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Abstract

In this paper, I consider the role of exact symmetries in theories of physics, work-
ing throughout with the example of gravitation set in Newtonian spacetime. First,
I spend some time setting up a means of thinking about symmetries in this context;
second, I consider arguments from the seeming undetectability of absolute velocities
to an anti-realism about velocities; and finally, I claim that the structure of the theory
licences (and perhaps requires) us to interpret models which differ only with regards
to the absolute velocities of objects as depicting the same physical state of affairs. In
defending this last claim, I consider how ideas and resources from the philosophy of
language may usefully be brought to bear on this topic.



1 Introduction

The question of how the symmetries of a theory bear upon its representational content
has been a subject of much recent discussion.1 It is the contention of this paper that
models related by a symmetry transformation are merely different ways of represent-
ing the same physical state of affairs (at least, with respect to qualitative properties);
and that utilising resources from the philosophy of language provides an insightful
way of defending this claim. This is both because it can provide us with new argu-
ments to motivate such an interpretational stance, and because it can illuminate what
structural features of such pairs of models make this interpretational stance permis-
sible.

The structure of the paper is as follows. In section 2, I outline the theory that will be
our worked example throughout the paper: namely, that of Newtonian gravity set in
(full) Newtonian spacetime,2 or “Newtonian gravitation” (NG) for short. In section 3,
I outline some apparatus for approaching the symmetries of this theory (an apparatus
which should generalise to other similar theories); and in section 4, I discuss how
models related by different kinds of symmetry relate to one another. With this much
setting-up done, I turn in section 5 to consider why models related by boosts should
be taken to represent observationally identical states of affairs, and why this licences
the dismissal of absolute velocities from our ontology. In section 6, I go on to argue—
against the received wisdom—that we can implement this dismissal without altering
our theory, i.e., merely by making acceptable interpretational stipulations regarding
the theory. In section 7, I discuss the situations in which such an interpretational
strategy would be advantageous. Finally, in section 8, I consider whether such an
interpretational stance may in fact be not merely acceptable, but positively required—
at least if an unpleasant indeterminacy of reference is to be avoided. It is in sections 6
and 8, in particular, that we will see how ideas from the philosophy of language
(specifically, ideas regarding synonymy and translation) may be usefully borrowed
for the purposes of philosophy of physics.

Two final remarks before we begin. I will approach NG via its models: that is, by
specifying what kinds of mathematical structures will count as kinematically possible
models, and then picking out a subset of those as dynamically possible models. The kine-
matically possible models are, roughly speaking, objects of the right mathematical
type to represent a physically possible world; one can think of them as represent-
ing the metaphysically possible worlds. The dynamically possible models are then
those which do, in fact, represent physically possible worlds. In this paper, I will
assume that all dynamically possible models represent physically possible worlds.
(This is not a truism: some views impose metaphysical constraints which mean that
some dynamically possible models represent metaphysically impossible, and a fortiori
physically impossible, worlds.)3

1See, for example, [Saunders, 2003b], [Dasgupta, 2009], or [Belot, 2013].
2That is, Newtonian rather than neo-Newtonian (aka Galilean) spacetime.
3Such as Maudlin’s metrical essentialism [Maudlin, 1988].
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2 Newtonian gravitation

Consider the theory of Newtonian gravitation, set in (full) Newtonian spacetime.
The kinematically possible models of this theory are of the form 〈A, T , φ, {〈xi, mi〉}〉,
where

• A is a three-dimensional (Euclidean) metric affine space (that is, a set of points
X equipped with a faithful, transitive action of some (Euclidean) normed vector
space V on X);

• T is a simply connected, one-dimensional manifold equipped with a metric and
orientation;

• φ is a scalar field on A× T ; and

• {〈xi, mi〉}i∈I is a set of ordered pairs, each consisting of a smooth function xi :
T → A and a scalar mi ∈ R (with I just being an index set)

In such a model, A represents absolute space and T represents absolute time. I
will refer to the product space A × T as the (Newtonian) spacetime structure, and
abbreviate it as N. The terminology here is a little unhappy: the structure presented
is referred to by Penrose4 as Aristotelian spacetime, which—as we shall come to later—
is used in the philosophy of physics literature to mean something else. So instead,
I follow Saunders5 in calling it Newtonian spacetime. This also accords with the
influential terminology of Friedman6 and Earman7—at least, insofar as what they and
I call “Newtonian spacetime” match in their structural essentials. However, there are
some differences in the manner of construction, which raise some issues: these are
discussed further in section 7.

φ and {〈xi, mi〉}i∈I represent, respectively, the gravitational potential and the grav-
itating particles (with the ith particle having mass mi and trajectory xi); I will refer to
these structures as the dynamical structure, and abbreviate them as P. Given that both
A and T are equipped with metrics, it is straightforward to define the velocity ẋi and
acceleration ẍi of a particle, and the gradient ∇φ and Laplacian ∇2φ of the potential.
In order for a kinematically possible modelM = 〈N, P〉 to be a dynamically possible
model, the dynamical structure P must satisfy the following equations for any x ∈ A
and t ∈ T :

ẍi(t) = −∇ϕ(xi, t) (1a)

∇2ϕ(x, t) = 4πG ∑
i

miδ(x− xi) (1b)

4[Penrose, 2004, chap. 17]
5[Saunders, 2013]
6[Friedman, 1983]
7[Earman, 1989]
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3 The symmetries of Newtonian gravitation

The symmetries of the theory sketched above are, of course, well-known; as is the
fact that they come in two important classes. The spacetime symmetries of a given
Newtonian spacetime N are the automorphisms of N. Since N is a product space
A× T , an automorphism f of N will map (x, t) 7→ ( fA(x), fT (t)), where fA and fT
are automorphisms (i.e., isometries) of A and T respectively. Such isometries consist
of translations, reflections and (in the case of A) rotations.8

In this essay, I will be concerned with only the continuous symmetries.9 Thus, the
spacetime symmetries we are interested in consist of the translations (both temporal
and spatial) and spatial rotations. The set of such symmetries for one Newtonian
spacetime are referred to as the Newton group for that spacetime. The Newton group
of any Newtonian spacetime is isomorphic to that for any other; consequently, we can
think of them as faithful representations of a single abstract Newton group.

Towards introducing the second kind of symmetry, note that if we apply a member
of the Newton group (or one of the discrete spacetime symmetries) to the dynamical
structure of a model, we always obtain an isomorphic model. That is, given a kine-
matically possible model 〈N, P〉, define the image of P = 〈φ, {〈mi, xi〉}〉 under a map
d : N → N as d[P] = 〈φ′, {〈mi, x′i〉}〉, where

φ′(x, t) = φ(d−1
A (x), d−1

T (t)) (2a)

x′i(t) = dA(xi(d−1
T (t))) (2b)

If d is a member of the Newton group, then 〈N, d[P]〉 = 〈d[N], d[P]〉, and so is iso-
morphic to 〈N, P〉. Because the conditions picking out dynamically possible models
of NG are purely structural, they apply to any given modelM if and only if they also
apply to any modelM′ which is isomorphic toM.

Thus, for any kinematically possible model 〈N, P〉 and any member d of the New-
ton group for N, 〈N, P〉 is dynamically possible if and only if 〈N, d[P]〉 is. Let us
introduce a little terminology, and say that two modelsM andM′ are co-dynamical
if either both or neither are dynamically possible. We can then say that applying any
member of the Newton group to a model yields a co-dynamical model. However, the
Newton group is not the only set of continuous transformations with this kind of fea-
ture: the dynamical (im)possibility of any kinematically possible model is preserved
under boosts.

A boost in N is specified by any vector v from the vector space V underlying A
and any time t0 ∈ T ; the associated boost is then b : (x, t) ∈ N 7→ (x + τv, t) ∈ N,
where τ is the oriented10 distance between t0 and t. If we add such boosts to the

8Strictly, T is also invariant under rotations; but because it is one-dimensional, the only “rotation” is
the identity map.

9See [Pooley, 2003] and [Huggett, 2003] for discussion of some of the issues raised by spatial reflection
symmetries (and by violations of those symmetries).

10That is, if t0 precedes t with respect to the orientation of T , then τ > 0, and if t precedes t0, then
τ < 0.
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Newton group for N, we obtain what is known as the Galilei group for N; as before,
we will also refer to an abstract Galilei group, of which the Galilei group for any given
spacetime is a faithful representation. Boosts are not spacetime symmetries: a boost
cannot be decomposed into a (single) automorphism of A and an automorphism of
T . Nevertheless, it is easy enough to check that 〈N, P〉 satisfies the equations (2) if
and only if 〈N, b[P]〉 does so, for any boost b. As such, a boost—like a member of the
Newton group—is a dynamical symmetry, a mapping whose application to (just) the
dynamical structure of a kinematically possible model yields a co-dynamical model.
It follows that each member of the Galilei group for N is a dynamical symmetry.

The Galilei group is not the full set of dynamical symmetries for NG: in addition
to the discrete symmetries, one can apply time-dependent accelerations which are
accompanied by appropriate alterations to the gravitational potential.11 However, all
the members of the Galilei group are dynamical symmetries, even though some of
them (viz., the boosts) are not spacetime symmetries—which is all that is required for
our purposes. In particular, this has the consequence that two models related by a
boost will not, in general, be isomorphic to one another—and so the fact that they
are co-dynamical cannot be explained by the mere fact that the equations of NG are
sensitive to the details of a model only up to isomorphism.

Note, however, that a dynamical symmetry can only relate two models which are
constructed on (numerically) identical spacetimes. This is a consequence of the fact
that we have chosen not to restrict our attention to a single such spacetime.12 The rea-
son for this is that if all models share a spacetime, then between any two models there
is an immediately privileged map between their spacetimes: namely, the identity.
However, it is not generally the case that this privilege is of physical significance—so
keeping models with different spacetimes in play is a good way of ensuring we do
not accidentally imbue it with such significance.

This means that we can say a little more about the relationship between two models
M = 〈N, P〉 andM′ = 〈N′, P′〉 (where N and N′, though isomorphic, have not been
identified with one another) that are, in some sense, related to one another in the
same way that 〈N, P〉 and 〈N, d[P]〉 are. It obviously can’t be simply that applying a
member of the Galilei group to M’s dynamical structure yields M′, since N 6= N′.
Nor can it be thatM andM′ are isomorphic, since 〈N, P〉 and 〈N, d[P]〉 are not (in
general) isomorphic. Rather, the relevant relationship is that M and M′ should be
isomorphic to within a Galilean transformation applied to (only) the dynamical structure:
that is, that there should be both a mapping f : N → N′ such that N′ = f [N], and a
member d of the Galilei group for 〈N′〉 such that P′ = (d ◦ f )[P].13 In such a case, we
will say that the two models are pseudomorphic. (Note that if d is also a member of the
Newton group, then the two models will be isomorphic as well.)

Note that one cannot pick out some unique member of the Galilei group which

11For further discussion of this symmetry, see [Saunders, 2003a] or [Knox, 2013].
12Unlike, for example, [Earman, 1989].
13Hence, this includes the relationship between 〈N, P〉 and 〈N, d[P]〉 as the special case where the

isomorphism in question is just the identity.
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bears, as it were, sole responsibility for the two models’ being pseudomorphic to one
another: if the two models are isomorphic under f to within a Galilean transforma-
tion d, then for any Newtonian transformation h, they will be isomorphic under h ◦ f
to within the transformation d ◦ h−1. Of course, if we single out some particular map-
ping f : N → N′, then we can say that relative to that mapping the two models are
related by this or that member of the Galilei group; but this is all we can say. Note
that this is not at all obvious if we focus our attention on models whose background
spacetimes have been identified with one another. For in that case, it is tempting to
say that a given pair of models are related by a member of the Galilei group in some
more absolute sense, not realising that they are, in fact, related by that member of
the Galilei group only relative to the choice of the identity map as the appropriate
mapping.

4 Qualitative and haecceitistic differences

We turn now to the question of what kinds of differences there could be between
the worlds depicted by two pseudomorphic models. As mentioned above, pairs of
pseudomorphic models come in two importantly different varieties: isomorphic and
non-isomorphic. We consider these in turn.

So first, suppose that we have two isomorphic models of NG: and in fact, suppose
that the models areM = 〈N, P〉 andM′ = 〈N, d[P]〉, where d is a spatial translation.
It seems that for any given possible world, each model, considered by itself, is just
as well- or ill-suited to represent that world as the other. However, when considered
together, we might be tempted to offer the following gloss on how they represent
compared to one another: whatever worldM represents, M′ represents a world in
which all the material contents of the world represented byM have been translated
through space. The reason, of course, is that the representation of space-time N is
(literally) identical in the two models, which naturally encourages us to think that
each point of N represents the same space-time point in both models: that is, that
the mathematical identity of manifold points represents the transworld identity of
spacetime points.

Whether this interpretational move is compulsory, forbidden or neither has been
the subject of much discussion on the topic of the static shift; more generally, the is-
sues regarding the interpretation of isomorphic models forms the core of the literature
on the Hole Argument. For now, however, I want to emphasise that even supposing
that the worlds represented byM andM′ do differ in this way, they do not differ in
any qualitative respect, but only over which space-time points play which qualitative
roles.14 For example, suppose that both models contain just one inertial trajectory.

14I will be assuming that we have a clear enough grip on the distinction between qualitative and
non-qualitative properties (notwithstanding the difficulties of giving an uncontroversial charac-
terisation of the distinction). The basic idea is that a property is non-qualitative just in case it
depends in ineliminable fashion on some particular individual: for example, the properties of being
David Beckham, being five metres from David Beckham, or being the same weight as David Beckham are
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Then the only difference between the models is that inM, it is this point of A which
is the range of the sole trajectory in the model, whilst inM′ it is that point ofAwhich
is the range of the sole trajectory in the model; and correspondingly, taking mathe-
matical identity to represent transworld identity,M depicts a particle which occupies
this point of absolute space, whilstM′ depicts a particle occupying that point of ab-
solute space. There is a term for the view that some possible worlds differ only over
which objects play which role: haecceitism.15 We will follow this usage, and (corre-
spondingly) say that worlds which differ only over which objects in them play which
role differ merely haecceitistically.

By way of contrast, now consider two models of NG related by a boost: say, by
letting M be as before, and considering M′′ = 〈N, f [P]〉 where f is a boost. This
time, the natural or obvious interpretation is that the two models depict qualitatively
different worlds, withM representing a particle at absolute rest andM′′ depicting a
particle moving with some non-zero absolute velocity. And note that this interpreta-
tive stance is independent of haecceitistic considerations about whetherM andM′′

represent the same space-time points, and if so whether they differ over which point
has which characteristics. Indeed, whetherM andM′′ agree or disagree over which
objects play which roles is not really well-defined, given that the qualitative differ-
ences between them mean that they disagree over what roles there are to be played.

Note that I have been assuming, for ease of exposition, that if two worlds differ
at most haecceitistically, then they are qualitatively identical; and, conversely, that
if two worlds are qualitatively identical, then they differ at most haecceitistically.
For the sake of simplicity, I will continue to make this (reasonable) assumption. In
general, then, we will suppose that isomorphic models are qualitatively synonymous:
the worlds they represent differ at most over which objects play which roles. Non-
isomorphic models, however, represent qualitatively different worlds—or at least, at
first pass they do so.

In this paper, I focus my attention on models that are pseudomorphic but not iso-
morphic. In the next section, I review an argument to the effect that the differences
between such models will be empirically undetectable (even in principle) and con-
sider the ramifications for believing that there are such things as absolute velocities.
Then, in section 6, I argue that rather than being compelled to change our theory as
a result, we can instead interpret these models as representing qualitatively identical
worlds after all. In section 7, I consider the positive case for doing so in more de-
tail. And finally, in section 8, I argue (somewhat tentatively) that a failure to interpret
these models in this way will lead us into indeterminacy of reference.

A small point about presentation before we begin: I will speak sometimes of the
observational equivalence of boosted worlds, and sometimes of the undetectability
of absolute velocity. I don’t believe anything of significance hinges upon this, and it

all non-qualitative properties. Qualitative properties, by contrast, are those which do not depend
on a particular individual in this fashion: for example, being green or being the same weight as some
footballer.

15Note that this is only one of several uses of the term “haecceitism”; this usage of the term matches
that of [Melia, 1999] and [Pooley, 2002].
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will aid comprehensibility to have both vocabularies available.

5 Undetectability

First, then, we are seeking to argue that two models related merely by a boost will
be observationally indistinguishable. The literature contains a general argument to
this effect: I will outline the argument only briefly, and refrain from discussing the
subtleties that arise in a more thorough treatment.16 So suppose that NG were true,
and that absolute velocity could be detected; for the purposes of simplicity, suppose
that it could be detected with absolute reliability. That means that in any physically
possible world in which the detection procedure is performed on some object O, the
output of the procedure is some display of O’s absolute velocity. So let W be a world
in which such a procedure is performed, with the corresponding result. But now con-
sider a world, W ′, which is identical to W save that a uniform boost is applied to all
of W’s material contents. By the boost-symmetry of NG, W ′ is physically possible. So
if the detection-procedure is performed in W ′, then the output of the procedure will
be different to its output in W. But all the things in which performing a detection-
procedure might plausibly consist—putting O next to some apparatus, pressing but-
tons, making sure the apparatus’s parts are all present and correct—will be invariant
under the boost. So the detection-procedure is performed, and its output is different
to its output in W. Yet all the things in which that output might plausibly consist—ink
on paper, semaphoric flags, the emission of a particular tone—are similarly invariant
under a boost. So in fact, the output of the procedure is the same in W ′ as it is in W.
By contradiction, therefore, no such detection procedure can exist.

The above is, as promised, a sketch rather than a full argument; in particular, our
“plausible” assumptions that the performance and output of the detection-procedure
are boost-invariant raise interesting subtleties when examined in more depth. But as
the argument has been discussed extensively elsewhere, we will merely suppose that
these can be ironed out satisfactorily. What would follow from the undetectability of
absolute velocity?

Well, one venerable conclusion is as follows: we should not believe that there is
any such thing as absolute velocity. The basic idea is fairly straightforward: if the
facts about absolute velocity can have no impact on anything observable by us, then
claiming that there are such facts goes well beyond our scientific-realist warrant for
believing that there are facts of a certain sort; consequently, we should refrain from
believing that there are such facts.

There are a couple of things worth noting about this argument. The first is to stress
its disanalogy with traditional positivist or instrumentalist arguments against some
domain or other of unobservable facts. In part, this is simply because our concep-
tion of “observable” can be significantly more relaxed than the conception typically

16The argument given in this section is due to [Roberts, 2008]; besides the treatment there, it is also
discussed by [Russell, 2011, §3.4], and in several papers by Dasgupta (see e.g. [Dasgupta, 2011],
[Dasgupta, 2013], and [Dasgupta, 2014]).
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found there: not only can we not perceive absolute velocity directly, but (partly as
a consequence) we cannot build any kind of device which might succeed in reliably
correlating absolute velocities with perceptible outputs. More importantly, though,
it is because rather than failing to meet some externally imposed standard of observ-
ability, absolute velocity is deemed unobservable by the very same theory of which it is a
part: namely, NG (interpreted literally). The only warrant that we might have for be-
lieving in absolute velocity flows from believing in NG; but believing NG (together
with certain plausible beliefs about our mental and perceptual faculties) would en-
tail believing that absolute velocity was in principle empirically inaccessible, and so
beyond the scope of our realist warrant.17

The other point I wish to make is to contrast this case with the case of isomorphic
models. As discussed in section 4, the differences between the worlds represented by
isomorphic models are at most haecceitistic, whereas non-isomorphic models, inter-
preted literally, postulate qualitative differences. As a consequence, there is a differ-
ence in the epistemic cost of the situation that results. This difference has received a
fair amount of attention recently, so it will be worth taking a moment to explain it.
The starting point is an observation from Maudlin that there is an important disanal-
ogy between the static and kinematic shift arguments:

Consider first the kinematic shift. [. . . ] The universe as a whole may be
at rest, or travelling uniformly five meters per second due north, or 888
meters per second in the direction between Earth and Betelgeuse, and so
on. According to Newtonian dynamics no possible observation can reveal
its actual state of motion. So Newton must postulate that the universe
has a physically real but empirically inaccessible property. In this sense,
states which differ only in their net absolute velocity are observationally
indistinguishable.

What if we try to make the same argument using the static shift? Various
positional states of the universe as a whole are possible: It could be created
so my desk is here, or three meters north of here, or 888 meters from here
in the direction from Earth to Betelgeuse, and so on. Which is the actual
state of the world? Now the answer is easy: In its actual state, my desk
is here, not three meters north or anywhere else. So in the kinematic case,
unlike the static case, sensible physical questions can be asked but cannot
be answered by observations. To even formulate the appropriate question
in the static case one must indexically pick out a spatiotemporal location,
and it is then no great trick to observe what material body that location
actually contains.18

Before we turn to the argument itself, we should emphasise that what is being con-
trasted here is not the static and kinematic shifts per se, but rather the status of those

17This point is made by [Friedman, 1983, p. 219] and [Healey, 1999].
18[Maudlin, 1993, p. 190]
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shifts in NG (or any theory set against Newtonian spacetime as a backdrop);19 in our
terminology, the contrast is between isomorphisms, and mere pseudomorphisms (i.e.
pseudomorphisms which are not isomorphisms). Because merely pseudomorphic
models (interpreted literally) describe worlds that differ qualitatively, the character
of each can be described in a language that avoids making reference to particulars; as
such, we can then ask questions about whether (for example) the actual world is best
described by this model or that model. By contrast, the haecceitist about isomorphic
models won’t think that we can indicate that the points of a model are supposed to
represent the points of the actual world, save by a stipulation that this is so; this is
why being in a position to ask whether a model correctly represents the haecceitistic
facts about the actual world entails knowing the answer.

This is perhaps clearest if we try extending Maudlin’s observation to Aristotelian or
Galilean space-time. In Aristotelian space-time, we add further structure: we pick out
a privileged point C of A, corresponding (intuitively) to the centre of the universe.20

As such, static shifts are no longer isomorphisms: two Aristotelian worlds related by
a static shift would differ qualitatively, since there would, in each case, be some fact
about (for example) how far the universe’s centre of mass is from its absolute centre.21

Galilean space-time, on the other hand, has substantially less structure than Newto-
nian space-time. In our terms, Galilean space-time is best thought of as a fibre bundle
E where A is the prototypical fibre and T the base manifold; there is a privileged
affine connection D on E (i.e. a connection on the tangent bundle TE), but no bun-
dle connection on E itself (since a bundle connection provides a privileged mapping
between the fibres at two points, which is more structure than is desired).22 As a re-
sult, neither the static nor kinematic shifts introduce qualitative differences: the only
difference between two kinematically shifted Galilean worlds is with regards to, for
example, which spacetime points the universe’s centre of mass successively occupies.
Hence, we are unable to ask for a number which specifies the speed with which the
universe as a whole (or any part thereof) is travelling; the best we can do is to ask, for
example, whether my desk is travelling as fast as my desk or not.23

Hence, if Maudlin is correct, then there is an epistemic problem associated with
our absolute velocity (if we interpret pseudomorphic models literally), but not one

19This point is noted by Maudlin in the paper (see [Maudlin, 1993, p. 192]), although it comes out a
little more clearly in his discussion in [Maudlin, 2012, chap. 2–3].

20Note that is not what Penrose calls “Aristotelian space-time” (as per the remarks in section 2); rather,
it corresponds to the usage of [Earman, 1989, pp. 34–35].

21If you’re tempted to say that any plausible physics in Aristotelian spacetime should locate the centre
of the universe at the centre of mass of the universe, then you should be equally tempted to say that
any plausible physics in Newtonian spacetime should judge the absolute velocity of the universe’s
centre of mass to be zero.

22See [Penrose, 2004, chap. 17]; for alternative ways of getting at essentially the same structure, see
[Earman, 1989] or [Saunders, 2013] (although see Section 7 for discussion of what might be at stake
in such choices of presentation). Here, the terminology of Penrose, Earman and Saunders agrees
(although Saunders also uses—and prefers—the label “neo-Newtonian” to “Galilean”).

23The point that in Galilean spacetime, the kinematic shift reduces to a merely haecceitistic difference
is stressed by [Pooley, 2002, p. 59].
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associated with our absolute position (even if we interpret isomorphic models haec-
ceitistically). To coin some terminology, let us say that the kind of ignorance Maudlin
is concerned with is qualitative ignorance: it is the kind of ignorance I have when I
do not know the qualitative character of the world (as when I interpret NG literally).
However, Maudlin’s conclusion from this that “the static shift does not result in an
indistinguishable state of affairs, nor does it imply that there are any real but em-
pirically undeterminable spatiotemporal facts about the world”24 has recently been
challenged: both Dasgupta and Russell articulate accounts of detection or observa-
tion according to which our position in absolute space is undetectable or unobserv-
able after all (although, in light of the above, we are unable to express what it is that
we do not know).25 In effect, these analyses articulate a notion of what we might call
haecceitistic ignorance: it is the kind of ignorance I have when I do not know which
objects are playing which roles (even if I know the qualitative character of the world).

Now, there’s certainly an interesting question about whether haecceitistic igno-
rance really is a substantial kind of ignorance. The point I wish to make here, though,
is a simpler one: that even if it is, it is still worse to be qualitatively ignorant than
to be merely haecceitistically ignorant; and as such, the epistemic problems arising
from interpreting pseudomorphic models literally are still worse than the problems
arising from interpreting isomorphic models haecceitistically. The reasoning is pretty
straightforward. If I am qualitatively ignorant, then I am ignorant of the qualita-
tive character of the world; hence, I am ignorant of what qualitative roles are being
played; I therefore cannot be in a position to know the haecceitistic character of the
world, i.e., to know which individuals are playing which qualitative roles. Note that
as a result, the epistemic case against reading pseudomorphic models literally can be
accepted even by someone who rejects anti-haecceitism about isomorphic models.

6 In defence of qualified realism

So suppose that we agree, having taken on board considerations like those above,
that if we like NG, we ought not to like absolute velocity. What’s our next move?

One common response urges that our next move has to be to look for a theory
which lacks commitment to absolute velocity, which we can put forward in place of
NG. There’s an obvious alternative: Galilean Newtonian gravity, i.e., Newtonian grav-
ity set in Galilean spacetime (models of which, recall, lack any standard of absolute
rest and therefore contain boosts as a spacetime symmetry). So, for example, Pooley
writes that

The sophisticated substantivalist’s way to evade both kinematic shift ar-
guments is to [. . . ] move from Newtonian to Galilean spacetime. The dif-
ference between the possibilities represented by [a pair of boosted models
set on the same Galilean spacetime] (on the stipulation that each point of

24[Maudlin, 1993, p. 191]
25See [Dasgupta, 2009, §2.4] and [Russell, 2011, §3.5].
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[the background manifold] represents the ‘same’ spacetime point in both
models) is merely haecceitistic. He can therefore reinterpret [one of the
models] and see [the pair of models] as representing the same possible
world.26

Similarly, Dasgupta argues that absent such an alternative theory, one is rationally
compelled to accept absolute velocities:

Note, then, that if this how symmetry-to-reality inferences work then we
can only draw the conclusion of the inference when we have the alter-
native theory in hand and have shown that all else is equal. This explains
why it was rational for Newton to believe in absolute velocity even though
he knew that it was variant in NG and undetectable. The reason this was
rational for him was that he had no good alternative theory to hand. He
had good reason (his “bucket argument”) to think that relationalism was
not empirically adequate. And relationalism was the only alternative view
he knew of (he was not aware of Galilean space-time structures in which
there is a well defined feature of absolute acceleration (as required by his
bucket argument) but no absolute velocity). So for Newton, all else was
not equal and he was rational to believe in absolute velocity.27

However, it’s not clear to me that this is really necessary. In this section, I want to
look at whether there’s an alternative option for the realist: to refrain from believing
that all the structures in the models of NG correspond to structures in physical reality.
That is, can we put forward NG as our theory, whilst interpreting it in such a way
that we avoid commitment to absolute velocity? Let us call such an interpretation a
qualified realism about NG.28

The first task is to articulate what such a position would look like. Here’s a first-
pass suggestion: we should claim that the cross-time identification of points inA×T
which share a first member expresses nothing physically significant. Unfortunately,
however, such a suggestion is inadequate, since this would mean that we no longer
affirmed the structure needed to underwrite the differentiation between the dynam-
ically possible and dynamically impossible models. It is straightforward enough to
verify that a mere fibre bundle ofA over T 29 is unable to determine a standard of rota-
tion, and therefore cannot be used to capture Newtonian dynamics (in which rotation
is dynamically significant). So clearly absolute space is of some physical significance,
which we risk eradicating if we are too zealous from the off.

A second-pass suggestion would be that we ought, then, to reformulate the theory
so that we are in a position to make explicit which of its structures we will take to rep-
resent genuine physical structures: that is, when we have Galilean Newtonian gravity
26[Pooley, 2002, p. 59]; emphasis in original.
27[Dasgupta, 2014, p. 17]
28[Saunders, 2013] can be seen as engaged in a similar project to that discussed here, although with a

stronger focus on Newtonian gravity as presented in the Principia; moreover, the main focus of his
discussion is the gravitational gauge symmetry rather than the boost symmetry.

29Which would correspond to so-called Leibnizian spacetime ([Earman, 1989, pp. 30–31]).
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to hand, and can then affirm that the only structures of NG about which we are re-
alists are those which have a counterpart in Galilean Newtonian gravity. Although
this is now a coherent position, it’s still problematic. This approach means that we
can only take a qualified-realist stance towards a theory when we have an alternative
theory which makes manifest which parts of the first theory are surplus structure. But
if we have such an alternative theory in hand, then qualified realism doesn’t seem like
a particularly interesting position. The extra structure is made manifestly redundant
and avowedly meaningless; putting forward models containing such a structure is
a little like insisting on shouting “yabba-dabba-doo!” at the end of each sentence of
the theory, whilst reassuring everyone that this is merely a nonsensical ejaculation.
Behaving in this fashion isn’t wrong, per se, so much as just—at best—pointless and
rather tiresome. And in at least some cases, we just won’t have such a formulation: in
the case of NG, for example, the mathematics necessary to exhibit its surplus structure
clearly was not developed until centuries after the theory was proposed.

A more interesting thought, then, would be to ask whether there is some way in
which we could be anti-realist about part of a model without being required to ex-
plicitly single out the parts of the model one is anti-realist about. I think the answer
is yes. The trick is to stipulate which models are synonymous, rather than specifying
which bits of a model one reads literally or not: we express our qualified-realist atti-
tude by affirming certain non-isomorphic models as synonymous, which commits us
to denying that the respects in which such models disagree correspond to any physi-
cally significant difference. And of course, we know which models we’ll be affirming
as synonymous: the models which are pseudomorphic to one another. Hence, we
conjoin our mathematical theory NG to the semantic stipulation that pseudomorphic
models are synonymous, with the consequence that only whatever structure such
models have in common is to be interpreted realistically. In our specific case, this
means that the physical ontology posited by the theory (so interpreted) is the same
as that posited by Galilean Newtonian gravity (straightforwardly or literally inter-
preted). The easiest way of elaborating this position is to consider, in turn, the objec-
tions that might be raised against it.

First objection: to do this is to renounce scientific realism. Response: scientific re-
alism surely isn’t the position that given an empirically adequate theory, one is duty-
bound to believe in every piece of structure postulated by that theory, regardless of
what the theory should say about that structure’s explanatory or theoretical role. If
anything, the kind of interpretative stance under discussion is more consonant with
a realist attitude than a blind literalism. For realism is a matter of taking seriously
what the theory has to say; and if the theory says that certain quantities are in prin-
ciple unobservable, then to take the theory seriously may come apart from taking it
literally.

Second objection: even if we grant that one may, in general, not be realist about
all aspects of a theory’s structure, it is not acceptable to do so when those aspects
are indispensable; but the “interesting” cases above are precisely those in which the
surplus structure is indispensable. Response: indispensable for what? If they were
indispensable for explanation, then it does seem that they ought to be retained. But
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if they’re only indispensable for the purposes of characterising or representing the
structures that are (explanatorily, hence physically) significant, then it seems that we
have much greater leeway to regard them as mere mathematical scaffolding, with-
out being honour-bound to accord them physical significance. If I say that “that rock
looks like a dragon’s head”, then I have certainly made use of the notion of dragons
to characterise or represent how the rock looks; perhaps even (if there are sufficiently
many ways the rock could have looked, or if our language for expressing shape-
predicates is sufficiently anaemic) an indispensable use. But the acceptability of such
locutions hardly commits us to a belief in dragons. Similarly, the ubiquity of poten-
tials as tools for calculation is not generally taken to necessitate a commitment to their
existence.30

The relevant question, then, is when we have good grounds for thinking that some
piece of mathematical apparatus in our theory is of merely representational or cal-
culational significance. Of course, explicitly identifying the apparatus, and showing
that a dynamically equivalent theory can be put forward that does without it, is one
way of doing so. But the argument of section 5 did not rest upon doing so: all it
required was that our theory include models which were pseudomorphic but not
isomorphic.

Third objection: to put forward NG as your theory, and then deny the existence of
absolute velocity, is just straightforwardly contradictory. Response: why? Yes, some-
times we think that someone is being inconsistent if they make use of the existence of
something, and then deny that that thing exists: notably, if the thing figures in a prof-
fered explanation. But in plenty of other cases, such “weaselling away” of apparent
ontological commitments is perfectly acceptable: for example, no-one would think
me inconsistent for saying that “that rock looks like a dragon—but of course, there
are no dragons”. Such locutions are an acceptable aspect of explaining how one’s
theory is to be understood (i.e., of specifying an interpretation), by indicating which
parts are to be understood as mere aids to representation and (so) not interpreted
literally.31

Fourth (and final) objection: we cannot just declare models to be synonymous as
and when we please; there must be some constraints, or else we will end up collaps-
ing all observationally equivalent models together. Response: I’ve already mentioned
one important constraint—the requirement that our theory posit sufficient physical
ontology to explain the observable phenomena that we see. The argument of sec-
tion 5 gives us good reason to think that we will not cut into that ontology by dis-

30Ignoring concerns raised by the Aharonov-Bohm effect.
31Both this point and the point above draw heavily on the recent debate in the philosophy of

mathematics literature over the so-called “indispensability argument”. For further explanation
of the kind of line taken here (that representational indispensability does not entail ontologi-
cal commitment) see [Melia, 1995], [Melia, 2000], or [Yablo, 2005]; for critical responses, see e.g.
[Azzouni, 2009] or [Colyvan, 2010]. It is, incidentally, worth noting that much of the recent
discussion has accepted that ontological commitment requires explanatory indispensability, and
focused instead on whether mathematics is explanatorily indispensable in this sense (see e.g.
[Baker, 2009]—from whom the dragon example is taken—or [Leng, 2010, ch. 9]).
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avowing commitment to structure which is variant under symmetry; declarations of
synonymy that go beyond this, on the other hand, do risk doing so. However, we can
do better than this. Suppose that we conceive of the task of interpreting a theory as
being that of providing, for it, a Davidsonian theory of meaning.32 In the context of
a natural language L, this amounts to providing a theory that will entail all theorems
of the form

s is true-in-L if and only if p, (3)

where s is a placeholder for a structural description of a sentence and p a placeholder
for a synonymous sentence. In our case, this will mean providing a specification of
the co-representationality relations holding amongst the kinematically possible mod-
els.

So imagine, as it were, that we have been handed a great stock of all the sentences
in question (respectively, all the kinematically possible models), and are seeking to
organise them into theorems of the form (3) (respectively, to lay down putative rela-
tions of co-representationality). Without presupposing knowledge of the meanings
of the sentences (models), are there constraints that we can impose on how such an
organisation is to be done which could ensure that we get only true theorems (respec-
tively, only correct relations of co-representationality)? Davidson suggests there are;
and it turns out that these constraints (or analogues thereof) carry over to our case.

The first constraint is simply that in each instance of (3), the left- and right-hand-
sides coincide in truth-value.33 Even in the natural-language case, this is a very weak
condition: it still permits manifestly deviant theorems such as

‘snow is white’ is true-in-English if and only if grass is green. (4)

In our case, however, the condition is trivially satisfied: given that all models of NG
are false (since NG is a false theory), anytime we connect two models we know that
they will coincide in truth-value. Given that it is satisfied (albeit trivially), we could
simply allow that this first constraint doesn’t translate very well from the natural-
language setting; however, it is tempting to ask if there is an alternative condition
that will serve as an appropriate analogue in our case.

I suggest that a natural analogue to this first constraint is that two models are co-
representational only if they are co-dynamical.34 After all, although the presentation
of a theory does not include information about which models are true and which
false, it does at least include a bifurcation of the models into those which are dynami-
cally possible and those which are dynamically impossible. Moreover, if we consider
why Davidson’s theory includes this first constraint (i.e., what role that constraint

32See e.g. [Davidson, 1965] and [Davidson, 1967].
33That said, there are some subtleties in the extent to which the truth-values, for Davidson, may be

taken as given: at various places, Davidson avers that what is really being taken as basic is not facts
about which sentences are true, but facts about which sentences are “held true” by which members
of the linguistic community (the latter facts being, allegedly, accessible from purely behavioural
evidence). See [Davidson, 2001, pp. 25–27], and [Glock, 2003, §8.1].

34I thank an anonymous referee for requesting a fuller explanation of this analogy.
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plays), then at least one reading is that it is there to encode the contribution to mean-
ing of the linguistic community’s background knowledge.35 The background knowl-
edge required to correctly interpret a physical theory is knowledge of the laws of the
theory (in the minimal sense of knowing which models are dynamically possible);
hence, imposing a constraint that co-representational models are co-dynamical serves
to encode the salient background knowledge. The satisfaction of this constraint by
pseudomorphic models is, of course, entailed by the definition of pseudomorphism.

The second important constraint is that a specification of the meanings of sentences
must also constitute a specification of the meanings of words, in such a way that if
synonymous words are put together in the same way, we obtain a synonymous sen-
tence. The analogue for us is that our specification of co-representationality must
enable a specification of the relations of co-representationality on the structures, that
says under what circumstances two structures represent things the same way, and un-
der what circumstances two collections of structures are to count as having been put
together the same way. The force of the constraint comes out as follows: an incorrect
specification of the synonymy relations amongst words will lead to the synonymy re-
lation amongst sentences pairing some truths with falsehoods, in violation of the first
constraint. Thus, although (4) abides by the first constraint, the sentences obtained
by rendering “snow” synonymous with “grass”, and “white” with “green” (say, that
‘snow is white’ is true if and only if snow is green) will not.

The point to appreciate is that given this, limiting the co-representationality rela-
tion to pseudomorphic models can be seen as a means of abiding by this constraint.
For only this will enable us to count the relation that holds between the absolute rest
field and a parallel worldline as synonymous with the relation holding between the
absolute rest field and a worldline at some angle to it (in different models), without
thereby counting as co-representational any models which are not co-dynamical. If,
on the other hand, we tried to extend the co-representationality claim beyond pseu-
domorphism, then we would not expect to find any consistent way of relating the
internal structures of each model to one another in a manner coordinated with the co-
representationality (at least, provided that co-representational models are required to
be co-dynamical).

For example, consider a pair of models 〈N, P〉 and 〈N, g[P]〉 where g is just some
diffeomorphism on N that is not in the Galilei group. By picking an appropriate such
g and P, one can set things up so that 〈N, P〉 and 〈N, g[P]〉 are co-dynamical: for
example, suppose that the former describes one particle in circular orbit around an-
other, the latter describes one particle in elliptical such orbit around another (whose
respective masses are the same), and g simply distorts the circle into an ellipse. Al-
though declaring 〈N, P〉 and 〈N, g[P]〉 to be co-representational would abide by the
first constraint, it would violate the second: an arbitrary dynamically possible model
〈N, P′〉 will not generally be such that 〈N, g[P′]〉 is dynamically possible.

In most cases, of course, an arbitrary pair of co-dynamical models will not even be

35This would provide an alternative justification for focusing on data regarding what the community
holds true, rather than data regarding what is true (see footnote 33).
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such as to allow any mapping of the structures of one onto those of the other: for ex-
ample, if the two models have different numbers of particles, or particles of differing
masses. Hence, the second constraint also prevents us identifying the representa-
tional content of these models; this is analogous to the fact that the second constraint,
in the natural-language case, will prohibit taking sentences with radically different
logico-grammatical forms to be synonymous.

7 In favour of qualified realism

So, we can defend qualified realism from objections. That, of course, hardly amounts
to a positive case for it; in this section and the next, I undertake to provide such a
case. Earlier, I mentioned that we may be in a position to know that a theory contains
surplus structure, but not to clearly exhibit which aspects, precisely, are surplus. This
section explores this issue further, by looking at different ways of presenting Newto-
nian spacetime. In particular, I compare and contrast the approach to defining New-
tonian spacetime used in this paper (which I will refer to as the Penrose approach36)
with the perhaps more familiar approach of, for example, Friedman37 or Earman38

(which I will refer to as the standard approach).39

Recall that the Penrose approach defines Newtonian spacetime as the product of
a three-dimensional metric affine space A (representing absolute space) with a one-
dimensional metric space T (representing absolute time). On the standard approach,
by contrast, Newtonian spacetime is defined as a four-dimensional manifoldM equipped
with40

• A smooth, vanishing, curl-free one-form ta onM,

• A contravariant, symmetric tensor field hab onM, of type (2, 0) and signature
(0, 1, 1, 1),

• An affine connection D, and

• A vector field Aa onM,

36Since this approach is expounded in [Penrose, 2004, chap. 17].
37[Friedman, 1983, §III.1]
38[Earman, 1989, chap. 2]
39I thank one anonymous referee for pushing me to make more clear the positive case for qualified

realism, and another for suggesting that it might be enlightening to compare the significance of
different formalisms.

40In the below, Latin indices a, b, etc., are abstract indices (see e.g. [Wald, 1984, §2.4]).

18



such that the following equations are satisfied:

habtb = 0 (5a)
Datb = 0 (5b)

Dahbc = 0 (5c)
Ka

bcd = 0 (5d)
ta Aa = 1 (5e)

Da Ab = 0 (5f)

where Ka
bcd is the curvature tensor of D. The integral surfaces of ta represent spa-

tial hypersurfaces; ta also encodes the temporal metric and orientation, whilst hab

represents the spatial metrical structure (by inducing a three-metric on each integral
surface of ta). Equation (5a) stipulates that the spatial and temporal metrics must
be orthogonal. D represents the affine structure of the spacetime; it must be com-
patible with the metrical structure (equations (5b) and (5c)), and flat (equation (5d)).
Finally, Aa encodes the structure of absolute space: the worldlines of the points of ab-
solute space are the integral curves of Aa. Equation (5e) tells us that the worldline of
any point of absolute space is (future-pointing) timelike along its length and param-
eterised by absolute time, whilst equation (5f) tells us that those worldlines remain a
constant spatial distance from one another.

Thus, the Penrose approach begins by defining (the mathematical representatives
of) space and time, and then defines Newtonian spacetime as a certain construction
(namely, the Cartesian product) from these; in particular, this means that two space-
time points which are temporal stages of the same spatial point will be represented
by two pairs with identical spatial factors. The standard presentation, by contrast,
constructs Newtonian spacetime “all at once”, by postulating structures of a certain
sort upon a four-dimensional manifold; although, of course, those structures enable
one to recover first a decomposition into space and time, and a representation of
trans-temporal identity of spacetime points (namely, the integral curves of Aa).

Whether this amounts to a substantial difference is a rather delicate matter, touch-
ing on some subtle issues in the philosophy of mathematics. One might feel that on
the Penrose approach, the cross-time persistence of points of absolute space is more
tightly “keyed in” to the formalism than on the standard view, since (in a slogan)
it represents identity by identity. However, we have to be somewhat careful; this
claim becomes problematic if we are more structuralist about mathematics (or more
weakly, if we think that only the structural aspects of mathematics are relevant for
their purpose as representational devices).41 We often describe a product X × Y as
consisting of (all and only the) pairs of points 〈x, y〉 such that x ∈ X and y ∈ Y; struc-
turally, however, the role of X × Y is exhausted by the fact that it comes equipped
with canonical projections (X × Y) → X and (X × Y) → Y.42 And the standard

41For further discussion of this latter idea, see [Weatherall, 2014].
42[Awodey, 2010, §2.4]
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definition of Newtonian spacetime enables us to naturally define privileged maps
πS : M → S and πL : M → L, where S is an arbitrary integral surface of ta and
L an arbitrary integral curve of Aa: for any m ∈ M, πS takes m to the point of S
lying on the same integral curve of Aa as m, and πL takes it to the point of L lying
on the same integral surface of ta as m. In terms of these maps, Newtonian space-
time also represents identity by identity: m, n ∈ M represent successive stages of
the same spatial point just in case πS(m) = πL(n). More generally, given that the
structures A× T and 〈M, ta, hab, D, Aa〉 are definitionally equivalent (in that all the
structure present in one may be uniquely defined in terms of the structure present in
the other),43 it seems most natural to say that the choice is that of how to present a
given structure, rather than what structure to use.

However, the choice of presentation can make a difference. There are three differ-
ences that the use of the Penrose approach makes; two of these are fairly minor, but
the third bears directly on the issues in this paper. First, the Penrose presentation
is somewhat simpler, at least for our purposes. The standard presentation is more
easily generalised to presenting relativistic spacetimes; however, essentially for this
reason, it invokes a good deal more differential-geometric apparatus than is needed
if one is working only with classical spacetimes. Second, the Penrose presentation is
more faithful to the historical conception of space and time: insofar as Newton had an
(implicit) grasp of the concept of spacetime, it was surely as something definitionally
posterior to the notions of space and time (rather than the other way around).

The third difference is more interesting. In the above, I said that the advantage of
qualified realism is that it helps us deal with cases in which we know that a theory
contains surplus structure, but are not in a position to expunge that structure from
the theory. If Newtonian gravitation has been presented to us in the Penrose manner,
then (if we are unfamiliar with fibre bundles) we will typically be in such a position.
If it is presented in the standard manner, however, then we will not: for in that case, it
rapidly becomes obvious that we can still pose the dynamics of the theory using only
ta, hab, and D (and so Aa is identified as surplus to requirements).

It is worth pointing out that this is somewhat independent of the issue about whether
space and time are defined prior to spacetime, or vice versa. For one can define New-
tonian spacetime in a manner broadly analogous to that used by the standard ap-
proach, yet without making so manifest the redundancy of absolute space.44 That is:
rather than defining a Newtonian spacetime as a tuple 〈M, ta, hab, D, Aa〉 subject to
equations (5), one defines it as a tuple 〈M, ta, hab, Aa〉 subject to the equations

habtb = 0 (6a)
ta Aa = 1 (6b)

£Ahab = 0 (6c)
Ra

bcd = 0 (6d)

43See [Hodges, 1997, chap. 2].
44This construction is due to Oliver Pooley; see [Pooley, 2013, chap. 4].
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where £A is the Lie derivative with respect to the vector field Aa, and Ra
bcd is a Rie-

mann curvature tensor encoding the curvature of the integral surfaces of ta. The
intuitive explanations of these equations are the same as those for (5), modulo the
fact that equation (6c) is doing the work of equation (5f) and equation (6d) is doing
the work of equation (5d).

These structures are sufficient to formulate the dynamical laws of Newtonian grav-
itation.45 Rather than go into the details of how this is done, I merely observe that
although defining (the analogue of) equation (1b) draws only upon ta and hab, defin-
ing (the analogue of) equation (1a) makes crucial use of Aa: in effect, one uses Aa

to define a notion of absolute velocity, with (absolute) accelerations then being de-
fined as changes in absolute velocity. Hence, in this presentation—as in the Penrose
presentation—the redundancy of absolute space is not made manifest, but must be
teased out by non-trivial mathematical work.

Appreciating this helps us to see that the manifest redundancy of absolute space
in the standard presentation is, in fact, quite a peculiar feature of that formalism (al-
though its peculiarity is apt to be disguised by its familiarity). The point is simply
that once one is given ta, hab and Aa, there is a uniquely natural affine connection
D definable from those ingredients (with the definition simply being satisfaction of
equations (5b), (5c), and (5f)); hence, introducing D as an additional primitive is not
well-motivated within the project of defining Newtonian spacetime.

Speaking generally, then, I suggest that the situation in which qualified realism
offers a distinctive prescription (viz., that of knowing that there is surplus structure
around, but being unsure of where) is the generic case. As a result, we cannot simply
cross out all the formulae featuring the surplus structure—that would throw the baby
out with the bathwater. If we cannot tell the baby from the bathwater, however, then
something like qualified realism is surely the only option.

8 Indeterminacy

Hence, an interpretation of the models in this fashion is consistent with a thorough-
going realist attitude; and in many situations, such an interpretation may be the most
appropriate realist attitude. In this final section, I wish to explore a more radical sug-
gestion: that in fact, it may be the only appropriate attitude, if we restrict ourselves
to intra-theoretical considerations for determining the representational content of a
theory.

We noted above that boosted models are related to one another in a fashion remi-
niscent of synonymous sets of sentences, and suggested that that helped explain why
interpreting them as synonymous (i.e., co-representational) made sense. By pursuing
this thought a little further, we arrive at a caution against not doing so: namely, that
we will be exposed to an indeterminacy of reference. The argument is an adaptation
of Quine’s more general argument, and runs as follows.

45See [Pooley, 2013, chap. 4].
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First, consider some particular dynamically possible model of NG M = 〈N, P〉,
and consider its spacetime N; select some particular time t ∈ T . Now consider the
family of boosts {bv}v∈V , where bv is the boost specified by t and v (in the sense
defined above, in section 3), and defineMv := 〈N, dv[P]〉 (so thatM =M0); hence,
Mv differs fromM by a boost of v. If we interpret NG literally, then we conclude that
Mv andMw represent distinct possible worlds Wv and Ww, whose material contents
have different absolute velocities from one another.

In other words, what we have is a putative correspondence between the mathe-
matical models and the physically possible worlds; let’s call this correspondence I0.
However, there is now a problem analogous to that faced by Quine’s notorious field
linguist: we can put forward a systematic reinterpretation of the models which will
preserve the requirement that dynamically possible models represent physically pos-
sible worlds. For consider the correspondence Ia, for some a ∈ V, which putsMv into
correspondence with Wv+a. What makes this interpretation scheme any worse than
I0? You might say: because we stipulated thatMv was to represent the possible world
Wv. But all that does is push the problem back to the label “Wv”, whose connection to
any given possible world is just as questionable asMv’s. In effect, we are exploiting
the fact that boosts are a symmetry to demonstrate that interpreting “absolute rest”
as “absolute velocity of a”, etc., is an acceptable reinterpretation (acceptable, that is,
in the sense of being both systematic and dynamical-possibility-preserving).46

What is the relationship to Quine’s original argument? In my view, the above pro-
vides a substantially more concrete and plausible example for the indeterminacy the-
sis than the examples adduced by Quine. For example, after introducing the infa-
mous field linguist trying his best to translate “gavagai” as either “rabbit” or “rabbit
part”, Quine notes that as he offers more and more hypotheses relating terms of the
native language to those of English, and as those hypotheses continue to match sen-
tences to sentences of similar usage, he will feel more and more confident that those
hypotheses are correct. However, Quine continues,

[. . . ] it seems that this method, though laudable in practice and the best
we can hope for, does not in principle settle the indeterminacy between
“rabbit”, “undetached rabbit part”, and “rabbit stage”. For if one work-
able system of analytical hypotheses provides for translating a given na-
tive expression into “is the same as,” perhaps another equally workable
but systematically different system would translate that native expression
into something like “belongs with”. Then when in the native language
we try to ask “Is this gavagai the same as that?” we could as well be ask-
ing “Does this gavagai belong with that?” Insofar, the native’s assent is no
objective evidence for translating “gavagai” as “rabbit” rather than “un-
detached rabbit part” or “rabbit stage”.47

46[Healey, 2006] gives an argument similar to this, although based on ideas from Lewis (specifically,
[Lewis, 1970]) rather than Quine, and more naturally located within a syntactic approach to theo-
ries than the broadly semantic approach taken here.

47[Quine, 1969, p. 33]
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If we examine the above carefully, we see that a remarkable amount of work is be-
ing done by that “perhaps”. The evidence for the claim that “a grand and ingenious
permutation of these denotations, along with compensatory adjustments in the in-
terpretations of the auxiliary particles, might still accommodate all existing speech
dispositions”48 is typically taken to be the possibility of proxy functions:49 functions
which map each object into the domain of discourse into some other such object.50

Given a proxy function f , we reinterpret every term t as referring to f ([[t]]) ([[t]] be-
ing the standard referent of t), and every predicate P as applying to some object o if
and only if [[P]] applies to f−1(o) ([[P]] being the standard interpretation of P). How-
ever, this does not suffice to show that the alternative system of meaning-hypotheses
thereby obtained will be “equally workable but systematically different”. On the con-
trary, an arbitrary proxy-function will yield predicates that apply in an arbitrary and
gerrymandered fashion to objects possessing no real unity. Whether that can be made
to matter is controversial, of course; but nevertheless, it does seem a little premature
of Quine to conclude that these observations have “made nonsense of reference.”51

In the context of a theory containing symmetries, by contrast, we are in a position
to check that there are indeed such permutations of meaning that will preserve all
speech dispositions, yet will also yield extensions for predicates that are as unified
as their original extensions were. Regarding the first, the relevant dispositions are
the circumstances under which a model might be put forward as representing the ac-
tual world; and given the observational equivalence of pseudomorphic models, this
means that the conditions under which one model could be put forward are equally
good reasons to put forward any of its pseudomorphic companions. Regarding the
second, the systematic nature of the alteration means that the new extension of any
particular absolute-velocity predicate is the old extension of some other such predi-
cate: so the latter must be as unified as the former.

The argument is not bulletproof, though. In particular, one might be concerned that
a given model is naturally most suited to represent some particular world: namely,
one in which two temporal stages of spatial points are represented by some (x, t) and
(x, t′) if and only if they are temporal stages of the very same spatial point. Or, if it is
disputed that such considerations of “naturalness” ought to be applied to meaning-
determinations, then one could simply try ostension: just stipulate that the relation-
ship of “being stages of the same persisting object”—the kind of relationship with
which one is acquainted from ordinary cases of persisting physical objects—is to be
represented by the mathematical relationship of “sharing a first member.” In other
words, do not the (putative) facts regarding the persistence of the points of absolute
space provide the means by which a model could be yoked to one world in particu-

48[Quine, 1969, p. 48]
49I thank Simon Saunders for pushing me to consider the role of proxy functions in Quine’s thinking.
50See [Quine, 1969, p. 55 ff.], or [Quine, 1992, §12]. I pass over Quine’s other example—that of the

Japanese classifiers—for the simple reason of not knowing enough about Japanese to be able to
make any kind of informed comment.

51[Quine, 1969, p. 48]
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lar?52

A response has to accept that these show how one could make the representation
relation determinate, after all. However, it bears emphasising that they do so only
by importing resources external to the theory itself. For all the theory cares, one
can use I0, or Ia, or whatever correspondence one likes; and that observation stands,
regardless of whether extra-theoretical considerations of (metaphysical) naturalness,
or stipulations grounded in ostension, serve to privilege one correspondence over the
others. Thus, insofar as one is interested in accounting for the meaning imbued upon
the parts of a theory by their role within that theory, the reference of these models
remains indeterminate—unless, that is, they are all taken to refer identically, to one
and the same possible world.

9 Concluding remarks

These, then, are my reasons for thinking that such an attitude towards the interpreta-
tion of pseudomorphic models is defensible; note that although I have confined my
attention in this paper to the specific case of boost symmetries in NG, the arguments
should readily admit of generalisation to other symmetries in other theories.53 The
final comment I wish to make is that such a process is the natural extension of a way
of specifying the content of a theory that is—or at least, should be—wholly uncon-
troversial. For giving a theory by offering an overly rich class of models, and then
asserting that models of a certain kind are co-representational (so that one is com-
mitted only to whatever structures those models have in common) is precisely what
is involved in giving a theory in coordinate form! That is, suppose that we specify
our spacetime structure by giving a specification of the nature of the adapted coordi-
nate systems, before then going on to specify the laws of the theory as expressed in
those coordinate systems. The laws serve to pick out a class of models, all set on R4;
to avoid committing ourselves to the presence of an absolute centre of the universe,
an absolute time function, and absolute orientations, we specify that certain classes
of models (namely, those related by a coordinate transformation taking adapted co-
ordinates to adapted coordinates) are physically equivalent, so that the differences
between them wash out.

If this kind of method is acceptable as a means of disavowing commitment to spa-
tiotemporal structure, then there is simply no reason why its extension defended here
should not be. If it is not, then we are left with the conclusion that—contrary to what

52I owe this objection to Oliver Pooley.
53Moreover, by advocating that one’s theoretical commitments be expressed by a particular attitude

towards the relationships between different models (rather than an attitude towards the compo-
nents of those models), the lessons of this paper could naturally be generalised to link up with re-
cent work on theoretical equivalence: in particular, [Halvorson, 2012] and [Weatherall, 2011] both
stress the importance of relationships between models (not just within models) when making judg-
ments of theoretical equivalence. I hope to follow up this connection in future work. Thanks to an
anonymous referee for suggesting this connection.
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one might think—Einstein did not, in fact, succeed in putting forward a theory with-
out absolute simultaneity in 1905, since every solution of his theory he considered
was framed in some coordinate system or other.54 Indeed, arguably we do not have
a theory meeting this demand even now: after all, even “intrinsic” formulations of
differential geometry start off by defining the topological and differential structure of
a manifold by specification of the coordinate systems that get that structure right!55

Of course, this isn’t to say that there is no value to reformulating a theory’s formal-
ism in such a way that the surplus structure is made manifest, so that we can move
to a formalism in which it is expunged entirely. Such a presentation lets us see what
it is we are committed to by our (qualified) realism about the theory; if we want to
know the answers to specific questions about the nature of a theory’s ontology and
ideology, then this is invaluable. Moreover, intrinsic formulations may help theoreti-
cal progress, by ensuring that the surplus structure is not taken seriously: by his own
account, the main reason it took Einstein so long to formulate General Relativity was
“the fact that it is not so easy to free oneself from the idea that the coordinates must
have an immediate metrical meaning.”56 But if we lack the mathematical tools to
do so, then I maintain that there is nothing wrong with recognising that one’s real-
ism will only extend to structures that are invariant under the symmetries—whatever
those may turn out to be.
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