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Abstract One of the main logical functions of the truth predicate is to enable us to
express so-called ‘infinite conjunctions’. Several authors claim that the truth pred-
icate can serve this function only if it is fully disquotational (transparent), which
leads to triviality in classical logic. As a consequence, many have concluded that
classical logic should be rejected. The purpose of this paper is threefold. First, we
consider two accounts available in the literature of what it means to express infinite
conjunctions with a truth predicate and argue that they fail to support the necessity
of transparency for that purpose. Second, we show that, with the aid of some
regimentation, many expressive functions of the truth predicate can actually be
performed using truth principles that are consistent in classical logic. Finally, we
suggest a reconceptualisation of deflationism, according to which the principles that
govern the use of the truth predicate in natural language are largely irrelevant for the
question of what formal theory of truth we should adopt. Many philosophers think
that the paradoxes pose a special problem for deflationists; we will argue, on the
contrary, that deflationists are in a much better position to deal with the paradoxes
than their opponents.
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1 The Problem

Many philosophers maintain that the truth predicate can serve certain expressive
roles of a quasi-logical nature, the most salient of which is to enable us to express
so-called ‘infinite conjunctions’. These are sentences of the form

All Ps are true. (1)

where P is a predicate of the language that applies to infinitely many sentences.’
They are considered to express the infinitely many Ps at once or, as is often said,
their infinite conjunction, without turning to infinitary or higher-order resources (cf.
Quine 1970; Leeds 1978; Putnam 1978; Gupta 1993; Horwich 1998; Field 2007).
(The phrase ‘expressing infinite conjunctions’ is taken from the literature—e.g.
Putnam 1978; Gupta 1993—and of course in need of clarification. For the moment,
the reader should take it as a technical term.) We call this function of the truth
predicate the ‘infinite-conjunction’ function.

As Quine (1970, chap. 1) points out, the universal quantifier serves a similar
purpose. If the infinitely many sentences we want to express differ in one or several
individual terms—e.g. “0 is divisible by 27, “2 is divisible by 27, “4 is divisible by
27, etc.—and the class of objects these terms denote is definable in the language by
a suitable predicate (e.g. “is an even number”), we can express the infinitely many
sentences at once just generalising over those terms using this predicate—e.g.
uttering “All even numbers are divisible by 2”. However, if the infinitely many
sentences we want to express don’t differ just in one or more individual terms, this
strategy is no longer available. In that case, the truth predicate, interacting with the
universal quantifier, might do the job, as long as the sentences at issue share a
property definable in the language. For instance, we can assert all theorems of
arithmetic at once via “All theorems of arithmetic are true” although they don’t
even share their logical form, with the aid of the truth predicate. In Quine’s
(1970, p. 11) own words,

Where the truth predicate has its utility is in just those places where, though
still concerned with reality, we are impelled by certain technical complications
to mention sentences. [...] The important places of this kind are places where
we are seeking generality, and seeking it along certain oblique planes that we
cannot sweep out by generalizing over objects.

Truth theorists also point at other functions of the truth predicate, of a similar
nature, such as its epistemic and rhetoric functions. For example, even if there are
just finitely many sentences we want to express, we can use the truth predicate to
avoid their explicit articulation—either because we don’t know them, or we want to
save space or time, or because it is conversationally inappropriate, and so forth. This
can be done as above, simply by identifying a predicate they all and only satisfy, or,

! Horwich (1998) settles on propositions rather than sentences as truth bearers. For the purposes of this
paper, it is irrelevant whether we choose sentences or propositions, since we only deal with eternal
sentences in the sense of Quine (1970). If the readers are more inclined towards the latter option, they can
understand sentences of the form (1) and the like as ascribing truth to the propositions expressed by the
sentences that satisfy predicate P, instead of the sentences themselves.
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if we’re talking about a single sentence, also by choosing a non-quotational name or
definite description of it. For example, we can express all four of Maxwell’s
equations at once uttering

Maxwell’s equations are true.
or Godel’s first incompleteness theorem via
Godel’s first incompleteness theorem is true.

without articulating these statements.

Nonetheless, the logical interest of truth, with which we are concerned in this
paper, lies in its ability to express infinite sets of sentences.” Unlike the previous
examples, when the Ps are infinitely many (and don’t differ just in one or several
terms) there’s actually no other way to express them all at once—at least not in the
most commonly used languages, i.e. first-order languages. Thus, as Quine (1970, p.
12) famously said:

We may affirm the single sentence by just uttering it, unaided by quotation or
by the truth predicate; but if we want to affirm some infinite lot of sentences
then the truth predicate has its use.

Among the logical functions of the truth predicate, there is also the dual to the
infinite-conjunction function, that is, that of expressing infinite disjunctions via
sentences of the form “Some Ps are true”. We will return to them later.

It is worth noticing that the distinction between the epistemic and the non-
epistemic function of truth cuts across the distinction between the logical (more
appropriate: infinitary) and the non-logical (finitary) function of truth. One can
employ the logical function of truth with or without employing its epistemic
function at the same time, and one can employ some non-logical function of truth
with or without employing its epistemic function at the same time. For example,
when we say that all sentences of the form ‘If p then p’ are true, we make use of the
infinitary function of truth (arguably) without appealing to its epistemic function,
while when we say that all theorems of arithmetic are true, we employ both
functions simultaneously (because the set of arithmetical theorems is undecidable).
On the other hand, if we express Godel’s first incompleteness theorem using the
truth predicate, this might be due to the fact that we cannot remember its exact
formulation or because we simply want to save time.

The logical (i.e. infinitary) function of truth encourages the addition of a truth
predicate to our logical systems, the formulation of ‘logics’ of truth, in order to
increase our expressive power. More precisely, it prompts the search of formal
theories of truth, since some syntax theory in the base is needed: truth is in a sense a
subject-specific predicate, as it applies only to sentences (or other objects such as
propositions or Godel codes of sentences), and requires their existence as objects
(plus some further assumptions about them). Hence, the infinitary function of truth

2 Moreover, note that singular truth ascriptions can simply be reduced to general truth ascriptions. E.g.
“Godel’s first incompleteness theorem is true.” can be replaced by “For all x, if x = Gddel’s first
incompleteness theorem, then x is true”.
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is not of a purely logical nature, but rather logico-linguistic or quasi-logical. We
cannot expect our principles governing truth to hold in all models whatsoever but
only in those where some syntactic principles hold.

Let £ be a first-order language, the ‘base’ language, and let £ be the result of
expanding £ with a monadic predicate symbol 7 for truth. £ contains a term "¢
denoting ¢ (perhaps via some coding) for each expression ¢ of L. Let £ be our
base theory. We assume X is able to prove elementary facts about the syntax of Lr,
such as e.g. that the concatenation of ¥, A, and y is A z.> A theory of truth is then
any (recursively enumerable) subset of L7 that contains the base theory X and is
closed under first-order (not necessarily classical) logic. A vast number of such
theories has been provided so far with the purpose of allowing the truth predicate to
fulfil its logico-expressive roles, the infinite-conjunction function being one of
them.* To properly evaluate what systems are adequate for this latter purpose we
would need to answer the following question:

Question 1 Let ¢(x) be a predicate that applies only to sentences of L7. What
axioms or rules do we need to postulate for 7 so that

Vx(p(x) — Tx) (InfC)

expresses all the ¢s?

A similar question can be raised regarding infinite disjunctions. We will briefly
say something about them in Sect. 6, but for the moment we will only be concerned
with infinite conjunctions, which we consider as more important.

Note that our question does not concern what principles or rules govern the use of
the truth predicate in natural language, nor what principles ensure its epistemic and
rhetoric functions, but what features of truth account for its infinite-conjunction
function in a formal setting.” From a deflationist point of view, this is a pressing
question: if, as e.g. Horwich (1998, p. 2) argues, “the truth predicate exists solely
for the sake of a certain logical need” (our italics), consisting (among others) in
expressing infinite conjunctions, what matters only is the question what truth
principles are necessary and sufficient to fulfil this logical need when we devise
formal systems or regiment natural language.

The usual answer to this question is that we need a principle governing 7 that
establishes the equivalence between a sentence ty and its truth predication 777, this
is, a transparency or disquotational principle (cf. Horwich 1998; Halbach 1999;
Priest 2006; Field 2008; Beall 2009; Cobreros et al. 2013). The T-schema, given by
all the instances of

3 In the literature on axiomatic theories of truth, one usually takes Peano or Robinson arithmetic as
syntax theory, but sometimes also stronger theories such as Zermelo—Fraenkel set theory are considered
(e.g. Fujimoto 2012). We assume that X interprets at least some decent amount of arithmetic.

4 See Halbach (2011), Field (2008), Beall (2009), and Ripley (2015) for a compendium.

3 Perhaps not all natural language features are needed. Perhaps we even have to add principles that are
not found in natural language.
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T — (T-schema)

(called ‘T-biconditionals’), where  is a sentence of L7, is probably the most
popular, but there are also others, such as the following pair of inference rules:

U Ty (T-Intro)

TY -y (T-Elim)

T-Intro and T-Elim allow us to infer 77" from y and vice versa even in hypo-
thetical contexts, unlike the rules NEC and CONEC (cf. Halbach 2011), that allow
the inference from i to Ty" and vice versa only when we have a proof of ¥ and
Ty, respectively.®

At this point, of course, a notorious problem arises. Given our syntactic
background assumptions, we are able (e.g. via diagonalisation) to formulate liar
sentences, sentences that assert their own untruth. These are sentences 4 for which
we can prove

;u ad _‘Tl—i—l

Instantiating the T-schema to 4, we reach a contradiction in classical logic, known
as the ‘liar paradox’. This leaves us roughly with two options: we either (1) reject
certain instances of our transparency principles, or (2) reject certain classical (meta-
)rules of inference. Horwich (1998, pp. 41-42), for example, opts for the first route,
remarking that “this restriction need not be severe. It need have no bearing on the
propositions of science—the vast majority of which do not themselves involve the
concept of truth.” However, in his influential book, Field (2008) argues that,
without full transparency, the expressive function of the truth predicate is sub-
stantially impaired (see especially chapters 7, 8 and 13; we will consider these
objections in Sects. 4 and 7 of the present paper).

Nowadays, many philosophers have chosen the second route and adopted some
non-classical logic. These logics can be divided into structural and substructural.
Roughly, the former can in turn be paracomplete, where the law of excluded middle
and the rule of introduction of the conditional fail, or paraconsistent, where
inferences such as Ex Falso Quodlibet and Disjunctive Syllogism are invalid.’
Typically, in paracomplete truth systems the liar sentence is neither true nor false
(e.g. Field 2008), while in paraconsistent ones it’s regarded as both true and false
(e.g. Beall 2009; Priest 2006). On the other hand, substructural approaches impose
restrictions on structural properties of the very notion of logical consequence, such
as transitivity and contraction (e.g. Cobreros et al. 2013).

S In the presence of the deduction theorem, T-Intro and T-Elim taken together imply the T-schema. If
Modus Ponens is valid in the theory, the T-schema implies both rules. Thus, while in classical logic the
schema and the rules are equivalent to each other, that is not the case in every non-classical system, and
there could be reasons to prefer one disquotational principle over the other, as the case may be.

7 See Priest (2008) for an introduction to structural non-classical logics.

8 See Restall (2000) for an introduction to substructural logics.
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These all seem to be quite drastic moves, so one might reasonably ask what their
justification is: Do transparency principles really live up to their promises? In
particular, is full transparency necessary (and sufficient) for (InfC) to express all the
@s? If not, what other rules or principles must 7 satisfy to let (InfC) express all the
®s? And what inferences must the background logic validate? (Remember that, at
this moment, we are not interested in capturing the notion of truth in natural
language, but in the question of what features of truth account for its infinite-
conjunction function in a formal setting.) Thus, any answer to Question 1
presupposes (at least partially) an answer to the following:

Question 2 What does it mean for (InfC) to express all the ¢s?

In the next section, we will look at two answers to Question 2. The first one,
which we may call the ‘equivalence’ account, requires that (InfC) and the ¢s are
equivalent to each other (in some suitable sense). The second one, which goes back
to Halbach (1999) and may be dubbed the ‘finite-axiomatisation’ account, requires
that (InfC) finitely axiomatises the consequences of the ¢s relative to the truth
theory. Both accounts can be seen as intended arguments that transparency
principles are indeed needed for (InfC) to express all the ¢s in a formal setting.
However, we will argue that none of the them provides a satisfactory answer to
Question 2 and moreover, so far as they are correct, they support only the adoption
of a principle much weaker than full transparency—a principle that is consistent in
classical logic. In Sects. 3 and 4 we show that this principle, together with some
regimentation of our truth talk, is sufficient for many (though probably not all) of
the quasi-logical functions of the truth predicate. In Sect. 5 we briefly consider the
case of infinite disjunctions.

A word of caution. We will not argue that full transparency is not needed for the
logical (infinitary) functions of truth. Nor will we argue against the use of non-
classical theories of truth. Rather, our aim is to point out that so far there are no
convincing arguments that transparency is needed for the logical functions of truth,
and that (with a little bit of regimentation) many of the functions of truth can in fact
be performed using principles much weaker than transparency. This can be seen
(a) as a plea for a more thorough investigation of what the several functions of truth
consist of and what principles each of them requires, and (b) as a challenge for
proponents of non-classical theories to provide arguments for transparency.

In Sect. 6 we argue that, from a deflationist point of view, the principles that
govern the use of the truth predicate in natural language are to a certain extent
irrelevant for the function of truth in a (semi-)formal setting and, moreover, that the
paradoxes do not pose a special problem for deflationism. In Sect. 7 we consider a
possible problem to our approach. In Sect. 8 we conclude by summarising our
findings. In the Appendix, we prove some of the more technical claims made in this

paper.

2 The Equivalence and the Finite-Axiomatisation Accounts

Clearly, transparency guarantees that, for instance,
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Godel’s first incompleteness theorem is true.

expresses Godel’s first incompleteness result, for it establishes an equivalence
between these two sentences (given the additional premise that ‘Godel’s first
incompleteness result’ refers to Godel’s first incompleteness result). Analogously,
transparency suffices to conclude that

Maxwell’s equations are true.

is equivalent to the conjunction of Maxwell’s equations, and therefore expresses
them (given the additional premise that ‘Maxwell’s equations’ applies to Maxwell’s
equations). These examples seem to suggest that (1) some transparency principle is
needed to secure the equivalence between a set of (possibly infinitely many) sen-
tences we want to express and the truth ascription we use for this purpose, and (2)
this equivalence is precisely what it means for a truth ascription to express some
given set of sentences. This is what we call the ‘equivalence’ account. Some version
of this account seems to be proposed in e.g. Putnam (1978, p. 15), Gupta (1993, pp.
60-61), Horwich (1998, p. 3).

The question of course is what ‘equivalence’ amounts to here. Perhaps the most
natural interpretation of ‘equivalence’ is mutual implication in some suitable sense.
That is, the sentence

Vx(p(x) — Tx) (InfC)

implies and is implied (in some suitable sense) by the set of all objects falling under
the predicate ¢(x) or, better, the set of all its ‘instances’, that is the set of all
sentences of the form

(W) =¥,

which has the advantage that we don’t need to know what the ¢@s are.

It is immediately clear then that ‘mutual implication’ cannot be taken in the usual
first-order sense. As is well known, universally quantified claims are stronger than
the collection of their instances. While it is in principle possible to infer all
sentences of the form ¢("Y") — ¥ from (InfC) given a transparency principle, the
other direction of the implication is blocked by compactness, unless some finite
subset of {@(Y7) — ¥ : € Ly} already implies (InfC).?

This problem is of course reminiscent of an old, well-known problem: the
T-biconditionals are too weak to prove any non-trivial generalisations about truth,
as Tarski (1935) has already noted. In particular, as Halbach (1999, proposition 1)
has shown (for the typed case), whenever there is a model in which ¢(x) applies to
infinitely many objects, then Vx(¢(x) — Tx) cannot be derived using T-bicondi-
tionals as the only truth principles, not even in the presence of induction principles.

° There are further intuitive differences between expressions like (InfC) and real infinite conjunctions. In
some cases, the former have more expressive power than the latter. For example, turning to (InfC) we can
express all instances of any schema in the language at once, i.e. the @s, including the instance given by
(InfC) itself; whilst the well-foundedness of a well-formed formula in infinitary languages precludes this,
as formulae are not allowed to contain themselves as subformulae.
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Could adopting some o-rule-like rule be a solution?'? If the e-rule held, together
with a principle of disquotation, the set of all sentences of the form ¢ (") — ¥
would imply (InfC). Unfortunately, we can never actually apply the w-rule (not
even constructive versions, for that matter).11 We would have to check infinitely
many premisses before drawing a conclusion. Therefore, while in theory the w-rule
appears to lead to the desired equivalence, it is absolutely useless in practice; it
makes no difference in the inferences we can actually draw.'> One may object that
while the e-rule is indeed useless from a practical point of view, it does not follow
that one cannot use it to explicate what it means for a generalisation to express an
infinite set of sentences. But in that case the equivalence in question would no
longer be ‘fixed’ by our use of language.

Moreover, if we could apply the w-rule, the truth predicate would lose a lot of its
interest, which lies in its ability to finitely express infinite sets of sentences. If the
possibility of reasoning with infinitely many premisses were already given, the need
for such a device would diminish considerably. Its interest, as we mentioned at the
beginning of this paper, rests on the ubiquity of finitary logics, both in science and
in philosophy. While there still could be reasons for having a truth predicate in some
infinitary logic, these would not be the same reasons that originally prompted our
search for a formal theory of truth. Thus, in the remainder of this paper we will
restrict our attention to finitary logics.

It is of no help either to try to cash out the equivalence in terms of some intended
model. Such a proposal would be something along the following lines: instead of
requiring that the truth principles we adopt guarantee the mutual implication
between (InfC) and {¢(Y") — ¥ : y € L7} in every model of the base theory, all
that is needed is that this mutual implication holds in all extensions of the standard
model of the base language £ to the whole L7 satisfying our truth principles. For
simplicity, let us focus on the typed case, where disquotation is restricted to
sentences of £ (without the truth predicate). Let M be £’s intended model. In M,
the interpretation of " is (the code of)  for every sentence ¥ in L. Let ¢(x) be a
predicate of £ whose extension in M is the set ® C £, and let (M, S) extend M to
L7, assigning S to T as its extension. Then, according to this proposal, a truth
ascription of the form (InfC) expresses the @s if and only if for every model (M, S)
of Lr satisfying the ‘right’ truth principles, the following equivalence holds:

(M, S) E Vx(p(x) — Tx) if and only if, forall € ® M.

The problem with this proposal is that it can only guarantee the aforementioned
equivalence between (InfC) and the set of ¢s under the intended interpretation of
the non-logical vocabulary of £. But this is obviously just the semantic version of
the previous proposal involving the w-rule, which we just rejected. The set of all

10" g-rule-like rules allow us to infer universally quantified statements from the set of all their instances.

Recall that such rules are semantically valid e.g. in second-order arithmetic (with standard semantics).

' Constructive versions of the w-rule impose conditions on the infinite set of premises to which the rule
is applied, e.g. that the set of premises is recursive (computable) or that there is a ‘uniform way’ of
proving them, as in Baker et al. (1992).

12 Raatikainen (2005) makes a similar point in a slightly different context.
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sentences true in some intended model will be highly complicated. We are after
rules for reasoning, and truth in the intended model cannot be captured by them.

Moreover, given the quasi-logical nature of the function of the truth predicate we
want to capture, the original aim of this paper was to formulate ‘logics’ of truth,
theories that apply across the board—the truth predicate ought to fulfil its function
regardless of the interpretation of the base language we have in mind (as long as
these interpretations satisfy the axioms of the syntax theory). In order to see why
this constraint is important, suppose for example that our base language L is the
language of set theory. It is doubtful, to say the least, that we have a clear grasp
(concept) of the intended model of set theory. Even more, current trends in the
philosophy of mathematics suggests that there might not be such a thing as ‘the’
intended model of set theory (e.g. the multiverse view of sets).

Let us therefore turn to an alternative account of what it means for (InfC) to
express all the ¢s, which is due to Halbach (1999). In fact, it is the only formally
worked out answer to Question 2 we are aware of, and it seems to avoid the problem
posed by the compactness of first-order logic. According to this proposal, (InfC) and
the set of conditionals of the form ¢(™)') — i have to be equivalent only with
respect to their consequences in the language of the @s. In effect, this condition
requires that (InfC) finitely axiomatises the set of conditionals relative to the truth
theory. Thus we refer to Halbach’s account as the ‘finite-axiomatisation’ account.
That (InfC) finitely axiomatises the conditionals ¢("") — W is prima facie a
plausible explication of what it means for (InfC) to express them.

To avoid paradoxes and simplify the matter, Halbach restricts his attention to
sentences that do not contain the truth predicate. He shows that the T-biconditionals
for these sentences are sufficient to guarantee that (InfC) finitely axiomatises the set
of the conditionals ¢(7)') — ¥, in the following sense. Recall that £ is the T-free
fragment of Lr.

Proposition 3 (Halbach) Let I' C Ly extend a syntax theory ¥ C L with the T-
schema, (or T-Intro and T-Elim) restricted to L, and let ¢(x) be a predicate of
sentences of L. Then T+ {o("Y") — ¢y : ¥ € L} and T + Vx(p(x) — Tx) have
exactly the same T-free consequences (in classical logic).13

Halbach (2011, pp. 59-60) comments on this result as follows:

[This proposition] shows that infinite generalizations understood as schemata
of the form ¢()") —  can be expressed by a single sentence in the presence
of the disquotation sentences. In a sense the infinitely many sentences
@("Y") —  have been replaced by the single sentence Vx(¢(x) — Tx) and the
infinitely many disquotation sentences.

The fact that we have replaced one infinite set of sentences (the sentences of the
form ¢("') — ) with another (the T-biconditionals) does not undermine
Halbach’s proposal. In his own words:

13 Cf. Halbach (1999, proposition 2). For further discussion on this result see Heck (2004) and Kemp
(2005). Note: when we say “let ¢(x) be a predicate of sentences of £”, we mean that the syntax theory
proves (the formalisation of) the claim “For all x, if ¢(x) then x is a sentence of L.

@ Springer



L. Picollo, T. Schindler

I think it would be coherent to claim that the disquotation sentences are in the
‘background’ in very much the same way as rules of inferences (such as
modus ponens) are in the background, as logic cannot be axiomatized without
axiom schemata or rules with infinitely many instances. (Halbach 2011, pp.
60-61)

Interestingly, Halbach’s account does not justify the adoption of transparency
principles but only of a much weaker principle, namely T-Elim or, alternatively, the
left-to-right direction of the T-schema, this is,

T — (T-Out)

For the following proposition shows that Halbach’s result does not rely on the
‘introduction’ half of transparency principles at all. In other words,

Y- Ty (T - In)
or T-Intro, does not play any role in the proof of Proposition 3.

Proposition 4 Let I' C L extend a syntax theory X C L with T-Out (or T-Elim)
restricted to L, and let ¢(x) be a predicate of sentences of L. Then X + {o("y") —
Yy eLl} and T +Vx(p(x) — Tx) have the same T-free consequences (in
classical logic).

Proof Obviously, if y € £ is a consequence of I' + Vx(¢(x) — Tx), then y is also
a consequence of I'+T-In+Vx(¢p(x) — Tx), the result of extending X with the full
T-schema for sentences of L. Thus, by Halbach’s result, y is also a consequence of
S+{p(Y") =y :y €L} Conversely, let y€ L be a consequence of
E+{p(") — Y : Y €L} By compactness, only finitely many sentences in
{o("Y") — ¥ : y € L} have been used in its derivation. Clearly, all of them follow
from Vx(¢(x) — Tx) plus the relevant instances of T-Out. O

Thus, if the finite-axiomatisation account gives the right answer to Question 2, it
does not support the adoption of introduction principles for truth, but only for
elimination principles.

Halbach’s proposal is formulated for the typed case only, but the truth predicate,
as a device for infinite conjunctions, is there to express any infinite set of sentences
definable in the language, not just the ones that only contain 7-free sentences. For
example, if we assert that all sentences of the form y — s are true, then we want to
include all sentences of our language in the range of our quantifiers, not just those
from the base language. Unfortunately, it is not clear how to extend the finite-
axiomatisation criterion to the type-free case. If (InfC) and the set of its ‘instances’
were to have the same consequences in the language with the truth predicate, then
the latter would have to imply the former, since (InfC) is a consequence of itself.
But, as before, in finitary languages in most cases the set of consequences of
{o("W") = ¥ : ¥ € L7} is just a proper subset of (InfC)’s.

Remark  Proposition 3 shows how to axiomatise the infinite set {@(Y") — V :
W € L} by the sentence Vx(¢(x) — Tx), using the T-biconditionals for sentences of
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L in the background. In their well-known paper, Craig and Vaught (1958) have
shown something stronger. Assume that I" is a theory in the language £ that has
only infinite models. Then, if I" is axiomatisable, then I' is finitely axiomatisable
using additional predicates. Suppose, for example, that I" is Peano arithmetic. Let
'™ be the theory consisting of (a) some finitely axiomatised syntax theory,14 (b) the
compositional truth axioms for the language of pa (which are also finitely many),
and (c) the sentence that all theorems of Peano arithmetic are true. Then I'* is a
finite axiomatisation of pa. The compositional truth axioms are a formalisation of
Tarski’s inductive truth definition, such as

VxVy(TxAy < Tx A Ty)

or

Vx(T—x « —Tx)

where A is a function symbol for the function that maps (the code of) two formulae
to (the code of) their conjunction, and — is a function symbol for the function that

maps (the code of) a formula to the (code of) its negation. Now, suppose that s is a
theorem of pa. Then I'* knows this by (a). By (c), I'* proves TT/". Now, using
induction in the metalanguage, one derives the T-biconditionals from the compo-
sitional axioms. Hence, one can infer y from TT)'. Essentially, the argument
requires a finite axiomatisation of the infinitely many T-biconditionals—this is the
job of the compositional axioms. However, it is clear that the argument does not
require the full T-biconditionals, but only their elimination half. Since the com-
positional clauses were only needed for a finite axiomatisation of the T-bicondi-
tionals, it is clear that the argument does not rely on them either. The Craig—Vaught
result does not require the full compositional truth axioms, but only their left-to-
right direction—we only need to finitely axiomatise T-Out.

3 The Elimination Property

We do not want to suggest that the finite-axiomatisation account gives the right
answer to Question 2, but it is clear that it captures something important about the
infinite-conjunction function. We have remarked that the finite-axiomatisation
account is not easily extended to the type-free case. However, while in general

Vx(p(x) — Tx) (InfC)

and the set of conditionals of the form ¢(")") —  cannot have exactly the same
consequences, we may expect that all consequences that can be deduced from the
conditionals are deducible from (InfC). If that were the case, (InfC) could still be

14 If the language of the syntax theory overlaps with the language of the theory to be finitely axiomatised,
we need to formulate the syntax theory in a copy of the language, so that I'* remains conservative over I'.
For a definition of conservativity, see footnote 15.
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said to finitely axiomatise the conditionals in a broader sense. In Horwich’s
(1998, p. 124) own words, “[the infinite-conjunction] function of truth requires
merely that the generalizations permit us to derive the statements to be
generalized”.

We say of a truth predicate satisfying these requirements that it has the
elimination property. Formally, the inference from Vx(¢(x) — Tx) and (") to ¥
should hold, this is:

Vx(p(x) = Tx), ("Y' Fy

If the deduction theorem holds for |-, the elimination property ensures that

Vx(p(x) — Tx) Fo(Y7) — (2)

Thus, if - is transitive, everything deducible from the infinitely many sentences
@("") — y is deducible from Vx(¢(x) — Tx).

As a consequence, the following holds in classical logic: if the truth theory has
the elimination property and is also conservative over its base theory,'” then the
generalisation will have exactly the same T7-free consequences as the set
{o(Y") — ¥ :y € L}. Thus, given conservativity, the elimination property
implies finite axiomatisability in the sense of Halbach as a special case.

While one may doubt Horwich’s thesis that the infinite conjunction function
“merely” requires the elimination property, it is clear that the elimination property
is highly desirable for a logic of truth. If you have committed yourself to “All
theorems of arithmetic are true” and “2 + 2 = 4” is a theorem of arithmetic, then
you have committed yourself to “2 + 2 =47,

As the reader will anticipate, in order to ensure the elimination property only one
half of a disquotational principle is needed, namely, the ‘elimination’ half.

Observation 5 Let I' C Ly be a truth theory where T-Out or T-Elim hold,
formulated over a logic in which the rules of Universal Instantiation and Modus
Ponens are valid. Then T has the elimination property in I'.

The proof of this observation is trivial. A consequence of it is that in such logics
T-Out or, equivalently, T-Elim, is sufficient for the elimination property. This
includes classical logic, where both T-Out and T-Elim are not only consistent but
also conservative over the usual syntax theories. Thus, to have a truth predicate with
the elimination property there is no need to weaken classical logic.

Under fairly general circumstances, T-Elim and T-Out are not only sufficient but
also necessary conditions for granting 7T the elimination property.

Observation 6 Let I' C L7 be a truth theory formulated over a logic where
identity behaves classically,'® and the usual rules of introduction of the conditional
and the universal quantifier are valid. If I has the elimination property, then T-Elim
and T-Out hold in T'.

15 A theory of truth T is conservative over its base theory X if and only if for every 7-free sentence v, if
I proves y then so does Z.

16 This is, the inference from s = ¢ and ¢(s) to ¢(¢) holds for every formula ¢(x) and pair of terms s, f.
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Proof Assume TT)" and that x = T". By the laws of identity, we get that Tx. By
the introduction rules for the conditional and the universal quantifier, we know that
Vx(x = "y — Tx). Thus, the elimination property together with the fact that W' =
My gives us Y. A further application of the introduction of the conditional delivers
T-Out. O

It is worth noticing that certain non-classical truth theories in which transparency
principles hold unrestrictedly do not have the elimination property. To start with a
simple example, consider the theory that results from adding a transparency
principle to the logic of paradox rp (cf. Priest 2006) formulated in £ plus some
syntax theory. As is well known, Lp doesn’t satisfy Modus Ponens, so observation 5
does not apply. One can show there is no way of guaranteeing the inference from
(InfC) to each conditional of the form ¢ (") — ¥ .

Observation 7 Let I' C L7 be a truth theory formulated over Lp that extends the
syntax theory X with the unrestricted T-schema and rules T-Intro and T-Elim. Then,
I" does not have the elimination property.'’

Of course, this should not come as a surprise. With the notable exception of Beall
(2013), the failure of such a basic and intuitive rule as Modus Ponens in Lp led many
paraconsistent-minded philosophers (e.g. Priest 2006, chap. 6; Beall 2009) to search
for a ‘suitable conditional’, this is, a conditional-like connective that could be added
to rp, satisfying not only Modus Ponens but also other prima facie desirable
principles. While many of these new theories grant the truth predicate the
elimination property, some of them fail to satisfy the contrapositive of it, which
seems equally desirable. For instance, Priest (2006) adopts a non-contraposable
conditional with which he formulates the T-schema. Since the new conditional
satisfies Modus Ponens, Modus Tollens no longer holds, and therefore the inference

(Y, Y F =Vx(p(x) — Tx)

isn’t generally valid. Similarly, Kripke’s fixed-point theory (Kripke 1975) with the
Weak Kleene scheme fails to satisfy this rule of inference.'®

These observations casts severe doubt on the adequacy of the theories at issue as
systems intended to provide a device for expressing infinite conjunctions.
Presumably, the original point of weakening classical logic was to accommodate
a disquotational principle avoiding triviality, to allow the truth predicate to express
infinite conjunctions—perhaps among other things. But in the cases considered, the
weakening is so severe that the logic can no longer guarantee the elimination
property. Of course, this is not an argument against the use of non-classical truth
theories per se. There are many non-classical truth theories that satisfy both the
elimination property and its contrapositive. What we would like to highlight is that
transparency does not ensure the expression of infinite conjunctions by itself.

There seems to be an obvious reason why a truth predicate governed by T-Out
alone is not enough. Namely, there are predicates satisfying T-Out, such as x # x,

17" A proof can be found in the Appendix.

18 A proof of these observations can be found in the Appendix as well.
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that are definable in every (classical) first-order theory. However, there is an
important difference between (a) being able to define a predicate satisfying T-Out
and (b) adding a primitive predicate governed by T-Out. While a primitive truth
predicate governed by T-Out as its sole axiom scheme can be interpreted by the
empty set, it is consistent to assume that its extension is non-empty. This is not
possible for the predicate x # x. Therefore, a primitive truth predicate governed by
T-Out enables us to consistently assume, in the course of a hypothetical argument,
that e.g. “For all x(if x is a sentence of the form ‘P V =P’ then x is true”. Obviously,
this is not possible if ‘x is true’ is defined as x # x. In this sense, a truth predicate
governed by T-Out is not definable in or reducible to the base theory.

Nevertheless, we would not want to suggest that T-Out, or T-Elim, alone
qualifies as a suitable truth theory. Firstly, we do not believe that the finite-
axiomatisation account gives the correct answer to Question 2. Secondly, if we want
to be able to prove certain generalisations, such as “For all x, if x is a sentence of the
form ‘P — P’, then x is true”, then this will require principles beyond T-Out.
Thirdly, in the next section we will present other possible reasons to adopt
additional truth principles.

4 What About Introduction Principles?

We have argued that the elimination property is an important aspect of the infinite-
conjunction function. (We have refrained, however, from identifying the two.) One
might now wonder whether introduction principles, such as T-In or T-Intro,
contribute anything to the utility of truth. Does the infinite-conjunction function
presuppose them? As long as we don’t have a sound and complete account of what
expressing infinite conjunctions means, this question cannot be properly answered.
What is clear, however, is that the accounts considered so far don’t support the need
of adopting such principles. Therefore, it might be instructive to consider arguments
of a different kind in favour of the adoption of introduction principles.

We have repeatedly noted that introduction principles for truth do not suffice to
introduce sentences of the form

Vx(p(x) — Tx) (InfC)

if the ¢s are infinitely many. However, suppose there are only finitely many sen-
tences falling under ¢(x), say ¥, ..., ¥,. What the introduction principles for truth
would allow us to do is to derive the generalisation (InfC) from v, ..., given the
premise that ¢(x) applies exactly to ,, ..., x//n.19 Does this give us reasons to adopt
introduction principles? We don’t think so. Note that in the envisaged case, the
introduction of the generalisation (InfC) is logically dispensable. If we wish to
assert finitely many sentences V/, . . ., ,,, we can simply assert their conjunction. So
this does not give us any logical reasons to adopt introduction principles for truth—
it does not concern the logical (i.e. infinitary) function of truth that we are interested
in.

19 More precisely, the assumption is Vx(@(x) < x =Y,V ---Vx =")7).
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Let us therefore have a look at some other arguments for introduction principles
that can be found in the literature. Consider the following scenario by Field
(2008, p. 210) where a sentence of the form (InfC) occurs in the antecedent of a
conditional. Suppose you do not remember exactly what Jones said, but you believe
that it entails a certain proposition . Thus, in order to express your belief you might
say “If everything that Jones said is true then /", that is,

Vx(x(x) = Tx) — ¢ (3)

where y(x) applies exactly to the sentences uttered by Jones. Then, relative to the
assumption that what Jones said is exactly ¥/, ..., ¥,, we want the above to imply

i N AN = 4)

As Field notices, to derive (4) from (3) and the information that ¥/, ..., ¥, are the
only s, ¥; must entail 77y;", this is, an introduction rule is needed. Since elimi-
nation rules are also required, Field concludes, classical logic must be abandoned.

Again, in this case the use of the truth predicate has no particular logical interest.
It isn’t logically indispensable, since the sentences we want to express are finitely
many, namely, ¥, ..., ,. Thus, we believe it does not give us enough reasons for
adopting introduction principles. What is more, there is an alternative and easy way
to deal with the Jones case that only involves an elimination principle. For we can
express (4) with a simple generalisation of the form (InfC), instead of (3). Let ¢(x)
be the predicate ‘x is the unique sentence obtained by concatenating the conjunction
of the ys with ‘— /. Then, we can choose (InfC) to express (4): by Observation 5,
in any classical T-Out or T-Elim theory (that contains enough syntax theory to prove
basic facts about concatenation) we can derive the latter from the former, relative to
the assumption that what Jones said is exactly y,,..., .

The strategy works for infinite cases as well. Consider the claim that every truth
is knowable, formally:

Vx(Tx — oKx) (5)

where Kx means that x is known and ¢ is the possibility operator. Certainly, we want
the above to imply all sentences of the form

Y — oKy (6)

Again, (5) won’t give us all instances of (6) unless we have some introduction
principle at our disposal. But we can simply apply the same trick as before and use
another generalisation in order to capture all instances of (6), namely, “All instances
of (6) are true”. Given an elimination principle (plus some syntax theory), the latter
will yield all instances of (6), as desired.

More generally, assume we want to capture all instances of a schema *.. .. ..
for each sentence { in the language. Instead of replacing i with Tx and then
quantifying over x—i.e. instead of Vx...Tx...—we could say that every instance of
... (where ¥ is a sentence) is true, using a formula of the form (InfC). By an

E)
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elimination principle such as T-Out or T-Elim (plus some syntax theory), this will
imply all the statements that we initially wanted to capture.

Again, note that what is at issue here is not to account for e.g. the intuitive
validity of the inference from (5) to (6) (which may hold in natural language), but to
provide a device that allows us to finitely capture the infinitely many instances of (6)
in a (semi-)formal setting. This is what we are interested in in this paper.

We concede that there are some limitations to the above method, and this
suggests that principles beyond T-Out might be needed for a satisfactory formal
theory of truth. For example, if we combine (5) with the claim that all theorems of
Peano arithmetic are true, we can deduce that all theorems of Peano arithmetic are
knowable, i.e.

Vx(Bew(x) — ©oKx) (7)

where Bew(x) is a provability predicate for Peano arithmetic. On the other hand, if
we combine “All instances of (6) are true” with the claim that all theorems of
arithmetic are true, we can only deduce the instances of (7), but not (7) itself.

Let us have a look at another example. Consider for a moment the standard
definition of knowledge. An agent is said to know a sentence just in case she
believes it, she is justified in doing so, and, moreover, the sentence is true (and some
Gettier condition is satisfied). Formally, epistemologists assert™’

Vx(K(x) <> C(x) A Tx) (8)
which is intended to capture the infinitely many instances of the schema
K(Y") < C(Y) Ay ©)

where C(x) resumes all conditions for knowledge except truth. As before, we can
capture all instances of (9) by saying “All instances of (9) are true”, instead of using
(8). As a definition, however, this has its shortcomings. The predicate K is no longer
eliminable, and the definition does not satisfy the condition of being non-creative.

Nonetheless, we believe one should carefully weight the costs of this against
introducing a non-classical truth predicate into the definition of knowledge. The
non-classicality of truth can be ‘contagious’: it might spread out and turn knowledge
into a non-classical predicate too. For example, if the law of excluded middle is
rejected for some sentences that contain semantic vocabulary then this will affect
the knowledge predicate too. In the envisaged case, presumably it won’t follow that
we either know or don’t know that the liar is true. Prima facie, an analogous point
can be made for any predicate of sentences (or propositions) involving the truth
predicate in its definition.

We have seen that there are good reasons for adopting elimination principles for
truth, whereas we found that the arguments for adopting introduction principles are
not entirely convincing—at least when we only consider the infinite-conjunctions
function. While our findings may not be conclusive, they present a challenge for all

20 A discussion of the Gettier problem with knowledge as a predicate is found in Halbach (2016) (with
references to further literature). Huemer (2005) is also useful.
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those that believe that introduction principles for truth must be part of a logic of
truth.

5 Infinite Disjunctions

Let us now briefly consider sentences of the form “Some Ps are true” or, more
formally,

Ax(p(x) A Tx) (InfD)

which are often said to express infinite disjunctions. We have seen that elimination
principles are highly desirable for a reasonable logic for expressions of the form
“All Ps are true”. Since “Some Ps are true” seems to be dual to “All Ps are true”,
one might think that the former call for introduction principles for truth.

A natural thought is that, at the very least, our principles for truth should allow us
to infer (InfD) from ¢(7") A Y. And this would involve an introduction principle
for truth. However, it is by no means obvious that this inference is indispensable for
the logical function of truth. The reason is that the conclusion is simply a weakening
of the the first sentence. Our interest in the truth predicate does not consist primarily
in the sentences that contain the truth predicate, but in the sets of sentences that we
cannot express without the help of the truth predicate. In the case under
consideration, we already start with the sentence without the truth predicate. What
would be the point of introducing the latter?

However, let us have a look at what expressing an infinite disjunction could
mean. One way to explicate this would be via intended models. According to this
proposal, (InfD) expresses the infinite disjunction of the ¢s if and only if the
following equivalence holds:

(M, S) E 3x(p(x) A Tx) if and only if, for some Y € ® MEY

where M is the intended model of the base language, @ is the extension of ¢ in M,
and S is the extension assigned to the truth predicate. Since we have already rejected
the corresponding account for infinite conjunctions, we need not go into any details
here.

Let us therefore have a look at how Halbach’s finite-axiomatisation account deals
with infinite disjunctions. Recall (a) that a sentence involving the truth predicate
was said to express the infinite conjunction of some sentences if and only if they
have the same 7-free consequences. In order to deal with infinite disjunctions,
Halbach makes the following additional assumptions: (b) that the infinite
disjunction of the ¢@s is equivalent to the infinite conjunction of the negation of
the @s (in the sense that they both have the same consequences in the language £);
(c) that a sentence y involving the truth predicate expresses an infinite disjunction if
and only if -y expresses the negation of the infinite disjunction.

Now consider the infinite disjunction \/{@("¥") Ay : € L}. By assumption
(b), its negation is equivalent to the infinite conjunction A{@(VY") — — : y € L}.
Halbach shows that given a transparency principle for truth, the latter has the same
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T-free consequences as the sentence Vx(¢(x) — —Tx), and is therefore expressed by
the latter, because of (a). Thus, by (c), the negation of that sentence expresses the
infinite disjunction of the @s.

The argument just given relies essentially on the transparency of truth. Does that
mean that we need transparency after all? If our goal is simply to find, for every
predicate ¢, some sentence that expresses the infinite disjunction of the ¢s in the
sense of (c), the answer is ‘No’. For we can find a sentence different from 3x(¢p(x) A
Tx) that does the job. Let us start again with the infinite disjunction
V{e(W") Ay € L}. By assumption (b), its negation is equivalent to
No(W") — =y € L}. By a small modification of our earlier argument
(Proposition 4), this infinite conjunction has the same 7-free consequences as the
sentence Vx(¢(x) — T—x), and is therefore expressed by it, according to (a). Hence,

by (c), the negation of that sentence, i.e. =Vx(@(x) — T—x), expresses the infinite

disjunction of the @s. Moreover, note that our candidate sentence is indeed derivable
from ¢("Y") A Y (given an elimination principle). Thus, if the finite-axiomatisation
account is correct, it does not support the adoption of introduction principles for
infinite disjunctions either.

Now, we do not necessarily want to suggest that the above account gives the
correct explication of infinite disjunctions, and therefore more needs to be said
about this. However, our focus in this paper is on the infinite-conjunction function.
The above should serve to illustrate that even the case of infinite disjunctions does
not necessarily entail the need for introduction principles.

6 Deflationism and the Logical Function of Truth

We have pointed out that if one’s project is to formulate a formal theory of truth for
the sole purpose of having a device that fulfils the quasi-logical functions discussed
above, then what principles govern the use of the truth predicate in natural language
is largely irrelevant. What matters is that the truth predicate is governed by
principles that allow it to perform this function. While we haven’t reached a final
verdict in the previous sections, we hope we have succeeded in challenging the idea
that full transparency is necessary for that. However, it is important to note that even
if transparency principles turned out to play a major role, there are some important
lessons to be drawn concerning deflationism about truth.

Deflationism takes the transparency of truth as its starting point. From it,
deflationists extract mainly two conclusions, a negative and a positive one. The
negative thesis is that truth is conceptually redundant and therefore cannot play a
substantive role in philosophical discourse. The positive thesis is that it can play the
quasi-logical roles that we have talked about in this paper. In fact, this is the sole
reason why we have a truth predicate in our language in the first place, according to
deflationism.

As a consequence, what truth principles deflationists should adopt for their
formal theory of truth, or for their proposed regimentation of natural language,
should depend entirely on their ability to ensure this function. If weaker, stronger or
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simply just principles other than transparency turn out to be necessary and sufficient
to guarantee these functions in a (semi-)formal setting, despite their starting point
deflationists have no reasons to adopt (mere) disquotational principles in their
formal theories. When it comes to devising a formal theory of truth or proposing a
regimentation of our use of the truth predicate, the deflationist has no conceptual
commitment to (mere) transparency.

However, one often finds a focus on disquotation in the literature on deflationism.
To take just one example, Beall and Armour-Garb (2005) describe the T-bicon-
ditionals as “fundamental”, “brute”, “analytic”, “necessary”, “a priori”, and
“explanatorily and conceptually basic”, while the function is only mentioned as an
explanation why a predicate governed by the T-schema is not dispensable. This
focus often translates into the search for formal systems that can accommodate
transparency principles without leading to triviality, as mentioned before. But this
gets things the wrong way round. If deflationism is right and the quasi-logical
function is the sole reason for the existence of the truth predicate in the language,
then the T-biconditionals are not “explanatorily and conceptually basic”. The
function of truth is basic and comes first, while the T-biconditionals are only
relevant if and insofar as they enable the truth predicate to perform that function.”’

What we would like to suggest is that the truth predicate is comparable to a tool.
Coming up with a formal theory of truth is basically an engineering problem; it
requires no conceptual analysis in the traditional sense. There could be several
satisfactory theories of truth and choosing between them would only depend on how
user-friendly and how effective the theories are. In the end, it might also turn out
that truth simply cannot fulfil its intended function unrestrictedly, because of the
paradoxes. This would be disappointing, and place limitations on the expressive
power of our language. But it would not undermine the deflationists’ account of
truth. It is perfectly conceivable that a tool does not live up to all of our
expectations.

One may worry that this reconceptualisation of deflationism deprives deflation-
ism of the reason that made it so attractive for philosophers, namely, that it deflates
the metaphysical puzzle of the nature of truth. But this worry is ungrounded. The
anti-metaphysical stance of deflationism, we believe, does not rest on the idea that
the notion of truth is governed by the T-biconditionals (a claim that may also be
endorsed by non-deflationists), nor does it rest on the claim that the T-biconditionals
are all there is to truth. Instead, we believe that the anti-metaphysical stance of
deflationism derives (or is still derivable) from the idea that the notion of truth is a
quasi-logical device, whose behaviour is governed by axioms or rules that allow it
to perform its intended functions, and that that is all there is to truth. On this picture,
truth is (roughly) on a par with logical connectives like negation or disjunction, and
no more mysterious than them. It may very well be the case that the way in which
the quasi-logical function of truth is implemented in natural language is in fact via
transparency principles. (And it is a very interesting and difficult question how we

2! This is not to say that truth is absolutely indispensable. It is as long as we remain within the limits of
first-order logic, but we may also do with e.g. substitutional quantifiers. A similar point is made in
Azzouni (2005). However, he draws rather different conclusions from it.
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operate in natural language with a notion that, assuming it actually is governed by
transparency principles, is classically inconsistent.) But this does not mean that we
are committed to transparency principles when we devise a formal language or
propose a regimentation of natural language that is suitable for scientific,
mathematical or philosophical discourse. Of course, deflationists could be interested
in formal theories of truth that capture the use of the truth predicate in natural
language, and such a theory would presumably include transparency principles.
However, it is by no means clear that such systems will turn out to be the ones that
are most useful in scientific, mathematical or philosophical discourse.

This understanding has profound consequences on the deflationists’ formal
notion of truth. Interestingly, it helps the deflationist to deal with several objections
that can be found in the literature regarding semantic paradoxes. Many philosophers
think that the semantic paradoxes pose a special problem for deflationists,**
presumably because they think that deflationists are conceptually committed to the
T-schema when adopting a formal truth system. We will argue, on the contrary, that
the deflationists are in a much better position to deal with the paradoxes than their
opponents. (Thus, this is a strengthening of a claim made by Gupta (2005) to the
effect that the paradoxes do not pose a special problem for deflationism.)

The T-schema leads to trivilality in classical logic, given minimal syntactic
background assumptions. This forces us to reject certain instances of the T-schema
or to reject certain classically valid (meta-)rules of inference (in addition, perhaps,
to using a new conditional in the formulation of the T-biconditionals). It is
sometimes said that such moves change the meaning of the concept of truth (cf.
Field 2008, pp. 14—17). This might be turned into an argument against a specific
truth theorist if her goal is to capture the truth predicate as it occurs in natural
language. But the meaning of the truth predicate in natural language is not what
deflationists are in general trying to capture in their formal theories of truth. What
the deflationist is aiming for is merely a quasi-logical tool that fulfils certain
expressive functions.

Thus the deflationist is clearly entitled to revise the naive understanding of truth
to formulate her formal systems. What restrictions should we impose on such a
revision? Several authors have proposed different desiderata on a satisfactory theory
of truth (cf. Halbach and Horsten 2005; Leitgeb 2007; Sheard 2002). We believe
such lists often involve criteria which are only imported because truth seems to
satisfy these criteria in natural language, without paying attention as to whether they
play an important role in the expression of infinite conjunctions and disjunctions.

A desideratum that features prominently on such lists is that the theory “must
satisfy a requirement of naturalness and simplicity. It must contain as few ad hoc
elements as possible.” (Halbach and Horsten 2005, p. 207). Given the paradoxes,
this is often not the case: to solve them truth theorists usually turn to more complex
principles than plain disquotation. Now, a solution is ad hoc if it’s designed for a
specific task or problem, lacking independent motivation. But if deflationism is right
and the truth predicate exists solely for a certain expressive purpose, what other

22 As witnessed by the fact that there is an entire collection devoted to that problem: Beall and Armour-
Garb (2005).
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motivation could there be than constructing the truth theory in such a way that it
serves these logical needs? Whether the theory is artificial is largely irrelevant.”

Consider for example Tarski’s hierarchy of truth predicates 7y, 15, T3, ... Many
philosophers have argued against Tarski’s solution on the grounds that stratification
is ad hoc and only motivated by the desire to evade the paradoxes; that truth is a
univocal concept that is fragmented in the Tarskian approach; that typing (indexing)
is not found in natural language. From the deflationist perspective discussed here,
such objections have little force. The problem with the Tarskian solution, then, is
not that it is artificial or ad hoc; the problem is that typed truth predicates simply do
not satisfy our needs (entirely). For example, the hierarchy of truth predicates does
not offer a means to express the soundness of the theory by a single sentence, or to
express all instances of certain schemata at once. Whenever a formula ¢(x) defines
an infinite set of sentences whose indices are unbound in rank, there is no way of
axiomatising all the @s by a single sentence using one of the truth predicates 7,.>*

Another requirement usually imposed on formal truth theories is that their so-
called ‘outer’ and ‘inner’ logics coincide (cf. Halbach and Horsten 2005; Leitgeb
2007). The inner logic of a truth system is the set of sentences the theory can prove
to be true, while the outer logic is simply the set of its theorems. In this paper we
have suggested that T-Out should be part of any reasonable theory of truth. As it
turns out, in classical logic this principle directly entails a discrepancy between the
inner and the outer logic of a system. Let 4 be a liar sentence, as before. By T-Out
we have

T — A
But by the definition of 4, we also have
=T — A

Therefore, /. But then by the definition of 4, we have that 771" as well and, hence,
the conjunction 4 A =T"A" becomes provable in the system.

But why should the outer and the inner logic of a truth theory coincide? Does this
desideratum have a deflationist justification? Field (2008, chap. 6) claims that
asserting A A =T violates a coherence principle: namely, that it is incoherent to
assert a sentence and simultaneously asserting that that sentence is not true.
Similarly, Horsten (2011, p. 127) claims that proving a sentence that is untrue is “a
sure mark of philosophical unsoundness.” Bacon (2015) poses a similar objection as
a revenge problem for disquotational systems. Glanzberg (2005) has made
analogous claims.

But why would it be incoherent to assert a sentence and simultaneously assert
that it is not true? Presumably, it would be incoherent if we conceived of ¢ and 7" ¢
as having the same meaning, or as being materially equivalent, or as having the

2 Of course, there could be practical reasons why a ‘natural’ theory is preferable over a more “artificial’
one: a natural theory might be more user-friendly insofar as the rules of such a theory resemble the rules
that the agent is used to in natural language.

2% This does not necessarily mean that a type-free solution is to be preferred. It is not clear that the
advantages of a type-free approach outweight the problems caused by the semantic paradoxes.
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same semantic value, or maybe if we thought that a sentence is true if it holds in a
model, or if what it says is the case. But, as we have argued, none of this needs to be
part of the deflationists’ formal notion to truth.

From the deflationist’s point of view, the liar is best viewed not as a paradox but
(if at all) as a limitation on the truth predicate’s ability to fulfil its intended function.
In this respect deflationists are in a more comfortable position than their opponents.
For example, correspondence theorists have to explain how to accommodate a
sentence that says of itself that it is untrue, given that a sentence is true (on their
picture) if and only if what it says is the case. To put it pointedly: The paradoxes
pose a bigger threat to correspondence theorists because the T-schema seems to be
an essential part of their notion of truth, even if they think that there is more to truth
than the T-biconditionals. Deflationists have no such commitment. They could just
let some instances go and live with the fact that their truth predicate does not serve
its intended role unrestrictedly. The correspondence theorists’ theory of truth aims
to unravel the nature of truth and therefore has to be sound; for the deflationist, the
question of the soundness of the truth theory does not even arise. The deflationist’s
formal theory (or theories) of truth does not describe a property in the world but
simply provides us with a quasi-logical tool, engineered to perform certain
expressive functions. The question for the deflationist is simply whether, for
instance, asserting untrue sentences substantially impairs these functions.

7 Agreement and Disagreement in Classical T-Out Theories

There is one reason one might worry that asserting that one’s theorems are untrue
deprives the truth predicate of its utility. The notion of truth is supposed to enable us
to express agreement and disagreement with theories that cannot be finitely
axiomatised (except by using a truth-like predicate, of course). Thus, the usual way
of expressing agreement with a theory I is to say “All theorems of I" are true”. In
the mathematical literature, this is also known as the global reflection principle for
I' (see Kreisel and Levy 1968), formally

Vx(Bewr(x) — Tx) (GRPr)

where I is a recursively enumerable (r.e.) theory and Bewr(x) is a predicate that
weakly represents provability in I'. Now the problem is that any classical theory that
has ‘incoherent’ consequences—e.g. A A =T A'—will be inconsistent with its own
global reflection principle, and therefore seems to deprive us of the possibility to
express agreement with our own theory. For simplicity, let us assume that our
syntax theory is Peano arithmetic (pa).

Proposition 8 Assume I is a classical r.e. theory extending pa and let A be a liar
sentence. If T & A, then T+GRP v is inconsistent.

Proof Assume I' - 4. Therefore, by definition of the liar, I' = =7"A". Since I is
re. and extends pa we have I' - Bewr("4') and by GRPr it follows that
I'+GRPr + T™2'. Thus I'+GRPr is inconsistent. O
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In particular, any classical theory extending pa + T-Out is inconsistent with its
own global reflection principle. Field (2008) notices that T-Out-theorists might not
only have problems with expressing agreement but also with expressing
disagreement.

[Assume that Jones] puts forward a quite elaborate gap theory involving
T-Out. And suppose that I disagree with this theory overall, but can’t quite
decide which specific claims of the theory are problematic. It is natural for me
to express my disagreement by saying “Not everything in Jones’ theory is
true”. But this doesn’t serve its purpose: since Jones himself, as a gap theorist,
believes that important parts of his own theory aren’t true, I haven’t succeeded
in expressing disagreement.

Alternatively, suppose that Jones himself thinks that Brown’s theory is wrong,
but isn’t quite sure which claims of it are wrong. Then he certainly can’t
express his disagreement by saying “Not everything in Brown’s theory is
true”, since by his own lights that doesn’t differentiate Brown’s theory from
his own. (Field 2008, p. 140)

We do not find these arguments very compelling. To begin with, for two people
to agree or disagree on something, they first have to share the meaning of the words
they will use to agree and disagree; in this case, the truth predicate. Presumably,
Field’s disagreement with Jones’ theory isn’t expressed in Jones’ idiolect and,
therefore, it isn’t successful. Little has this to do with Jones’ adoption of T-Out.
Secondly, nothing forces Jones to express his agreement by saying “Everything in
Browns’ theory is true” or his disagreement by saying “Not everything in Brown’s
theory is true”. This might be the way that natural language has chosen, but nothing
prevents us from regimenting that use. If Jones disagrees with Brown’s theory,
Jones will suspect that there is some sentence ¢ such that ¢ is part of Brown’s
theory but =¢. And he can express that by saying “Something in Brown’s theory is
false” (where “¢ is false” is defined as “—¢ is true”)—and that claim does
differentiate Brown’s theory from Jones’. Similarly, Jones can express agreement
with his own theory by saying “Nothing in my theory is false” or “Everything in
my theory is non-false”, formally:

Vx(Bewr(x) — —|zj) (GRP})

Let us call GRPr- the ‘modified global reflection principle’ for I'". The following
shows that the modified global reflection principle can be consistently added to any
T-Out-theory constructed over pa that has a standard model.

Proposition 9 If I O pra contains T-Out and has a standard model (i.e., an -
model), then I'+GRP 1 has a standard model too.

Proof Assume otherwise. Then there must be a standard model M such that
MET and M [ 3x(Bewr(x) A T—x). Since M is standard, there must be a

sentence ¢ such that M | Bewr("¢") A T™—¢". By T-Out, M | —¢. But since M
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is standard, M E Bewr("¢") implies I' F ¢ and therefore M |= ¢. This contradicts
the claim that M E —e. O

One attractive feature of the ordinary global reflection principle is that it implies
(given minimal assumptions) the consistency of the system in question. The
modified reflection principle does the same job.

Proposition 10 If I' C ra contains T-Out and T'+-T"0 # 1, then I'+GRP |-
F Con(T).”

Proof By Universal Instantiation, I'+GRPf F Bewr ("0 = ) — —=T70 # 1. But
since I' = 770 # 17, it follows that T'+GRP}- - —Bewr ("0 = 17). |

8 Conclusions

In this paper we have considered two accounts of what it means for general truth
ascriptions of the form (InfC) to express the sentences satisfying the predicate ¢(x).
According to one of them, (InfC) and the set of conditionals ¢("") — ¥ must be
equivalent in some suitable sense. According to the other (which is the only
formally worked out account in the literature), (InfC) must finitely axiomatise the
the conditionals @ (")) — V (relative to the truth theory). We have argued that the
first account is flawed, and that the second one—if correct at all—justifies at best the
adoption of a principle much weaker than transparency, namely, elimination
principles for truth.

In Sect. 3, we have shown that, given reasonable background assumptions,
elimination principles ensure what we have called the ‘elimination property’, which
allows us (in some sense) to ‘finitely axiomatise’ infinite sets of sentences; so a full
transparency principle is not needed for that purpose. Moreover, as we pointed out,
in some cases full transparency does not even suffice to ensure the elimination
property if the underlying logic is too weak.

In Sects. 4 and 5 it was also shown that, with the aid of some regimentation, the
elimination property is sufficient to deal with a large number of generalisations that
many authors believed to require full transparency. Thus, we conclude that the
arguments offered in the literature so far do not provide enough support for the
thesis that full transparency is needed for the logical function of truth. The upshot is
that, first, we need a more thorough investigation of the expressive functions of the
truth predicate, and of the principles each of them involves; and, second, that there
are no conclusive reasons yet to abandon classical logic, contrary to what is usually
believed. The move to non-classical logics is still in need of a supporting argument.

None of what we have said should be taken to imply that T-Out alone is sufficient
as a theory of truth. On the one hand, T-Out alone does not enable us to prove any
non-trivial generalisations about truth. On the other hand, at the end of Sect. 4 we

25 Note that this defence of truth theories containing T-Out does not imply that the only truth principle
we should adopt in our formal truth systems is T-Out. We might very well adopt in addition a restricted
version of T-In, compositional principles, or whatever we need for our technical purposes. Some of these
additional principles might in turn allow for a proof of 770 # 1.
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have seen that T-Out does not account for all the inferences that we may want to
make with generalisations. An answer to the question what other axioms are needed
can only come from a full understanding of what it means for (InfC) to express all
the @s. We believe a promising line of thought is to understand truth as a means to
emulate propositional (second-order, substitutional) quantification in a first-order
setting. However, making this idea precise is by no means trivial. The main problem
is to specify what ‘emulation’ comes to here, and there are several options to choose
from. Working this out in detail is the goal of our next project.

In the final sections of the paper, we have argued that deflationism, properly
understood, is not committed to many of the requirements that are usually imposed
on truth systems, and immune to most of the objections frequently raised against
them. Most of these requirements and objections rest on an understanding of the
notion of truth that stems from its use in natural language or some correspondence
intuition. Deflationists don’t have to conform to this understanding when devising
formal theories of truth. They only need to ensure (as far as possible) that their
notion of truth can perform its intended expressive function. As a consequence,
deflationists are in a much better position to deal with the paradoxes than their
‘substantialist’ opponents.
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Appendix

In this appendix we give proofs of Observation 7, and similar limitative results for
Priest’s theory of truth and Kripke’s fixed-point construction based on the Weak
Kleene scheme that we mentioned at the end of Sect. 3. Before each proof we
briefly introduce the corresponding system.

Recall £ is our base, truth-free language, and Ly extends £ with the monadic
predicate symbol 7. £ contains enough vocabulary to talk about the syntax of L7.
We assume L’s standard model is classical and contains countably many objects in
its domain. This allows us to work with substitutional semantics, and to keep it
simple.
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We first introduce the logic of paradox. Lp is given by a family of models of L7
and a valuation scheme v,,. An Lp-model M behaves exactly like a classical model
except that it assigns not only an extension RM” but also an anti-extension RM  to
each n-adic predicate R of L7, such that RM™ U RM™ = |[M|". RM" N RM may
be non-empty. For each model M, vL maps sentences of L7 into the set {0,1, 1} as
follows:

12

1 if (4,...,1,) € RM —RM
. V{‘PA(Rt]...tn): 0 if (t1,...,t,) € RM _ pM'
% otherwise
o i) =1-v(g )
o vi(eAY) —mln( o (0), v (1))
o v (p—)= maJC(l v (@) v ()
o vM(Vxp) = min{vM(o[t/x]) : t is a term}

The intended reading of the truth values is true for 1, false for 0, and both true
and false for % Then, a sentence is true in an Lp-model if the valuation based on that
model assigns either value 1 or % to it. Logical consequence is defined as truth
preservation, as usual.

Proof of Observation 7 Let £ C Ly be a syntax theory for £ (sound with respect
to L’s standard interpretation) formulated over a sound and complete calculus for Lp,
and let I' extend X with the rules T-Intro and T-Elim (and, therefore, all instances of
the T-schema). I" is non-trivial, for the standard model of £ can be extended to an
Lp-model of I" (cf. Beall 2009). We assume I" contains a liar sentence 4, i.e. such
that

)u And _‘Tl—i—l (10)
We show the following instance of the elimination property does not hold in I':

V(T (x7) — Tx), (L0 L (11)

where _L is a sentence that gets value 0 in all Lp-models, and < denotes the function

that maps (the code of) two formulae ¢, to (the code of) ¢ < . Let M be an Lp-
model of I extending L’s standard interpretation. Thus, the only predicate of Ly
that may receive overlapping extension and anti-extension is 7.

Note that, due to transparency and (10), v{‘},’l (4) = %, and that, due to the clauses of
LP’s valuation scheme, every time one side of a biconditional gets value ;, the value
of the biconditional is also 5 Thus for every sentence @, V(¢ « 1) = By
transparency, M(TTp )f') = and since M extends L’s standard 1nterpretati0n,

vM(T(Tp <—>’7f')) =1 too, whrch means the second premise in (11) is true in M.

This also implies that vﬁ‘P’I(T('_(p—'e'_[‘) — TT¢') >3 Under the reasonable
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assumption that only (standard) sentences belong to ™| we also get that
VA (Vx(T(x~"27) — Tx)) > 1, this is, the first premise in (11) is true as well. But

vM(1) = 0. O

LP

We now show how Priest’s disquotational theory does not validate the contra-
positive of the elimination property, that is:

(Y, ~ = =Vx(ep(x) — Tx) (12)

This theory isn’t explicitly formulated but can be extracted from Priest (2006).
There he fully endorses the T-schema and argues that it must hold without
restriction for the sake of the expressive function of truth (cf. Priest 2006, chap. 4).
Priest works over Lp, but in order to avoid the problems stated in Observation 7—
viz. the failure of Modus Ponens—he supplements the logic with a new, non-
extensional conditional with which he formulates his version of the T-schema.
Furthermore, this new conditional, he argues, must be non-contraposible, i.e. ¢ —
should not necessarily imply =/ — —¢. In his own words, “There seems to be no
reason why, in general, if ¢ is a dialetheia, T7¢" is too. If ¢ is a dialetheia, T"¢" is
certainly true, but it might be simply true, and not also false” (Priest 2006, p. 79).
We call the resulting logic ‘pL’, for ‘Priest’s Logic’.

PL is given by a family of models of £ and a valuation scheme v,.. A pL-model
M consists of a set of possible worlds W, a binary surjective relation Ry; C W}M,
and a function assigning an rp-model M,, to each w € W, all with the same
domain. v, behaves exactly like v,, for the extensional connectives, now relativized
to each world w € W,,. The conditional, instead, is defined by the following clause:
o VWiip—y) = % iff, for all w'Ryw, if vg/(qo) > % then v,ﬁf’(tﬂ) > %

A sentence ¢ is true in M if and only if v} (¢) > % in every world w € Wy, and
logical consequence is defined in the same way as LP’s.

Let Priest’s theory I' C L7 be formulated over a calculus sound with respect to
pL. I' consists of all instances of the T-schema (formulated with —) plus a
biconditional < ¢(7y") for each open formula ¢(x) € L7, where = expresses
the material conditional of Lp—i.e. @ = s abbreviates —(¢p A —f)—and < is
defined in terms of =, as usual. Thus, the liar sentence A in I" is given by

A =TT (13)

Assume I” has an pL-model M where identity behaves classically, such that at every

world w € Wy A gets value % while 771" gets value 1, as Priest wants. This

assumption seems plausible: if A gets % and T"1" gets 1 at each world w, then
WA T) > %, by the clause of v, for the conditional. But also, by the clause
for negation, v (—T"/") = 0, which means that v (1 < —T"A") = %.26 We show M

is a counter-model of the following instance of (12):

26 Note that, if instead of postulating (13) as an axiom / had been obtained by a standard diagonalisation
process in a base theory of syntax, 4 and =777 would have been forced to have the same truth value,

@ Springer



L. Picollo, T. Schindler

=" -AF =Vx(x ="' — Tx) (14)
By the clause for negation, we have that v/ (-1) = % at every w € Wyy. By the
classicality of identity, we also have that v ("' = "/") = 1. This gives us the truth
of both premises in (14). However, the conclusion is false. Let w'Ryw. While
W =) =wW(T7) =1, wW(t=")=0 for each term ¢ such that
M, Et # 770, Thus, by the clauses for the conditional and the universal quantifier,
vl (Vx(x ="' — Tx)) = 1 and, therefore, v} (—Vx(x ="' — Tx)) = 0.

Next we prove Kripke’s fixed-point theory Kripke (1975) with the Weak Kleene
scheme also fails to satisfy (12). First, we introduce Kleene’s weak three-valued
logic B3. B3 is given by a family of models of L7 and a valuation scheme vyy. B3-
models M also assign an extension RM" and an anti-extension RM  to each n-adic
predicate R of Ly, but unlike vrp-models, RM NRM  must be empty and
RM"URM can be a proper subset of |M|". For each B3-model M, v@"K maps

sentences of L7 intro de set {0,1, 1} in the following way:

1 if (... 0) € RM
o Ry )= {0 () <R
2 otherwise
o vil(=) =1-vil(p)
o vui(o A) = min(vyl (@), v (V)
o vit(e =) =1—min{l —vil(e),vit(h)}
o VM (Vxp) = min{v(¢[t/x]) : t is a term}

where the ordering of the truth values is given by % <0< 1. While 1 and 0 keep their
usual meaning, % is better understood as nonsense. A nonsensical component renders
the whole expression nonsensical, so every sentence containing a subsentence with
value % also gets value % A sentence is true in a B3-model if the valuation based on
that model gives it value 1, and logical consequence is defined as truth preservation.

Kripke’s fixed-point theory based on B3 consists of a class ® of B3-models M of
L7 that extend L£’s standard interpretation in a way that, for every sentence @,
vM(TTp") = vM (), which ensures the transparency of the truth predicate. It can be
shown that @ is non-empty (cf. Martin and Woodruff 1975). We show the following
instance of (12) does not hold in any model of O:

MA0'=0#£0,-0£A0F -Vx(x ="0#0" — Tx) (15)

Let M € ®. We assume L is rich enough to diagonalise every open formula of the
language. Since M extends L£’s standard interpretation, there’s a liar sentence A

Footnote 26 continued

namely, % which would have meant 774" also got value % And if we replaced < with the new, non-
extensional biconditional <, it wouldn’t be possible to assign value % to A and 0 to =T"1" at every
possible world. The same can be said of the use of inference rules.
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such that (10) is true in M. This implies that v (=T"4") = vA{(T™Z) = 1. Also,
vM(=0 # 0) = vM(0 # 0" =0 # 07) = 1; so both premises in (15) are true in M.
The conclusion, however, isn’t. To see it note that one of the instances of the
universal statement Vx(x = "0 # 0" — Tx) is the conditional "A' =0 # 0" — 771",
whose truth value is given by 1 — min{1 — v (7 =0 # 07), v (T™7")}, which is
L, since v (T™Z") = 1. As a consequence, Vx(x = "0 # 07 — Tx) gets value 1, and
so does —Vx(x = "0 # 0" — Tx), by the clause of vy for the quantifier.
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