if some sentence accidentally equivalent to the assertion of its own
provability was provable”; he did not mean to inquire about just any fixed point
of the provability predicate. In a very clear sense, 0 = 0 doesn’t say of itself that
it is provable. It is neither self-referential nor a Henkin sentence.

Nonetheless, in [21] Löb put forward a solution to Henkin’s problem that shows
that no matter what fixed point of the form (3) we consider, η will always be
provable. This is the renowned Löb’s theorem.

Theorem 2.1 (Löb). Let ϕ,ψ be sentences and Bew(x) satisfy Löb’s deriv-
ability conditions in PA, this is:

PA ` ϕ ⇒ PA ` Bew(pϕq),

PA ` Bew(pϕq) ∧ Bew(pϕ→ ψq)→ Bew(pψq),

PA ` Bew(pϕq)→ Bew(pBew(pϕq)q).

If PA ` Bew(pϕq)→ ϕ, then PA ` ϕ as well.
Let Bew(x) in (3) satisfy Löb’s derivability conditions. If we can prove (3) in

PA for any sentence η, we have a fortiori that PA ` Bew(pηq)→ η and, by Löb’s
result, that η is a theorem of PA. As a consequence, even if a more sophisticated
view on self-reference is needed to do justice to Henkin’s formulation of his
problem, the answer can be perfectly given without such notion, if (3) is provable
in PA and Bew(x) satisfies Löb’s derivability conditions.
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But what if (3) were true in N yet unprovable in PA? Certainly what matters
here is not the provability of a fixed point in this or that system but that the
equivalence between η and Bew(pηq) actually holds. In that case it would seem
η is intuitively self-referential. Moreover, Henkin’s formulation of the problem
doesn’t exclude this possibility. If a highly complex mechanism for self-reference
is used, Löb’s theorem wouldn’t be able to give an answer to Henkin’s question.6

Löb’s derivability conditions seem to be natural principles for provability, and
so they are often considered as meaning postulates. In fact, the first one is one
direction of weak representability, which can be seen as another criterion for the
expressibility of provability (and other notions), due to Kreisel [18]. However,
other provability predicates in the latter sense—this is, that weakly represent
provability in PA—that do not satisfy Löb’s conditions have also played a role
in the literature. One important case is Rosser’s.

Let Prf(x, y) represent the recursive relation between a sequence of sentences
x and a sentence y such that x constitutes a proof of y in PA in a natural
way (cf. Halbach and Visser [10]). The standard provability predicate is usually
defined in L as ∃yPrf(y, x). This predicate satisfies Löb’s derivability conditions.
Rosser-provability, on the other hand, is defined as follows:

BewR(x) := ∃y(Prf(y, x) ∧ ∀z < y¬Prf(z,¬. x)),

where ¬. is a function symbol of L representing the recursive function that maps
sentences into their negations. Intuitively, a sentence ϕ is Rosser-provable if
there is a proof of it in PA and there is no proof of ¬ϕ with a smaller code.
BewR(x) does not satisfy Löb’s conditions for, as Halbach and Visser [11, obs.
7.1] point out, it has both provable and refutable fixed points. For instance, both
0 = 0 and 0 6= 0 are fixed points of BewR(x). Thus, unlike the case for standard
provability, if there was a sentence that truly asserted its own Rosser-provability,
there would be no trivial answer to the question over its status. Note that, as long
as Löb’s conditions constitute meaning postulates for provability, these ‘Henkin’
sentences formulated in terms of Rosser’s provability predicate do not really say
of themselves that they are provable, but something else. They are not Henkin
sentences in the original sense. Call them “Henkin-Rosser” sentences.

One might feel inclined to believe that the näıve view on self-reference is the
only kind of view on self-reference we can have in arithmetic, as Cook [3] seems
to suggest. Since “the notion of stating one’s own provability in the original
question cannot be eliminated by the notion of being a fixed point” (Halbach
and Visser [10, p. 672]), the question about the status of Henkin-Rosser sentences
would be ill-posed. There would not be such thing as a sentence that asserts its
own Rosser-provability. On the other hand, one can think, with Henkin, that a
better understanding of self-reference for the language of arithmetic is possible,
a notion that would make sense of Henkin’s problem for Rosser’s provability

6For instance, one could define an alternative diagonalization procedure based on an al-

ternative diagonalization function defined by Diag′(x, y), that maps sentences ϕ to ∀x(x =
pϕq ∧ γ → ϕ), where γ is PA’s Gödel sentence, as before. Diag′(x, y) is satisfied exactly by
the same ordered pairs of natural numbers than Diag(x, y) in the standard model. But while
the latter predicate strongly represents the function it defines, the former doesn’t even weakly

represent its corresponding function.
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predicate. What Henkin probably had in mind was a sentence that is obtained
by a procedure like the one we followed in the proof of Theorem 1.1, but certainly
not just that particular one. In this paper I show that a better notion of self-
reference for the language of arithmetic is in fact possible. If this notion rather
than the näıve one is employed, one can actually make sense of the idea of a
Henkin-Rosser sentence, and the question about the status of these expressions
becomes a sensible one to be asked.

I now turn to the status of truth tellers in arithmetic. A truth teller is a
sentence that states its own truth. Although arithmetic cannot contain its own
truth predicate on pain of triviality, as Tarski’s theorem on the undefinability of
truth shows (cf. Tarski [30]), it does contain partial truth predicates for sentences
with limited quantifier complexity.

Formulae in L can be classified according to their quantifier complexity into
sets Σn and Πn as follows. If ϕ is logically equivalent to a formula where all
quantifiers are bounded, ϕ is both Σ0 and Π0. If ϕ is logically equivalent to
a formula consisting of a block of universal quantifiers (possibly of length 1)
followed by a Σn-expression, then ϕ ∈ Πn+1. And if ϕ is logically equivalent to
the negation of a Πn-formula, then ϕ ∈ Σn. Note that the sets in the hierarchies
Πn and Σn are cumulative, for it’s always possible to add superfluous quantifiers
in front of a formula.

For every n, L contains predicates TΠn(x) and TΣn(x) defining the sets of Πn

and Σn true sentences.7 Moreover, we can choose TΠn(x) for n 6= 1 and TΣn(x)
such that they belong to Πn and Σn, respectively. This means that the sentences
that say of themselves that they are Πn- (n 6= 1) and Σn-true, however they are
obtained, are themselves Πn resp. Σn. Thus, we have Πn- and Σn-truth tellers in
the language. In most cases partial truth predicates cannot weakly represent the
set of corresponding truths, for this set is often too complex. Besides defining
their corresponding sets of Πn- and Σn-truth-in-N, the reason why they are called
“truth predicates” is that they satisfy the relevant meaning postulates, namely,
the T-schema (the equivalence between a sentence and its truth ascription) in
PA:

PA ` TΠn(pϕq)↔ ϕ

for each sentence ϕ ∈ Πn, and

PA ` TΣn(pϕq)↔ ϕ

for each sentence ϕ ∈ Σn.
As a consequence, each truth predicate has both provable and refutable fixed

points. For instance, 0 = 0 and 0 6= 0 are fixed points of every partial truth
predicate. In some cases, the predicates can also have undecidable fixed points,
like TΠ1(x) has γ, PA’s Gödel sentence. Therefore, the answer to the question
whether Πn- and Σn-truth tellers are provable, refutable or undecidable doesn’t
make sense if we turn to the näıve view on self-reference. Every sentence in
Πn (Σn) would say of itself that it is Πn-(Σn-)true according to this view. The

7See, Kaye [16] or Hájek and Pudlák [7] for details on how to obtain partial truth predicates
in PA. I follow Kaye for the most part, except I allow sets Πn and Σn in the truth definitions to

be closed under logical equivalence, so every formula in L belongs to some set in the hierarchy.
This implies that, unlike all other partial truth predicates, TΠ1 (x) is not in Π1 but only in Π2.
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question over the status of truth tellers in PA requires a more precise definition
of what it means for a sentence to say of itself that it has a determinate property,
a proper understanding of self-reference that improves on the näıve one.

Setting aside the issues in metamathematics, there are also philosophical rea-
sons why it would be good to have a better notion of self-reference for the lan-
guage of arithmetic. Formal theories of truth are often formulated in an extension
of L with a truth predicate. As Tarski shows, if instances of the T-schema for
certain sentences containing this truth predicate are provable in a system, the
system turns out to be unsound. Such sentences are considered paradoxical. The
goal of most classical truth-theorists is to identify these sentences, so to exclude
their corresponding instances of the T-schema from their theories.8 Until re-
cently the idea that every paradoxical expression involves some (relevant) kind
of self-reference was widely accepted. If true, self-referentiality could be used as
a restriction on instances of the T-schema, to avoid triviality.

The Visser-Yablo paradox challenged this view. Roughly, it consists of an
infinite list of sentences, each of which says of all the ones coming later on the
list that they are untrue. From the assumption that any of these sentences
gets a classical truth value, a contradiction can be informally obtained.9 This
antinomy gave rise to a lively debate that evidenced the lack of proper notions of
reference and self-reference for the language of arithmetic and its extensions, as
Leitgeb [19] pointed out.10 Without these notions, neither the referential status
of sentences in the Visser-Yablo paradox nor the thesis that all paradoxes are
self-referential can be adequately assessed. This represents an obstacle to the
development of formal (classical) truth systems.

In this paper I focus only on notions of reference and self-reference for L .
They will help us, for instance, giving proper formulations of the metamath-
ematical problems introduced in this section, this is, the questions about the
status of Henkin-Rosser sentences and of Πn- and Σn-truth tellers. However,
the new definitions will also serve as blueprints for defining similar concepts for
the language expanded with a truth predicate. I hope the new notions can shed
some light on the reference and self-reference of expressions in natural language
as well.

§3. Every sensible notion of self-reference should be definable in terms of a
notion of reference, as follows: a sentence is self-referential if and only if it refers
to itself. Otherwise it wouldn’t be clear why it is self-reference what we are
talking about. For instance, if according to the näıve concept of self-reference a
sentence ϕ self-refers in case it’s provably equivalent to another sentence χ(pϕq)

8See, e.g., Horwich [15] and Halbach [8].
9The antinomy was introduced by Yablo [34] in 1985 and, independently, by Visser [33] in

1989, though early drafts of the latter circulated in the early 1980s (cf. Halbach [9]). While

Yablo formulates the sentences in the sequence with one single untyped truth predicate, Visser’s

version of the paradox is formulated in an illfounded linearly ordered hierarchy of typed truth
predicates. Each sentence on the list uses a truth predicate that applies only to sentences

containing truth predicates that belong to strictly lower stages in the hierarchy, as Tarski
required. Thus, unlike Yablo’s version, Visser’s is not only intended to show that paradox is

possible in the absence of self-reference, but also in the presence of typed truth.
10See, for instance, Priest [24], Sorensen [29], and Cook [3].
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that mentions ϕ, that is because the following notion of ‘näıve’ reference is
operating in the background: sentence ϕ refers to sentence ψ in case there’s
a sentence of the form χ(pψq) ϕ is provably equivalent to (which is not very
plausible, since whether a sentence refers to a given object has nothing to do
with provable equivalents of that sentence). Therefore, to arrive at a successful
definition of self-reference the most natural way to go is to devise a good notion
of reference first. The purpose of this section is to evaluate what conditions
such a notion should satisfy; to understand what kind of concept we are after.
Section §4 will provide a precise definition of reference and other kin notions, in
accordance to the results obtained in this section.

To begin with, note that the concept of reference we are after is a relation
between sentences. It isn’t a relation between terms and objects, or sentences
and truth values, as reference has been traditionally understood. It neither
relates sentences to numbers. One of the main goals of this paper is to obtain a
precise definition of self-reference. Thus, even though the language of arithmetic
was originally designed to talk about numbers, and so we can take numbers
to be its primary objects, I will focus on the sentences these numbers codify
instead. If, for other purposes, the reader is interested in reference to numbers,
it shouldn’t be hard to obtain a definition of this closely related concept by
performing straightforward modifications on the definitions of reference I provide
in the next section.

A word of caution is needed about reference to sentences via their codes. The
choice of coding, even effective and monotonic ones, is always arbitrary to some
extent. As a consequence, what sentences an expression refers to is also very often
an arbitrary matter. If we change the coding was at play, most sentences will
refer to different expressions. Thus, it only makes sense to talk about reference
as a relation between sentences once a particular coding has been fixed, as I have
done here.

Hopefully, it’s now clear that the näıve notion of self-reference must be aban-
doned. Diagonal sentences, this is, sentences of the form

ψ ↔ ϕ(pψq),(A)

whether provable in PA or just true in N, should not be enough to conclude that
ψ is self-referential, on pain of triviality. As stated in §1, for every sentence ψ
there is a predicate ϕ such that (A) is provable in Q. A fortiori, the provable
material equivalence

ϕ↔ χ(pψq)(4)

cannot suffice to infer that ϕ refers to ψ. To conclude this, additional or perhaps
just other conditions should be met. Good notions of reference and self-reference
must have certain intensional aspects, as Halbach and Visser [10, 11] maintain.

According to Leitgeb this is problematic. From his point of view, if diagonal
sentences are not enough for self-reference,

[ . . . ] no philosopher may any longer argue in the following way: “By
Gödel’s diagonalization lemma, we know that there is a sentence ϕ
such that ϕ is equivalent to ‘¬T (pϕq)’ in arithmetic. Thus there is a
self-referential sentence, that is, ϕ.” (Leitgeb [19, p. 9])
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In other words, we wouldn’t be able to capture the paradigmatic cases of self-
reference the diagonal lemma delivers. However, this remains to be seen. Given
a formula ϕ(x), the diagonal lemma does not deliver just any sentence ψ sat-
isfying (A), but one of a special kind. It is possible that, due of the particular
features ψ exhibits, the conditions a sentence should meet to truly refer to an-
other sentence allow us to infer that ψ is self-referential. The question is which
are these conditions. Milne [22, p. 212] shares this concern:

Provable material equivalence in a theory is not normally a criterion
of synonymy so we must suppose that it is something particular to
Gödel biconditionals that is at issue. For a number of reasons the
case is hard to make.

In this section I make this case, that is, I specify the conditions a good notion
of reference for L should satisfy and show how, if these conditions were met,
diagonal sentences that are obtained via diagonalization turn out to be self-
referential. For the most part I follow Leitgeb [19]. He as well considers several
desiderata for a notion of reference for formal languages. However, he arrives at
a pessimistic conclusion, for his desiderata are mutually incompatible. Later in
this section I argue against one of them, the so-called “equivalence condition”.
In the next section I show that the remaining conditions are simultaneously
satisfiable and, therefore, compatible with each other.

As Leitgeb points out, a sentence can refer to an object—in our case another
sentence—in two different ways. On the one hand, it can mention this object,
this is, contain a term that denotes the object. On the other, the sentence can
quantify over that object.11 According to the first way in which sentences could
refer,

(C1): a sentence ϕ refers to a sentence ψ in case a term denoting the code of
ψ occurs in ϕ.

I call this kind of reference “reference by mention”, or “m-reference” for short. It
is more demanding than the näıve view on reference: for ϕ to refer to ψ it’s not
merely required that ϕ is (provably) equivalent to a sentence of the form χ(pψq),
but it should be identical to χ(pψq). If ϕ simply is χ(pψq), then (4) follows
trivially, for it’s just an instance of the tautological schema δ ↔ δ. However,
(C1) is just a sufficient condition for reference; it doesn’t exclude other ways in
which sentences might refer to other sentences.

We can use (C1) to give a sufficient condition on self-reference, along the
following lines:

(C2): a sentence ϕ is self-referential if it contains a term that denotes ϕ.

This kind of self-reference, which I call “self-reference by mention” or “m-self-
reference” for short, is certainly possible if L contains a term d. (x) defining
the p.r. function d called “strong diagonalization”,12 which I assume it does.
The result is known as the “strong diagonalization lemma”, or “strong diagonal
lemma”. Given a formula ϕ with x free, d returns the formula that results from
replacing x in ϕ with pϕq. Since Q contains definitions for each function symbol

11Preliminary versions of this distinction can be traced back to Ryle [26].
12Other similar functions could also do the job. What follows is indifferent to the choice of

the function we make.
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in L other than S,+, and ×, d. (x) represents d in Q. Let ~v abbreviate v1, . . . , vn,
a (possibly empty) sequence of individual variables.

Theorem 3.1 (Strong diagonalization). For every formula ϕ(x,~v), where x
is different from each v1, . . . , vn, there is a term t such that Q ` t = pϕ(t, ~v)q.13

Proof. We can prove in Q that d. (pϕ(d. (x), ~v)q) = pϕ(d. (pϕ(d. (x), ~v)q), ~v)q. Let
t be d. (pϕ(d. (x), ~v)q). a

For each ϕ(x,~v), the identity statement t = pϕ(t, ~v)q delivered by the strong
diagonal lemma is often called a “strong diagonal sentence”, and ϕ(t, ~v), standing
on the right-hand side, is often called a “strong fixed point” of ϕ, as opposed
to the ‘weak’ diagonal sentences (equivalences of the form (A)) and the ‘weak’
fixed points ‘weak’ diagonalization (Theorem 1.1) delivers. Since identities are
stronger requirements than equivalences, (C2) is more demanding than the näıve
understanding of self-reference. For instance, (C2) does not allow us to conclude
that 0 = 0 is self-referential, despite the fact that 0 = 0 is equivalent to Bew(p0 =
0q) in PA, for 0 = 0 does not contain a term denoting itself (because under
monotonic codings, 0 isn’t the code of a sentence). Thus, we cannot conclude
it’s a true Henkin sentence.

Note that if a different coding had been chosen, the strong diagonal lemma
would still hold, except that the terms it delivers would be different ones. If
we vary the code of ϕ(x,~v), then the numeral pϕ(x,~v)q of its code varies along.
As a consequence d. (pϕ(x,~v)q) will be a different term. Thus, whether or not a
sentence is self-referential also depends on the particular coding that is being
used, and not only on the structure of the sentence. Since we are working with a
fixed (effective and monotonic) but arbitrary coding, it is often the case that we
cannot pin down the exact expressions a sentence refers to, or the exact terms
that occur in it. However, we are often in a position to make true structural
claims about the reference patterns of formulae, as in Theorem 3.1. Actually,
most of the claims about reference in this paper are of this sort.

(C2) is at the base of what Henkin and Kreisel seemed to have in mind in
their paper exchange on the status of Henkin sentences: a sentence ϕ(t) says
of itself that is has the property expressed by ϕ(x) if and only if t is a closed
term denoting ϕ(t) (cf. Henkin [13, 14] and Kreisel [18]). Thus, Halbach and
Visser [10] call it the “Kreisel-Henkin criterion for self-reference”. It can be seen
as a more demanding version of the näıve understanding of what if means for a
sentence to say of itself that it has the property expressed by ϕ(x).

Despite its intuitive charm, (C1) could be seen as an over-generating condition
on reference. Consider, for instance, the sentence Bew(pϕq). It m-refers to ϕ, for
the numeral pϕq (= n = S . . . S0) occurs in it. But it also m-refers to every sen-
tence whose code is smaller than ϕ’s (whatever those are), because the numerals
m (with m < n) of these codes are all subterms of pϕq. This is a byproduct of
not having an individual constant in the language to name each number in ω
or, what amounts to the same, each expression of L . Furthermore, if x occurs
free in Bew(x) (recall Bew(x) is a complex formula) in the context of the open

13As anticipated in footnote 4, this is a more general version of what is normally understood
by “strong diagonalization”. ϕ here may (and may not) contain free variables other than x.

This possibility will become useful later in this section, in the proof of Proposition 3.3.
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term t(x) at least once, then Bew(pϕq) would also refer to the sentence denoted
by t(pϕq), if any. Of course, which sentences these numerals and subterms refer
to depends entirely on the coding. Under two different codings, sentence like
Bew(pϕq) will ‘over-generate’ in different ways.

Unfortunately, this ‘over-generation’ is unavoidable. Discriminating between
terms that play a role in reference and those that don’t can lead to worse sit-
uations. For instance, to avoid that Bew(pϕq) m-refers to every sentence whose
code is smaller than ϕ’s, one could suggest we shouldn’t look into numerals, but
only consider terms in sentences that aren’t proper subterms of numerals. But
what if x in Bew(x) only occurs in the context of the function symbol S? In that
case, we wouldn’t be allowed to conclude that Bew(pϕq) refers to ϕ but only to
the sentence codified by the successor of the code of ϕ, if such sentence exists.
An analogous case can be made if other subterms were ignored for determin-
ing m-reference. If x occurs free in Bew(x) in the context of t(x), to avoid that
Bew(pϕq) m-refers to the sentence denoted by t(pϕq), if any, one could require that
only numerals are considered for m-reference. But in that case, we wouldn’t be
able to account for the self-referential character of sentences delivered by strong
diagonalization, such as the ‘strong’ Gödel sentence of PA, ¬Bew(g), given by

g = p¬Bew(g)q.(5)

The term g the strong diagonal lemma provides is of the form d. (p¬Bew(d. (x))q).
It’s not a numeral.

Moreover, it’s not clear we want to ignore terms like t(pϕq) or m, with m < #ϕ
in every sentence of the form ψ(pϕq) whatsoever. For instance, if we ignore the
term ¬. pϕq in Bew(¬. pϕq) and only let pϕq to contribute to the reference of this
sentence, we would not be able to say that Bew(¬. pϕq) refers to ¬ϕ, even though
it intuitively says that ¬ϕ is provable. ψ(pϕq) can be seen as saying of ϕ that it
has the property expressed by ψ; or of the sentence denoted by t(pϕq) that it has
the property expressed by ψ(x)[x/t(x)], the result of replacing all occurrences of
t(x) in ψ(x) with x; or of the sentence denoted by, e.g., pϕq− 1, that it has the
property expressed by ψ(Sx). Each formula of L is as legitimate as any other.
A similar phenomenon occurs in natural language. For instance, the sentence
“The earth’s circumference is smaller than Saturn’s” not only refers to the earth’s
circumference but also to the earth; e.g., this sentence could be seen as part an
answer to the question which planets have circumferences smaller than Saturn’s.

Heck [12] regards m-self-reference to be ‘true’ self-reference, as opposed to the
mere presence of equivalences of the form (A), but also to other prima facie
possible ways of achieving self-reference. If he’s right, m-reference is be the only
legitimate kind of reference, and (C1) and (C2) not just sufficient but also neces-
sary conditions for reference and self-reference, respectively. As a consequence,
Heck’s view is susceptible to Leitgeb’s criticisms, since he cannot account for the
self-referential character of sentences obtained via the weak diagonal lemma. In
the equivalences of the form (A) the diagonal lemma delivers, ψ doesn’t m-self-
refer; it doesn’t contain a term that denotes ψ but is only equivalent to a sentence
(i.e., ϕ(pψq)) that contains such term. But these are part of the paradigmatic
cases we wish to account for. As Leitgeb points out, we want to make sense
of the usual claim that Gödel sentences are self-referential. This issue is also
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pressing in the case of semantic paradoxes. If T is a truth predicate, the (weak)
diagonalization lemma applied to the formula ¬Tx delivers what is called a “liar”
sentence.14 Together with certain näıve truth principles a paradox can be de-
rived from it. If the diagonal lemma didn’t deliver self-referential expressions,
then we would have a non-self-referential semantic paradox on the cheap.

Contra Heck, I suggest we don’t limit ‘true’ reference to m-reference. Indeed,
reference can also be achieved using quantifiers. For instance,

∀x(TΣ1
(x)→ Bew(x))

says that all Σ1-truths are theorems of PA; it intuitively refers to all Σ1-truths.
Similarly,

∃x(TΣ2
(x) ∧ ¬Bew(x))

says some Σ2-truths are not theorems of PA; so it intuitively refers to Σ2-truths.
∀xBew(x), instead, seems to refer to everything, for it states that everything is
provable in PA. More generally,

(C3): sentences of the form

∀x(ϕ(x)→ ψ(x))(C)

or

∃x(ϕ(x) ∧ ψ(x))(D)

refer to all sentences satisfying ϕ; and
(C4): sentences of the form ∀xϕ(x), where ϕ is neither a conditional expres-

sion nor is equivalent to a conditional expression in a sense to be specified
(although Bew(x) might be), refer to all sentences.

I call this kind of reference “reference by quantification”, or “q-reference” for
short. It is what Heck calls “reference by description”. Unlike him, I do not
consider it a second-class kind of reference.

As in the case of m-reference, subterms should not be ignored. Sentences such
as

∀x(x = pϕq→ Bew(¬. x))

or
∃x(x = pϕq ∧ Bew(¬. x))

seem to refer, not only to ϕ, but also to ¬ϕ, for they say of the latter that it
is provable. In a similar fashion, nested quantifiers also play a role in reference.
For instance,

∀x(x = p0 6= 0q→ ∀y(y = ¬. x→ Bew(y)))

and
∃x(x = p0 6= 0q ∧ ∃y(y = ¬. x ∧ Bew(y)))

appear to be asserting of ¬0 6= 0 that is provable, and so referring to this sentence
as well as to 0 6= 0. In general,

(C5): sentences of the form (C) or (D) refer, in addition to the ϕs, to whatever
ψ(n) refers to, provided that n satisfies ϕ(x).

14If we extend L with a predicate symbol T for truth and formulate Q in the extended
language, we can diagonalize ¬Tx to obtain a liar sentence λ such that λ↔ ¬Tpλq is provable

in this theory.
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This condition covers the intuitions regarding q-reference behind the last two
examples.

It appears to be sound to say that reference is closed under logical connectives,
that is,

(C6): a sentence and its negation refer to the same expressions; the con-
junction of two sentences refers to every sentence any conjunct refers to;
etc.

This holds trivially of m-reference. In the case of q-reference, it implies, for
instance, that

¬∀x(ϕ(x)→ ψ(x))

q-refers to the the same sentences as (C) does; and

∀x(ϕ(x)→ ψ(x)) ∧ ∃x(ψ(x) ∧ ϕ(x))

q-refers to whatever ∀x(ϕ(x)→ ψ(x)) or ∃x(ψ(x) ∧ ϕ(x)) q-refer to.
(C3)-(C6) cover formulae of many different forms. Nonetheless, we haven’t

considered all cases. What sentences do expressions such as

∀x¬(TΣ1(x)→ Bew(x))

q-refer to? What about

∃x∃y(Bew(x→. y) ∧ ¬Bew(y→. x)),

where x→. y represents the function that maps formulae x and y to the conditional
from x to y? There seems to be no straight forward way to precisely define q
-reference. Rather arbitrary decisions will have to be made to give a complete
definition. I will come back to this in the next section.

We can see now how sentences resulting from an application of (weak) di-
agonalization intuitively q-refer to themselves, so the desired condition can be
met:

(C7): sentences resulting from an application of (weak) diagonalization are
self-referential.

Recall the sentence ψ diagonalization delivers is actually of the form

∀x(x = p∀y(Diag(x, y)→ ϕ(y))q→ ∀y(Diag(x, y)→ ϕ(y))).(B)

Although (B) does not satisfy its own antecedent, ∀y(Diag(x, y) → ϕ(y)) does.
Furthermore, the sentence that result from replacing the free variable x in (B)’s
consequent, ∀y(Diag(x, y)→ ϕ(y)), with p∀y(Diag(x, y)→ ϕ(y))q, i.e.,

∀y(Diag(p∀y(Diag(x, y)→ ϕ(y))q, y)→ ϕ(y))),

q-refers to (B), for (B) satisfies the antecedent, Diag(p∀y(Diag(x, y)→ ϕ(y))q, y).
Therefore, (B), or in other words, ψ, q-refers to itself, by conditions (C3) and
(C5). Analogously, these conditions guarantee that ψ is also self-referential when
obtained by the existential proof of the diagonal lemma. For in that case ψ is of
the form

∃x(x = p∃y(Diag∃(x, y) ∧ ϕ(y))q ∧ ∃y(Diag∃(x, y) ∧ ϕ(y))),

so it refers to whatever

∃y(Diag∃(p∃y(Diag∃(x, y) ∧ ϕ(y))q, y) ∧ ϕ(y))
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refers to, i.e., to the diagonalization of ∃y(Diag∃(x, y) ∧ ϕ(y)) or, what is the
same, to itself.

In both cases, ψ’s self-referential character is not a consequence of it being
equivalent to ϕ(pψq), but of it somehow quantifying over itself. Dropping the
näıve view on self-reference does not prevent us from classifying sentences de-
livered by (weak) diagonalization—e.g., Gödel sentences like γ in (1)—as self-
referential, contrary to what Leitgeb suggests.

Leitgeb also notices that reference simpliciter cannot be defined as the dis-
junction of m- and q-reference. This is just a direct form of reference. In some
occasions it also makes sense to talk about indirect reference in the language of
arithmetic. Let g1, g2 be terms such that we can prove in Q that

g1 = pBew(g2)q ∧ g2 = p¬Bew(g1)q.

Bew(g2) says of ¬Bew(g1) that it’s provable in PA, while the latter says of the
former that it is unprovable. These sentences form a reference cycle. If Bew(g2)
is true, then ¬Bew(g1) is so too, which means that Bew(g2) is not provable.
Thus, it seems Bew(g2) is indirectly saying something about itself. A similar
point can me made for ¬Bew(g1). Actually, Gödel’s proof of the undecidability
of PA’s Gödel sentence, which relies on the self-referentiality of this sentence, can
be easily adapted to show that both Bew(g2) and ¬Bew(g1) are undecidable as
well.

On the other hand, there seem to be cases where reference is intuitively not
closed under transitivity. Let Sent(x) ∈ L define the set of sentences of L .
Then, Sent(pBew(p0 = 0q)q) m-refers to Bew(p0 = 0q), which m-refers in turn to
0 = 0. However, it’s not clear we want to say that Sent(pBew(p0 = 0q)q) refers to
0 = 0, not even indirectly. While Sent(pBew(p0 = 0q)q) says of Bew(p0 = 0q) that
it’s a sentence, it says nothing in principle about 0 = 0.

Cycles are perfectly possible in the language of arithmetic. Making small
adjustments to the strong diagonal lemma, and provided the language contains
the relevant function symbols, it is easy to prove the existence of cycles of any
length in Q. Let n. (x) ∈ L represent in Q the p.r. function “numeral” that maps
a number x to the code of its numeral, and let s.(x, y) ∈ L represent in Q the
p.r. function s called “substitution”, that maps the codes of a formula x and
a term y to the code of the sentence that results from replacing the only free
variable in x with y.

Proposition 3.2 (n-cycles). For any formulae ϕ1(x), . . . , ϕn(x) there are terms
t1, . . . , tn such that the following are provable in Q:

t1 = pϕ1(t2)q

. . .

tn−1 = pϕn−1(tn)q

tn = pϕn(t1)q.

Proof. I prove it just for n = 2. We can show in Q that
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d. (pϕ2(s.(pϕ1(d. (x))q, n. (x)))q)︸ ︷︷ ︸
t2

= pϕ2(s.(pϕ1(d. (x))q, n. (pϕ2(s.(pϕ1(d. (x))q, n. (x)))q))︸ ︷︷ ︸
t1

)q.

Thus,

Q ` t2 = pϕ2(t1)q

and

Q ` t1 = pϕ1(d. (pϕ2(s.(pϕ1(d. (x))q, n. (x)))q))q = pϕ1(t2)q.

This proof can be extended to cycles of any length in a recursive way, as follows:
If for an n-cycle for ϕ1(x), . . . , ϕn(x) we start by strongly diagonalizing ϕ(x)
(e.g., for cycles of length 2 we strongly diagonalize ϕ2(s.(pϕ1(d. (x))q, n. (x)))), for an
n+1-cycle for ϕ1(x), . . . , ϕn+1(x) we strongly diagonalize ϕn+1(s.(pϕ(x)q, n. (x))).
In other words, for ϕ1(x), . . . , ϕn(x) we begin by ‘unwinding’

d. (pϕn(s.(pϕn−1(. . . s.(pϕ1(d. (x))q, n. (x)) . . . )q, n. (x)))q)︸ ︷︷ ︸
tn

.

a
Moreover, we can prove the existence of ω-sequences of sentences, each of

which m-refers to the expression coming next.

Proposition 3.3 (ω-chains). For every formula ϕ(x) there is an infinite se-
quence of distinct terms t0, t1, . . . , tn, . . . such that, for every n ∈ ω,

Q ` tn = pϕ(tn+1)q.

Proof. Applying the strong diagonalization lemma to ϕ(s.(x, n. (Sy))) we ob-
tain a term t such that

Q ` t = pϕ(s.(t, n. (Sy)))q.

Thus, applying s.(x, n. (y)) to both sides of the equation, we can prove in Q that

∀y s.(t, n. (y)) = s.(pϕ(s.(t, n. (Sy)))q, n. (y)).(6)

For each n ∈ ω, let tn := s.(t, n. (n)). It follows from (6) that

tn = s.(pϕ(s.(t, n. (Sy)))q, n. (n))

= pϕ(s.(t, n. (Sn)))q

= pϕ(s.(t, n. (n+ 1)))q

= pϕ(tn+1)q.

Moreover, we can show that not only each term in the sequence is distinct from
the others, but also that they denote different sentences:

tn = tm ⇒ s.(t, n. (n)) = s.(t, n. (m))

⇒ s.(pϕ(s.(t, n. (Sy)))q, n. (n)) = s.(pϕ(s.(t, n. (Sy)))q, n. (m))

⇒ pϕ(s.(t, n. (Sn)))q = pϕ(s.(t, n. (Sm)))q

⇒ n = m,
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(for the coding is injective) which means that n = m.
a

Thus, for instance, we can have an ω-chain of Henkin sentences, this is,

h1 = pBew(h2)q

h2 = pBew(h3)q

. . .

hn = pBew(hn+1)q

. . .

As in the case of standard Henkin sentences, if a member of this chain is
provable, and thus true, then all the ones coming after it in the chain are true
and provable as well; while if a sentence is unprovable and thus false, so are
the following ones. This invites the thought that each sentence in the sequence
refers, albeit indirectly, to all the ones that come after, and not only to the one
that follows immediately.

Furthermore, if a truth predicate were available in the language, turning to
Proposition 3.2 we could formulate cycles of liars, from which we could derive a
paradox pretty much in the same way we do with the standard liar sentence. If
sentences in the cycle weren’t indirectly self-referential, we would get non-self-
referential semantic paradoxes on the cheap, as before. I take all this to show
that, although sometimes it might not be necessary or adequate to go beyond
direct reference,

(C8): reference simpliciter is a transitive relation.

The last condition Leitgeb imposes on reference is the equivalence condition

(EC): logically (not merely arithmetically) equivalent sentences refer to the
same things.15

He gives the following supporting argument:

(EC) is plausible because logically equivalent sentences are not only
extensionally equivalent in the actual world, but indeed in every log-
ically possible world, and thus indistinguishable in terms of the se-
mantics of first-order predicate logic. If self-reference is to be defined
by extending the usual reference relation for terms, i.e., a semantical
relation, it is certainly strange if (EC) is invalidated. If (EC) is not
true, the self-referentiality or circularity of a sentence does not only
depend on what the sentence says, but also in which way its content
is being expressed. (Leitgeb [19, p. 10])

15Actually, this is not Leitgeb’s original formulation. His reads: “if A is self-referential/
circular, and if B is logically equivalent to A, then also B is self-referential/circular.” (Leit-

geb [19, p. 10]) However, as Urbaniak [32] points out, this condition is far stronger and less
convincing. Let t = Bew(t) and consider its logical equivalent ∀x(x = t → Bew(x)). While it
might be intuitively appealing to assert that Bew(t) and ∀x(x = t→ Bew(x)) refer to the same

things, is far less clear that we want to commit ourselves to the idea that ∀x(x = t→ Bew(x))

is self-referential just because Bew(t) is. Intuitively, ∀x(x = t→ Bew(x)) refers to Bew(t), but
not to itself. Given that the weaker version of the equivalence condition I suggest is already

problematic, I stick to it. Moreover, Leitgeb’s arguments support my version of the equivalence
condition rather than his own.
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This argument consists of two premises: (i) that semantic notions of first-
order logic cannot distinguish between logically equivalent sentences; and (ii)
that (self-)reference is a semantic relation. The question we need to ask is what
is meant here by “semantic”. If “semantic” means a predicate of sentences
that is definable purely in terms of models or possible worlds, such as “being a
logical truth”, then premise (i) is true, but premise (ii) is false. According to
the previous conditions Leitgeb himself suggested for reference, a definition of
this concept will inevitably mention the syntactic components of the referring
sentences. Indeed, the self-referentiality of a sentence does depend on the way its
content is being expressed.16 On the other hand, if “semantic” is to designate
also definitions that mention concepts other than models or possible worlds,
then premise (i) fails to be true, because we can certainly distinguish between
logically equivalent sentences such as 0 = 0 and ∀x(ϕ(x) → ϕ(x)) attending to
their syntactic structure. Leitgeb’s argument fails to support (EC) as a condition
a notion of reference should satisfy.

Moreover, as Leitgeb himself notices, (EC) is incompatible with some of the
other conditions for reference that have been discussed in this section. On pain
of trivializing reference, if the equivalence condition held we would have to drop
(C1). Given any two sentences ϕ and ψ, there is always a sentence that is
logically equivalent to ϕ and mentions ψ, e.g.: ϕ ∧ pψq = pψq. Thus, (C1) would
imply that every sentence refers to every other sentence. For similar reasons,
(C3) should be dropped in the presence of (EC): (C) is logically equivalent to

∀x((ϕ(x)→ ϕ(x))→ (ϕ(x)→ ψ(x))),

whose antecedent is true of every sentence in the language.
If one still finds (EC) to be an appealing condition, a way of resolving the

conflict with the other conditions could prima facie consist in imposing restric-
tions on which terms and predicates can be sources of reference, as has been
done by Putnam [25], Goodman [6], and Urbaniak [32]. According to these
accounts of reference or aboutness sentences refer more or less as expected, as
long as the relevant terms or predicates occur informatively. Roughly, a sen-
tence of the form ϕ(t) is about the object t denotes only if ϕ(t) doesn’t logically
imply ϕ(s) for every other term s. In the same fashion, sentences of the form
∀x(ϕ(x) → ψ(x)) are about the ϕs (or the class of ϕs) just in case they don’t
logically imply ∀x(χ(x) → ψ(x)) for every other formula χ(x) (or ϕ is a logical
predicate). Thus, if the equivalence condition was at play, for instance, ϕ and
ϕ ∧ pψq = pψq would refer to the same sentences, but the latter would not refer
to ψ, for pψq does not occur informatively in ϕ∧pψq = pψq. In this way, triviality
can be avoided.

However, other counterintuitive cases and incompatibilities emerge. Most
saliently, the very idea of informativity prevents the identification of strong di-
agonalization as a mechanism for self-reference. If we strongly diagonalize the
(logical) predicate x = x, we obtain a term t such that t = pt = tq. Since t = t
logically implies s = s for every term s, t = t isn’t about itself and, therefore, isn’t
self-referential. An analogous claim can be made about weak diagonalization.

16In [20] Leitgeb changes his mind: he acknowledges this fact and rejects (EC).
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I conclude that the equivalence condition is not a reasonable requirement we
should impose on reference. Thus, it appears we can still hope to find an adequate
notion of reference in L , contrary to what Leitgeb [20] seems to suggest. As
Smoryński [28] and Halbach and Visser [10, 11] indicate, the fruitless attempts
to make these conditions work together, the resistance of reference to be treated
as an extensional concept, could be what lead mathematicians and philosophers
away from the formal study of reference and self-reference in arithmetic.

Indeed, rejecting (EC) implies reference should not only be intensional but
also hyperintensional, in the following sense:17

(C9): some logically equivalent sentences fail to refer to the same objects.

In particular, pairs of logically equivalent sentences of the form ϕ and ϕ ∧ t =
t, or ∀x(ϕ(x) → ψ(x)) and ∀x((χ(x) → χ(x)) → (ϕ(x) → ψ(x))), do not
necessarily refer to the same things. There are other cases of logically equivalent
schemata, however, for which we feel inclined to believe they do refer to the same
objects. Take for instance ∀x(¬ϕ(x)→ ψ(x)) and ∀x(¬ψ(x)→ ϕ(x)). Unlike the
previous examples, these just seem to be two different ways of expressing exactly
the same (trivial or nontrivial) content about the same objects. A similar point
can be made concerning ∀x(ϕ(x)→ ψ(x)) and ∀x(¬ψ(x)→ ¬ϕ(x)), ∀x(ϕ(x)→
ψ(x)) and ∀x¬¬(ϕ(x) → ψ(x)), ∃x(ϕ(x) ∧ ψ(x)) and ∃x(ψ(x) ∧ ϕ(x)), ∀x∀yϕ
and ∀y∀xϕ, ∀xϕ(x) and ∀yϕ(y), and other transformations of the like.

Thus, in an ideal situation, instead of rejecting the equivalence condition al-
together, we keep the good bits without trivializing our definition of reference.
How can we identify the good bits? (EC) trivializes m- and q-reference because,
for instance, we can always add t = t as a conjunct to every formula and obtain
a logically equivalent expression, or relativize every conditional to a logical truth
like ϕ(x)→ ϕ(x). Unlike the examples I gave at the end of last paragraph, these
logical equivalents add irrelevant compounds to sentences. Thus, an idea would
be to adopt a version of (EC) restricted to logical transformations that do not
add new atomic formulae but, roughly, just distribute them in a different way.
According to this restricted version of (EC),

(C10): reference is closed, not under classical logic, but under some kind of
relevant consequence relation.

In this sense we could say the notion of reference we are after is not absolutely
hyperintensional but lies somewhere between intensionality and hyperintension-
ality.

I have examined the conditions that should hold of a good notion of reference
that could help us to properly formulate certain problems in metamathematics,
like the ones introduced in §2. These are conditions (C1)-(C10). The resulting
notion could serve as a blueprint for a concept of reference applicable to the
study of semantic paradoxes and, perhaps, even natural language. I’ve argued
that reference should hold between sentences (via their codes, in a particular
fixed coding), and do justice to the intuitions behind reference by mention and
by quantification and the possible transitivity of reference. Moreover, it should
be hyperintensional but, at the same time, closed under a weaker consequence

17See Cresswell [4]. Since hyperintensionality is a kind of intensionality, sometimes hyper-

intensional predicates are just referred to as “intensional”.
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relation than (classical) logical consequence. In the next section I show such
concept is possible by setting an example and proving the pertaining results.

§4. In order to give a precise definition of reference I first need to introduce
three main preliminary notions: m-reference, q-reference and direct reference.
Then, a definition of reference simpliciter is given, and several results on this
notion that establish its adequacy are stated and proved. Finally, I define self-
reference and well-foundedness in terms of reference. I show that the diago-
nalization procedures used in the proofs of Theorems 1.1 and 3.1 and Proposi-
tion 3.2 deliver self-referential sentences, whereas sentences in the ω-chains that
Proposition 3.3 provides turn out to be non-well-founded (but unfortunately also
self-referential).

It’s important to highlight that the concepts of reference I put forward are
of a semantic nature, for they depend on the standard interpretation N of the
language.18 For instance, when defining m-reference, I assume the denotation of
terms that occur in sentences is given by N;19 and in defining q-reference, when
I say the code of a sentence satisfies the antecedent of ∀x(ϕ(x)→ ψ(x)), I mean
satisfaction in N. I believe this is the most natural way of understanding condi-
tions (C1) and (C3) in the previous section. Moreover, it doesn’t tie reference
to a particular theory such as PA, which would lead to undesired results.

Definition 4.1 (M-reference). If ϕ,ψ are sentences, then ϕ m-refers to ψ if
and only if ϕ contains a closed term t such that N � t = pψq.

I require that t is closed in ϕ to keep apart m- from q-reference, as we will
see soon. Definition 4.1 clearly satisfies condition (C1). As a consequence, all
sentences denoted by terms delivered by the strong diagonal lemma m-refer to
themselves. If t is a closed term and t = pϕ(t)q is provable in Q, then it’s true
in N, so ϕ(t) contains a closed term t that denotes ϕ(t). Sentences like t = t,
where t = pt = tq, m-refer to themselves just like ¬Bew(g) in (5) does.

As expected, m-reference is closed under logical connectives. Also, it is natu-
rally closed under the desired kind of relevant equivalence. Valid propositional
transformations that do not add any new atoms do not alter m-reference. For
instance, ϕ and ¬¬ϕ, ϕ → ψ and ¬ψ → ¬ϕ, ϕ ∨ ψ and ¬ϕ → ψ, and ¬(ϕ ∧ ψ)
and ¬ϕ ∨ ¬ψ m-refer to the same sentences, correspondingly. Moreover, we can
swap quantifiers of the same kind and rename variables without affecting the
sentences an expression m-refers to, since none of this changes the closed terms
that occur in a formula.

On the other hand, defining reference by quantification in a way that also
enjoys closure under this kind of relevant consequence relation turns out to be
a much more complicated task. To begin with, I introduce the notion of a for-
mula being in postnex disjunctive normal form (PDNF, cf. Definition 4.3), and
describe a procedure that allows us to transform any given formula into an ex-
pression in this form, which I call “normalization” (cf. Definition 4.6). Roughly,

18Notions of reference of a proof-theoretic nature have been explored by the author in
[author] for the language of truth, and are the subject of further work.

19Although in this case it would suffice to consider the denotation relations that are provable
in Q, for Q proves all true identities and inequalities.
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a formula is in PDNF just in case all its subformulae are disjunctions of conjunc-
tions of atomic, universal, negated atomic, or negated universal expressions; and
the normalization of a formula is the result of applying successive transforma-
tions to it that preserve logical equivalence and do not add any new atoms, until
the resulting formula is in PDNF. This is close to the notion of prenex disjunc-
tive normal form and the algorithms to obtain such formulae that can be usually
found in textbooks.20 Then, a direct definition of the q-reference of sentences
in PDNF will be given. The q-reference of other sentences will be defined as
the q-reference of their corresponding normalizations (cf. Definition 4.9). This
will guarantee that all sentences that have the same normalization, which are
obviously logically equivalent, refer by quantification to the same things. More-
over, those sentences whose respective normalizations differ only in the order or
association of their conjuncts and disjuncts, or in the renaming of the variables,
will also q-refer to the same expressions. Thus, q-reference will be closed, not
under classical logic, but under the kind of relevant transformations mentioned
at the end of last section.

To express every formula of the language as a disjunction of conjunctions of
atomic, universal, negated atomic, or negated universal expressions, we first need
to get rid of the logical connectives that cannot occur in such formulae, that is,
→ and ∃. In order to do so, we translate each formula of L into L � ⊆ L , the
language that results from removing from L all formulae containing → or ∃.
We turn to the usual definitions of → and ∃ in terms of ¬ and ∨ resp. ¬ and ∀.
Let τ : L 7→ L � be defined as follows:

τ(ϕ) :=



ϕ if ϕ is of the form s = t

¬τ(ψ) if ϕ is of the form ¬ψ
τ(ψ) ∧ τ(χ) if ϕ is of the form ψ ∧ χ
τ(ψ) ∨ τ(χ) if ϕ is of the form ψ ∨ χ
¬τ(ψ) ∨ τ(χ) if ϕ is of the form ψ → χ

∀vτ(ψ) if ϕ is of the form ∀vψ
¬∀v¬τ(ψ) if ϕ is of the form ∃vψ

τ obviously preserves truth-in-a-model and provability-in-a-theory.

Definition 4.2 (Prime). A formula ϕ of L � is a prime if and only if it is
an atomic formula, the negation of an atomic formula, a universally quantified
expression, or the negation of a universally quantified expression.

Definition 4.3 (Postnex disjunctive normal form). A formula of L � is in PDNF
if and only if

1. every subformula is a disjunction of conjunctions of primes;
2. it contains no superfluous quantifiers (i.e., that don’t bind any variable);
3. every subformula of the form ∀v1 . . . vn(ϕ1∨ · · ·∨ϕm) is such that vi is free

in ϕj for each 1 ≤ i ≤ n and 1 ≤ j ≤ m.

For instance,
¬∀x(∀yx = y ∨ x 6= Sx)

20See, for instance, Boolos et al. [1, §19.1].
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is in PDNF, while
¬∀x∀y(x = y ∨ x 6= Sx)

isn’t, because y is not free in x 6= Sx. In turn,

¬∀x¬(¬∀yx = y ∧ z = Sx)

isn’t in PDNF either, since the subformula ¬(¬∀yx = y ∧ x = Sx) is not a
disjunction of conjunctions of primes.

Next I introduce the notion of normalization, an algorithm for turning each
formula ϕ of L � into PDNF form. It consists on the step-by-step transformation
of each subformula of ϕ according to the number of nested quantifiers that occur
in the subformula. Thus, I first provide the following two definitions.

Definition 4.4 (Depth). Let dep be an assignment of numbers to universally
quantified formulae of L � such that:

dep(∀vϕ) :=



1 if ϕ is of the form s = t

dep(∀vψ) if ϕ is of the form ¬ψ
max{dep(∀vψ), dep(∀vχ)} if ϕ is of the form ψ ∧ χ
max{dep(∀vψ), dep(∀vχ)} if ϕ is of the form ψ ∨ χ
dep(∀uψ) + 1 if ϕ is of the form ∀uψ

Intuitively, the depth of ∀vϕ is the maximum length of chains of nested quan-
tifiers occurring in the formula. Thus, each universal formula of L � has finite
depth.

Definition 4.5 (i-normalization). The i-normalization [ϕ]i of a formula ϕ of
L � without superfluous quantifiers is the result of successively applying the
following transformations to each subformula ∀vψ of ϕ of depth i:

1. Replace every subformula of the form ¬(γ ∨ δ) and ¬(γ ∧ δ) with (¬γ ∧¬δ)
and (¬γ ∨ ¬δ) resp. until they don’t occur any longer, starting with the
innermost.

2. Erase all double negations.
3. Replace every subformula of the form χ ∧ (γ ∨ δ) and (γ ∨ δ) ∧ χ with

(χ∧γ)∨ (χ∧δ) and (γ∧χ)∨ (δ∧χ) resp. until they don’t occur any longer,
starting with the innermost.

4. Replace every subformula of the form ∀v1 . . . vn(χ1 ∨ · · · ∨ χm) where v1

isn’t free in some χj , 1 ≤ j ≤ m, with ∀v2 . . . vn(γ ∨ ∀v1δ), where γ is the
disjunction of the χj in which v1 is not free, and δ is the disjunction of the
χj in which it is free; until such subformulae don’t occur any longer.

The i-normalization of a formula turns all its subformulae of depth i into dis-
junctive normal form, except literals (i.e., atomic or negated atomic expressions)
are replaced with primes. Unlike prenex normal forms, quantifiers are pushed in-
side rather than outside of disjunctions, just next to the disjuncts whose variables
they can bind. Consider the formula

∀x(∀y¬(∀z(x = 0 ∨ z = 0) ∧ x = y) ∨ ∀z¬(z 6= z)).(7)

Its 1-normalization consists in applying transformations 1-4 in the above defini-
tion to its subformulae of the form ∀vϕ of depth 1, i.e., ∀z(z = 0 ∨ x = 0) and
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∀z¬(z 6= z). This results in x = 0 ∨ ∀z(z = 0) and ∀z(z = z), resp. Thus, [(7)]1

is

∀x(∀y¬((x = 0 ∨ ∀z(z = 0)) ∧ x = y)) ∨ ∀z(z = z).(8)

On the other hand, [(7)]2 consists in transforming the universal subformulae
of (7) of depth 2, so we just replace ∀y¬(∀z(x = 0 ∨ z = 0) ∧ x = y) with
¬∀z(x = 0 ∨ z = 0) ∨ ∀y(x 6= y). This results in

∀x(¬∀z(x = 0 ∨ z = 0) ∨ ∀y(x 6= y) ∨ ∀z¬(z 6= z)).

Definition 4.6 (Normalization). The normalization [ϕ] of a formula ϕ ∈ L �
is the result of erasing all superfluous quantifiers, and then performing successive
i-normalizations starting with i = 1 and stoping after i = max{dep(∀vψ) :
∀vψ is a subformula of ϕ}.
max{dep(∀vψ) : ∀vψ is a subformula of ϕ} is the maximum of the depths of

the universal subformulae of ϕ. If ϕ doesn’t contain quantifiers, letmax{dep(∀vψ) :
∀vψ is a subformula of ϕ} = 0.

Going back to our previous example, [(7)]1 is (8), so [[(7)]1]2 (which is not the
same as [(7)]2) is the result of replacing ∀y¬((x = 0 ∨ ∀z(z = 0)) ∧ x = y) in (8)
with (x 6= 0 ∧ ¬∀z(z = 0)) ∨ ∀y(x 6= y), that is,

∀x((x 6= 0 ∧ ¬∀z(z = 0)) ∨ ∀y(x 6= y) ∨ ∀z(z = z)).(9)

Finally, [[[(7)]1]2]3, this is, [(7)], is the result of pushing ∀x inside in (9), as clause
4 of Definition 4.5 requires, for x is not free in ∀z(z = z):

∀z(z = z) ∨ ∀x((x 6= 0 ∧ ¬∀z(z = 0)) ∨ ∀y(x 6= y)).

It can be shown that every formula of L � is logically equivalent to a PDNF for-
mula. Moreover, normalization is an effective procedure to find this expression.
For reasons of perspicuity, in what follows I will often talk of normalizations of
formulae of L when what is really meant are normalizations of the translations
of these formulae into L �.

Proposition 4.7. Every formula ϕ ∈ L � is logically equivalent to a formula
in which all subformulae of the form ∀vψ are in PDNF; and normalization is an
effective procedure to find one.

Proof. Note that clauses 1-4 of Definition 4.5 imply only a finite number of
transformations. Thus, i-normalizations terminate in a finitely many steps. Note
as well that erasing superfluous quantifiers and performing the transformation
steps in Definition 4.5 to a formula results in a logically equivalent expression.

Let ϕ− be the result of erasing all superfluous quantifiers in ϕ. We now show
by induction on n that, for all n ≥ 1, in the formula that results from successively
performing i-normalizations, form i = 1 to i = n to ϕ− (i.e., [. . . [[ϕ−]1] . . . ]n),
all universal subformulae of depth ≤ n are in PDNF. Since erasing superfluous
quantifiers is a finite operation as well, we get the desired proof.

Let ∀vψ be any subformula of [ϕ−]1 of depth 1. By clause 4 of Definition
4.5, if ψ is of the form ψ1 ∨ · · · ∨ ψm, v is free in ψi, for each 1 ≤ i ≤ m.
Note that pushing the only quantifier inside a disjunction does not generate
new formulae of the form χ ∧ (γ ∨ δ) and (γ ∨ δ) ∧ χ inside a subformula of
depth 1. Then, by clause 3, no conjunctions of disjunctions can occur in ∀vψ.
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By clause 2 and the fact that pushing the quantifier inside a disjunction and
distributing conjunctions over disjunctions doesn’t create new double negations,
there are also no double negations in ∀vψ. Finally, pushing the quantifier inside
a disjunction, distributing conjunctions over disjunctions, and erasing double
negations doesn’t create new formulae of the form ¬(γ ∨ δ) or ¬(γ ∧ δ) inside
a subformula of depth 1 if there originally weren’t any. Thus, by clause 1, the
latter don’t occur either in ∀vψ. As a consequence, ∀vψ is in PDNF.

Assume now that all universal subformulae of [. . . [[ϕ−]1]...]n of depth ≤ n are
in PDNF, and let ∀vψ by any subformula of [. . . [[ϕ−]1]...]n+1. By clause 4 of Defi-
nition 4.5 and the inductive hypothesis, if ψ is of the form ∀v1 . . . vk(ψ1∨· · ·∨ψm),
then vi is free in ψp, for each 1 ≤ i ≤ k and 1 ≤ p ≤ m. Also, pushing the first
quantifier of a sequence inside a disjunction in a subformula of arbitrary depth m
does not generate new subformulae of the form χ∧ (γ ∨ δ) and (γ ∨ δ)∧χ inside
a subformula of depth m. Thus, by clause 3, no conjunctions of disjunctions
can occur in ∀vψ. By clause 2 and the fact that pushing the first quantifier of
a sequence inside a disjunction and distributing conjunctions over disjunctions
doesn’t create new double negations, there are also no double negations in ∀vψ.
Finally, pushing the first quantifier of a sequence inside a disjunction, distribut-
ing conjunctions over disjunctions, and erasing double negations in a subformula
of arbitrary depth m doesn’t create new formulae of the form ¬(γ∨δ) or ¬(γ∧δ)
inside a subformula of depth m, if there originally weren’t any. Therefore, by
clause 1, the latter don’t occur either in ∀vψ. As a consequence, ∀vψ is in
PDNF. a

Actually, the normalization of a formula does not return an expression in
PDNF, but just one in which all quantified subformulae are in PDNF. Although
it won’t be necessary in what follows, one can easily obtain a formula in PDNF
by applying clauses 1-3 of Definition 4.5 to its normalization.

Definition 4.8 (Permutations). The set of permutations of a formula ϕ ∈
L � is the smallest set containing ϕ that is closed under commutativity and
associativity of disjunction.

Although Leitgeb’s equivalence condition should be rejected on pain of triv-
iality, a restricted version of it is desirable, as stated in (C9) and (C10). My
proposal here consists in just requiring that sentences whose normalizations have
the same set of permutations—which are obviously logically equivalent —refer
to the same objects. In other words, reference will be closed under permutations
of disjunctive subformulae of normalizations. Note that translations, normal-
izations, and permutations do not disturb the atomic components of sentences,
which seemed to be the problem with Leitgeb’s equivalence condition, but just
change connectives and redistribute quantifiers. Later in this section I show that
the resulting definition of reference does not lead to triviality and, furthermore,

it gives the right verdict in several intuitive cases. Let ~k abbreviate k1, . . . , kn.

Definition 4.9 (Q-reference). If ϕ,ψ are sentences, ϕ q-refers to ψ if and
only if a member of the set of permutations of [τ(ϕ)] has a subsentence of the
form ∀~vχ satisfying one of the following two conditions:

1. χ is atomic, a negated formula, or a conjunction.
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2. χ is of the form δ ∨ γ, there are ~k ∈ ω such that N � ¬δ[~k/~v], and
(a) pψq = ki for some 1 ≤ i ≤ n, or

(b) γ[~k/~v] is the normalization of a sentence that q-refers to ψ or contains
an occurrence of a closed term t that isn’t in γ such that N � t = pψq.21

Since only quantified subsentences contribute to q-reference, sentences not
containing quantifiers, such as pϕq→. pψq = pϕ→ ψq, do not q-refer, as expected.
Also, the fact that only normalizations are considered implies that superfluous
quantifiers aren’t a source of q-reference either, for formulae in PDNF cannot
contain them. Thus, ∀xpϕq→. pψq = pϕ → ψq, for instance, does not q-refer to
any sentence.

Moreover, Definition 4.9 satisfies the conditions (C3)-(C5) stated in the previ-
ous section. The idea behind clauses 1 and 2.(a) is that the only way of restricting
the referential power a quantifier carries with it is via conditional expressions,
that is, bounded quantification allows for restricted q-reference. Recall condi-
tionals are translated into L � as disjunctions. If a normalized sentence ϕ has a
subsentence of the form ∀~vχ in which χ is not a disjunction, given the normaliza-
tion process, it means χ cannot be a conditional, and reference by quantification
is unrestricted. Thus, ∀~vχ refers to everything, and so does ϕ. As a consequence,
condition (C4) is satisfied. For example,

∀x(x 6= ¬. x),

∀x∀y¬(x = y → x→. y 6= y→. x), and

∀x¬∀y¬(y = ¬. x→ y 6= x→. x)

q-refer to every sentence, because x 6= ¬. x, ¬(x = y → x→. y 6= y→. x) and
¬∀y¬(y = ¬. x → y 6= x→. x) cannot be rewritten as conditionals, since the
normalizations of ∀x(x 6= ¬. x), ∀x∀y¬(x = y → x→. y 6= y→. x), and ∀x¬∀y¬(y =
¬. x → y 6= x→. x) are ∀x(x 6= ¬. x) resp. ∀x∀y(x = y ∧ x→. y = y→. x) and
∀x¬∀y(y = ¬. x ∨ y = x→. x). In the latter, ∀y cannot be pushed inside the
disjunction, for y is free in both disjuncts. Also, the q-reference of sentences for
the form

∀x¬(ϕ(x)→ ψ(x))(10)

is now decided as follows: if ϕ(x) and ψ(x) are atomic, then (10) q-refers to all
sentences. Otherwise, it depends on what the normalization of (10) is.

If, on the other hand, ϕ contains a subsentence of the form ∀~vχ in which χ
is of the form δ ∨ γ, we can read the latter as the conditional ¬δ → γ, which

restricts the quantifiers ∀~v to the codes of sentences ~k ∈ ω satisfying ¬δ in N.
Clause 2.(a) guarantees that sentences of the form

∀x(ϕ(x)→ ψ(x))(C)

and

∃x(ϕ(x) ∧ ψ(x))(D)

21A way of making precise the idea of an occurrence of a term t in γ[~k/~v] that wasn’t in

γ is to see whether t occurs in γ[u/t][~k/~v], that is, the formula that results form γ by, first,

replacing all occurrences of t with the variable u and then instantiating the variables ~v with ~k.
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q-refer to sentences satisfying ϕ(x), fulfilling (C3). (C) translates into ∀x(¬τ(ϕ(x))∨
τ(ψ(x))), whose normalization is

∀x([¬τ(ϕ(x))] ∨ [τ(ψ(x))]).(11)

Thus, (C) q-refers to every sentence χ such that N � ¬[¬τ(ϕ)][pχq/x] or, equiv-
alently, such that N � ϕ[pχq/x]. The same can be said of sentences of the form
∀xϕ(x) where ϕ can be rewritten as a conditional expression, that is, where the
normalization of ϕ (but not necessarily ϕ itself) is a disjunction. (D), in turn,
translates into ¬∀x¬(τ(ϕ(x)) ∧ τ(ψ(x))), whose normalization is

¬∀x([¬τ(ϕ(x))] ∨ [¬τ(ψ(x))]).(12)

Furthermore, clause 2.(b) in Definition 4.9 guarantees that (C5) holds, for
it’s there to help us deal with subterms and nested q-reference. Given that the
normalizations of (C) and (D) are (11) resp. (12), clause 2.(b) guarantees that
(C) and (D) q-refer to whatever sentences ψ(n) m- (on condition that the term
involved is a result instantiating x with n) or q-refers to, provided that N � ϕ(n).
For instance, it entails that

∀x(x = p0 6= 0q→ Bew(¬. x))

and

∃x(x = p0 6= 0q ∧ ∃y(y = ¬. x ∧ Bew(y)))

q-refer, not only to 0 6= 0 but also to its negation. Clause 2 also allows us to
conclude that the sentences the weak diagonal lemma (Theorem 1.1), both in
universal and in existential form, delivers q-refer to themselves.

Of course, this carries the same ‘problems’ that affect m-reference: ψ(n) refers
not only to the sentence coded by n, if any, but also to every sentence denoted
by a closed term occurring in ψ(n). In particular, this means that (C) and (D)
q-refer to every sentence whose code is equal or smaller that n, for every n ∈ ω
satisfying ϕ(x) in N. Of course, which sentences these are will depend entirely
on the coding.

The requirements that terms are closed in Definition 4.1 and that closed terms
are ‘new’ in Definition 4.9 is to keep m- and q-reference apart. If a closed term
t denoting a sentence χ already occurs in ψ(x), and no new occurrence of t is
generated by replacing x in ψ(x) with n, where N � ϕ(n), then it doesn’t seem
right to conclude that (C) q-refers to χ, but only that it m-refers to χ. For the
occurrence of t in ψ(n) is not a product of instantiating the quantifier in (C),
but was already there. For instance,

∀x(x < p¬ϕq→ Bew(x))

doesn’t q-refer to ¬ϕ; it only m-refers to ¬ϕ. On the other hand, if an open
term t(x) occurs in a sentence ϕ, it must do so in the scope of a quantifier ∀x
(in the normalization of ϕ). In that case, the occurrence of a closed term t(n)
denoting a sentence ψ is the result of instantiating ∀x, even if ∀x(t(x) = pψq) is
true in N. Thus, we say ϕ q-refers to ψ.

In addition, our definition of q-reference avoids the difficulties that Milne [22]
points out. Let Th ⊆ L be an unsound theory (with respect to N) extending
Q, and χ a theorem of Th such that N 2 χ. Then, Diag′(x, y) := Diag(x, y) ∧ χ
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strongly represents the diagonalization relation in Th. However, as Milne notices,
it doesn’t seem right to claim that

∀x(x = p∀y(Diag′(x, y)→ ϕ(y))q→ ∀y(Diag′(x, y)→ ϕ(y)))(13)

refers to itself, for N 2 Diag(p∀y(Diag′(x, y)→ ϕ(y))q, (13))∧χ, that is, (13) does
not satisfy the antecedent of Diag′(p∀y(Diag′(x, y) → ϕ(y))q, y) → ϕ(y). This is
precisely the reason why Definition 4.9 does not allow us to conclude that (13)
q-refers to itself, despite the provability of the equivalence between this sentence
and ϕ(13) in Th or other theories. To conclude so, a concept of reference relative
to a theory rather than an absolute, semantic notion like the one introduced here
would be needed.22

It’s also worth noting that q-reference is not a trivial notion. Although in
many cases q-reference depends on how the formulae involved in the sentence
really look like (and of course on the chosen coding), there are sentences of the
form (C) that we can be sure do not q-refer to every sentence in the language.
Take, for instance,

∀x(x = pϕq→ x 6= ¬. pϕq).
where ϕ is a sentence. This simple expression just q-refers to ϕ, ¬ϕ, every
sentence whose code is smaller than ϕ’s, and nothing else.

Definition 4.9 also allows us to assess the q-reference of sentences of the form
∀~vϕ(~v) and ∃~vϕ(~v), where ϕ is preceded not just by one but by a string of
quantifiers of arbitrary length. In that case, for instance, according to clause
2.(a) sentences of the form

∀~x(ϕ(~x)→ ψ(~x))

q-refer to every sentence that is an entry of an n-tuple satisfying ϕ (and ¬ψ). I
opt for dismantling tuples satisfying the antecedent of sentences of this form to
keep q-reference as a relation between sentences, instead of sentences on the one
hand, and tuples of sentences on the other. This seems to be the most natural
way of making sense of notions such as self-reference and well-foundedness that
are introduced later in this section.

Like m-reference, q-reference is also closed under logical connectives. If ϕ
q-refers to ψ, by Definition 4.9 ϕ must contain a subsentence of the form ∀~vχ
satisfying clause 1 or 2. Then, so do ¬ϕ, ϕ∧δ, ϕ∨δ, and ϕ→ δ, for any sentence
δ of the language. This implies that ∀x(ϕ(x) → ψ(x)) and ∃x(ϕ(x) ∧ ¬ψ(x))
q-refer to the same sentences, as can be reasonably expected, given that the
latter translates into ¬∀x¬¬(ϕ(x)→ ψ(x)), whose normalization is the negation
of ∀x(ϕ(x)→ ψ(x))’s.

Before I turn to general notions of reference and their derivatives, let me point
out that the fact that we look into the set of permutations of the normaliza-
tions of sentences to asses q-reference entails that reference is closed under the
translation τ , normalization and permutations of normalizations, as expected.
This implies, for instance, that q-reference is closed under propositional trans-
formations such as double negation, de Morgan laws, and the distributivity of
conjunction over disjunction. It is easy to check that q-reference is also closed

22See [author].
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under the commutativity and associativity of conjunction, the renaming of vari-
ables, and the commutativity of quantifiers of the same kind.

Definition 4.10 (Direct reference). If ϕ,ψ are sentences, ϕ directly refers to
ψ if and only if ϕ m- or q-refers to ψ.

Definition 4.11 (Chains of reference). A sequence of sentences ϕ1, . . . , ϕn,
with n ∈ ω, is a chain of reference if and only if, for each i < n, ϕi directly refers
to ϕi+1.

Definition 4.12 (Reference). If ϕ,ψ are sentences, ϕ refers to ψ if and only
if there is a chain of reference starting with ϕ and ending with ψ.

Thus, reference is the transitive closure of direct reference, this is, the union
of m- and q-reference. Condition (C8) is satisfied. If one does not find the
transitivity of reference intuitively appealing, one can stick to direct reference
rather than reference simpliciter.

Since both m- and q-reference are closed under negation, conjunction, dis-
junction, and implication, so is direct reference and, therefore, also reference, as
required by (C6). Also, sentences delivered by weak and strong diagonalization
(directly) refer to themselves, for they q- and m-refer to themselves, respectively.

Finally, a word on hyperintensionality. Reference as given by Definition 4.12—and,
a fortiori, direct reference as well—is not closed under first-order logical equiv-
alence, that is, it is hyperintensional. For instance, if 0 is not the code of a
sentence, 0 = 0 directly refers to no sentence, whereas 0 = 0 ∨ Bew(p0 6= 0q)
refers to 0 6= 0. Similarly,

∀x(x = x→ (x = p0 = 0q→ x 6= p0 6= 0q))

refers to everything, but

∀x(x = p0 = 0q→ x 6= p0 6= 0q)

doesn’t. Thus, (C9) is satisfied.
Nonetheless, reference and direct reference are closed under many logical trans-

formations, as required by condition (C10). This is a consequence of the closure
of m- and q-reference under these transformations, which I pointed out before.
The following proposition offers some examples:

Proposition 4.13. The following pairs of sentences directly refer to the same
sentences:

1. ∀v(ϕ→ ψ) and ∀v(¬ψ → ¬ϕ);
2. ∃v(ϕ ∧ ψ) and ∃v(ψ ∧ ϕ);
3. ∀vϕ and ∀u¬¬ϕ[u/v], if v is free for u in ϕ;
4. ∀v¬(ϕ ∧ ψ) and ∀v(¬ϕ ∨ ¬ψ);
5. ∀v(ϕ ∧ (ψ ∨ χ)) and ∀v((ϕ ∧ ψ) ∨ (ϕ ∧ χ));
6. ∀v∀uϕ and ∀u∀vϕ.

We are able to define now three prominent patters of reference.

Definition 4.14 (Direct self-reference). A sentence ϕ is directly self-referential
if and only if it directly refers to itself.
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Definition 4.15 (Self-reference). A sentence ϕ is self-referential if and only
if it refers to itself.

As expected, sentences delivered by the weak and the strong diagonal lemmata
turn out to be directly self-referential according to Definition 4.14. Definition
4.15, on the other hand, can also account for the self-referential character of
cycles of any length, such as the ones delivered by Proposition 3.2. Cycles
given by pairs of sentences such as ϕ(t) and ∀x(ψ(x) → χ(x)), where t denotes
∀x(ψ(x) → χ(x)) and ϕ(t) is a ψ, or ∀x(ϕ(x) → ψ(x)) and ∀x(γ(x) → δ(x)),
where the former is a γ and the latter a ϕ, are self-referential as well. The notion
of reference also allows us to define a form of well-foundedness.

Definition 4.16 (Well-foundedness). A sentence ϕ is well-founded if and only
if there is a finite limit to the length chains of reference starting with ϕ can have.

Obviously, all self-referential expressions are not well-founded. For given a
chain of reference ϕ,ϕ1, . . . , ϕn, ϕ, we can extend it indefinitely with the sequence
ϕ1, . . . , ϕn, ϕ, obtaining longer and longer chains of reference. Also, ω-chains
delivered by Proposition 3.3 are not well-founded, for each sentence directly
refers to the one coming next, and indirectly to all the ones that come after
itself. Unfortunately, given the way they are obtained, their members are self-
referential as well, albeit only indirectly. Let’s take another look at the proof of
Proposition 3.3. Given a formula ϕ with exactly one free variable, each sentence
on the list is of the form ϕ(s.(t, n. (Sn))), with n ∈ ω. Then, for every n ∈ ω,

ϕ(s.(t, n. (S#ϕ(s.(t, n. (Sn))))))(14)

is also on the list. Since n < #ϕ(s.(t, n. (Sn))), ϕ(s.(t, n. (Sn))) refers to (14), as we

have just established. But since the term #ϕ(s.(t, n. (Sn))) occurs in (14), it’s also
the case that (14) (directly) refers to ϕ(s.(t, n. (Sn))). Thus, by the transitivity
of reference each sentence on the list is self-referential.

§5. In the last section I introduced notions of reference by mention, by quan-
tification, direct reference, reference, self-reference, and well-foundedness. Now
it’s time to see how to put them to use. In particular, they should enable us to
provide reasonable formulations of the metamathematical problems singled out
in section 2. The notion of direct self-reference should allow us to determine
which sentences say of themselves that they are Rosser-provable, Σn-true and
Πn-true, that is, we should be able to identify regular Henkin-Rosser sentences,
Σn-truth tellers and Πn-truth tellers (with n 6= 1). In order to do that we need
to spell out what it means for a directly self-referential sentence to ascribe a cer-
tain property to itself. As Halbach and Visser [10] point out, this task is highly
nontrivial.

The main issue stems from the way properties are to be individuated. To
determine whether a sentence of arithmetic ascribes to itself a property P we
need to know what it takes for a formula ϕ(x) to express P . Another way
of putting it is the following: What does it take for two formulae ϕ(x) and
ψ(x) of L to express the same property? The answer to this question depends
on how intensional we believe properties should be. Unlike sets, pluralities, or
classes, properties are usually considered to be intensional entities of some kind.
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As a consequence, it wouldn’t be enough that ϕ(x) and ψ(x) are equivalent in
N, in PA, or in some other arithmetical theory for them to express the same
property. Otherwise, Bew(x) and BewR(x) as introduced in section 2 would
express the same property (provided that PA is ω-consistent). Clearly, a stronger
notion of equivalence is required. On the other hand, we shouldn’t go too far
and claim that any syntactic difference in formulae implies a difference in the
properties they express, for this is certainly too strong. For instance, it seems
that ϕ(x) ∧ ψ(x) and ψ(x) ∧ ϕ(x) do express the same property, despite being
different formulae.

I see at least two reasonable ways of understanding the equivalence between
formulae expressing the same property: an intensional and a hyperintensional
one. According to the former, logically equivalent formulae (with the same num-
ber of free variables) express the same property. This means, for instance that
ϕ(x) and ϕ(x)∧ x = x express the same property. Consequently, every directly
self-referential sentence ascribes to itself the property of being self-identical, as
well as every other logical property expressed by a valid formula; as long as we
accept that if ϕ ascribes property P to χ, then ϕ ∧ ψ also ascribes property P
to χ.

If all of this seems undesirable, as Halbach and Visser suggest, one might
alternatively consider allowing only minor syntactic variations in formulae, such
as the ones involved in normalizations. In that case, expressing a property would
be a hyperintensional relation, but closed under some sort of relevant notion of
logical equivalence. Unfortunately, this also has counterintuitive consequences.
For example, Bew(x) and Bew(x)∨Bew(x) would not express the same property.
Perhaps there is a way of including this kind of transformations while excluding
the undesirable ones, but I am so far sceptical about it. In any case, what
it means for a formula of the language of arithmetic to express a property is
beyond the scope of this paper. In this section I just provide two notions of
self-ascription, each of which is based on one of the ways of understanding the
equivalence between formulae expressing the same property considered in this
section (cf. Definitions 5.1 and 5.2).

Setting this issue aside, there are several ways in which a sentence can ascribe
the property P expressed by ϕ(x) to itself. Before we turn to our definitions, it’s
important to distinguish the way we are interested in from others ways. On the
one hand, a sentence can ascribe P to itself and, at the same time, to others, or
it can ascribe P just to itself. For instance,

∀x(Sent(x)→ ¬Bew(x))(15)

says of all sentences in L that they are unprovable in PA, including (15) itself,
whereas PA’s Gödel sentence ¬Bew(pγq) ascribes the same property just to itself.
On the other hand, a sentence can ascribe a single property to itself (and per-
haps other sentences), or it can ascribe a property to itself (and perhaps other
sentences) and, at the same time, ascribe other properties to other sentences.
For example, the strong diagonal lemma delivers true identities t = pt = tq and
s = ps = s ∧ Bew(p0 = 0q)q. While t = t just ascribes self-identity to itself,
s = s∧Bew(p0 = 0q) ascribes self-identity to itself as well as provability to 0 = 0.
It seems the notion we are most interested in is that of a sentence ascribing a
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single property just to itself. However, given the lack of individual constants for
numbers other than 0 and predicate symbols for properties other than identity
in L , it is frequently the case that one and the same sentence ascribes different
properties to different sentences. Take, for example, Bew(pϕq). It says of ϕ that
is provable, but it also says something about each sentence whose code is smaller
than ϕ. In the following two definitions of self-ascription we try to avoid this
the best we can.

Definition 5.1 (Self-ascription). A sentence ψ ascribes the property expressed
by ϕ(x) to itself if and only ψ is directly self-referential and there’s a sentence χ
such that one of the following conditions holds:

1. χ is of the form ϕ(t), it is logically equivalent to ψ, and N � t = pψq.
2. χ is of the form ∀~v1(¬γ1(~v1)∨· · ·∨∀~vn(¬γn(~v1, . . . , ~vn)∨δ(~v1, . . . , ~vn)) . . . ),

it is logically equivalent to ψ and, for every ~k1, . . . ,~kn ∈ ω such that N �
γi[
~k1/~v1] . . . [~kn/~vn], there’s a term t such that δ[~k1/~v1] . . . [~kn/~vn] is of the

form ϕ(t), and N � t = pψq.

In other, simpler but less accurate, words, ψ says of itself that it’s a ϕ if ψ
is of the form ϕ(t) for some t denoting ψ modulo logical equivalence; or if it’s
roughly of the form ∀v(γ(v) → δ(v)) modulo logical equivalence, and for every
k ∈ ω satisfying γ, there’s a term t denoting ψ such that δ(k) is ϕ(t).

If we didn’t require ψ to be self-referential in Definition 5.1, every formula,
even the non-self-referential ones, would ascribe some property to itself. For
every formula ψ is, e.g., logically equivalent to ψ ∧ pψq = pψq. In turn, clause
2 of Definition 5.1 is intended to guarantee that ψ is logically equivalent to a
sentence that only says of ψ that it satisfies ϕ(x). However, the contrary is very
often unavoidable. Consider the following identity:

t = p∀x(x = t→ x = x)q.

∀x(x = t → x = x) ascribes the property of being self-identical to itself. But it
is logically equivalent to ∀x(x = x → x = x), that ascribes the same property
to every sentence. Finally, note that the reason why we write δ in Definition 5.1
instead of ϕ is that δ could be different from ϕ but of the form ϕ(s(x)) for some
open term s(x), and t = s(k) for all k ∈ ω satisfying the γi. For example, let ¬ψ
be logically equivalent to

∀x(x = t→ Bew(¬. x)),

where t denotes ψ. ¬ψ ascribes to itself the property expressed by Bew(x) here,
but it’s Bew(¬. x) the formula that acts as δ in Definition 5.1.

Definition 5.2 (Hyperintensional self-ascription). A sentence ψ ascribes the
hyperintensional property expressed by ϕ(x) to itself if and only if there’s a
sentence χ such that one of the following conditions holds:

1. χ is of the form ϕ(t), belongs to the set containing the formula that results
from applying (the normalizing) clauses 1-3 of Definition 4.5 to τ(ψ), and
is closed under renaming of variables, commutativity and associativity of
disjunction, conjunction, and the universal quantifier, and N � t = pψq.
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2. χ is of the form ∀~v1(¬γ1(~v1)∨· · ·∨∀~vn(¬γn(~v1, . . . , ~vn)∨δ(~v1, . . . , ~vn)) . . . ),
belongs to the set containing the formula that results from applying clauses
1-3 of Definition 4.5 to [τ(ψ)], and is closed under renaming of variables,
commutativity and associativity of disjunction, conjunction, and the uni-

versal quantifier; and, for every ~k1, . . . ,~kn ∈ ω such that N � γi[~k1/~v1] . . .

[~kn/~vn], there’s a term t such that δ[~k1/~v1] . . . [~kn/~vn] is of the form ϕ(t)
and N � t = pψq.

Clearly, hyperintensional self-ascription entails self-reference, for only transfor-
mations that don’t add or remove atoms are allowed in formulae expressing a cer-
tain property. Moreover, hyperintensional self-ascription entails self-ascription
simpliciter, as expected.

Let’s look at some examples. Clearly, all sentences obtained by (weakly) di-
agonalizing a predicate ϕ(x), that is,

∀x(x = p∀y(Diag(x, y)→ ϕ(y))q→ ∀y(Diag(x, y)→ ϕ(y))),

hyperintensionally ascribe to themselves the property expressed by ϕ and, a
fortiori, they also ascribe this property to themselves simpliciter. The same can
be said of sentences that result from an application of the strong diagonal lemma
to ϕ(x), for they satisfy an identity of the form t = pϕ(t)q. As a consequence,
both the weak and the strong Gödel sentence can be said to acribe the property
expressed by ¬Bew(x) to themselves.

Analogously, sentences that result form an application of either the weak or the
strong diagonal lemma to BewR(x) ascribe the property expressed by BewR(x) to
themselves, so they are all Henkin-Rosser sentences. In contrast, neither 0 = 0
nor 0 6= 0 turn out to be Henkin or Henkin-Rosser sentences. Of course, nothing
I said here precludes the existence of other Henkin-Rosser sentences. They could
result from the application of alternative diagonalization procedures or be more
‘accidental’, as Halbach and Visser would put it. As I argued before, this is not
an issue but, on the contrary, a desirable feature.

Likewise, genuine Σn- and Πn-truth tellers (with n 6= 1) can be obtained by
weakly or strongly diagonalizing the predicates TΣn(x) and TΠn , respectively,
whereas 0 = 0, 0 6= 0, and other trivial fixed points do not qualify as truth
tellers, for they don’t ascribe any of the properties expressed either by TΣn(x)
or by TΠn to themselves.

The notions of reference introduced in section 4 are non-trivial and intuitively
appealing. Moreover, they have proved to be useful for the formulation of the
metamathematical problems indicated by Halbach and Visser. Although it is not
straightforward how to extend the new notions to other languages, for instance,
not containing individual constants or a standard interpretation—such as the
language of set theory or the extension of L with a truth predicate, I hope they
will shed light on investigations of reference for other formal, and perhaps even
natural languages.
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