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Abstract. This paper studies a generalization of rational choice theory. I

briefly review the motivations that Helzner gives for his conditional choice

construction (Helzner, 2013). Then, I focus on the important class of condi-
tional choice functions with vacuous second tiers. This class is interesting for

both formal and philosophical reasons. I argue that this class makes explicit

one of conditional choice’s normative motivations in terms of an account of
neutrality advocated within a certain tradition in decision theory. The ob-

servations recorded—several of which are generalizations of central results in
the standard theory of rational choice—are intended to provide further insight

into how conditional choice generalizes the standard account and are offered

as additional evidence of the fruitfulness of the conditional choice framework.
Rational Choice and Decision Theory and Uncertainty and Value Conflict and

Conditional Judgment

1. Admissibility and Preference

For the received view of rationality, the concept of preference is central. This is
true, too, for the expectation tradition in decision theory more generally, from early
accounts of expected value to Savage’s widely endorsed development of subjective
expected utility theory (Savage, 1972, originally published in 1954; Helzner, MS).1

According to the subjective expected utility tradition’s account of decision making,
a rational agent has a credal state that can be represented by a probability distribu-
tion over the relevant state space and values that can be represented by a cardinal
utility function over the relevant space of outcomes. What rationality demands is
that an agent’s choices maximize expectation with respect to the indicated sort of
probability and utility functions (Savage, 1972, originally published in 1954; Luce
and Raiffa, 1957). Subjective expected utility induces a preference ordering on the
set of alternatives and rational choices are those made in accordance with that
ordering (or, provided an agent’s preferences satisfy certain constraints, she can
be represented as maximizing expected utility). Even many deviations from this
view—from descriptive theories such as Kahneman and Tversky’s prospect theory
(1979) to normative accounts such as those of Ellsberg (1963) and Gärdenfors and
Sahlin (1982)—retain the assumption of a preference ordering while surrendering
other aspects of the expected utility tradition.

But there is also a “persistent underground movement” that calls into question
the normative status of the ordering assumption for preference (Seidenfeld, 1988).

Date: Received: 14 October 2014 / Accepted: 15 April 2015.
Thanks are due to John Collins, Jeff Helzner, Tobias Lessmeister, Isaac Levi, Yang Liu, Ig-

nacio Ojea, Paul Pedersen, Hans Rott, and two anonymous referees for helpful comments and
discussions.

1As Helzner points out, while Savage’s work eximplifies the tradition of expected utility most
familiar to economists, psychologists, and statisticians, perhaps the tradition descending from
Richard Jeffrey (1983) is most well-known among philosophers.
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These theorists are motivated by, among other things, many of the same concerns
that motivate the deviations mentioned in the previous paragraph, but point the
finger at ordering as the problem. The fact that sophisticated decision-makers under
little cognitive load endorse, even upon reflection, choices that do not satisfy the
demands of subjective expected utility theory in cases like those Ellsberg presents
(1963), for example, is taken by many to be grounds to explore descriptive and
normative alternatives.

Perhaps most prominent of such concerns has to do with the received view’s
treatment of uncertainty. In Games and Decisions, Luce and Raiffa treat deci-
sions according to the now-famous tripartite distinction: decisions under certainty,
decisions under risk, and decisions under uncertainty (1957, p. 13). In decisions
under certainty, “each action is known to lead invariably to a specific outcome.”
In decisions under risk, the agent has access to an objective probability distribu-
tion over the relevant state space. By contrast, decision-making under uncertainty
obtains when the agent does not have such access, either because the probabilities
“are completely unknown or are not even meaningful.” According to the subjec-
tive expected utility tradition, the distinction between risk and uncertainty is not
particularly meaningful because, even if statistical information is unavailable, the
agent still has access to a determinate probability distribution over the state space;
the probabilities just are not objective. Many view the reduction of uncertainty to
a single subjective probability distribution as problematic, including Keynes in his
discussion of the weight of evidence (1921), Knight with his notion of unmeasurable
uncertainty (1921), Ellsberg in his critique of the Savage axioms (1963), Kyburg in
his criticism of the subjective interpretation of probability (1968), and Levi with
his normative conception of doubt (1974). More recent contributions to alternative
accounts of uncertainty in decision theory include those of Walley (1991), Kadane
et al (1999), and Seidenfeld et al (2010).

Consider the urn of Ellsberg’s three color problem. What is known about the
composition of the urn is that it contains exactly 90 balls, 30 of which are red, the
remainder an unknown mixture of yellow and blue balls. There are 61 possible mix-
ture compositions of the urn consistent with this information. A ball is to be drawn
at random. What probabilities are to be assigned to the three possible outcomes?
The standard Bayesian account rules out numerous states of suspense in proba-
bilistic judgment among all of the statistical hypotheses consistent with the given
information. The rational agent is assumed to have a credal state representable by
a single probability distribution, perhaps by some particular statistical distribution,
or by an assignment of sharp credal probabilities to the statistical hypotheses. For
a bet on the outcome of the draw, the rational agent, on this account, is obliged
to maximize expected utility with respect to that single probability distribution.
Regarding two or more distributions as permissible to use in inference and decision
making is a foreclosed possibility.

In contrast, Isaac Levi denies that in such cases agents are obliged to be in
credal states representable by a single probability function. We might instead
take the set of probability functions corresponding to the statistical hypotheses
compatible with the evidence about the urn to represent a legitimate credal state.
Levi correspondingly advocates a decision rule for sets of probability functions
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(Levi, though, requires convexity of states of subjective probability).2 For a set P
of probability functions and a set U of utility functions, the E -admissible options
are those that maximize expected utility for some pp, uq P PˆU. Every probability
function in P is permissible to use in assessing expected utilities. It is easy to see
that E-admissibility generates a set of orderings of the options that will, in general,
disagree in some respects. Such a decision theory does not induce a preference
ordering over the options.

Instead of recommending the options that are optimal according to a (single)
preference ordering, E-admissibility generalizes to a notion of admissibility, or ac-
ceptability for choice. In some cases, admissibility and preference coincide, but
admissibility is the more general notion. Admissible options are those that are
consistent with the agent’s relevant commitments, those options that the agent’s
commitments fail to rule out for choice (Nehring, 1997; Helzner, 2011, MS; Rubin-
stein, 2012). For decision making, the relevant sorts of commitments include values
and beliefs. A (non-singleton) set of probability functions represents a weaker state
of credal probability judgment than does a single probability function, so, in gen-
eral, more options will be consistent with the weaker state, as the E-admissibility
rule attests.

Other sources of indeterminacy, such as conflict in values (indeterminacy in util-
ity), lead to analogous problems with ordering, and, as Sen argues, there are other
reasons to think that the relationship between preference and choice is often subtle
and complex (1997). It seems reasonable, then, to seek a more general, unify-
ing, and neutral setting in which to investigate many aspects of rational choice,
including, in particular, departures from ordering (Helzner, MS). The framework
of set-valued choice functions provides such a setting. After briefly reviewing the
standard account of rational choice, I turn to conditional choice (Helzner, 2013).
Conditional choice generalizes the standard account, moving to conditional judg-
ments of admissibility. Among the motivations I recount in Section 3 is that a
natural characterization of two-tiered choice is available in the conditional choice
setting, where one is lacking in the standard framework of choice functions. Rules
like E-admissibility recommend generally permissive judgments of acceptability for
choice. Secondary (tertiary, etc.) criteria can be invoked to contract the first-
tier admissible options further. Even in cases in which either there is no relevant
second-tier criterion or the options are tied with respect to such a criterion (that
is, cases in which the second-tier is vacuous), the conditional choice framework is
still both formally and philosophically interesting. This special case inherits many
of the philosophical motivations for conditional choice in general. As I argue in
Section 4, a normative account of neutrality or suspense among candidate ways
of evaluating options that underwrites conditional choice can be clearly expressed.
Furthermore, many of the interesting connections between rational choice and belief
revision theory observed by Hans Rott are preserved when the second tier is vacu-
ous (remarks in Section 4). Finally, in addition to several other connections to the
standard theory of rational choice (Observations 2, 6, and 8), generalizations and
alternative characterizations of the notion of pseudo-rationalizability are available
(Observations 9, 10, and 11).

2Seidenfeld et al.’s account of coherent choice generalizes Levi’s account by relaxing convexity
(2010).
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2. Choice Functions

Let X be a set of alternatives or options. Let X be a collection of subsets of X.
Intuitively, X is the set of menus from which an agent is to choose, carved from
the universal set of alternatives, X. Sometimes additional assumptions are made
about X . For example, we could stipulate that X be closed under finite or arbitrary
unions or that X be compact (for every element of X , if that element is a subset
of the union of some collection of elements of X , then that element is a subset of
the union of some finite subset of the collection). For the purposes of this paper,
we will generally assume that X consists of all the finite subsets of X. The concern
with this distinguished domain for choice is customary in the literature (Sen, 1971;
Suzumura, 1983; Moulin, 1985; Rott, 2001; Helzner, 2013).

Definition 1. A choice function is a function C : X Ñ PpXq such that CpY q Ď Y
for every Y P X .3

CpY q is called the choice set. In this paper, it is not assumed, as it typically is,
that choice sets are non-empty. More will be said about relaxing this assumption
later on.

Instead of preference, the central concept is the more general notion of admis-
sibility. A choice function partitions a set of options into the set of admissible
options and the complementary subset of rejected or inadmissible options. So,
given a menu, Y , a choice function returns the set of admissible options, CpY q.
Cases in which judgments of admissibility are reducible to a preference ordering
can be characterized in terms of rationality constraints on choice functions. We
turn to such constraints now.

2.1. Choice Constraints and Rationalizable Choice. So that’s what a choice
function is. But which choice functions are the rational ones? In the classical
theory of choice, there is a slogan that answers that question: “Rational choice is
relational choice” (Rott, 2001, p. 154). The idea is that a choice function is rational
just in case it can be regarded as based on some underlying binary relation.

Definition 2. A binary relation R on X rationalizes C if, for every Y P X ,

CpY q “ tx P Y : xRy for all y P Y u.

And C is said to be rationalizable. For a rationalizable choice function, admissibility
in a menu is determined by pairwise comparisons (under the relation on X) of the
menu’s elements.

There are two kinds of relations that are standardly considered in this context.
One is a non-strict (reflexive) relation. The other is strict (asymmetric).

pOq CpY q “ tx P Y : x ě y for all y P Y u
pMq CpY q “ tx P Y : y ą x for no y P Y u

The first formalization is called optimization, the second, maximization (Sen, 1997).
Maximization is the more general notion, applying even in cases in which R is
not complete (that is, even in scenarios in which it is not the case that any two
alternatives can be compared).4

3PpXq is the power set of X.
4Though we can define a relation ě by x ě y iff  py ą xq that rationalizes the choice

function in the precise sense specified above. Note that this relation generated from ą is complete,
converting incompleteness into indifference.
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The following is a list of coherence constraints on choice functions. The con-
ditions are abstract and intended to apply to any choice function (whether it is
determined by a probability/utility pair or something very different).

pIq If Y Ď Y 1, then Y X CpY 1q Ď CpY q
pI´q If Y Ď Y 1 and CpY 1q Ď Y , then CpY 1q Ď CpY q
pI 1q CpY Y Y 1q Ď CpY q Y CpY 1q
pIIq CpY q X CpY 1q Ď CpY Y Y 1q
pII`q If x P CpY q and y P CpY 1q, then x P CpY Y Y 1q or

y P CpY Y Y 1q
pIIIq If Y Ď Y 1 and CpY 1q Ď Y , then CpY q Ď CpY 1q
pIV q If Y Ď Y 1 and CpY 1q X Y ‰ H, then CpY q Ď CpY 1q
pIV `q If Y Ď Y 1, then CpY q Ď CpY 1q

pFaith1q @Y P X : if Y XB ‰ H, then CpY q Ď B
pFaith2q @Y P X : Y XB Ď CpY q
pSuccessq If Y ‰ H, then CpY q ‰ H

pH1q If Y Ď Y 1 and CpY 1q “ H, then CpY q “ H
pH2q If Y Ď Y 1 and CpY q “ H, then CpY 1q X Y “ H

Many of these constraints are standard.5 Some Hans Rott suggests in his Change,
Choice and Inference (2001) and are included here because of their relevance to fu-
ture work connecting rational choice to belief revision. The naming system adopted
here is Rott’s. pIq is Sen’s Property α, pIIq a finitary version of Property γ. pIIIq
is Aizerman’s Axiom and is of more recent pedigree than Sen’s properties. pIV q is
Sen’s Property β`.

There is an important aspect of such constraints that deserves comment. Every
constraint (except pSuccessq—more on that below) mentions more than one menu:
they are intermenu constraints. But such standards are intended to be synchronic.
This has to do with the hypothetical nature of choice functions. The idea is that
judging certain options to be admissible on one menu rationally commits one to
hypothetically judging a certain way on another menu at that time (that is, with no
changes in admissibility-determining judgments). Consider pIq, alternatively called
Sen’s Property α, Chernoff, and Heritage. According to Property α, a rational
choice function is such that, if an option is judged admissible on a menu, then
that option remains admissible on any subset of the menu that includes it. Merely
removing options, in other words, ought not to demote an alternative from being
judged admissible—so long as the parameters generating the choice function are
held fixed.

Importantly, given particular domain restrictions, that is, restrictions on X ,
satisfying a certain small set of choice constraints guarantees rationalizability for a
choice function. The following theorem is a central result in this area. Instead of
the more standard presentation (see (Sen, 1971)), I will give Rott’s slightly more
complicated version of the theorem.

Theorem 1. Let C be a choice function satisfying pH1q, where X is the set of all
finite subsets of X. C is rationalizable iff it satisfies pIq and pIIq.6

5In the non-standard Faith constraints, B is intended to represent a set of “absolutely satis-

factory options.” Together, the Faith constraints entail that all and only absolutely satisfactory

options are in the choice set when present on a menu.
6See (Rott, 2001, pp.286-290) for proof.
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The reason for the more complicated statement of the result is that Rott is
concerned about domain conditions and refusals to choose. For one thing, in Rott’s
version, X contains the empty set. For another, our definition of a choice function—
which is also Rott’s—does not imply that choice functions automatically satisfy
pSuccessq. If, pace Rott, we insist on pSuccessq and ensure H R X , then Theorem
1 holds for the domain of all non-empty, finite subsets of X just by imposing pIq
and pIIq (the more standard formulation); stipulating that C satisfies pH1q is
unnecessary. This is easy to see because pH1q and pH2q are vacuously satisfied
since it is never the case that CpY q “ H.

Cases in which judgments of admissibility are reducible to a preference ordering
can also be characterized by conditions on choice functions. When C satisfies Sen’s
well known-properties α and β`, or pIq and pIV q, CpY q can be interpreted as the
elements that are optimal in Y with respect to the underlying preference relation
(1971).7

Theorem 2. Let C be a choice function satisfying pH1q, where X is the set of all
finite subsets of X. C is weak order rationalizable iff it satisfies pIq and pIV q.

The standard proofs of the central results presented in this section make use
of the notion of revealed preference. The idea is to recover an underlying prefer-
ence relation from the choice function. There are a number of ways to define a
revealed preference relation, RC Ď X ˆ X. Though in general such relations are
not equivalent, given certain typical assumptions—e.g., that the domain consists
of all and only the finite subsets of X and that the choice functions satisfy certain
constraints—the following two are equivalent in the relevant contexts. The first is
called Samuelson preference

xRCsy iff, for some Y P X , x P CpY q and y P Y

and the second is called base preference

xRCby iff x P Cptx, yuq.

Sen calls a choice function normal if its revealed preference relation, when used
as the basis for choice, regenerates the choice function itself (1971). Normality is
equivalent to rationalizability. For non-binary choice functions, the two relations
do not coincide.

2.2. Pseudo-Rationalizability. Relaxing ordering is one level of heresy; there
are reasons, however, to consider relaxing even binariness of choice (Sen, 1993;
Nehring, 1997). In fact, the decision theory advocated by Levi (1974), for example,
and its generalization in the hands of Seidenfeld, et al. (2010), do not reduce to
binary comparisons between options.

Consider the following set of alternatives for Ellsberg’s urn:
The outcomes are dollar amounts. Assume that the agent’s utilities are determinate
and linear in dollars. Not imposing convexity, take the agent’s credal state to
correspond to the set of configurations of the urn consistent with the evidence. So,
P is the set of probability functions on tRed, Yellow, Blueu such that ppRedq “
1
3 , ppYellowq “ n

90 , ppBlueq “ 60´n
90 for some natural number n ď 60. Consider

pIV q. tf, hu Ď tf, g, hu and f is E-admissible in tf, g, hu and tf, hu, so Cptf, g, huqX

7In (Sen, 1971), Sen uses β instead of the stronger condition β`. In the presense of α, however,
β and β` are equivalent. β : If x, y P CpY q, Y Ď Y 1, and y P CpY 1q, then x P CpY 1q.



CONDITIONAL CHOICE WITH A VACUOUS SECOND TIER 7

Table 1. Options for Ellsberg’s Urn (Helzner, 2013)

Red Yellow Blue
f 3 0 3
g 3 3 0
h 3/2 3/2 3/2

tf, hu ‰ H. But h is E-admissible in tf, hu while it is not in tf, g, hu, so Cptf, huq Ę
Cptf, g, huq. pIV q is violated, so judgments of admissibility do not reduce to an
ordering of the options, as indicated above.

Now consider pIIq. We have seen that h is E-admissible in tf, hu, but it is also
E-admissible in tg, hu. However, we have also seen that h is not E-admissible in
tf, g, hu. Cptf, huq X Cptg, huq Ę Cptf, gu Y tg, huq. pIIq is violated, so judgments
of admissibility do not reduce to binary comparisons of the options either.

Within the literature on choice functions, weaker notions than rationalizability
by a binary relation have been considered. One such notion is called collected
extremal choice by Aizerman and Malishevski (1981) and pseudo-rationalizability
by Moulin (1985).

Definition 3. A choice function C is pseudo-rationalizable if there is a finite col-
lection tCi : i P Iu of weak order rationalizable choice functions such that, for all
Y P X ,

CpY q “
ď

iPI

CipY q

For every menu, C returns the options that are best according to each Ci. Loosely
speaking, E-admissibility and Seidenfeld et al.’s “coherent choice” rule both deter-
mine pseudo-rationalizable choice functions. Each probability/utility pair in PˆU
determines a weak order rationalizable choice function. Since an option is admissi-
ble just in case it has a witnessing probability/utility pair, admissibility according
to these rules can be construed as the union of a (not necessarily finite) collec-
tion of weak order rationalizable choice functions. As Aizerman and Malishevski
show, pseudo-rationalizable choice functions can be characterized in terms of simple
coherence constraints.

Theorem 3. Let the set X of options be finite and let X be the set of all non-empty
subsets of X. A choice function C on X is pseudo-rationalizable iff it satisfies pIq
and pIIIq.

As an alternative rationalization concept, pseudo-rationalizability, as we will
see (Observations 2, 9, and 11), is very closely related to the choice structure
of concern in what follows. The account that emerges will be closely related to
pseudo-rationalizable choice functions, but in some ways more general, and in other
ways more structured. The general account of conditional choice is introduced and
motivated over the course of the next two sections. Then, attention is turned to
the special case of conditional choice with a vacuous second tier and connections
to rationalizability and pseudo-rationalizability.

3. Conditional Choice

Jeff Helzner has recently proposed conditional choice as a generalization of the
classical framework of rational choice (2013). Roughly speaking, conditional choice
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encodes conditional judgments of admissibility. The judgments are conditional on
antecedent, admissibility-determining judgments, such as beliefs or values (or both).
To take a particular interpretation of the conditioning set, an agent might deem
one set of options as admissible relative to a set P of probability functions and
another set admissible relative to P1 ‰ P. An exact definition is provided below.

This section collects some of the motivations that have been given in various
places for this construction. One motivation for the move to conditional choice is the
one Helzner is concerned with in that first paper, namely, rationalizing two-tiered
choice. Decision rules that first apply one criterion to the menu and then a second
criterion to the set of options compatible with the first criterion, whittling the
admissible options down further, define a two-tiered choice function. For example,
after restricting choice to the E-admissible options on the menu, an agent could
then apply a second-tier security criterion. The resulting set of admissible options
would be those E-admissible options that also have the best worst-case outcomes
evaluated with respect to PˆU. Such choice functions violate prominent coherence
constraints. Helzner articulates a sense in which “two-tiered choice functions emerge
naturally from conditional choice” (2013, p. 946). In the context of conditional
choice, two-tiered choice functions admit of a relatively simple characterization.
This is not the case in the context of standard, unconditional choice functions, for
which a characterization of such functions in terms of coherence properties is still
unavailable (Arló-Costa, 2011). While the topic of two-tiered (or n-tiered) choice
functions is important, it is not the focus of the present work. We are interested in
the account of choice that results from conditional choice when only a single tier is
relevant.

Just as admissibility generalizes the concept of preference, conditional admissi-
bility generalizes the notion of admissibility. Helzner argues that the concept of
admissibility as articulated above is insufficient for characterizing standards of syn-
chronic rationality for individual decision makers. That is because an agent’s judg-
ments of admissibility depend on what the actual values of particular parameters
are for that agent. Take expected utility for example. What the admissible options
are for an agent depends, in part, on what her probabilities are at the time. But if
an agent is synchronically committed to maximizing expected utility, this commit-
ment, according to Helzner, should extend to conditional judgments about what
would be admissible if her beliefs were somehow different, say, because she had re-
ceived some piece of information other than the one she in fact received. Conditional
choice functions are intended to encode information about the agent’s conditional
judgements of admissibility, information about the agent’s judgments of admissibil-
ity given some epistemic or valuational state. For E-admissibility, admissibility in
a menu can be thought of as determined by such conditional judgments—the judg-
ments that an option is admissible relative to some probability function included in
P, an epistemic state different from P itself. But, on Helzner’s view, an agent might
hold fixed her commitment to E-admissibility and consider the decision problem
under the supposition of any alternative credal state P1 such that P1 ‰ P. The
point, however, is not just that it is nice to also encode conditional judgments of
admissibility for generality’s sake. These judgements, he argues, can be gainfully
employed. The next two motivations for conditional choice make use of conditional
judgments of admissibility.
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In another paper, Helzner provides further motivation for conditional choice
that is rooted firmly in the pragmatist tradition in epistemology (2011). At the
fountainhead of pragmatist epistemology is the belief-doubt model. Levi writes,
“In my judgment, the belief-doubt model represents the greatest insight in the
pragmatist tradition, and I have sought to preserve it in my own thinking” (1991,
p. 163). Peirce sketches the model in “The Fixation of Belief”:

The irritation of doubt is the only immediate motive for the struggle
to attain belief. It is certainly best for us that our beliefs should
be such as may truly guide our actions so as to satisfy our desires;
and this reflection will make us reject every belief which does not
seem to have been so formed as to insure this result. But it will
only do so by creating a doubt in the place of that belief. With
the doubt, therefore, the struggle begins, and with the cessation of
doubt it ends. (1992, p. 114)

In what sense is doubt an irritant on this view? It is not that doubt is merely
psychologically uncomfortable, but that it interferes with action (Misak, 2004).
Helzner suggests that, in the context of an admissibility account of rational decision
making, one way of interpreting the claim that doubt interferes with rational action
is that certain epistemic states not free from doubt lead to the violation of coherence
constraints like pIV q or even pIIq. For example, in the bet on Ellsberg’s urn
discussed above, uncertainty about the distribution of the urn resulted in violations
of both pIV q and pIIq. But on the belief-doubt model, Helzner argues, the agent
needs to be aware of such violations if they are to prompt inquiry or an effort to
eliminate them. And that requires conditional judgments of admissibility. The
introduction of conditional judgments of admissibility provides for synchronically
judging admissibility from states free from doubt as well as from states not free
of doubt. Inquiring agents are thus in a position to assess the ways in which the
relevant constraints are violated in the latter but not the former states.

A related, and perhaps more compelling, motivation for relativizing choice func-
tions to states of information (or, more generally, states of commitment) concerns
issues with the notion of the internal consistency of choice. The problem here is
that violations of α and other internal consistency constraints can seem rational
in certain fleshed-out contexts. Take the problem of the epistemic value of the
menu (Sen, 1993). There is a very familiar example, due to Luce and Raiffa, that
is supposed to demonstrate such a “rational” violation of α (1957, p. 288). At
a restaurant, a customer chooses salmon from a menu consisting of salmon and
steak. Upon learning that fried snails and frog’s legs are also options, however, the
customer changes to steak. The explanation offered is that the customer initially
fears that the restaurant would botch the steak, suspecting that the restaurant is
not of good quality. The presence of the additional options on the menu, however,
leads the customer to infer that the restaurant is a good one, and so she switches
to steak. The menu carries information for the customer. Such choice behavior vi-
olates property α. Steak is not judged admissible on the small menu despite being
so judged on the large one.

The epistemic value of the menu has been addressed in various ways. One way
to deflate the worry is to recognize that, in standard applications, choice functions
depend on underlying epistemic or information states. The idea in outline is that
in scenarios like the one above, the agent’s state of information is not held fixed.
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Indeed, it is crucial to the example that the epistemic state changes. And if choice
functions depend on states of information, the choice functions indexed by two dis-
tinct states of information will in general yield distinct choice sets. So we do not
have an inconsistency between different parts of the same choice function in the
restaurant example and the counterexample fails. In addressing other alleged coun-
terexamples to internal consistency constraints, Sen employs a similar strategy by
making choice functions dependent on the identity of the agent doing the choosing
(1997). Arló-Costa explores the present strategy, and suggests framing the relevant
epistemic states in terms of full beliefs and doxastic expectations (2006).8 In the
restaurant example, the agent seems to assume by default that the restaurant is
not good (or does not expect it to be good at any rate), with the larger menu
occasioning a revision of her expectations. Helzner urges the present solution to
the problem of the epistemic value of the menu (MS). He argues that confronting
the problem requires a framework that allows for changes of epistemic states, and
this goes beyond what the standard interpretation of set-valued choice functions is
capable of.9

Let E “ xE,Ďy be a non-empty partially ordered set such that every chain in
E has an upper bound in E . The elements of E are intended to represent “the
antecedent judgments upon which judgments of admissibility depend” (Helzner,
2013, p. 937). Helzner targets an interpretation in terms of information states,
but notes that the relevant conditioning set might differ in different contexts. (The
elements of E might be sets of valuational states, or something more complex
like sets of probability/utility pairs.) The Ď relation is meant to partially order
the elements of E according to their strength. e Ď f can then be read as “f is
at least as strong as e.” If we were to represent information states as subsets of
some possibility space, such as sets of possible worlds, it would be most natural to
interpret Ď as reverse subset inclusion: e Ď f iff f Ď e. Similarly, reverse subset
inclusion is a sensible interpretation of Ď when the elements of E are interpreted
as sets of probability functions à la indetermenate probabilities. If the information
states are represented as deductively closed sets of sentences, subset inclusion makes
sense, that is, e Ď f iff e Ď f .

Definition 4. A function C : X ˆ E Ñ PpXq is a conditional choice function just
in case the following conditions are satisfied for all x P X,Y P X and e P E : (i)
CpY |eq Ď Y and (ii) if x P CpY |eq, then there is an f P E such that e Ď f and
x P CpY |gq whenever f Ď g.10

Condition (i) simply requires that C be a choice function in its first argument.
If the second argument is held fixed, a conditional choice function behaves like a
regular choice function. Condition (ii) calls for a bit more explanation. Perhaps

8The sort of expectation intended here is the one of relevance to nonmonotonic logic and not

the familiar sort of expectation of decision theory.
9This line of response to the epistemic value of the menu enjoys a serious advantage over a

response of a different kind. Another way to respond is to insist that the option w from menu
tw, xu is not the same as option w from the menu tw, x, y, zu. Such a response does forestall
counterexamples of the above sort, but at a rather severe cost. If an option changes depending on

the other available options (e.g., steak at a bad restaurant versus steak at a good restaurant), it
will be quite hopeless to attempt to invoke inter-menu consistency constraints. We risk emptying

the theory of real content.
10Again, unlike Helzner, we do not make the more standard assumption that choice sets are

non-empty.
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the most intuitive way to think about it is in terms of stability. If an option x P Y
is admissible at e, then there is a way of filling out the information or strengthening
e such that x becomes admissible and remains admissible regardless of any further
strengthening of the information state. That is, there is some chain from e on which
the judgment of x as admissible stabilizes. What (ii) demands is that only stably
admissible options, in this sense, are admissible.

To take an example, suppose that the elements of E are sets of possible worlds.
Let e “ tw1, w2u, so the agent believes that the real world is in tw1, w2u (say, that
a ball drawn from an urn is one of two possible colors), but cannot make further
distinctions. According to (ii), the only acts admissible at e are ones that are
admissible at tw1u or tw2u. If the elements of E are convex sets of probabilities,
condition (ii) demands that any option admissible given P must be stably admissible
along some strengthening of P.

Given a conditional choice function, we can recover a relation that represents a
second-tier consideration. The basic idea is that some options on a menu Y that
might nonetheless be deemed admissible at stronger information states, might drop
out of the choice set due to some second-tier cut. We define a binary relation ąe

on X.

Definition 5. Let C : X ˆ E Ñ PpXq be a conditional choice function. x ąe y iff
there is a Y P X and an f P E such that (i) e Ď f , (ii) x P CpY |eq, (iii) y R CpY |eq,
and (iv) y P CpY |fq.

Let ąt
e be the transitive closure of ąe . Define Át

e by x Át
e y iff not y ąt

e x. Given
some simple conditions, Helzner shows that we can characterize both maximization
and optimization at the second tier with these relations (2013, pp. 944-945).

Consider again the betting setup above for Ellsberg’s urn (Table 1). Both f
and h are E-admissible relative to P in the menu tf, hu, but one could appeal
to a secondary security condition in an attempt to distinguish between the E-
admissible options. In that case, h, which has the best worst-case outcome, is
uniquely admissible (the payoff is never less than 3

2 whereas the lowest possible

payoff for f is 0). But there is a strengthening of P, p such that p(Red)“ 1
3 and

p(Blue)“ 2
3 , such that f is uniquely admissible in tf, hu. So for a conditional choice

function representing these judgments of admissibility, h ąP f .

4. Conditional Choice with a Vacuous Second Tier

Sometimes the second (third, etc.) tier is vacuous. In such cases, the elements of
X are not distinguished with respect to the second tier. For instance, an agent or a
collaborating group of agents might regard E-admissibility as a sufficient standard
for admissibility, appealing to no secondary considerations. Or perhaps all of the
options on a menu are equivalent with respect to, for example, security. Does
conditional choice deliver a normatively adequate account under this restriction?
Insofar as conditional choice is interesting in general, it is important to explore
its structure. To the extent that single criterion decision-making is important, the
class of conditional choice functions with vacuous second tiers is of special relevance.
Paying attention to this class also positions us to better understand how Helzner’s
proposal generalizes the standard account of rational choice.

Like several recent studies, we have not insisted here that choice sets be non-
empty (Seidenfeld et al, 2010; Arló-Costa and Pedersen, 2011; Arló-Costa, 2011).
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There may be reasons, however, for reservations about this particular generalization
of the notion of a choice function. Rott defends empty choice sets by claiming that it
may be that “every option on the menu appears entirely unacceptable” (his “taboo
sets”) (2001, p. 150). But if, in a particular decision problem, it is possible to refuse
to choose among some alternatives, then, in one clear sense, one has the option to
refuse to choose between those alternatives in that scenario. And if one refuses to
make a selection from some set, that choice, the choice of abstaining from making
a selection from some particular options, needs to be in some sense rationalized as
optimal or shown to be admissible. What I am suggesting here is that “refusal to
choose” might be more appropriately construed as just selecting a certain option
on the menu (the option to not select one of the other items on the menu). If
nothing from the menu is chosen, then the menu is not an accurate representation
of the decision problem at hand—the agent selects the “abstain” option, which is
not even on the menu. Fishburn, for example, addresses Rott’s concern by insisting
that some “abstain,” “delay decision,” or “maintain the status quo” option always
be present, assuring some alternative must be selected (1973, p. 3).

Nevertheless, we have not made such assumptions about what counts as a deci-
sion menu in particular contexts of choice. A few tentative defenses can be offered
for allowing empty choice sets. First, when it comes to extending choice functions
to infinite menus, there may be no optimal or even maximal options. Consider
an open set Y “ t0 ď x ă 1u and a preference ordering that coincides with the
ordering on X. Second, when an agent’s admissibility-determining commitments
are inconsistent (e.g., when an agent is certain both that it will rain and that it
will not rain), all of the feasible options are ruled out as inconsistent with them.11

Third, in the background here is a project connecting constraints on choice func-
tions to constraints on belief revision operators in the style of Rott. In that context,
pSuccessq corresponds to a particular belief revision constraint. So, in the spirit of
generality, we stick to this formulation of choice functions, noting that the relevant
restrictions—namely, pSuccessq—might be desirable to impose after all.

As a result of allowing for empty choice sets, however, requiring that ąe“ H for
all e P E does not by itself yield the right account of a vacuous second tier. Since
no secondary considerations are invoked, at e there are no grounds on which to rule
out options deemed admissible at stronger states of commitment. Because ąe“ H

when CpY |eq “ H for all Y P X , in addition to requiring that ąe“ H, we should
insist that all options are not to be ruled out at e (on the basis of what, after all?)
if some option is admissible relative to some strengthening of e. We can formulate
such a requirement as follows:

ν : If CpY |eq “ H, then CpY |e1q “ H for all e1 P E such that e Ď e1.

ν is a reasonable constraint in contexts in which no secondary (tertiary, etc.) con-
cerns are in play. It requires that weakening the state of admissibility-determining
judgments does not rule out all options on any menu that has admissible options
according to some stronger state of admissibility-determining judgments.

There is an equivalent formulation to these two requirements that makes a simple
change to the second clause in the definition of conditional choice functions. The
only difference is that condition (ii) is strengthened to an iff. Before, a judgment
of conditional admissibility at an information state e entailed stable admissibility

11I owe emphasizing this point to an anonymous referee.
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from e. The following condition makes those equivalent. Stable admissibility from e
entails conditional admissibility at e too. Instead of piiq, we have pii1q : x P CpY |eq
iff there is an f P E such that e Ď f and x P CpY |gq whenever f Ď g. In the
two-world information state example given above, conditional choice demanded
stability of admissible options. What pii1q adds is deeming any stably admissible
option from e as admissible at e. So, pii1q adds that if an agent is in information
state tw1, w2u, any options admissible at tw1u and any admissible at tw2u are
admissible at tw1, w2u. We require that both ways of evaluating the options for
admissibility are permissible.

Observation 1. Let C : XˆE Ñ PpXq be a conditional choice function. C satisfies
pii1q iff C satisfies ν and ąe“ H for all e P E.

Again, in the spirit of generality, we stick to Helzner’s formulation of conditional
choice. Instead of altering the definition of clause piiq, we express conditional choice
with a vacuous second tier as conditional choice functions meeting the indicated
conditions. Henceforward, conditional choice functions with vacuous second tiers
will be denoted by C̃.

A certain normative account of neutrality underwrites conditional choice, and
is made explicit in the choice structure just described. That account has it that a
neutral position with respect to conflicting judgments of a particular type preserves
the shared agreements between the parties and introduces no judgments over which
there is disagreement (Levi, 1986; Seidenfeld et al, 1989). This way, no relevant
questions are begged and further deliberation or inquiry can be undertaken from
such a perspective. As noted above, a primary motivation for the introduction
of indeterminate probabilities is to provide a sufficiently neutral perspective that
allows for the consideration of all the various rival theories, e.g., the statistical
hypotheses consistent with the known data about the Ellsberg urn. Since the
information about the urn does not rule out several possible distributions, the agent
is not obliged to act as if a unique probability distribution is permissible in this
case. We can think of a choice function as partitioning menus into the set of rejected
options and its complement, the set of admissible options. How should we think of
neutrality with respect to different judgments of admissibility? According to the
view being presented, to suspend judgment between some number of rival ways of
evaluating the options is to regard each of those ways as permissible for evaluating
the options. Whatever the neutral position is with respect to the conditioning
commitments (beliefs, values, etc.), judgments of admissibility relative to that state
capture the shared agreements of all the strengthenings of that state in the following
sense: all options deemed admissible at a strengthening of e are admissible (not
ruled out) at e and any option that is inadmissible at every strengthening of e
remains so.12 On this view, judgments of admissibility at e represent a consensus,
or a neutral position, for the admissibility judgments at those stronger states.

12The “whatever the neutral position is” hedge is an important one. With it, I mean to avoid

commiting to a particular position on a relevant and disputed philosophical issue. As mentioned
earlier, Levi insists that credal states be convex: if p1, p2 P P, then αp1 ` p1 ´ αqp2 P P for

α P r0, 1s. The convex combination of two probability functions represents a compromise, and

suspending judgment between two “rival” probability judgments, on his view, requires considering
any compromise—and not just p1 and p2—to be permissible to use in computing expectated

utility. Levi imposes convexity on states of utility judgment as well. Focusing just on probability
judgments, if we endorse convexity, the neutral position, e, for two distinct, determinate states of

probability judgment, p1 and p2, will be the convex set generated by these two states. In that case,
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The following is easily derived from the conditional choice with a vacuous second
tier structure and is perspicuous.

Observation 2. Let C : X ˆ E Ñ PpXq be a conditional choice function with a

vacuous second tier. For all Y P X and e P E, C̃pY |eq “
Ť

tC̃pY |e1q : e Ď e1u.

So at each information (or valuational, etc.) state, a conditional choice function
with a vacuous second tier takes the union of the options deemed admissible at
stronger information states. If an information state, e, represents neutrality among
(or suspending judgment or doubt or open-mindedness about) information states

higher up in the poset, C̃pY |eq represents an analogous suspense of judgments of
admissibility. As the state of information is strengthened, the agent can make finer
discriminations and so, in general, will consider fewer options as admissible. Put
another way, admissible options are those consistent with the agent’s commitments;
so as those commitments are strengthened, fewer options are in general consistent
with them. As the state of admissibility-determining commitments is weakened,
the agent keeps an open mind about the options deemed admissible at stronger
information states. Such options are consistent with her commitments, so are not
ruled out. The idea is to provide for a choice-theoretic analogue of neutrality
or suspense of judgment. With the assumption that the second tier is vacuous,
this choice structure makes clear that conditional choice endorses the normative
account of neutrality above. Suspending judgment among some number of ways of
evaluating the options is to regard each of those ways as permissible for evaluating
the options.

Conditional choice with a vacuous second tier is also a formally fruitful choice
structure. It is well-known that allowing for a second-tier complicates matters from
a formal perspective. The construction under consideration is well-behaved in the
sense of preserving important coherence constraints and generalizing both rational-
izability and pseudo-rationalizability results, as explained in the following section.
Relatedly, the structure that the assumption of a vacuous second tier preserves that
the more general formulation of conditional choice abstracts away from allows us
to maintain interesting connections to both the theory of belief revision and non-
monotonic logic. The topic of a companion article, versions of Rott’s representation
results in belief revision theory and nonmonotonic logic hold. Take belief revision
theory. Briefly, Rott shows that for certain natural constructions of belief change
operators in terms of choice functions, the coherence constraints for choice functions
and the rationality postulates for belief change are in one-to-one correspondence.

the admissible options at e are not just those admissible relative to p1 and to p2, but those options
deemed admissible relative to any strengthening of the convex set, e. Similarly, only options ruled
out at every strengthening of e—not just those ruled out at both p1 and p2—will be ruled out at

e. This, according to Seidenfeld, et al., is an unwelcome consequence of convexity (2010). They
insist that a neutral position with respect to two, distinct judgments of admissibility ought to

preserve the shared agreements in admissibility judgments between those two states. For example,

if x R C̃pY |tp1uq and x R C̃pY |tp2uq, the inadmissibility of x is a shared agreement that should be
preserved at a neutral state, e. Such an agreement is not always preserved under convexity. With
an adequate formulation of the conditioning set, E, tp1, p2u R E if convexity is required of credal

states. If convexity is relaxed, such a credal state can be legitimate. At issue here is whether we
should seek consensus in judgments of admissibility or in reasons for judgments of admissibility

(probability, utility, etc.) (Seidenfeld et al, 1989). Conditional judgments of admissibility might

be seen as a way of walking a line between these two views, but in any case, we can deliver the
right results for either view by suitably constraining E.
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So, for example, in constructing a contraction function in terms of a choice function,
imposing important choice constraints on the choice function gives rise to impor-
tant belief change constraints on the generated contraction operator (‘soundness’).
Going the other way, any contraction operator satisfying important belief change
constraints can be represented as the rational choice-based contraction operator
with the underlying choice function satisfying important choice constraints (‘com-
pleteness’). Conditional choice with a vacuous second-tier allows for interesting
versions of both directions of this representation result. I take this collection of
results as evidence that conditional choice, far from emptying the standard account
of content, is a fruitful generalization of that important theory.

5. Connections to the Standard Theory of Choice Functions

Finally, we consider some connections between conditional choice and the stan-
dard theory of rational choice. I include first a few of Helzner’s observations that
hold for conditional choice in general.13 Given a conditional choice function, we can
generate an indexed family of standard choice functions by holding fixed the sec-
ond argument. Let Ce : X Ñ PpXq be given by CepY q “ CpY |eq for all Y P X and
e P E. We will refer to this family of choice functions as the local choice functions
of C.

Observation 3. If C : X ˆ E Ñ PpXq is a conditional choice function on X and
e P E, then Ce : X Ñ PpXq is a choice function on X.

Since Observation 3 holds for conditional choice functions in general, it holds for
conditional choice functions with a vacuous second tier. Similarly, any choice func-
tion on X can be viewed as a conditional choice function on X with a vacuous
second tier. It follows that any choice function can be viewed as a conditional
choice function. Let C‹ : X ˆE Ñ PpXq be given by C‹pY |eq “ CpY q for all e P E
and Y P X .

Observation 4. If C is a choice function on X , then C‹ is a conditional choice
function on X with a vacuous second tier.

Helzner also proposes a canonical way of extending criteria for choice functions
to conditional choice criteria via the following translation.

Definition 6. Let P be a constraint on choice functions. A conditional choice
function C satisfies property P ‹ iff for every e P E there is an f P E such that
e Ď f and Cg satisfies P for all g P E such that f Ď g.

Observation 5. Let C be a choice function on X. Let P be a property of choice
functions. C satisfies P iff C‹ satisfies P ‹.

The next observation is that if C̃ satisfies P ‹, then, for all Y P X and e P E, C̃pY |eq
is the union of the choice sets of those local choice functions associated with e1 such
that e Ď e1 that satisfy P .

Observation 6. Let C̃ : X ˆ E Ñ PpXq be a conditional choice function with a

vacuous second tier and P be a property of choice functions. If C̃ satisfies P ‹, then
C̃pY |eq “

Ť

tC̃pY |e1q : e Ď e1 and C̃e1 satisfies P u for all Y P X and e P E.

13The proofs of Observations 3-5 are Helzner’s, with only a slight augmentation required for 4
(Helzner, 2013, pp. 940-941).
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Certain choice-functional constraints are preserved by taking the union of choice
functions.

Observation 7. Properties pIq, pI´q, pI 1q, pIIIq, pIV `q, pFaith1q, pFaith2q,
pSuccessq, pH1q, pH2q, are each preserved under unions, i.e., if tCi : i P Iu is a
collection of choice functions with Ci : X Ñ PpXq satisfying one of these properties
for all i P I, then C satisfies that property, where CpY q “

Ť

iPI CipY q for all Y P X .

Conditional choice with a vacuous second tier is a more conservative extension of
traditional rational choice theory. The following result, a consequence of Observa-
tions 6 and 7, does not hold for conditional choice functions in general and is one
way of making this sense of conservativeness both clear and precise.14

Observation 8. Let C̃ : X ˆ E Ñ PpXq be a conditional choice function with a

vacuous second tier, and let X be the set of all finite subsets of X. C̃ satisfies
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This proposition says that imposing the conditional extension of certain choice
constraints on a conditional choice function with a vacuous second tier implies that
every local choice function satisfies the choice constraint itself. So, if the conditional
choice function satisfies pI‹q, then each of its local choice functions satisfies pIq.
And if the conditional choice function satisfies pIII‹q, then each of its local choice
functions satisfies pIIIq. Conversely, if every local choice function satisfies one of

those properties, then C̃ satisfies the conditional extension of that property.
Is there an interesting generalization of rationalizability for conditional choice

functions? And which constraints, if any, characterize it? There is a very important
absence from the lists of conditions in Observation 8. pII‹q does not entail pIIq
in the above sense. To see this, consider the following example. Let X “ tx, y, zu
and X “ PpXq. Let E “ te, e1, e2u with e Ď e1, e Ď e2, but e1 Ę e2 and e2 Ę e1.
Assume that, at e1, choice are made so as to optimize the weak order z ě x ě y,
and at e2, choices are made so as to optimize the weak order y ě x ě z. This

14Consider the following counterexample for pIq, perhaps the most central constraint in the
theory of rational choice. Let C be a conditional choice function, and let X “ tx, y, zu and
X “ PpXq. Let E “ te, e1, e2u with e Ď e1, e Ď e2, but e1 Ę e2 and e2 Ę e1. Suppose that Ce1

and Ce2 each satisfy pIq, and so C̃ satisfies pI‹q. Let Ce2 optimize z ă y ă x. Let Ce1 optimize

x ă y ă z. Let Cptx, y, zu|eq “ tx, zu and Cptx, yu|eq “ tyu. It is clear that Ce, while satisfying
the definition of a conditional choice function, does not satisfy pIq. Compare Seidenfeld et al.’s
Example 1 (2010, p. 158) and Helzner’s Example 2 (2013, p. 932), both drawing heavily on Levi’s

work.
15Seidenfeld et al. characterize coherent choice with a set of four axioms on choice functions

(2010). It turns out that an anologue of Observation 8 holds for those axioms. Because those
axioms are rather different from the ones under consideration here, treating them will be left for

future work.
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entails that C̃ptx, yu|eq “ tx, yu, C̃ptx, zu|eq “ tx, zu, and C̃ptx, y, zu|eq “ ty, zu.

Since x P C̃ptx, yu|eq X C̃ptx, zu|eq, but x R C̃ptx, y, zu|eq, C̃e does not satisfy pIIq.

By assumption, both C̃e1 and C̃e2 do satisfy pIIq, hence guaranteeing that C̃ satisfies
pII‹q.

The reason that pIIq’s absence is so important is that, as Theorem 1 says, pIq
and pIIq are necessary and sufficient for rationalizability (assuming pH1q when we
allow for empty choice sets). As the foregoing counterexample makes clear, pI‹q
and pII‹q do not secure the rationalizability of every local choice function of a con-

ditional choice function with a vacuous second tier, C̃. Is there a property, pρ‹q, of a
conditional choice function that implies pIIq for every local choice function? Here, I
would like to urge a philosophical concern about any such pρ‹q. If every local choice

function is to satisfy pIIq, pρ‹q would rule out the plainly sensible model above. C̃e1

and C̃e2 are each rationalizable, but such a “disagreement” between them—just re-
versing the preferences of one another—is impermissible with pρ‹q because C̃e must
then violate pIIq. Accordingly, pρ‹q is too restrictive as an a priori constraint on
conditional choice. Perhaps an intuitive first pass at an interesting generalization of
rationalizability for conditional choice would be the rationalizability of every local
choice function of C̃. In my view, the foregoing considerations show that this route
is not promising. Furthermore, in keeping with the accounts in decision theory that
inspire conditional choice, it is not desirable to impose binariness on every choice
function. The betting scenario above involving Ellsberg’s urn serves as an example
of when rational choice does not reduce to binary comparison between the options.

Helzner already has the key idea in his paper on conditional choice, but the
stronger assumption of a vacuous second tier allows for correspondingly stronger
rationalizability results. For each e P E, define Oe “ tRC̃f

: e Ď fu. The members

of Oe are the revealed preference relations for the relevant local choice functions of
C̃. Say that R P Oe is rationalizing if the choice function from which it is generated
is rationalizable by it; in symbols, C̃e1pY q “ tx : xRC̃e1

y for all y P Y u for all Y P X .

What the following observation says is that, for conditional choice functions with a
vacuous second tier, satisfying pI‹q and pII‹q is equivalent to its being conditionally
rationalizable in the sense that, for any information state, e, the admissible options
are those options that are admissible according to the rationalizing relations in
Oe. Another way to look at conditional rationalizability is that C̃pY |eq is the set
of options that are admissible at the relevant rationalizable or normal local choice
functions of C̃—relevant in the sense that C̃e1 is relevant if e Ď e1.

Observation 9. Let C̃ : X ˆ E Ñ PpXq be a conditional choice function with a

vacuous second tier satisfying pH1‹q and let X be all the finite subsets of X. C̃
satisfies pI‹q and pII‹q iff C̃pY |eq “ tx : xRy for all y P Y with respect to some
rationalizing R P Oeu for all Y P X and e P E.

Instead of rationalizability by a single binary relation, conditional rationalizability
is rationalizability by a set of such relations. Similarly, for rationalizability by a
set of weak orders instead of by a single one, we have the following (the proof is
analogous to that of Observation 9 and is omitted).

Observation 10. Let C̃ : X ˆ E Ñ PpXq be a conditional choice function with

a vacuous second tier satisfying pH1‹q and let X be all the finite subsets of X. C̃



18 RUSH T. STEWART DEPARTMENT OF PHILOSOPHY, COLUMBIA UNIVERSITY

satisfies pI‹q and pIV ‹q iff C̃pY |eq “ tx : xRy for all y P Y with respect to some
weak order R P Oeu for all Y P X and e P E.16

It may be clear that conditional rationalizability and pseudo-rationalizability
are closely related, but how exactly? First, the collection of choice functions that
pseudo-rationalize a choice function must themselves be weak order rationalizable.
As Observation 9 shows, conditional choice allows for a characterization of a gener-
alization of pseudo-rationalizability in that the choice functions need to be merely
rationalizable instead of weak order rationalizable. If C̃ satisfies pI‹q and pII‹q,
still some of its local choice functions might not satisfy both pIq and pIIq (some
might not satisfy pIIq, specifically). But each local choice function is conditionally
rationalizable by exactly those local choice functions associated with information
states at least as strong as the one associated with the local choice function being
rationalized that do satisfy both pIq and pIIq. That is, at every local choice func-

tion, C̃e, admissibility on a menu is determined by the local choice functions, C̃e1 ,
such that e Ď e1 and C̃e1 is rationalizable.

Second, cases in which C̃ satisfies both pI‹q and pIV ‹q, conditional rationaliz-
ability by a set of weak orders amounts to the pseudo-rationalizability of every
local choice function, C̃e, by the weak order rationalizable local choice functions
associated with e1 P E such that e Ď e1.

Observation 11. Let C̃ : X ˆ E Ñ PpXq be a conditional choice function with
a vacuous second tier satisfying pH1‹q and let X be all the finite subsets of X.

C̃ satisfies pI‹q and pIV ‹q iff C̃e is pseudo-rationalizable by the set of local choice

functions tC̃1e : e Ď e1 and C̃e1 is weak order rationalizableu for all e P E.

Here, I have abused terminology somewhat. If we want to mirror Aizerman and
Malishevski’s result more closely, we can consider the case in which the set X of
options is finite. We have that, for all Y P X and e P E, C̃epY q “

Ť

tC̃e1pY q : e Ď e1u,

where C̃e1 is weak order rationalizable. To see that we can appeal to just a finite
set of local choice functions to do the pseudo-rationalizing, it suffices to observe
that because the set of options is finite, there are only finitely many weak orderings
possible. X is finite so X ˆX is finite. Then, PpX ˆXq must be finite, too. But
any weak ordering of X is some member of PpX ˆXq.

Observation 11 is potentially interesting because, within the conditional choice
framework, the basic idea of pseudo-rationalization can be characterized by different
constraints (namely, the conditional extensions of the most familiar constraints!).
This alternative characterization might give us some insight into both how indeter-
minacy enters the choice function framework, and how conditional choice generalizes
the standard choice function framework.

6. Conclusion

Not always will a second tier decision criterion be relevant. Sometimes, repre-
senting an agent’s or a group’s commitments requires no appeal to a second (or
third, etc.) type of criterion. Other times, the second tier might be vacuous be-
cause the options are equivalent with respect to the secondary criterion. This paper
studies the properties of the class of conditional choice functions with a vacuous

16Helzner shows instead that C satisfies pI‹q and pIV ‹q iff CpY |eq Ď tx : xRy for all y P Y wrt

some weak order R P Oeu.
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second tier. It is argued that the resulting account is normatively well-motivated.
That motivation comes from a conception of what it is to be neutral or in suspense
with respect to a certain set of judgments.

The standard (weak order) rationalizability assumptions for choice functions
have been called into question for a number of reasons by researchers in different
fields. These reasons include concerns about the notion of the internal consistency
of choice, issues about how to understand uncertainty, the possibility of conflicts
in values, and the extension of the choice function framework to social contexts.
Naturally, various formalisms have been explored. Concerns having to do with
uncertainty have helped to guide the development of conditional choice. The po-
tential to address certain puzzles about the concept of the internal coherence of
choice counts as motivation for the conditional choice construction, too. Pseudo-
rationalizability can be interpreted as a rationality constraint in cases in which there
is indeterminacy in beliefs or values. Pseudo-rationalizability also has interesting in-
terpretations in social choice contexts. For instance, a pseudo-rationalizable choice
function can be understood as a social choice function with the relevant collec-
tion of weak order rationalizable choice functions representing voters or different
evaluational criteria. We have seen how this concept relates to the rationaliza-
tion of a conditional choice function. The motivations and results above hopefully
recommend further consideration of conditional choice.
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Appendix: Proofs

Proof of Observation 1

Proof. Let C : X ˆ E Ñ PpXq be a conditional choice function.
pðq Suppose that C satisfies ν and that ąe“ H for all e P E. Let x P CpY |eq.

Since C is a conditional choice function, it follows immediately that there is an
f P E such that e Ď f and x P CpY |gq whenever f Ď g. For the other direction of
pii1q, assume that there is an f P E such that e Ď f and x P CpY |gq whenever f Ď g.
By ν, we have CpY |eq ‰ H. So there is some y P CpY |eq. Suppose that x R CpY |eq.
It follows that y ąe x, which is a contradiction. So x P CpY |eq. Hence, C satisfies
pii1q.
pñq Suppose that C satisfies pii1q. Suppose that CpY |e1q ‰ H for some e1 P E

such that e Ď e1. Then there is some x P CpY |e1q. By pii1q, there is an f P E such
that e1 Ď f and x P CpY |gq whenever f Ď g. But e Ď f too, so by pii1q, x P CpY |eq,
so CpY |eq ‰ H. Hence, C satisfies ν. Now suppose that ąe‰ H for some e P E.
Then, for some Y P X , there are x, y P Y such that x P CpY |eq, y R CpY |eq, but
y P CpY |fq for some f P E such that e Ď f. It follows from pii1q that there is an
f 1 P E such that f Ď f 1 and y P CpY |gq whenever f 1 Ď g. But since e Ď f 1, by
pii1q, y P CpY |eq, which is a contradiction. Thus, ąe“ H for all e P E. �

Proof of Observation 2

Proof. That C̃pY |eq Ď
Ť

tC̃pY |e1q : e Ď e1u holds for all Y P X and e P E is easy to

see from the fact that e Ď e. For the other inclusion claim, let x be in
Ť

tC̃pY |e1q : e Ď

e1u. By ν, C̃pY |eq ‰ H. So there is some y P C̃pY |eq. Suppose that x is not in C̃pY |eq.
It follows that y ąe x, which contradicts the assumption that the second tier is
vacuous. Hence, x P C̃pY |eq. �

Proof of Observation 3

Proof. Immediate from condition (i) in the definition of conditional choice, since a
conditional choice function is a choice function in its first argument. �

Proof of Observation 4

Proof. Let C be a choice function on X. C‹ : X ˆ E Ñ PpXq since, for all Y P X
and e P E, C‹pY |eq “ CpY q. For condition (i), C‹pY |eq Ď Y because CpY q Ď Y
for all Y P X . As for condition (ii), first suppose that x P C‹pY |eq. Since, for
any e1 P E, C‹pY |eq “ C‹pY |e1q, it follows that there is an f P E such that e Ď f
and x P C‹pY |gq whenever f Ď g. Finally, for the other direction, suppose that
there is an f P E such that e Ď f and x P C‹pY |gq whenever f Ď g. Again, since
C‹pY |fq “ CpY q “ C‹pY |e1q for all e1 P E, it follows that x P C‹pY |eq. �

Proof of Observation 5

Proof. Suppose that C is a choice function on X and satisfies P . Since C‹e “ C for
all e P E, it follows that C‹ satisfies P ‹. For the other direction, assume that C‹

satisfies P ‹. Let e P E. By assumption, we have it that there is an f P E such that
e Ď f and, for all g P E such that f Ď g, C‹g satisfies P . But this implies that C‹f
satisfies P and C‹f “ C, so C satisfies P . �
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Proof of Observation 6

Proof. Suppose that C̃ satisfies P ‹ and that x P C̃pY |eq. By definition, there is

some f P E such that e Ď f and x P C̃pY |gq when f Ď g. From the assumption,

we have that there is some f 1 P E such that f Ď f 1 and C̃g1 satisfies P whenever

f 1 Ď g1. It follows that x P
Ť

tC̃pY |e1q : e Ď e1 and C̃e1 satisfies P u. Now assume

that x P
Ť

tC̃pY |e1q : e Ď e1 and C̃e1 satisfies P u. It follows immediately from

Observation 2 that x P C̃pY |eq. �

Proof of Observation 7

Proof. Let tCi : i P Iu be a collection of choice functions, Ci : X Ñ PpXq, and
define CpY q “

Ť

iPI CipY q, for all Y P X . It is clear that C is a well-defined choice
function. We check each axiom.
pIq. Assume that for all i P I, Ci satisfies pIq. Suppose that Y Ď Y 1 and

x P Y X CpY 1q. Since x P CpY 1q, it follows that x P CipY
1q for some i P I. By

assumption Ci satisfies pIq, so it follows that x P CipY q. Hence, x P CpY q, too. So,
C satisfies pIq.
pI´q. Suppose that for all i P I, Ci satisfies pI´q. Assume that Y Ď Y 1,

CpY 1q Ď Y , and x P CpY 1q. Then, for some i P I, x P CipY
1q. Since Ci satisfies

pI´q, it follows that x P CipY q. Hence, x P CpY q. So, C satisfies pI´q.
pI 1q. Suppose that Ci satisfies pI 1q for all i P I. Assume that x P CpY Y Y 1q.

So, for some i P I, x P CipY Y Y
1q. By pI 1q, x P rCipY q Y Cipy

1qs. In either case, it
follows that x P rCpY q Y CpY 1qs. So C satisfies pI 1q.
pIIIq. Let Ci satisfy pIIIq for all i P I. Suppose that Y Ď Y 1 and CpY 1q Ď Y ,

and let x be in CpY q. It must then be the case that CipY
1q Ď Y for all i P I. And,

for some i P I, x P CipY q. By pIIIq, x P CipY
1q. Hence, x P CpY 1q. It follows that

C satisfies pIIIq.
pIV `q. Let Ci satisfy pIV `q for all i P I. Assume that Y Ď Y 1 and x P CpY q.

It follows that x P CipY q for some i P I. By pIV `q, x P CipY
1q. Thus, x P CpY 1q.

C therefore satisfies pIV `q.
pFaith1q. Suppose that pFaith1q is satisfied by Ci for all i P I. Assume that

Y X B ‰ H (where B is the set of “absolutely satisfactory” options in X) and let
x be in CpY q. It follows that there is an i P I such that x P CipY q. By pFaith1q,
x P B. So, C satisfies pFaith1q.
pFaith2q. Let Ci satisfy pFaith2q for all i P I. Assume that x P Y X B. By

pFaith2q, x P CipY q for all i P I. Hence, x P CpY q. C therefore satisfies pFaith2q.
pSuccessq. Suppose that Ci satisfies pSuccessq for all i P I. Consider some

Y ‰ H in X . By pSuccessq, CipY q ‰ H for all i P I. Hence, CpY q ‰ H. So, C
satisfies pSuccessq.
pH1q. Let Ci satisfy pH1q for all i P I. Suppose that Y Ď Y 1 and that CpY 1q “

H. Then, CipY
1q “ H for all i P I. By pH1q, it follows that CipY q “ H for all

i P I. Hence, CpY q “ H, too. So, C satisfies pH1q.
pH2q. Suppose that Ci satisfies pH2q for all i P I. Assume that Y Ď Y 1 and

CpY q “ H. Then, CipY q “ H for all i P I. By pH2q, we have that CipY
1qXY “ H

for all i P I. It follows that CpY 1q X Y “ H. C therefore satisfies pH2q. �
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Proof of Observation 8

Proof. (ð) Since, by hypothesis, every local choice function of C̃ satisfies property

P , it follows that, for every e P E there is an f P E such that e Ď f and C̃g satisfies

P for all g P E such that f Ď g. That is, C̃ satisfies P ‹.
(ñ) Let C̃ satisfy P ‹. By Observation 6, C̃pY |eq “

Ť

tC̃pY |e1q : e Ď e1 and C̃e1 satisfies P u
for all Y P X and e P E. For those constraints, P , that are preserved under unions
(Observation 7), it follows that C̃e satisfies P . Hence, every local choice function of

C̃ satisfies P . �

Proof of Observation 9

Proof. Assume that C̃ : X ˆ E Ñ PpXq is a conditional choice with a vacuous
second tier that satisfies pH1‹q, and let X “ PfinpXq.

pñq Suppose that C̃ satisfies pI‹q and pII‹q. By Observation 8, every local

choice function of C̃ satisfies pH1q and pIq. From Observation 6 it follows that

C̃pY |eq “
Ť

tC̃pY |e1q : e Ď e1 and C̃e1 satisfies pIIqu for all Y P X and e P E. So,

C̃pY |eq “
Ť

tC̃pY |e1q : e Ď e1 and C̃e1 satisfies pH1q, pIq, and pIIqu. By Theorem 1,

C̃pY |eq “
Ť

tC̃pY |e1q : e Ď e1 and C̃e1 is rationalizable u “ tx : xRy for all y P Y
with respect to some rationalizing R P Oeu.

pðq Suppose that, for all x P X,Y P X , and e P E , C̃pY |eq “ tx : xRy for all
y P Y wrt some rationalizing R P Oeu. Let Ee be the poset xtf |e Ď fu,Ďy, where Ď

is the relevant restriction of the partial order from E . By the assumption on E , it
follows that every chain in Ee has an upper bound in Ee. Thus, by Zorn’s lemma,
Ee has a maximal element. Let f be such a maximal element of Ee. Either (i)

C̃pY |fq ‰ H for some Y P X or (ii) C̃f always returns the empty set. Suppose

that (i). Then, for some Y P X , there is some x P C̃pY |fq. By assumption, there
is a rationalizing R P Of such that xRy for all y P Y. f is maximal so RC̃f

is

rationalizing. Therefore, by Theorem 1, C̃f satisfies pIq and pIIq. And because f

is maximal, C̃g satisfies pIq and pIIq for any g P E such that f Ď g. Now, consider

case (ii). C̃pY |fq “ H for all Y P X . It is straightforward to verify that C̃f vacuously

satisfies constraints pIq and pIIq. Again, because f is maximal, C̃g satisfies pIq and

pIIq for any g P E such that f Ď g. It follows that C̃ satisfies pI‹q and pII‹q. �

Proof of Observation 11

Proof. Assume that C̃ : X ˆ E Ñ PpXq is a conditional choice with a vacuous
second tier that satisfies pH1‹q, and let X “ PfinpXq.

pñq Assume that C̃ satisfies pI‹q and pIV ‹q. By Observation 8, it follows from

our assumptions that C̃ satisfies pH1q and pIq at each of its local choice functions.

By Observation 6, C̃pY |eq “
Ť

tC̃pY |e1q : e Ď e1 and C̃e1 satisfies pIV qu for all Y P X
and e P E. Putting these together, it follows that C̃pY |eq “

Ť

tC̃pY |e1q : e Ď e1

and C̃e1 satisfies pH1q, pIq, and pIV qu for all Y P X and e P E. By Theorem 2, this

amounts to C̃pY |eq “
Ť

tC̃pY |e1q : e Ď e1 and C̃e1 is weak order rationalizableu for
all Y P X and e P E.
pðq Now assume that for all e P E, C̃e is pseudo-rationalizable by a collection of

local choice functions tC̃e1 : e Ď e1 and C̃e1 is weak order rationalizableu. We establish

that C̃ satisfies pI‹q and pIV ‹q. Let Ee be the poset xtf |e Ď fu,Ďy, where Ď is the
relevant restriction of the partial order from E . By the assumption on E , it follows
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that every chain in Ee has an upper bound in Ee. Thus, by Zorn’s lemma, Ee has a
maximal element. Let f be such a maximal element of Ee. Either (i) C̃pY |fq ‰ H
for some Y P X or (ii) C̃f always returns the empty set. Consider case piq first.

Suppose that, for some Y P X , x P C̃pY |fq. By the assumption of the pseudo-

rationalizability of each local choice function (i.e., C̃pY |eq “
Ť

tC̃pY |e1q : e Ď e1 and

C̃e1 is weak order rationalizableu for all Y P X and e P E), it follows that there is a

weak order rationalizable local choice function C̃f 1 such that f Ď f 1 and x P C̃f 1pY q.

f is maximal so C̃f must itself be weak order rationalizable. Therefore, by Theorem

2, C̃f satisfies pIq and pIV q. And because f is maximal, C̃g satisfies pIq and pIV q

for any g P E such that f Ď g. Now consider case piiq, C̃f pY q “ H for all Y P X .

pIq and pIV q are trivially satisfied. Because f is maximal, C̃g satisfies pIq and pIV q

for any g P E such that f Ď g. It follows that C̃ satisfies pI‹q and pIV ‹q. �
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