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Abstract One of the main logical functions of the truth predicate is to enable us to

express so-called ‘infinite conjunctions’. Several authors claim that the truth pred-

icate can serve this function only if it is fully disquotational (transparent), which

leads to triviality in classical logic. As a consequence, many have concluded that

classical logic should be rejected. The purpose of this paper is threefold. First, we

consider two accounts available in the literature of what it means to express infinite

conjunctions with a truth predicate and argue that they fail to support the necessity

of transparency for that purpose. Second, we show that, with the aid of some

regimentation, many expressive functions of the truth predicate can actually be

performed using truth principles that are consistent in classical logic. Finally, we

suggest a reconceptualisation of deflationism, according to which the principles that

govern the use of the truth predicate in natural language are largely irrelevant for the

question of what formal theory of truth we should adopt. Many philosophers think

that the paradoxes pose a special problem for deflationists; we will argue, on the

contrary, that deflationists are in a much better position to deal with the paradoxes

than their opponents.
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1 The Problem

Many philosophers maintain that the truth predicate can serve certain expressive

roles of a quasi-logical nature, the most salient of which is to enable us to express

so-called ‘infinite conjunctions’. These are sentences of the form

All Ps are true. ð1Þ

where P is a predicate of the language that applies to infinitely many sentences.1

They are considered to express the infinitely many Ps at once or, as is often said,

their infinite conjunction, without turning to infinitary or higher-order resources (cf.

Quine 1970; Leeds 1978; Putnam 1978; Gupta 1993; Horwich 1998; Field 2007).

(The phrase ‘expressing infinite conjunctions’ is taken from the literature—e.g.

Putnam 1978; Gupta 1993—and of course in need of clarification. For the moment,

the reader should take it as a technical term.) We call this function of the truth

predicate the ‘infinite-conjunction’ function.

As Quine (1970, chap. 1) points out, the universal quantifier serves a similar

purpose. If the infinitely many sentences we want to express differ in one or several

individual terms—e.g. ‘‘0 is divisible by 2’’, ‘‘2 is divisible by 2’’, ‘‘4 is divisible by

2’’, etc.—and the class of objects these terms denote is definable in the language by

a suitable predicate (e.g. ‘‘is an even number’’), we can express the infinitely many

sentences at once just generalising over those terms using this predicate—e.g.

uttering ‘‘All even numbers are divisible by 2’’. However, if the infinitely many

sentences we want to express don’t differ just in one or more individual terms, this

strategy is no longer available. In that case, the truth predicate, interacting with the

universal quantifier, might do the job, as long as the sentences at issue share a

property definable in the language. For instance, we can assert all theorems of

arithmetic at once via ‘‘All theorems of arithmetic are true’’ although they don’t

even share their logical form, with the aid of the truth predicate. In Quine’s

(1970, p. 11) own words,

Where the truth predicate has its utility is in just those places where, though

still concerned with reality, we are impelled by certain technical complications

to mention sentences. [...] The important places of this kind are places where

we are seeking generality, and seeking it along certain oblique planes that we

cannot sweep out by generalizing over objects.

Truth theorists also point at other functions of the truth predicate, of a similar

nature, such as its epistemic and rhetoric functions. For example, even if there are

just finitely many sentences we want to express, we can use the truth predicate to

avoid their explicit articulation—either because we don’t know them, or we want to

save space or time, or because it is conversationally inappropriate, and so forth. This

can be done as above, simply by identifying a predicate they all and only satisfy, or,

1 Horwich (1998) settles on propositions rather than sentences as truth bearers. For the purposes of this

paper, it is irrelevant whether we choose sentences or propositions, since we only deal with eternal

sentences in the sense of Quine (1970). If the readers are more inclined towards the latter option, they can

understand sentences of the form (1) and the like as ascribing truth to the propositions expressed by the

sentences that satisfy predicate P, instead of the sentences themselves.
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if we’re talking about a single sentence, also by choosing a non-quotational name or

definite description of it. For example, we can express all four of Maxwell’s

equations at once uttering

Maxwell’s equations are true.

or Gödel’s first incompleteness theorem via

G€odel’s first incompleteness theorem is true.

without articulating these statements.

Nonetheless, the logical interest of truth, with which we are concerned in this

paper, lies in its ability to express infinite sets of sentences.2 Unlike the previous

examples, when the Ps are infinitely many (and don’t differ just in one or several

terms) there’s actually no other way to express them all at once—at least not in the

most commonly used languages, i.e. first-order languages. Thus, as Quine (1970, p.

12) famously said:

We may affirm the single sentence by just uttering it, unaided by quotation or

by the truth predicate; but if we want to affirm some infinite lot of sentences

then the truth predicate has its use.

Among the logical functions of the truth predicate, there is also the dual to the

infinite-conjunction function, that is, that of expressing infinite disjunctions via

sentences of the form ‘‘Some Ps are true’’. We will return to them later.

It is worth noticing that the distinction between the epistemic and the non-

epistemic function of truth cuts across the distinction between the logical (more

appropriate: infinitary) and the non-logical (finitary) function of truth. One can

employ the logical function of truth with or without employing its epistemic

function at the same time, and one can employ some non-logical function of truth

with or without employing its epistemic function at the same time. For example,

when we say that all sentences of the form ‘If p then p’ are true, we make use of the

infinitary function of truth (arguably) without appealing to its epistemic function,

while when we say that all theorems of arithmetic are true, we employ both

functions simultaneously (because the set of arithmetical theorems is undecidable).

On the other hand, if we express Gödel’s first incompleteness theorem using the

truth predicate, this might be due to the fact that we cannot remember its exact

formulation or because we simply want to save time.

The logical (i.e. infinitary) function of truth encourages the addition of a truth

predicate to our logical systems, the formulation of ‘logics’ of truth, in order to

increase our expressive power. More precisely, it prompts the search of formal

theories of truth, since some syntax theory in the base is needed: truth is in a sense a

subject-specific predicate, as it applies only to sentences (or other objects such as

propositions or Gödel codes of sentences), and requires their existence as objects

(plus some further assumptions about them). Hence, the infinitary function of truth

2 Moreover, note that singular truth ascriptions can simply be reduced to general truth ascriptions. E.g.

‘‘Gödel’s first incompleteness theorem is true.’’ can be replaced by ‘‘For all x, if x ¼ Gödel’s first

incompleteness theorem, then x is true’’.
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is not of a purely logical nature, but rather logico-linguistic or quasi-logical. We

cannot expect our principles governing truth to hold in all models whatsoever but

only in those where some syntactic principles hold.

Let L be a first-order language, the ‘base’ language, and let LT be the result of

expanding L with a monadic predicate symbol T for truth. L contains a term prq
denoting r (perhaps via some coding) for each expression r of LT . Let R be our

base theory. We assume R is able to prove elementary facts about the syntax of LT ,

such as e.g. that the concatenation of w, ^, and v is w ^ v.3 A theory of truth is then

any (recursively enumerable) subset of LT that contains the base theory R and is

closed under first-order (not necessarily classical) logic. A vast number of such

theories has been provided so far with the purpose of allowing the truth predicate to

fulfil its logico-expressive roles, the infinite-conjunction function being one of

them.4 To properly evaluate what systems are adequate for this latter purpose we

would need to answer the following question:

Question 1 Let uðxÞ be a predicate that applies only to sentences of LT . What

axioms or rules do we need to postulate for T so that

8xðuðxÞ ! TxÞ ðInfCÞ

expresses all the us?

A similar question can be raised regarding infinite disjunctions. We will briefly

say something about them in Sect. 6, but for the moment we will only be concerned

with infinite conjunctions, which we consider as more important.

Note that our question does not concern what principles or rules govern the use of

the truth predicate in natural language, nor what principles ensure its epistemic and

rhetoric functions, but what features of truth account for its infinite-conjunction

function in a formal setting.5 From a deflationist point of view, this is a pressing

question: if, as e.g. Horwich (1998, p. 2) argues, ‘‘the truth predicate exists solely

for the sake of a certain logical need’’ (our italics), consisting (among others) in

expressing infinite conjunctions, what matters only is the question what truth

principles are necessary and sufficient to fulfil this logical need when we devise

formal systems or regiment natural language.

The usual answer to this question is that we need a principle governing T that

establishes the equivalence between a sentence w and its truth predication Tpwq, this

is, a transparency or disquotational principle (cf. Horwich 1998; Halbach 1999;

Priest 2006; Field 2008; Beall 2009; Cobreros et al. 2013). The T-schema, given by

all the instances of

3 In the literature on axiomatic theories of truth, one usually takes Peano or Robinson arithmetic as

syntax theory, but sometimes also stronger theories such as Zermelo–Fraenkel set theory are considered

(e.g. Fujimoto 2012). We assume that R interprets at least some decent amount of arithmetic.
4 See Halbach (2011), Field (2008), Beall (2009), and Ripley (2015) for a compendium.
5 Perhaps not all natural language features are needed. Perhaps we even have to add principles that are

not found in natural language.
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Tpwq $ w ðT-schemaÞ

(called ‘T-biconditionals’), where w is a sentence of LT , is probably the most

popular, but there are also others, such as the following pair of inference rules:

w ‘ Tpwq ðT-IntroÞ

Tpwq ‘ w ðT-ElimÞ

T-Intro and T-Elim allow us to infer Tpwq from w and vice versa even in hypo-

thetical contexts, unlike the rules NEC and CONEC (cf. Halbach 2011), that allow

the inference from w to Tpwq and vice versa only when we have a proof of w and

Tpwq, respectively.6

At this point, of course, a notorious problem arises. Given our syntactic

background assumptions, we are able (e.g. via diagonalisation) to formulate liar

sentences, sentences that assert their own untruth. These are sentences k for which

we can prove

k $ :Tpkq

Instantiating the T-schema to k, we reach a contradiction in classical logic, known

as the ‘liar paradox’. This leaves us roughly with two options: we either (1) reject

certain instances of our transparency principles, or (2) reject certain classical (meta-

)rules of inference. Horwich (1998, pp. 41–42), for example, opts for the first route,

remarking that ‘‘this restriction need not be severe. It need have no bearing on the

propositions of science—the vast majority of which do not themselves involve the

concept of truth.’’ However, in his influential book, Field (2008) argues that,

without full transparency, the expressive function of the truth predicate is sub-

stantially impaired (see especially chapters 7, 8 and 13; we will consider these

objections in Sects. 4 and 7 of the present paper).

Nowadays, many philosophers have chosen the second route and adopted some

non-classical logic. These logics can be divided into structural and substructural.

Roughly, the former can in turn be paracomplete, where the law of excluded middle

and the rule of introduction of the conditional fail, or paraconsistent, where

inferences such as Ex Falso Quodlibet and Disjunctive Syllogism are invalid.7

Typically, in paracomplete truth systems the liar sentence is neither true nor false

(e.g. Field 2008), while in paraconsistent ones it’s regarded as both true and false

(e.g. Beall 2009; Priest 2006). On the other hand, substructural approaches impose

restrictions on structural properties of the very notion of logical consequence, such

as transitivity and contraction (e.g. Cobreros et al. 2013).8

6 In the presence of the deduction theorem, T-Intro and T-Elim taken together imply the T-schema. If

Modus Ponens is valid in the theory, the T-schema implies both rules. Thus, while in classical logic the

schema and the rules are equivalent to each other, that is not the case in every non-classical system, and

there could be reasons to prefer one disquotational principle over the other, as the case may be.
7 See Priest (2008) for an introduction to structural non-classical logics.
8 See Restall (2000) for an introduction to substructural logics.
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These all seem to be quite drastic moves, so one might reasonably ask what their

justification is: Do transparency principles really live up to their promises? In

particular, is full transparency necessary (and sufficient) for (InfC) to express all the

us? If not, what other rules or principles must T satisfy to let (InfC) express all the

us? And what inferences must the background logic validate? (Remember that, at

this moment, we are not interested in capturing the notion of truth in natural

language, but in the question of what features of truth account for its infinite-

conjunction function in a formal setting.) Thus, any answer to Question 1

presupposes (at least partially) an answer to the following:

Question 2 What does it mean for (InfC) to express all the us?

In the next section, we will look at two answers to Question 2. The first one,

which we may call the ‘equivalence’ account, requires that (InfC) and the us are

equivalent to each other (in some suitable sense). The second one, which goes back

to Halbach (1999) and may be dubbed the ‘finite-axiomatisation’ account, requires

that (InfC) finitely axiomatises the consequences of the us relative to the truth

theory. Both accounts can be seen as intended arguments that transparency

principles are indeed needed for (InfC) to express all the us in a formal setting.

However, we will argue that none of the them provides a satisfactory answer to

Question 2 and moreover, so far as they are correct, they support only the adoption

of a principle much weaker than full transparency—a principle that is consistent in

classical logic. In Sects. 3 and 4 we show that this principle, together with some

regimentation of our truth talk, is sufficient for many (though probably not all) of

the quasi-logical functions of the truth predicate. In Sect. 5 we briefly consider the

case of infinite disjunctions.

A word of caution. We will not argue that full transparency is not needed for the

logical (infinitary) functions of truth. Nor will we argue against the use of non-

classical theories of truth. Rather, our aim is to point out that so far there are no

convincing arguments that transparency is needed for the logical functions of truth,

and that (with a little bit of regimentation) many of the functions of truth can in fact

be performed using principles much weaker than transparency. This can be seen

(a) as a plea for a more thorough investigation of what the several functions of truth

consist of and what principles each of them requires, and (b) as a challenge for

proponents of non-classical theories to provide arguments for transparency.

In Sect. 6 we argue that, from a deflationist point of view, the principles that

govern the use of the truth predicate in natural language are to a certain extent

irrelevant for the function of truth in a (semi-)formal setting and, moreover, that the

paradoxes do not pose a special problem for deflationism. In Sect. 7 we consider a

possible problem to our approach. In Sect. 8 we conclude by summarising our

findings. In the Appendix, we prove some of the more technical claims made in this

paper.

2 The Equivalence and the Finite-Axiomatisation Accounts

Clearly, transparency guarantees that, for instance,
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G€odel’s first incompleteness theorem is true.

expresses Gödel’s first incompleteness result, for it establishes an equivalence

between these two sentences (given the additional premise that ‘Gödel’s first

incompleteness result’ refers to Gödel’s first incompleteness result). Analogously,

transparency suffices to conclude that

Maxwell’s equations are true.

is equivalent to the conjunction of Maxwell’s equations, and therefore expresses

them (given the additional premise that ‘Maxwell’s equations’ applies to Maxwell’s

equations). These examples seem to suggest that (1) some transparency principle is

needed to secure the equivalence between a set of (possibly infinitely many) sen-

tences we want to express and the truth ascription we use for this purpose, and (2)

this equivalence is precisely what it means for a truth ascription to express some

given set of sentences. This is what we call the ‘equivalence’ account. Some version

of this account seems to be proposed in e.g. Putnam (1978, p. 15), Gupta (1993, pp.

60–61), Horwich (1998, p. 3).

The question of course is what ‘equivalence’ amounts to here. Perhaps the most

natural interpretation of ‘equivalence’ is mutual implication in some suitable sense.

That is, the sentence

8xðuðxÞ ! TxÞ ðInfCÞ

implies and is implied (in some suitable sense) by the set of all objects falling under

the predicate uðxÞ or, better, the set of all its ‘instances’, that is the set of all

sentences of the form

uðpwqÞ ! w;

which has the advantage that we don’t need to know what the us are.

It is immediately clear then that ‘mutual implication’ cannot be taken in the usual

first-order sense. As is well known, universally quantified claims are stronger than

the collection of their instances. While it is in principle possible to infer all

sentences of the form uðpwqÞ ! w from (InfC) given a transparency principle, the

other direction of the implication is blocked by compactness, unless some finite

subset of fuðpwqÞ ! w : w 2 LTg already implies (InfC).9

This problem is of course reminiscent of an old, well-known problem: the

T-biconditionals are too weak to prove any non-trivial generalisations about truth,

as Tarski (1935) has already noted. In particular, as Halbach (1999, proposition 1)

has shown (for the typed case), whenever there is a model in which uðxÞ applies to

infinitely many objects, then 8xðuðxÞ ! TxÞ cannot be derived using T-bicondi-

tionals as the only truth principles, not even in the presence of induction principles.

9 There are further intuitive differences between expressions like (InfC) and real infinite conjunctions. In

some cases, the former have more expressive power than the latter. For example, turning to (InfC) we can

express all instances of any schema in the language at once, i.e. the us, including the instance given by

(InfC) itself; whilst the well-foundedness of a well-formed formula in infinitary languages precludes this,

as formulae are not allowed to contain themselves as subformulae.
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Could adopting some x-rule-like rule be a solution?10 If the x-rule held, together

with a principle of disquotation, the set of all sentences of the form uðpwqÞ ! w
would imply (InfC). Unfortunately, we can never actually apply the x-rule (not

even constructive versions, for that matter).11 We would have to check infinitely

many premisses before drawing a conclusion. Therefore, while in theory the x-rule

appears to lead to the desired equivalence, it is absolutely useless in practice; it

makes no difference in the inferences we can actually draw.12 One may object that

while the x-rule is indeed useless from a practical point of view, it does not follow

that one cannot use it to explicate what it means for a generalisation to express an

infinite set of sentences. But in that case the equivalence in question would no

longer be ‘fixed’ by our use of language.

Moreover, if we could apply the x-rule, the truth predicate would lose a lot of its

interest, which lies in its ability to finitely express infinite sets of sentences. If the

possibility of reasoning with infinitely many premisses were already given, the need

for such a device would diminish considerably. Its interest, as we mentioned at the

beginning of this paper, rests on the ubiquity of finitary logics, both in science and

in philosophy. While there still could be reasons for having a truth predicate in some

infinitary logic, these would not be the same reasons that originally prompted our

search for a formal theory of truth. Thus, in the remainder of this paper we will

restrict our attention to finitary logics.

It is of no help either to try to cash out the equivalence in terms of some intended

model. Such a proposal would be something along the following lines: instead of

requiring that the truth principles we adopt guarantee the mutual implication

between (InfC) and fuðpwqÞ ! w : w 2 LTg in every model of the base theory, all

that is needed is that this mutual implication holds in all extensions of the standard

model of the base language L to the whole LT satisfying our truth principles. For

simplicity, let us focus on the typed case, where disquotation is restricted to

sentences of L (without the truth predicate). Let M be L’s intended model. In M,

the interpretation of pwq is (the code of) w for every sentence w in L. Let uðxÞ be a

predicate of L whose extension in M is the set U � L, and let ðM; SÞ extend M to

LT , assigning S to T as its extension. Then, according to this proposal, a truth

ascription of the form (InfC) expresses the us if and only if for every model ðM; SÞ
of LT satisfying the ‘right’ truth principles, the following equivalence holds:

ðM; SÞ � 8xðuðxÞ ! TxÞ if and only if, for all w 2 U; M � w:

The problem with this proposal is that it can only guarantee the aforementioned

equivalence between (InfC) and the set of us under the intended interpretation of

the non-logical vocabulary of L. But this is obviously just the semantic version of

the previous proposal involving the x-rule, which we just rejected. The set of all

10 x-rule-like rules allow us to infer universally quantified statements from the set of all their instances.

Recall that such rules are semantically valid e.g. in second-order arithmetic (with standard semantics).
11 Constructive versions of the x-rule impose conditions on the infinite set of premises to which the rule

is applied, e.g. that the set of premises is recursive (computable) or that there is a ‘uniform way’ of

proving them, as in Baker et al. (1992).
12 Raatikainen (2005) makes a similar point in a slightly different context.
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sentences true in some intended model will be highly complicated. We are after

rules for reasoning, and truth in the intended model cannot be captured by them.

Moreover, given the quasi-logical nature of the function of the truth predicate we

want to capture, the original aim of this paper was to formulate ‘logics’ of truth,

theories that apply across the board—the truth predicate ought to fulfil its function

regardless of the interpretation of the base language we have in mind (as long as

these interpretations satisfy the axioms of the syntax theory). In order to see why

this constraint is important, suppose for example that our base language L is the

language of set theory. It is doubtful, to say the least, that we have a clear grasp

(concept) of the intended model of set theory. Even more, current trends in the

philosophy of mathematics suggests that there might not be such a thing as ‘the’

intended model of set theory (e.g. the multiverse view of sets).

Let us therefore turn to an alternative account of what it means for (InfC) to

express all the us, which is due to Halbach (1999). In fact, it is the only formally

worked out answer to Question 2 we are aware of, and it seems to avoid the problem

posed by the compactness of first-order logic. According to this proposal, (InfC) and

the set of conditionals of the form uðpwqÞ ! w have to be equivalent only with

respect to their consequences in the language of the us. In effect, this condition

requires that (InfC) finitely axiomatises the set of conditionals relative to the truth

theory. Thus we refer to Halbach’s account as the ‘finite-axiomatisation’ account.

That (InfC) finitely axiomatises the conditionals uðpwqÞ ! w is prima facie a

plausible explication of what it means for (InfC) to express them.

To avoid paradoxes and simplify the matter, Halbach restricts his attention to

sentences that do not contain the truth predicate. He shows that the T-biconditionals

for these sentences are sufficient to guarantee that (InfC) finitely axiomatises the set

of the conditionals uðpwqÞ ! w, in the following sense. Recall that L is the T-free

fragment of LT .

Proposition 3 (Halbach) Let C � LT extend a syntax theory R � L with the T-

schema, (or T-Intro and T-Elim) restricted to L, and let uðxÞ be a predicate of

sentences of L. Then Rþ fuðpwqÞ ! w : w 2 Lg and Cþ 8xðuðxÞ ! TxÞ have

exactly the same T-free consequences ðin classical logicÞ.13

Halbach (2011, pp. 59–60) comments on this result as follows:

[This proposition] shows that infinite generalizations understood as schemata

of the form uðpwqÞ ! w can be expressed by a single sentence in the presence

of the disquotation sentences. In a sense the infinitely many sentences

uðpwqÞ ! w have been replaced by the single sentence 8xðuðxÞ ! TxÞ and the

infinitely many disquotation sentences.

The fact that we have replaced one infinite set of sentences (the sentences of the

form uðpwqÞ ! w) with another (the T-biconditionals) does not undermine

Halbach’s proposal. In his own words:

13 Cf. Halbach (1999, proposition 2). For further discussion on this result see Heck (2004) and Kemp

(2005). Note: when we say ‘‘let uðxÞ be a predicate of sentences of L’’, we mean that the syntax theory R
proves (the formalisation of) the claim ‘‘For all x, if uðxÞ then x is a sentence of L’’.

Disquotation and Infinite Conjunctions

123



I think it would be coherent to claim that the disquotation sentences are in the

‘background’ in very much the same way as rules of inferences (such as

modus ponens) are in the background, as logic cannot be axiomatized without

axiom schemata or rules with infinitely many instances. (Halbach 2011, pp.

60–61)

Interestingly, Halbach’s account does not justify the adoption of transparency

principles but only of a much weaker principle, namely T-Elim or, alternatively, the

left-to-right direction of the T-schema, this is,

Tpwq ! w ðT-OutÞ

For the following proposition shows that Halbach’s result does not rely on the

‘introduction’ half of transparency principles at all. In other words,

w ! Tpwq ðT � InÞ

or T-Intro, does not play any role in the proof of Proposition 3.

Proposition 4 Let C � LT extend a syntax theory R � L with T-Out (or T-Elim)

restricted to L, and let uðxÞ be a predicate of sentences of L. Then Rþ fuðpwqÞ !
w : w 2 Lg and Cþ 8xðuðxÞ ! TxÞ have the same T-free consequences (in

classical logic).

Proof Obviously, if v 2 L is a consequence of Cþ 8xðuðxÞ ! TxÞ, then v is also

a consequence of CþT-Inþ8xðuðxÞ ! TxÞ, the result of extending R with the full

T-schema for sentences of L. Thus, by Halbach’s result, v is also a consequence of

Rþ fuðpwqÞ ! w : w 2 Lg. Conversely, let v 2 L be a consequence of

Rþ fuðpwqÞ ! w : w 2 Lg. By compactness, only finitely many sentences in

fuðpwqÞ ! w : w 2 Lg have been used in its derivation. Clearly, all of them follow

from 8xðuðxÞ ! TxÞ plus the relevant instances of T-Out. h

Thus, if the finite-axiomatisation account gives the right answer to Question 2, it

does not support the adoption of introduction principles for truth, but only for

elimination principles.

Halbach’s proposal is formulated for the typed case only, but the truth predicate,

as a device for infinite conjunctions, is there to express any infinite set of sentences

definable in the language, not just the ones that only contain T-free sentences. For

example, if we assert that all sentences of the form w ! w are true, then we want to

include all sentences of our language in the range of our quantifiers, not just those

from the base language. Unfortunately, it is not clear how to extend the finite-

axiomatisation criterion to the type-free case. If (InfC) and the set of its ‘instances’

were to have the same consequences in the language with the truth predicate, then

the latter would have to imply the former, since (InfC) is a consequence of itself.

But, as before, in finitary languages in most cases the set of consequences of

fuðpwqÞ ! w : w 2 LTg is just a proper subset of (InfC)’s.

Remark Proposition 3 shows how to axiomatise the infinite set fuðpwqÞ ! w :
w 2 Lg by the sentence 8xðuðxÞ ! TxÞ, using the T-biconditionals for sentences of
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L in the background. In their well-known paper, Craig and Vaught (1958) have

shown something stronger. Assume that C is a theory in the language L that has

only infinite models. Then, if C is axiomatisable, then C is finitely axiomatisable

using additional predicates. Suppose, for example, that C is Peano arithmetic. Let

C� be the theory consisting of (a) some finitely axiomatised syntax theory,14 (b) the

compositional truth axioms for the language of pa (which are also finitely many),

and (c) the sentence that all theorems of Peano arithmetic are true. Then C� is a

finite axiomatisation of pa. The compositional truth axioms are a formalisation of

Tarski’s inductive truth definition, such as

8x8yðTx
�̂
y $ Tx ^ TyÞ

or

8xðT:
�
x $ :TxÞ

where
�̂

is a function symbol for the function that maps (the code of) two formulae

to (the code of) their conjunction, and :
�

is a function symbol for the function that

maps (the code of) a formula to the (code of) its negation. Now, suppose that w is a

theorem of pa. Then C� knows this by (a). By (c), C� proves Tpwq. Now, using

induction in the metalanguage, one derives the T-biconditionals from the compo-

sitional axioms. Hence, one can infer w from Tpwq. Essentially, the argument

requires a finite axiomatisation of the infinitely many T-biconditionals—this is the

job of the compositional axioms. However, it is clear that the argument does not

require the full T-biconditionals, but only their elimination half. Since the com-

positional clauses were only needed for a finite axiomatisation of the T-bicondi-

tionals, it is clear that the argument does not rely on them either. The Craig–Vaught

result does not require the full compositional truth axioms, but only their left-to-

right direction—we only need to finitely axiomatise T-Out.

3 The Elimination Property

We do not want to suggest that the finite-axiomatisation account gives the right

answer to Question 2, but it is clear that it captures something important about the

infinite-conjunction function. We have remarked that the finite-axiomatisation

account is not easily extended to the type-free case. However, while in general

8xðuðxÞ ! TxÞ ðInfCÞ

and the set of conditionals of the form uðpwqÞ ! w cannot have exactly the same

consequences, we may expect that all consequences that can be deduced from the

conditionals are deducible from (InfC). If that were the case, (InfC) could still be

14 If the language of the syntax theory overlaps with the language of the theory to be finitely axiomatised,

we need to formulate the syntax theory in a copy of the language, so that C� remains conservative over C.

For a definition of conservativity, see footnote 15.
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said to finitely axiomatise the conditionals in a broader sense. In Horwich’s

(1998, p. 124) own words, ‘‘[the infinite-conjunction] function of truth requires

merely that the generalizations permit us to derive the statements to be

generalized’’.

We say of a truth predicate satisfying these requirements that it has the

elimination property. Formally, the inference from 8xðuðxÞ ! TxÞ and uðpwqÞ to w
should hold, this is:

8xðuðxÞ ! TxÞ; uðpwqÞ ‘ w

If the deduction theorem holds for ‘, the elimination property ensures that

8xðuðxÞ ! TxÞ ‘ uðpwqÞ ! w ð2Þ

Thus, if ‘ is transitive, everything deducible from the infinitely many sentences

uðpwqÞ ! w is deducible from 8xðuðxÞ ! TxÞ.
As a consequence, the following holds in classical logic: if the truth theory has

the elimination property and is also conservative over its base theory,15 then the

generalisation will have exactly the same T-free consequences as the set

fuðpwqÞ ! w : w 2 Lg. Thus, given conservativity, the elimination property

implies finite axiomatisability in the sense of Halbach as a special case.

While one may doubt Horwich’s thesis that the infinite conjunction function

‘‘merely’’ requires the elimination property, it is clear that the elimination property

is highly desirable for a logic of truth. If you have committed yourself to ‘‘All

theorems of arithmetic are true’’ and ‘‘2 þ 2 ¼ 4’’ is a theorem of arithmetic, then

you have committed yourself to ‘‘2 þ 2 ¼ 4’’.

As the reader will anticipate, in order to ensure the elimination property only one

half of a disquotational principle is needed, namely, the ‘elimination’ half.

Observation 5 Let C � LT be a truth theory where T-Out or T-Elim hold,

formulated over a logic in which the rules of Universal Instantiation and Modus

Ponens are valid. Then T has the elimination property in C.

The proof of this observation is trivial. A consequence of it is that in such logics

T-Out or, equivalently, T-Elim, is sufficient for the elimination property. This

includes classical logic, where both T-Out and T-Elim are not only consistent but

also conservative over the usual syntax theories. Thus, to have a truth predicate with

the elimination property there is no need to weaken classical logic.

Under fairly general circumstances, T-Elim and T-Out are not only sufficient but

also necessary conditions for granting T the elimination property.

Observation 6 Let C � LT be a truth theory formulated over a logic where

identity behaves classically,16 and the usual rules of introduction of the conditional

and the universal quantifier are valid. If C has the elimination property, then T-Elim

and T-Out hold in C.

15 A theory of truth C is conservative over its base theory R if and only if for every T-free sentence w, if

C proves w then so does R.
16 This is, the inference from s ¼ t and uðsÞ to uðtÞ holds for every formula uðxÞ and pair of terms s, t.
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Proof Assume Tpwq and that x ¼ pwq. By the laws of identity, we get that Tx. By

the introduction rules for the conditional and the universal quantifier, we know that

8xðx ¼ pwq ! TxÞ. Thus, the elimination property together with the fact that pwq ¼
pwq gives us w. A further application of the introduction of the conditional delivers

T-Out. h

It is worth noticing that certain non-classical truth theories in which transparency

principles hold unrestrictedly do not have the elimination property. To start with a

simple example, consider the theory that results from adding a transparency

principle to the logic of paradox lp (cf. Priest 2006) formulated in LT plus some

syntax theory. As is well known, lp doesn’t satisfy Modus Ponens, so observation 5

does not apply. One can show there is no way of guaranteeing the inference from

(InfC) to each conditional of the form uðpwqÞ ! w .

Observation 7 Let C � LT be a truth theory formulated over lp that extends the

syntax theory R with the unrestricted T-schema and rules T-Intro and T-Elim. Then,

C does not have the elimination property.17

Of course, this should not come as a surprise. With the notable exception of Beall

(2013), the failure of such a basic and intuitive rule as Modus Ponens in lp led many

paraconsistent-minded philosophers (e.g. Priest 2006, chap. 6; Beall 2009) to search

for a ‘suitable conditional’, this is, a conditional-like connective that could be added

to lp, satisfying not only Modus Ponens but also other prima facie desirable

principles. While many of these new theories grant the truth predicate the

elimination property, some of them fail to satisfy the contrapositive of it, which

seems equally desirable. For instance, Priest (2006) adopts a non-contraposable

conditional with which he formulates the T-schema. Since the new conditional

satisfies Modus Ponens, Modus Tollens no longer holds, and therefore the inference

uðpwqÞ;:w ‘ :8xðuðxÞ ! TxÞ

isn’t generally valid. Similarly, Kripke’s fixed-point theory (Kripke 1975) with the

Weak Kleene scheme fails to satisfy this rule of inference.18

These observations casts severe doubt on the adequacy of the theories at issue as

systems intended to provide a device for expressing infinite conjunctions.

Presumably, the original point of weakening classical logic was to accommodate

a disquotational principle avoiding triviality, to allow the truth predicate to express

infinite conjunctions—perhaps among other things. But in the cases considered, the

weakening is so severe that the logic can no longer guarantee the elimination

property. Of course, this is not an argument against the use of non-classical truth

theories per se. There are many non-classical truth theories that satisfy both the

elimination property and its contrapositive. What we would like to highlight is that

transparency does not ensure the expression of infinite conjunctions by itself.

There seems to be an obvious reason why a truth predicate governed by T-Out

alone is not enough. Namely, there are predicates satisfying T-Out, such as x 6¼ x,

17 A proof can be found in the Appendix.
18 A proof of these observations can be found in the Appendix as well.
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that are definable in every (classical) first-order theory. However, there is an

important difference between (a) being able to define a predicate satisfying T-Out

and (b) adding a primitive predicate governed by T-Out. While a primitive truth

predicate governed by T-Out as its sole axiom scheme can be interpreted by the

empty set, it is consistent to assume that its extension is non-empty. This is not

possible for the predicate x 6¼ x. Therefore, a primitive truth predicate governed by

T-Out enables us to consistently assume, in the course of a hypothetical argument,

that e.g. ‘‘For all x(if x is a sentence of the form ‘P _ :P’ then x is true’’. Obviously,

this is not possible if ‘x is true’ is defined as x 6¼ x. In this sense, a truth predicate

governed by T-Out is not definable in or reducible to the base theory.

Nevertheless, we would not want to suggest that T-Out, or T-Elim, alone

qualifies as a suitable truth theory. Firstly, we do not believe that the finite-

axiomatisation account gives the correct answer to Question 2. Secondly, if we want

to be able to prove certain generalisations, such as ‘‘For all x, if x is a sentence of the

form ‘P ! P’, then x is true’’, then this will require principles beyond T-Out.

Thirdly, in the next section we will present other possible reasons to adopt

additional truth principles.

4 What About Introduction Principles?

We have argued that the elimination property is an important aspect of the infinite-

conjunction function. (We have refrained, however, from identifying the two.) One

might now wonder whether introduction principles, such as T-In or T-Intro,

contribute anything to the utility of truth. Does the infinite-conjunction function

presuppose them? As long as we don’t have a sound and complete account of what

expressing infinite conjunctions means, this question cannot be properly answered.

What is clear, however, is that the accounts considered so far don’t support the need

of adopting such principles. Therefore, it might be instructive to consider arguments

of a different kind in favour of the adoption of introduction principles.

We have repeatedly noted that introduction principles for truth do not suffice to

introduce sentences of the form

8xðuðxÞ ! TxÞ ðInfCÞ

if the us are infinitely many. However, suppose there are only finitely many sen-

tences falling under uðxÞ, say w1; . . .;wn. What the introduction principles for truth

would allow us to do is to derive the generalisation (InfC) from w1; . . .;wn given the

premise that uðxÞ applies exactly to w1; . . .;wn.19 Does this give us reasons to adopt

introduction principles? We don’t think so. Note that in the envisaged case, the

introduction of the generalisation (InfC) is logically dispensable. If we wish to

assert finitely many sentences w1; . . .;wn, we can simply assert their conjunction. So

this does not give us any logical reasons to adopt introduction principles for truth—

it does not concern the logical (i.e. infinitary) function of truth that we are interested

in.

19 More precisely, the assumption is 8xðuðxÞ $ x ¼ pw1q _ � � � _ x ¼ pwnqÞ.
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Let us therefore have a look at some other arguments for introduction principles

that can be found in the literature. Consider the following scenario by Field

(2008, p. 210) where a sentence of the form (InfC) occurs in the antecedent of a

conditional. Suppose you do not remember exactly what Jones said, but you believe

that it entails a certain proposition w. Thus, in order to express your belief you might

say ‘‘If everything that Jones said is true then w’’, that is,

8xðvðxÞ ! TxÞ ! w ð3Þ

where vðxÞ applies exactly to the sentences uttered by Jones. Then, relative to the

assumption that what Jones said is exactly w1; . . .;wn, we want the above to imply

w1 ^ � � � ^ wn ! w ð4Þ

As Field notices, to derive (4) from (3) and the information that w1; . . .;wn are the

only vs, wi must entail Tpwiq, this is, an introduction rule is needed. Since elimi-

nation rules are also required, Field concludes, classical logic must be abandoned.

Again, in this case the use of the truth predicate has no particular logical interest.

It isn’t logically indispensable, since the sentences we want to express are finitely

many, namely, w1; . . .;wn. Thus, we believe it does not give us enough reasons for

adopting introduction principles. What is more, there is an alternative and easy way

to deal with the Jones case that only involves an elimination principle. For we can

express (4) with a simple generalisation of the form (InfC), instead of (3). Let uðxÞ
be the predicate ‘x is the unique sentence obtained by concatenating the conjunction

of the vs with ‘! w’’. Then, we can choose (InfC) to express (4): by Observation 5,

in any classical T-Out or T-Elim theory (that contains enough syntax theory to prove

basic facts about concatenation) we can derive the latter from the former, relative to

the assumption that what Jones said is exactly w1; . . .;wn.

The strategy works for infinite cases as well. Consider the claim that every truth

is knowable, formally:

8xðTx ! �KxÞ ð5Þ

where Kx means that x is known and � is the possibility operator. Certainly, we want

the above to imply all sentences of the form

w ! �Kpwq ð6Þ

Again, (5) won’t give us all instances of (6) unless we have some introduction

principle at our disposal. But we can simply apply the same trick as before and use

another generalisation in order to capture all instances of (6), namely, ‘‘All instances

of (6) are true’’. Given an elimination principle (plus some syntax theory), the latter

will yield all instances of (6), as desired.

More generally, assume we want to capture all instances of a schema ‘. . .w. . .’
for each sentence w in the language. Instead of replacing w with Tx and then

quantifying over x—i.e. instead of 8x. . .Tx. . .—we could say that every instance of

‘. . .w. . .’ (where w is a sentence) is true, using a formula of the form (InfC). By an
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elimination principle such as T-Out or T-Elim (plus some syntax theory), this will

imply all the statements that we initially wanted to capture.

Again, note that what is at issue here is not to account for e.g. the intuitive

validity of the inference from (5) to (6) (which may hold in natural language), but to

provide a device that allows us to finitely capture the infinitely many instances of (6)

in a (semi-)formal setting. This is what we are interested in in this paper.

We concede that there are some limitations to the above method, and this

suggests that principles beyond T-Out might be needed for a satisfactory formal

theory of truth. For example, if we combine (5) with the claim that all theorems of

Peano arithmetic are true, we can deduce that all theorems of Peano arithmetic are

knowable, i.e.

8xðBewðxÞ ! �KxÞ ð7Þ

where Bew(x) is a provability predicate for Peano arithmetic. On the other hand, if

we combine ‘‘All instances of (6) are true’’ with the claim that all theorems of

arithmetic are true, we can only deduce the instances of (7), but not (7) itself.

Let us have a look at another example. Consider for a moment the standard

definition of knowledge. An agent is said to know a sentence just in case she

believes it, she is justified in doing so, and, moreover, the sentence is true (and some

Gettier condition is satisfied). Formally, epistemologists assert20

8xðKðxÞ $ CðxÞ ^ TxÞ ð8Þ

which is intended to capture the infinitely many instances of the schema

KðpwqÞ $ CðpwqÞ ^ w ð9Þ

where C(x) resumes all conditions for knowledge except truth. As before, we can

capture all instances of (9) by saying ‘‘All instances of (9) are true’’, instead of using

(8). As a definition, however, this has its shortcomings. The predicate K is no longer

eliminable, and the definition does not satisfy the condition of being non-creative.

Nonetheless, we believe one should carefully weight the costs of this against

introducing a non-classical truth predicate into the definition of knowledge. The

non-classicality of truth can be ‘contagious’: it might spread out and turn knowledge

into a non-classical predicate too. For example, if the law of excluded middle is

rejected for some sentences that contain semantic vocabulary then this will affect

the knowledge predicate too. In the envisaged case, presumably it won’t follow that

we either know or don’t know that the liar is true. Prima facie, an analogous point

can be made for any predicate of sentences (or propositions) involving the truth

predicate in its definition.

We have seen that there are good reasons for adopting elimination principles for

truth, whereas we found that the arguments for adopting introduction principles are

not entirely convincing—at least when we only consider the infinite-conjunctions

function. While our findings may not be conclusive, they present a challenge for all

20 A discussion of the Gettier problem with knowledge as a predicate is found in Halbach (2016) (with

references to further literature). Huemer (2005) is also useful.
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those that believe that introduction principles for truth must be part of a logic of

truth.

5 Infinite Disjunctions

Let us now briefly consider sentences of the form ‘‘Some Ps are true’’ or, more

formally,

9xðuðxÞ ^ TxÞ ðInfDÞ

which are often said to express infinite disjunctions. We have seen that elimination

principles are highly desirable for a reasonable logic for expressions of the form

‘‘All Ps are true’’. Since ‘‘Some Ps are true’’ seems to be dual to ‘‘All Ps are true’’,

one might think that the former call for introduction principles for truth.

A natural thought is that, at the very least, our principles for truth should allow us

to infer (InfD) from uðpwqÞ ^ w. And this would involve an introduction principle

for truth. However, it is by no means obvious that this inference is indispensable for

the logical function of truth. The reason is that the conclusion is simply a weakening

of the the first sentence. Our interest in the truth predicate does not consist primarily

in the sentences that contain the truth predicate, but in the sets of sentences that we

cannot express without the help of the truth predicate. In the case under

consideration, we already start with the sentence without the truth predicate. What

would be the point of introducing the latter?

However, let us have a look at what expressing an infinite disjunction could

mean. One way to explicate this would be via intended models. According to this

proposal, (InfD) expresses the infinite disjunction of the us if and only if the

following equivalence holds:

ðM; SÞ � 9xðuðxÞ ^ TxÞ if and only if, for some w 2 U; M � w

where M is the intended model of the base language, U is the extension of u in M,

and S is the extension assigned to the truth predicate. Since we have already rejected

the corresponding account for infinite conjunctions, we need not go into any details

here.

Let us therefore have a look at how Halbach’s finite-axiomatisation account deals

with infinite disjunctions. Recall (a) that a sentence involving the truth predicate

was said to express the infinite conjunction of some sentences if and only if they

have the same T-free consequences. In order to deal with infinite disjunctions,

Halbach makes the following additional assumptions: (b) that the infinite

disjunction of the us is equivalent to the infinite conjunction of the negation of

the us (in the sense that they both have the same consequences in the language L);

(c) that a sentence v involving the truth predicate expresses an infinite disjunction if

and only if :v expresses the negation of the infinite disjunction.

Now consider the infinite disjunction
W
fuðpwqÞ ^ w : w 2 Lg. By assumption

(b), its negation is equivalent to the infinite conjunction
V
fuðpwqÞ ! :w : w 2 Lg.

Halbach shows that given a transparency principle for truth, the latter has the same
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T-free consequences as the sentence 8xðuðxÞ ! :TxÞ, and is therefore expressed by

the latter, because of (a). Thus, by (c), the negation of that sentence expresses the

infinite disjunction of the us.

The argument just given relies essentially on the transparency of truth. Does that

mean that we need transparency after all? If our goal is simply to find, for every

predicate u, some sentence that expresses the infinite disjunction of the us in the

sense of (c), the answer is ‘No’. For we can find a sentence different from 9xðuðxÞ ^
TxÞ that does the job. Let us start again with the infinite disjunctionW
fuðpwqÞ ^ w : w 2 Lg. By assumption (b), its negation is equivalent toV
fuðpwqÞ ! :w : w 2 Lg. By a small modification of our earlier argument

(Proposition 4), this infinite conjunction has the same T-free consequences as the

sentence 8xðuðxÞ ! T:
�
xÞ, and is therefore expressed by it, according to (a). Hence,

by (c), the negation of that sentence, i.e. :8xðuðxÞ ! T:
�
xÞ, expresses the infinite

disjunction of the us. Moreover, note that our candidate sentence is indeed derivable

from uðpwqÞ ^ w (given an elimination principle). Thus, if the finite-axiomatisation

account is correct, it does not support the adoption of introduction principles for

infinite disjunctions either.

Now, we do not necessarily want to suggest that the above account gives the

correct explication of infinite disjunctions, and therefore more needs to be said

about this. However, our focus in this paper is on the infinite-conjunction function.

The above should serve to illustrate that even the case of infinite disjunctions does

not necessarily entail the need for introduction principles.

6 Deflationism and the Logical Function of Truth

We have pointed out that if one’s project is to formulate a formal theory of truth for

the sole purpose of having a device that fulfils the quasi-logical functions discussed

above, then what principles govern the use of the truth predicate in natural language

is largely irrelevant. What matters is that the truth predicate is governed by

principles that allow it to perform this function. While we haven’t reached a final

verdict in the previous sections, we hope we have succeeded in challenging the idea

that full transparency is necessary for that. However, it is important to note that even

if transparency principles turned out to play a major role, there are some important

lessons to be drawn concerning deflationism about truth.

Deflationism takes the transparency of truth as its starting point. From it,

deflationists extract mainly two conclusions, a negative and a positive one. The

negative thesis is that truth is conceptually redundant and therefore cannot play a

substantive role in philosophical discourse. The positive thesis is that it can play the

quasi-logical roles that we have talked about in this paper. In fact, this is the sole

reason why we have a truth predicate in our language in the first place, according to

deflationism.

As a consequence, what truth principles deflationists should adopt for their

formal theory of truth, or for their proposed regimentation of natural language,

should depend entirely on their ability to ensure this function. If weaker, stronger or
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simply just principles other than transparency turn out to be necessary and sufficient

to guarantee these functions in a (semi-)formal setting, despite their starting point

deflationists have no reasons to adopt (mere) disquotational principles in their

formal theories. When it comes to devising a formal theory of truth or proposing a

regimentation of our use of the truth predicate, the deflationist has no conceptual

commitment to (mere) transparency.

However, one often finds a focus on disquotation in the literature on deflationism.

To take just one example, Beall and Armour-Garb (2005) describe the T-bicon-

ditionals as ‘‘fundamental’’, ‘‘brute’’, ‘‘analytic’’, ‘‘necessary’’, ‘‘a priori’’, and

‘‘explanatorily and conceptually basic’’, while the function is only mentioned as an

explanation why a predicate governed by the T-schema is not dispensable. This

focus often translates into the search for formal systems that can accommodate

transparency principles without leading to triviality, as mentioned before. But this

gets things the wrong way round. If deflationism is right and the quasi-logical

function is the sole reason for the existence of the truth predicate in the language,

then the T-biconditionals are not ‘‘explanatorily and conceptually basic’’. The

function of truth is basic and comes first, while the T-biconditionals are only

relevant if and insofar as they enable the truth predicate to perform that function.21

What we would like to suggest is that the truth predicate is comparable to a tool.

Coming up with a formal theory of truth is basically an engineering problem; it

requires no conceptual analysis in the traditional sense. There could be several

satisfactory theories of truth and choosing between them would only depend on how

user-friendly and how effective the theories are. In the end, it might also turn out

that truth simply cannot fulfil its intended function unrestrictedly, because of the

paradoxes. This would be disappointing, and place limitations on the expressive

power of our language. But it would not undermine the deflationists’ account of

truth. It is perfectly conceivable that a tool does not live up to all of our

expectations.

One may worry that this reconceptualisation of deflationism deprives deflation-

ism of the reason that made it so attractive for philosophers, namely, that it deflates

the metaphysical puzzle of the nature of truth. But this worry is ungrounded. The

anti-metaphysical stance of deflationism, we believe, does not rest on the idea that

the notion of truth is governed by the T-biconditionals (a claim that may also be

endorsed by non-deflationists), nor does it rest on the claim that the T-biconditionals

are all there is to truth. Instead, we believe that the anti-metaphysical stance of

deflationism derives (or is still derivable) from the idea that the notion of truth is a

quasi-logical device, whose behaviour is governed by axioms or rules that allow it

to perform its intended functions, and that that is all there is to truth. On this picture,

truth is (roughly) on a par with logical connectives like negation or disjunction, and

no more mysterious than them. It may very well be the case that the way in which

the quasi-logical function of truth is implemented in natural language is in fact via

transparency principles. (And it is a very interesting and difficult question how we

21 This is not to say that truth is absolutely indispensable. It is as long as we remain within the limits of

first-order logic, but we may also do with e.g. substitutional quantifiers. A similar point is made in

Azzouni (2005). However, he draws rather different conclusions from it.
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operate in natural language with a notion that, assuming it actually is governed by

transparency principles, is classically inconsistent.) But this does not mean that we

are committed to transparency principles when we devise a formal language or

propose a regimentation of natural language that is suitable for scientific,

mathematical or philosophical discourse. Of course, deflationists could be interested

in formal theories of truth that capture the use of the truth predicate in natural

language, and such a theory would presumably include transparency principles.

However, it is by no means clear that such systems will turn out to be the ones that

are most useful in scientific, mathematical or philosophical discourse.

This understanding has profound consequences on the deflationists’ formal

notion of truth. Interestingly, it helps the deflationist to deal with several objections

that can be found in the literature regarding semantic paradoxes. Many philosophers

think that the semantic paradoxes pose a special problem for deflationists,22

presumably because they think that deflationists are conceptually committed to the

T-schema when adopting a formal truth system. We will argue, on the contrary, that

the deflationists are in a much better position to deal with the paradoxes than their

opponents. (Thus, this is a strengthening of a claim made by Gupta (2005) to the

effect that the paradoxes do not pose a special problem for deflationism.)

The T-schema leads to trivilality in classical logic, given minimal syntactic

background assumptions. This forces us to reject certain instances of the T-schema

or to reject certain classically valid (meta-)rules of inference (in addition, perhaps,

to using a new conditional in the formulation of the T-biconditionals). It is

sometimes said that such moves change the meaning of the concept of truth (cf.

Field 2008, pp. 14–17). This might be turned into an argument against a specific

truth theorist if her goal is to capture the truth predicate as it occurs in natural

language. But the meaning of the truth predicate in natural language is not what

deflationists are in general trying to capture in their formal theories of truth. What

the deflationist is aiming for is merely a quasi-logical tool that fulfils certain

expressive functions.

Thus the deflationist is clearly entitled to revise the naı̈ve understanding of truth

to formulate her formal systems. What restrictions should we impose on such a

revision? Several authors have proposed different desiderata on a satisfactory theory

of truth (cf. Halbach and Horsten 2005; Leitgeb 2007; Sheard 2002). We believe

such lists often involve criteria which are only imported because truth seems to

satisfy these criteria in natural language, without paying attention as to whether they

play an important role in the expression of infinite conjunctions and disjunctions.

A desideratum that features prominently on such lists is that the theory ‘‘must

satisfy a requirement of naturalness and simplicity. It must contain as few ad hoc

elements as possible.’’ (Halbach and Horsten 2005, p. 207). Given the paradoxes,

this is often not the case: to solve them truth theorists usually turn to more complex

principles than plain disquotation. Now, a solution is ad hoc if it’s designed for a

specific task or problem, lacking independent motivation. But if deflationism is right

and the truth predicate exists solely for a certain expressive purpose, what other

22 As witnessed by the fact that there is an entire collection devoted to that problem: Beall and Armour-

Garb (2005).
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motivation could there be than constructing the truth theory in such a way that it

serves these logical needs? Whether the theory is artificial is largely irrelevant.23

Consider for example Tarski’s hierarchy of truth predicates T1; T2; T3; . . . Many

philosophers have argued against Tarski’s solution on the grounds that stratification

is ad hoc and only motivated by the desire to evade the paradoxes; that truth is a

univocal concept that is fragmented in the Tarskian approach; that typing (indexing)

is not found in natural language. From the deflationist perspective discussed here,

such objections have little force. The problem with the Tarskian solution, then, is

not that it is artificial or ad hoc; the problem is that typed truth predicates simply do

not satisfy our needs (entirely). For example, the hierarchy of truth predicates does

not offer a means to express the soundness of the theory by a single sentence, or to

express all instances of certain schemata at once. Whenever a formula uðxÞ defines

an infinite set of sentences whose indices are unbound in rank, there is no way of

axiomatising all the us by a single sentence using one of the truth predicates Ta.
24

Another requirement usually imposed on formal truth theories is that their so-

called ‘outer’ and ‘inner’ logics coincide (cf. Halbach and Horsten 2005; Leitgeb

2007). The inner logic of a truth system is the set of sentences the theory can prove

to be true, while the outer logic is simply the set of its theorems. In this paper we

have suggested that T-Out should be part of any reasonable theory of truth. As it

turns out, in classical logic this principle directly entails a discrepancy between the

inner and the outer logic of a system. Let k be a liar sentence, as before. By T-Out

we have

Tpkq ! k

But by the definition of k, we also have

:Tpkq ! k

Therefore, k. But then by the definition of k, we have that :Tpkq as well and, hence,

the conjunction k ^ :Tpkq becomes provable in the system.

But why should the outer and the inner logic of a truth theory coincide? Does this

desideratum have a deflationist justification? Field (2008, chap. 6) claims that

asserting k ^ :Tpkq violates a coherence principle: namely, that it is incoherent to

assert a sentence and simultaneously asserting that that sentence is not true.

Similarly, Horsten (2011, p. 127) claims that proving a sentence that is untrue is ‘‘a

sure mark of philosophical unsoundness.’’ Bacon (2015) poses a similar objection as

a revenge problem for disquotational systems. Glanzberg (2005) has made

analogous claims.

But why would it be incoherent to assert a sentence and simultaneously assert

that it is not true? Presumably, it would be incoherent if we conceived of u and Tpuq
as having the same meaning, or as being materially equivalent, or as having the

23 Of course, there could be practical reasons why a ‘natural’ theory is preferable over a more ‘artificial’

one: a natural theory might be more user-friendly insofar as the rules of such a theory resemble the rules

that the agent is used to in natural language.
24 This does not necessarily mean that a type-free solution is to be preferred. It is not clear that the

advantages of a type-free approach outweight the problems caused by the semantic paradoxes.
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same semantic value, or maybe if we thought that a sentence is true if it holds in a

model, or if what it says is the case. But, as we have argued, none of this needs to be

part of the deflationists’ formal notion to truth.

From the deflationist’s point of view, the liar is best viewed not as a paradox but

(if at all) as a limitation on the truth predicate’s ability to fulfil its intended function.

In this respect deflationists are in a more comfortable position than their opponents.

For example, correspondence theorists have to explain how to accommodate a

sentence that says of itself that it is untrue, given that a sentence is true (on their

picture) if and only if what it says is the case. To put it pointedly: The paradoxes

pose a bigger threat to correspondence theorists because the T-schema seems to be

an essential part of their notion of truth, even if they think that there is more to truth

than the T-biconditionals. Deflationists have no such commitment. They could just

let some instances go and live with the fact that their truth predicate does not serve

its intended role unrestrictedly. The correspondence theorists’ theory of truth aims

to unravel the nature of truth and therefore has to be sound; for the deflationist, the

question of the soundness of the truth theory does not even arise. The deflationist’s

formal theory (or theories) of truth does not describe a property in the world but

simply provides us with a quasi-logical tool, engineered to perform certain

expressive functions. The question for the deflationist is simply whether, for

instance, asserting untrue sentences substantially impairs these functions.

7 Agreement and Disagreement in Classical T-Out Theories

There is one reason one might worry that asserting that one’s theorems are untrue

deprives the truth predicate of its utility. The notion of truth is supposed to enable us

to express agreement and disagreement with theories that cannot be finitely

axiomatised (except by using a truth-like predicate, of course). Thus, the usual way

of expressing agreement with a theory C is to say ‘‘All theorems of C are true’’. In

the mathematical literature, this is also known as the global reflection principle for

C (see Kreisel and Levy 1968), formally

8xðBewCðxÞ ! TxÞ ðGRPCÞ

where C is a recursively enumerable (r.e.) theory and BewCðxÞ is a predicate that

weakly represents provability in C. Now the problem is that any classical theory that

has ‘incoherent’ consequences—e.g. k ^ :Tpkq—will be inconsistent with its own

global reflection principle, and therefore seems to deprive us of the possibility to

express agreement with our own theory. For simplicity, let us assume that our

syntax theory is Peano arithmetic (pa).

Proposition 8 Assume C is a classical r.e. theory extending pa and let k be a liar

sentence. If C ‘ k, then CþGRP C is inconsistent.

Proof Assume C ‘ k. Therefore, by definition of the liar, C ‘ :Tpkq. Since C is

r.e. and extends pa we have C ‘ BewCðpkqÞ and by GRPC it follows that

CþGRPC ‘ Tpkq. Thus C?GRPC is inconsistent. h
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In particular, any classical theory extending pa þ T-Out is inconsistent with its

own global reflection principle. Field (2008) notices that T-Out-theorists might not

only have problems with expressing agreement but also with expressing

disagreement.

[Assume that Jones] puts forward a quite elaborate gap theory involving

T-Out. And suppose that I disagree with this theory overall, but can’t quite

decide which specific claims of the theory are problematic. It is natural for me

to express my disagreement by saying ‘‘Not everything in Jones’ theory is

true’’. But this doesn’t serve its purpose: since Jones himself, as a gap theorist,

believes that important parts of his own theory aren’t true, I haven’t succeeded

in expressing disagreement.

Alternatively, suppose that Jones himself thinks that Brown’s theory is wrong,

but isn’t quite sure which claims of it are wrong. Then he certainly can’t

express his disagreement by saying ‘‘Not everything in Brown’s theory is

true’’, since by his own lights that doesn’t differentiate Brown’s theory from

his own. (Field 2008, p. 140)

We do not find these arguments very compelling. To begin with, for two people

to agree or disagree on something, they first have to share the meaning of the words

they will use to agree and disagree; in this case, the truth predicate. Presumably,

Field’s disagreement with Jones’ theory isn’t expressed in Jones’ idiolect and,

therefore, it isn’t successful. Little has this to do with Jones’ adoption of T-Out.

Secondly, nothing forces Jones to express his agreement by saying ‘‘Everything in

Browns’ theory is true’’ or his disagreement by saying ‘‘Not everything in Brown’s

theory is true’’. This might be the way that natural language has chosen, but nothing

prevents us from regimenting that use. If Jones disagrees with Brown’s theory,

Jones will suspect that there is some sentence u such that u is part of Brown’s

theory but :u. And he can express that by saying ‘‘Something in Brown’s theory is

false’’ (where ‘‘u is false’’ is defined as ‘‘:u is true’’)—and that claim does

differentiate Brown’s theory from Jones’. Similarly, Jones can express agreement

with his own theory by saying ‘‘Nothing in my theory is false’’ or ‘‘Everything in

my theory is non-false’’, formally:

8xðBewCðxÞ ! :T:
�
xÞ ðGRP�

CÞ

Let us call GRP�
C the ‘modified global reflection principle’ for C. The following

shows that the modified global reflection principle can be consistently added to any

T-Out-theory constructed over pa that has a standard model.

Proposition 9 If C � pa contains T-Out and has a standard model (i.e., an x-
model), then CþGRP �

C has a standard model too.

Proof Assume otherwise. Then there must be a standard model M such that

M � C and M � 9xðBewCðxÞ ^ T:
�
xÞ. Since M is standard, there must be a

sentence u such that M � BewCðpuqÞ ^ Tp:uq. By T-Out, M � :u. But since M
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is standard, M � BewCðpuqÞ implies C ‘ u and therefore M � u. This contradicts

the claim that M � :u. h

One attractive feature of the ordinary global reflection principle is that it implies

(given minimal assumptions) the consistency of the system in question. The

modified reflection principle does the same job.

Proposition 10 If C � pa contains T-Out and C ‘ Tp0 6¼ 1q, then CþGRP �
C

‘ ConðCÞ.25

Proof By Universal Instantiation, CþGRP�
C ‘ BewCðp0 ¼ 1qÞ ! :Tp0 6¼ 1q. But

since C ‘ Tp0 6¼ 1q, it follows that CþGRP�
C ‘ :BewCðp0 ¼ 1qÞ. h

8 Conclusions

In this paper we have considered two accounts of what it means for general truth

ascriptions of the form (InfC) to express the sentences satisfying the predicate uðxÞ.
According to one of them, (InfC) and the set of conditionals uðpwqÞ ! w must be

equivalent in some suitable sense. According to the other (which is the only

formally worked out account in the literature), (InfC) must finitely axiomatise the

the conditionals uðpwqÞ ! w (relative to the truth theory). We have argued that the

first account is flawed, and that the second one—if correct at all—justifies at best the

adoption of a principle much weaker than transparency, namely, elimination

principles for truth.

In Sect. 3, we have shown that, given reasonable background assumptions,

elimination principles ensure what we have called the ‘elimination property’, which

allows us (in some sense) to ‘finitely axiomatise’ infinite sets of sentences; so a full

transparency principle is not needed for that purpose. Moreover, as we pointed out,

in some cases full transparency does not even suffice to ensure the elimination

property if the underlying logic is too weak.

In Sects. 4 and 5 it was also shown that, with the aid of some regimentation, the

elimination property is sufficient to deal with a large number of generalisations that

many authors believed to require full transparency. Thus, we conclude that the

arguments offered in the literature so far do not provide enough support for the

thesis that full transparency is needed for the logical function of truth. The upshot is

that, first, we need a more thorough investigation of the expressive functions of the

truth predicate, and of the principles each of them involves; and, second, that there

are no conclusive reasons yet to abandon classical logic, contrary to what is usually

believed. The move to non-classical logics is still in need of a supporting argument.

None of what we have said should be taken to imply that T-Out alone is sufficient

as a theory of truth. On the one hand, T-Out alone does not enable us to prove any

non-trivial generalisations about truth. On the other hand, at the end of Sect. 4 we

25 Note that this defence of truth theories containing T-Out does not imply that the only truth principle

we should adopt in our formal truth systems is T-Out. We might very well adopt in addition a restricted

version of T-In, compositional principles, or whatever we need for our technical purposes. Some of these

additional principles might in turn allow for a proof of Tp0 6¼ 1q.
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have seen that T-Out does not account for all the inferences that we may want to

make with generalisations. An answer to the question what other axioms are needed

can only come from a full understanding of what it means for (InfC) to express all

the us. We believe a promising line of thought is to understand truth as a means to

emulate propositional (second-order, substitutional) quantification in a first-order

setting. However, making this idea precise is by no means trivial. The main problem

is to specify what ‘emulation’ comes to here, and there are several options to choose

from. Working this out in detail is the goal of our next project.

In the final sections of the paper, we have argued that deflationism, properly

understood, is not committed to many of the requirements that are usually imposed

on truth systems, and immune to most of the objections frequently raised against

them. Most of these requirements and objections rest on an understanding of the

notion of truth that stems from its use in natural language or some correspondence

intuition. Deflationists don’t have to conform to this understanding when devising

formal theories of truth. They only need to ensure (as far as possible) that their

notion of truth can perform its intended expressive function. As a consequence,

deflationists are in a much better position to deal with the paradoxes than their

‘substantialist’ opponents.
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Appendix

In this appendix we give proofs of Observation 7, and similar limitative results for

Priest’s theory of truth and Kripke’s fixed-point construction based on the Weak

Kleene scheme that we mentioned at the end of Sect. 3. Before each proof we

briefly introduce the corresponding system.

Recall L is our base, truth-free language, and LT extends L with the monadic

predicate symbol T. L contains enough vocabulary to talk about the syntax of LT .

We assume L’s standard model is classical and contains countably many objects in

its domain. This allows us to work with substitutional semantics, and to keep it

simple.
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We first introduce the logic of paradox. lp is given by a family of models of LT

and a valuation scheme vlp. An lp-model M behaves exactly like a classical model

except that it assigns not only an extension RMþ
but also an anti-extension RM�

to

each n-adic predicate R of LT , such that RMþ [ RM� ¼ jMjn. RMþ \ RM�
may

be non-empty. For each model M, vM
lp

maps sentences of LT into the set f0; 1
2
; 1g as

follows:

• vM
lp
ðRt1. . .tnÞ ¼

1 if ht1; . . .; tni 2 RMþ � RM�

0 if ht1; . . .; tni 2 RM� � RMþ

1

2
otherwise

8
><

>:

• vM
lp
ð:uÞ ¼ 1 � vM

lp
ðuÞ

• vM
lp
ðu ^ wÞ ¼ minðvM

lp
ðuÞ; vM

lp
ðwÞÞ

• vM
lp
ðu ! wÞ ¼ maxð1 � vM

lp
ðuÞ; vM

lp
ðwÞÞ

• vM
lp
ð8xuÞ ¼ minfvM

lp
ðu½t=x	Þ : t is a termg

The intended reading of the truth values is true for 1, false for 0, and both true

and false for 1
2
. Then, a sentence is true in an lp-model if the valuation based on that

model assigns either value 1 or 1
2

to it. Logical consequence is defined as truth

preservation, as usual.

Proof of Observation 7 Let R � LT be a syntax theory for LT (sound with respect

to L’s standard interpretation) formulated over a sound and complete calculus for lp,

and let C extend R with the rules T-Intro and T-Elim (and, therefore, all instances of

the T-schema). C is non-trivial, for the standard model of L can be extended to an

lp-model of C (cf. Beall 2009). We assume C contains a liar sentence k, i.e. such

that

k $ :Tpkq ð10Þ

We show the following instance of the elimination property does not hold in C:

8xðTðx$
�
pkqÞ ! TxÞ; Tðp?q$

�
pkqÞ ‘ ? ð11Þ

where ? is a sentence that gets value 0 in all lp-models, and $
�

denotes the function

that maps (the code of) two formulae u;w to (the code of) u $ w. Let M be an lp-

model of C extending L’s standard interpretation. Thus, the only predicate of LT

that may receive overlapping extension and anti-extension is T.

Note that, due to transparency and (10), vM
lp
ðkÞ ¼ 1

2
, and that, due to the clauses of

lp’s valuation scheme, every time one side of a biconditional gets value 1
2
, the value

of the biconditional is also 1
2
. Thus, for every sentence u, vM

lp
ðu $ kÞ ¼ 1

2
. By

transparency, vM
lp
ðTpu $ kqÞ ¼ 1

2
, and since M extends L’s standard interpretation,

vM
lp
ðTðpuq$

�
pkqÞÞ ¼ 1

2
too, which means the second premise in (11) is true in M.

This also implies that vM
lp
ðTðpuq$

�
pkqÞ ! TpuqÞ > 1

2
. Under the reasonable
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assumption that only (standard) sentences belong to TMþ
, we also get that

vM
lp
ð8xðTðx$

�
pkqÞ ! TxÞÞ > 1

2
, this is, the first premise in (11) is true as well. But

vM
lp
ð?Þ ¼ 0. h

We now show how Priest’s disquotational theory does not validate the contra-

positive of the elimination property, that is:

uðpwqÞ;:w ‘ :8xðuðxÞ ! TxÞ ð12Þ

This theory isn’t explicitly formulated but can be extracted from Priest (2006).

There he fully endorses the T-schema and argues that it must hold without

restriction for the sake of the expressive function of truth (cf. Priest 2006, chap. 4).

Priest works over lp, but in order to avoid the problems stated in Observation 7—

viz. the failure of Modus Ponens—he supplements the logic with a new, non-

extensional conditional with which he formulates his version of the T-schema.

Furthermore, this new conditional, he argues, must be non-contraposible, i.e. u ! w
should not necessarily imply :w ! :u. In his own words, ‘‘There seems to be no

reason why, in general, if u is a dialetheia, Tpuq is too. If u is a dialetheia, Tpuq is

certainly true, but it might be simply true, and not also false’’ (Priest 2006, p. 79).

We call the resulting logic ‘pl’, for ‘Priest’s Logic’.

pl is given by a family of models of LT and a valuation scheme vpl. A pl-model

M consists of a set of possible worlds WM, a binary surjective relation RM � W2
M,

and a function assigning an lp-model Mw to each w 2 WM, all with the same

domain. vpl behaves exactly like vlp for the extensional connectives, now relativized

to each world w 2 WM. The conditional, instead, is defined by the following clause:

• vw
pl
ðu ! wÞ > 1

2
iff, for all w0RMw, if vw

0
pl
ðuÞ > 1

2
, then vw

0
pl
ðwÞ > 1

2

A sentence u is true in M if and only if vw
pl
ðuÞ > 1

2
in every world w 2 WM, and

logical consequence is defined in the same way as lp’s.

Let Priest’s theory C � LT be formulated over a calculus sound with respect to

pl. C consists of all instances of the T-schema (formulated with !) plus a

biconditional w , uðpwqÞ for each open formula uðxÞ 2 LT , where ) expresses

the material conditional of lp—i.e. u ) w abbreviates :ðu ^ :wÞ—and , is

defined in terms of ), as usual. Thus, the liar sentence k in C is given by

k , :Tpkq ð13Þ

Assume C has an pl-model M where identity behaves classically, such that at every

world w 2 WM k gets value 1
2

while Tpkq gets value 1, as Priest wants. This

assumption seems plausible: if k gets 1
2

and Tpkq gets 1 at each world w, then

vw
pl
ðk $ TpkqÞ > 1

2
, by the clause of vpl for the conditional. But also, by the clause

for negation, vw
pl
ð:TpkqÞ ¼ 0, which means that vw

pl
ðk , :TpkqÞ ¼ 1

2
.26 We show M

is a counter-model of the following instance of (12):

26 Note that, if instead of postulating (13) as an axiom k had been obtained by a standard diagonalisation

process in a base theory of syntax, k and :Tpkq would have been forced to have the same truth value,
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pkq ¼ pkq;:k ‘ :8xðx ¼ pkq ! TxÞ ð14Þ

By the clause for negation, we have that vw
pl
ð:kÞ ¼ 1

2
at every w 2 WM. By the

classicality of identity, we also have that vw
pl
ðpkq ¼ pkqÞ ¼ 1. This gives us the truth

of both premises in (14). However, the conclusion is false. Let w0RMw. While

vw
0

pl
ðpkq ¼ pkqÞ ¼ vw

0
pl
ðTpkqÞ ¼ 1, vw

0
pl
ðt ¼ pkqÞ ¼ 0 for each term t such that

Mw0�t 6¼ pkq. Thus, by the clauses for the conditional and the universal quantifier,

vw
pl
ð8xðx ¼ pkq ! TxÞÞ ¼ 1 and, therefore, vw

pl
ð:8xðx ¼ pkq ! TxÞÞ ¼ 0.

Next we prove Kripke’s fixed-point theory Kripke (1975) with the Weak Kleene

scheme also fails to satisfy (12). First, we introduce Kleene’s weak three-valued

logic b3. b3 is given by a family of models of LT and a valuation scheme vwk. b3-

models M also assign an extension RMþ
and an anti-extension RM�

to each n-adic

predicate R of LT , but unlike lp-models, RMþ \ RM�
must be empty and

RMþ [ RM�
can be a proper subset of jMjn. For each b3-model M, vM

wk
maps

sentences of LT intro de set f0; 1
2
; 1g in the following way:

• vM
wk
ðRt1. . .tnÞ ¼

1 if ht1; . . .; tni 2 RMþ

0 if ht1; . . .; tni 2 RM�

1

2
otherwise

8
><

>:

• vM
wk
ð:uÞ ¼ 1 � vM

wk
ðuÞ

• vM
wk
ðu ^ wÞ ¼ minðvM

wk
ðuÞ; vM

wk
ðwÞÞ

• vM
wk
ðu ! wÞ ¼ 1 � minf1 � vM

wk
ðuÞ; vM

wk
ðwÞg

• vM
wk
ð8xuÞ ¼ minfvM

wk
ðu½t=x	Þ : t is a termg

where the ordering of the truth values is given by 1
2
\0\1. While 1 and 0 keep their

usual meaning, 1
2

is better understood as nonsense. A nonsensical component renders

the whole expression nonsensical, so every sentence containing a subsentence with

value 1
2

also gets value 1
2
. A sentence is true in a b3-model if the valuation based on

that model gives it value 1, and logical consequence is defined as truth preservation.

Kripke’s fixed-point theory based on b3 consists of a class U of b3-models M of

LT that extend L’s standard interpretation in a way that, for every sentence u,

vM
wk
ðTpuqÞ ¼ vM

wk
ðuÞ, which ensures the transparency of the truth predicate. It can be

shown that U is non-empty (cf. Martin and Woodruff 1975). We show the following

instance of (12) does not hold in any model of U:

p0 6¼ 0q ¼ p0 6¼ 0q;:0 6¼ 0 ‘ :8xðx ¼ p0 6¼ 0q ! TxÞ ð15Þ

Let M 2 U. We assume L is rich enough to diagonalise every open formula of the

language. Since M extends L’s standard interpretation, there’s a liar sentence k

Footnote 26 continued

namely, 1
2
, which would have meant Tpkq also got value 1

2
. And if we replaced , with the new, non-

extensional biconditional $, it wouldn’t be possible to assign value 1
2

to k and 0 to :Tpkq at every

possible world. The same can be said of the use of inference rules.
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such that (10) is true in M. This implies that vM
wk
ð:TpkqÞ ¼ vM

wk
ðTpkqÞ ¼ 1

2
. Also,

vM
wk
ð:0 6¼ 0Þ ¼ vM

wk
ðp0 6¼ 0q ¼ p0 6¼ 0qÞ ¼ 1; so both premises in (15) are true in M.

The conclusion, however, isn’t. To see it note that one of the instances of the

universal statement 8xðx ¼ p0 6¼ 0q ! TxÞ is the conditional pkq ¼ p0 6¼ 0q ! Tpkq,

whose truth value is given by 1 � minf1 � vM
wk
ðpkq ¼ p0 6¼ 0qÞ; vM

wk
ðTpkqÞg, which is

1
2
, since vM

wk
ðTpkqÞ ¼ 1

2
. As a consequence, 8xðx ¼ p0 6¼ 0q ! TxÞ gets value 1

2
, and

so does :8xðx ¼ p0 6¼ 0q ! TxÞ, by the clause of vwk for the quantifier.
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