
David Abel BengChinOoi (Eds.)

Advances in
Spatial Databases
Third International Symposium, SSD
Singapore, June 23-25, 1993
Proceedings

Springer-Verlag
Berlin Heidelberg New York
London Paris Tokyo
HongKong Barcelona
Budapest

Contents

Keynote Paper

Spatial data management in database systems: Research directions
Won Kim (Keynote Speaker), Jorge Garza, Ali Keskin 1

Data Modeling

Realms: A foundation for spatial data types in database systems
Ralf H. dieting, Markus Schneider 14

A canonical model for a class of areal spatial objects
Michael F. Worboys, Petros Bofakos 36

Strong integration of spatial domains and operators in a relational
database system
Thierry Larue, Dominique Pastre, Yann Viemont 53

Spatial Indexing

The transformation technique for spatial objects revisited
Bernd-Uwe Pagel, Hans-Werner Six, Henrich Toben 73

A paging scheme for pointer-based quadtrees
Clifford A. Shaffer, Patrick R. Brown 89

Indexing Mechanisms

A hierarchical spatial index for cell complexes
Elisabetta Bruzzone, Leila De Floriani, Monica Pellegrinelli 105

On optimal multiversion access structures
Bruno Becker, Stephan Gschwind, Thomas Ohler, Bernhard Seeger,
Peter Widmayer 123

Concurrent accesses to R-trees
Vincent Ng, Tiko Kameda 142

Handling of Raster and Vector Data

A spatial data model and a topological sweep algorithm for map overlay
Ulrich Finke, Klaus Hinrichs 162

An optimal quadtree translation algorithm
Chuan-Heng Ang 178

Database support for multidimensional discrete data
Peter Baumann 191

XII

Keynote Paper

From extensible databases to interoperability between multiple databases
and GIS applications
Hans-Jörg Schek (Keynote speaker), Andreas Wolf 207

Spatial Database Systems

Interoperability of spatial and attribute data managers: A case study
Curtis P. Kolovson, Marie-Anne Neimat, Spyros Potamianos 239

Ge02: Why objects in a geographical DBMS?

Benoit David, Laurent Raynal, Guylaine Schorter, Veronique Mansart264

Topology
A small set of formal topological relationships suitable for end-user
interaction
Eliseo Clementini, Paolino Di Felice, Peter van Oosterom 277
Qualitative and topological relationships in spatial databases
Z. Cui, A. G. Cohn, D. A. Randell 296

Topological relations between regions in R 2 and Z2

Max J. Egenhofer, Jayant Sharma 316

Storage Management

Query-adaptive data space partitioning using variable-size storage clusters
Gisbert Droege, Hans-Jörg Schek 337

A storage and access architecture for efficient query processing in spatial
database systems
Thomas Brinkhoff, Holger Horn, Hans-Peter Kriegel, Ralf Schneider 357

Query processing of spatial objects: Complexity versus redundancy
Michael Schiwietz, Hans-Peter Kriegel 377

Keynote Paper

The SEQUOIA 2000 project
Michael Stonebraker (Keynote speaker), James Frew, Jeff Dozier 397

Query Retrieval

Neighborhood query and analysis with GeoSAL, a spatial database
language
Zhexue Huang, Per Svensson 413

XIII

Application of a reciprocal confluence tree unit to similar-picture retrieval
Daniel J. Buehrer, C. C. Chang 437

Knowledge Engineering in SDS

Deduction and deductive databases for geographic data handling
A. I . Abdelmoty, M. H. Williams, N. W. Paton 443

Representing jexpec tat ions; in spatial information systems: A case study
Graham J. Williams, Steven G. Woods 465

3-Dimensional Data Handling

Volumes from overlaying 3-D triangulations in parallel
Wm Randolph Franklin, Mohan Kankanhalli 477

A declarative, object-oriented interface to a solid modeler
Michael L. Hey tens, Cristiano Sacchi 490

Indexing on spherical surfaces using semi-quadcodes
Ekow J. Otoo, Hongwen Zhu 510

Query Processing of Spatial Objects:
Complexity versus Redundancy

Michael Schiwietz and Hans-Peter Kriegel

Institute for Computer Science, University of Munich
Leopoidstr. I I B , D-8000Munich40, Germany

e-mail: {michael,kriegel} @dbs.informatik.uni-muenchen.de

Abstract: The management of complex spatial objects in applications, such as geography and car­
tography, imposes stringent new requirements on spatial database systems, in particular on efficient
query processing. As shown before, the performance of spatial query processing can be improved
by decomposing complex spatial objects into simple components. Up to now, only decomposition
techniques generating a linear number of very simple components, e.g. triangles or trapezoids, have
been considered. In this paper, we will investigate the natural trade-off between the complexity of
the components and the redundancy, i.e. the number of components, with respect to its effect on
efficient query processing. In particular, we present two new decomposition methods generating
a better balance between the complexity and the number of components than previously known
techniques. We compare these new decomposition methods to the traditional undecomposed rep­
resentation as well as to the well-known decomposition into convex polygons with respect to their
performance in spatial query processing. This comparison points out that for a wide range of query
selectivity the new decomposition techniques clearly outperform both the undecomposed repre­
sentation and the convex decomposition method. More important than the absolute gain in perfor­
mance by a factor of up to an order of magnitude is the robust performance of our new decompo­
sition techniques over the whole range of query selectivity.

1 Introduction
The trend of digitizing the wide field of graphic and geographic real world objects results in a
strongly growing amount of spatial data with no end in sight The handling of spatial data is an
essential feature in a wide range of appücations, such as geographic information systems, image
databases, multimedia databases, engineering (CAD/CAM/CAE), as well as geographic and
medical applications. Furthermore, the same set of data such as maps often has to be provided
for different application areas and different access patterns. Due to data centralization efforts
supporting differentapphcations by one central database system, these data have to be managed
by a flexible and extensible query processing system which can be extended regarding appli­
cation specific requirements. Therefore, the demand for a support by a global integrated spatial
database system is considerably increasing.

One important characteristic of most spatial appücations is the occurrence of complex spa­
tial objects and their algorithmic treatment including query processing. In a relational database
system, spatial objects would artificially spread over serveral relations. As a consequence, they
have to be rebuilt on an operational level. Thus, spatial query processing is inefficient and un-
flexible. Therefore, the management of complex spatial objects imposes stringent new require­
ments on integrated spatial database systems and particularly, on an efficient processing of spa­
tial queries.

An important class of objects occurring in spatial appücations are two-dimensional spatial
objects. A spatial object is embedded within a global spatiaUy oriented data space. Points, lines,
and rectangles are known as simple spatial objects, because their complete geometry and struc­
tural description is given by a small and fixed number of parameters. In contrast, complex spa­
tial objects with an appücation specific complexity, such as contour lines, ümits of lots, and
contours of CAD objects are often shaped in the form of simple polygons. Complexity prop­
erties of such polygonal objects, such as the shape, the number of vertices, the area or the
smoothness of the contour are difficult to predict.

378

Spatial objects occurring in real applications are typically not homogeneous witfj respect
to the number of vertices, the smoothness of the shape, or the object-area. As outlined in
[Fra91] these parameters underly an extreme variance even for objects of one and the same
application. Because simple and complex spatial objects are heterogeneously stored within the
same set of data, an object-oriented organisation and query processing is essential.

Spatial queries combine the requirements of a spatial locality search and an exact evaluation
of complex geometric properties. Therefore, the handling of complex spatial objects concerns
their management on secondary storage as well as the evaluation of main memory algorithms
from the field of computational geometry. The traditional approach uses bounding box approx­
imations representing their spatial location clustered by spatial access methods (S AMs; see e.g.
[NHS 84], [See 89]) and applies complex computational geometry algorithms to their exact
representation. This appoach reveals strong disadvantages caused by the coarse approximation
and the expensive computational geometry algorithms. These drawbacks are avoided by object
decomposition techniques introduced in [KHS91]. However, object decomposition tech­
niques use a set of simple components representing a complex spatial object The number of
components, called redundancy in the remainder of this paper, results in a storage and query
processing overhead Due to the high amount of redundancy of the traditional object decom­
position techniques, e.g. trtangulations, the storage overhead is unacceptable and the efficiency
of spatial queries decreases with an increasing size of the query region. Therefore, the devel­
opment of new object decomposition techniques is essential for providing a locality based ob­
ject treatment and for strongly limiting the amount of redundancy.

In this paper, we will in detail examine the correlation between spatial clustering given by
SAMs and computational geometry techniques (e.g. [PS 88]). We will introduce new objec­
t-oriented decomposition methods that combine both a locality based representation and a small
amount of redundancy. An evaluation of spatial query processing shows the superiority of our
new decomposition methods compared to known appaiaches for typical queries of spatial ap­
pücations.

The paper is organized as follows: the next section contains an overview of known tech­
niques combining spatial clustering and computational geometry using object decomposition
techniques for the improvement of geometric algorithms. Section 3 discusses complexity and
redundancy aspects. Our new locatity based spatial object decomposition techniques regarding
object and apptication oriented requirements are introduced and evaluated in the sections 4 mid
5. In section 6, we present a performance comparison between these new representation
schemes and the traditional methods. Section 7 concludes the paper.

2 Spatial query processing based on object decomposition
A typical property of spatial queries is their strictly restricted spatial location within the global
data space. Only that location and some limited neighboring area can contribute to the query
result. Depending on its restricted spatial locality, a query is called selective or non-selective.
Selective queries limit the area of concern and, therefore, the number of objects relevant to the
query, whereas non-selective queries require the examination of large portions of the data
space.

Obviously, spatial queries are order-preserving. Objects lying close together in the data
space are often accessed together. Therefore, a physical clustering of objects with respect to
their spatial location is essential for providing an efficient locality based and selective access
to the objects. A good spatial clustering is maintained by SAMs commonly known from the
üterature. In the absence of such spatial clustering, no spatial locality can be exploited by the
query processing algorithm. Each stored object has to be explicitly evaluated against übe query

379

condition often requiring very time consuming algorithms. This causes a poor query perfor­
mance which is further decreasing with an increasing number of objects and object complexity.
Therefore, one essential ingredient of a spatial database system with respect to an efficient lo­
cality based spatial query processing is a good spatial clustering of the objects with respect to
their natural spatial location.

A direct handling of complex spatial objects requires a high amount of algorithmic com­
plexity in managing spatial accesses. For this reason, no SAM is available for complex spatial
objects and for the class of simple polygons particularly.

For providing efficient handling and query processing of spatial objects traditionally the fol­
lowing approach is applied. Every complex spatial object is placed within a rectilinear rectangle
of minimum area forming a simple container. A simple spatial object is called container iff any
point inside the contour of the object is also contained in the contour of the container. This yields
a so-called conservative approximation. For any closed spatial object, a unique minimum rect­
angular container can be generated. The container object substitutes the original object with re­
spect to its spatial clustering, representing its approximate location and extension within data
space.

As simple containers just provide a coarse approximation of arbitrary spatial objects, query
processing is performed in a two step approach. The first step, called filter step, reduces the en­
tire set of spatial objects to a subset of candidates applying a process of spatial locality search.
This process exploits the SAM facilities in managing simple containers. It is based on the fol­
lowing property:

If the container does not fulfill the query condition, then this is also true for the
corresponding spatial object.

Objects not relevant to the query False Hits

Fig. 1. The two-step approach of a spatial query processing

Therefore, a spatial query on the file of container objects yields a subset of objects definitely
including the set of answers to the query. However, the filter step does not exactiy evaluate the
query, but only yields a set of candidates which potentially may fulfill the query condition.
Therefore, those candidates have to be further examined in a second step, the refinement step.
The refinement step applies complex spatial algorithms known from the field of computational
geometry to the candidates. It detects those objects, actually belonging to the set of answers to
the query. Due to these tasks, the filter step is based on a spatial indexing scheme for simple
spatial objects, e.g. rectilinear rectangles, representing object containers. The filter step is V
O-intensive, whereas the refinement step using main-memory based computational geometry
algorithms is CPU-intensive.

For many years, it was a common agreement that the query perfonnance within database
systems is determined by the time necessary for secondary storage accesses. This was due to
the fact that main memory operations remained cheap and thus could be neglected. Therefore,
rninimizing the number of disk accesses was the main goal heading for good performance in
a query system. However, if the complexity of the objects and, therefore, the time consumed
by main memory algorithms is high, accesses to secondary storage are still important but are
definitely no longer the major factor detenniiiing query performance. Therefore, in the case of

380

spatial database systems, the more complex spatial objects are, the more dominating are the
spatial algorithms performed within main memory. A 'Point in Object'-test, for example, per­
formed on a polygon with 10,000 vertices, occurring in real world geographic appücations,
consumes the same amount of time as a few 100 secondary storage accesses, with the exact
break-even-point depending on the underlying hardware. Therefore, not only the filter step, but
also and more important the refinement step determines the overall performance of complex
spatial queries.

At first glance, the conservative approach of directly coupling a SAM and computational
geometry algorithms seemed to provide a good and general method for a spatial query process­
ing on arbitrary spatial objects. However, more detailed considerations reveal considerable dis­
advantages:
• examinations of real world geographic object files turned out the bad approximation pro­

vided by rectangular containers with some 100% additionaUy covered area ([Schi 93]).
This leads to roughly twice the number of candidates with respect to the cardinaüty of the
answers for point queries.

• the refinement of one single object is very costly, particularly if the object complexity is
high. Complex and time^onsuming geometric algorithms evaluating the global shape of
the objects have to be apptied. Generally, no local restriction can be found limiting the eval­
uation to local aspects of the object
The first effort to optimize the performance of the refinement step is obviously an optimi­

zation of the underlying spatial algorithms using sophisticated techniques from the field of
computational geometry. In fact, this isolated tuning of the algorithms for the refinement step
will lead to a considerable enhancement in comparison to ad hoc implementations, but is ob­
viously constrained The main disadvantage of computational geometry algorithms is that com­
plete spatial objects are handled even if only some local aspects of those objects are relevant to
a given query.

The next step for improving query processing concerns the approximation quatity. The ap­
proximation quaüty of spatial containers can be enhanced by two ways: using a more complex
container or using a set of simple objects as a container. More complex containers introduced
in [Schi 93] require more complex SAMs ([Gün 89], [Jag 90], [Schi 93]) and do not affect the
complexity of the spatial object itself. In contrast, object decompositions combined with set-
oriented containers based on the set of components result in a tuning of both the filter step and
the refinement step.

Fig. 2. Decomposition of spatial objects into simple components

In [KHS 91] the spatial and algorithmic overhead of object decomposition techniques have
been evaluated and shown to be worthwhile. FoUowing the algorithmic concept of 'divide and
conquer", the decomposition of complex spatial objects into triangles, trapezoids, rectangles,
or even convex polygons leads to both a better performance of the filter step and simpler spatial
algorithms on simple components. The main drawback is given by the huge amount of com­
ponents. For triangles and trapezoids (see figure 2), the number of components grows linearly

381

in the number of vertices of the original object This is due to the fact that the particular com­
ponents are characterized by topological and not by spatial aspects. Surprisingly, this is also
true for the convex decomposition. The reason can be found in the typically high number of
'notches' or reflex angles in the contour of geographic objects violating the condition of con­
vexity caused by digitalization aspects. The large number of components leads to a high amount
of redundancy and thus results in a slow perfonnance of low-selectivity spatial queries.

A computational geometry structure r roviding a spatially restricted search on an object de­
composed into a number of trapezoids is given by the trapezoid tree ([PS 88]). Decomposing
a spatial object into an O(n-logn) number of components leads to a totally ordered decomposi­
tion scheme. This allows an efficient refinement evaluation of point queries based on binary
search over the object shape. However, the high amount of storage, the insufficient handling
of extended query regions as well as the apphcability to other types of queries prevent the use
of this scheme in real world applications.

Similarly, the TR*-tree ([SK 91], [Sehn 92]) tunes the refinement step by introducing a spa­
tial locality on the object shape based on a decomoosition into trapezoids. The set of compo­
nents is organized by the hierarchical index of the R -tree ([BKSS 90]). Spatial queries are pro­
cessed by a tree search directed by the object shape. Because of the locality based definition of
the trapezoid decomposition ([KHS 91]), their overlap is small. However, the large amount of
components and structural pointers implies that the index needs about the same amount of stor­
age as the original object description. This high amount of additional storage as well as the fact
thatno spatial storage scheme is provided and complete objects have to be traiismitted into main
memory is the main drawback of this approach.

However, all these decomposition approaches including the large number of grid based rep­
resentation schemes (e.g. [Sam 90], [Ore 89], [OM 86]) provide no flexibility for objector ap­
plication specific requirements to the shape or the complexity of the original object This is due
to the strict condition of the partitioning process given by a predefined constraint to the shape
and structure of the components. Therefore, no object-oriented paradigm is applicable control­
ling the decomposition algorithm.

In the next section, we consider the main aspects of the number and the complexity of the
components in spatial object representations.

3 Complexity versus redundancy
The basic idea of any persistent decomposed object representation is to improve query per­
formance by shifting time requirements from query processing to update and restmcturing op­
erations. The same principle is applied in any type of access method which provides an addi­
tional effort in object organization heading for an improvement of retrieval performance. In typ­
ical database appücations, retrieval operations occur considerably more frequently in
comparison to update operations. AdditionaUy, retrieval operations are usually performed by
the user in a dialogue set-up and therefore, have to strive for the best possible performance.
Thus, for a reduction of query processing time, it is worth accepting some limited amount of
additional time spent for object preprocessing. A typical preprocessing effort is the precompu-
tation of computational geometry aspects.

The persistent handüng of such precomputations causes a storage overhead in the object
representation as compared to the handling of an object as a linear sequence of vertices. Some
additional storage is required for maintaining geometric and topologic locatity. Typically for
the representation of spatial objects, a preprocessing step is used transforming complex spatial
objects into a set of simpler components where the number of components determines the de­
gree of redundancy.

382

Up to now, two main approaches of structural object representation schemes are known for
spatial databases:
• the conservative approach inducing no structural redundancy at all (no decomposition)
• a linear number of components as a result of structural decompositions into very simple

spatial components.
As shown before, both approaches are not best suitable for a global spatial retrieval system.

The conservative approach avoids redundant object representation at all. Therefore, it is lacking
of any spatial object structuring. The whole object geometry has to be transmitted into main
memory even if resulting in a false hit Geometric operations are dependent on the global shape
and therefore, perform rather slow, particularly for very complex objects.

hi contrast, structural object decompositions define a spatial structure on the object shape.
However, the object decomposition into components of a simple shape with constant complex­
ity results in ahigh number of components. As every component independent of the object rep­
resents a constant measure of complexity, the cardinality of the set of components grows lin­
early in the object complexity. Caused by this high redundancy, spatial query processing is bur­
dened by the following problems and deficiencies:
• time consuming filter step in the case of low-selectivity queries
• high amount of structural redundancy and thus high amount of storage
• complex and expensive inversion of the decomposition process, i.e. generation of the orig­

inal object from the components
• very expensive update- and delete-operations (e.g. updating or deleting one or a few verti­

ces of a spatial object)
The principal intention of any structural decomposition is replacing retrieval complexity

by preprocessing and representational redundancy. Considering the drawbacks listed above,
the central question is now:

Which degree of redundancy is best suitable for efficient spatial query processing?

Both representations considered up to now reveal an extreme imbalance between the num­
ber and the complexity of their components. While the conservative representation (called
'identity' in the remainder of this paper) combines a redundancy free representation with a lin­
ear complexity, structural decompositions shift the whole amount of complexity to a linear
number of components each mcorporating a constant complexity.

According to the results of our experimental analysis in [KHS 91], both approaches, caused
by their unbalanced object representations, obviously reveal weaknesses depending on the
query selectivity. In the case of high-selectivity queries, the high structural complexity deter­
mines the performance of the identity which can frequently be fully answered based on the con­
tainer-object for low-selective spatial query conditions. The clustering mechanism of SAMs
provides a good filtering of redundancy for structural decompositions in the case of high-se­
lectivity queries, whereas low-selectivity queries degenerate due to the high amount of redun­
dancy (see [KHS 91]). From this observation, we conclude the following statement:

A balanced ratio between complexity and redundancy is essential for efficient spa­
tial query processing.

This ratio is determined using an interaction of both steps of query processing. The handling
of an adapted degree of redundancy within the filter step is justified by a gain in efficiency
within the refinement step. The main criteria are given by an increased approximation quality,
i.e. a decreased number of false hits, and particularly by simpler and more efficient geometric
operations on local parts of the object.

383

These considerations lead to the development of newly designed structural decomposition
methods that show a good performance for both selective queries because of a good approxi­
mation and simple geometric operations, as well as for non-selective queries because of a
strongly reduced amount of redundancy. The main issue is the combination of the following
opposing criteria:
• geometric and topologic locality in object representation
• low amount of redundancy

In order to fulfill both demands, the goals of structural object decompositions have to be
newly defined. Contrary to the traditional object decomposition methods, there are strongly in­
creased degrees of freedom compared to the strict definition of the shape, the complexity, and
the topology of the components. This yields a lot of criteria for designing efficient decompo­
sition algmthms which could not be considered by the rigid definition of the component prop­
erties in traditional object decompositions.

4 Object-orientied partitioning methods
The central idea of the class of structural decompositions of spatial objects considered below
is the complete and disjoint partitioning of a simple polygon into a set of spatial components
each of them representing a locally restricted part of the original object with a given complexity.
A characterization of this amount of complexity is given by a suitable constraint of simplicity
(see figure 3). Up to now, for object decompositions this constraint was hmited to the shape of
a very simple spatial object or was given by the topological convexity property and thus, ex­
tremely restrictive. Contrarily, for the identity it is given by the shape of an arbitrary simple
polygon and thus, represents no restriction at all.

Complex
spatial object

Decomposition algorithm

C<3tt£crabt of simplicity;

Set of spatial objects
fulfilling the

constraint

Fig. 3. General scheme of the decomposition algorithm

The correspondence between the number of components, i.e. the redundancy, and their
complexity can be expressed by the following formula:

C0bj + a · Red CQb.
Red = which implies: Red =

*comp (comp a

where c o b j and c c o m p represent the complexity, i.e. the number of vertices, of the
original object and of one decomposition component, respectively, and a denotes
the structural overhead induced by one step of partitioning. Typical values are a = 2
if the partitioning process is restricted to the vertices of the original object, i.e. two
original vertices are combined, and a = 3 in the case of Steinerpoints.
The constraint of simplicity directly affects both the complexity of the components and the

redundancy and therefore, has to be carefully selected. One essential criterion neglected in pre­
vious approaches is given by application specific constraints to spatial objects. Such criteria like
the existence of holes or the restriction of spatial objects to a maximum number of vertices de­
pending on the application system can be expressed by a corresponding constraint to the par­
titioning process.

By the instantiation of this constraint, an approximate goal of the decomposition process is
established. However, no algorithmic designs are specified. Thus, there remains a lot of flexi-

384

bility for the decomposition process to be filled by the implementation. In the following, we
will first investigate these algorithmic flexibilities before examining the constraint of simplicity
with respect to the criteria of redundancy and complexity.
Algorithmic degrees of freedom
The constraint of simplicity defines what type of components have to be generated while the
algorithmic instantiation describes how to derive them. Thus, the instantiation of the decom­
position method is bound to some optimization criteria determining the performance of spatial
query processing.
• axis parallel or free oriented partitioning

Any partitioning with lines parallel to the axes of the data space typically induces Steiner­
points. Therefore, as a result, there is a higher amount of structural overhead. Contrarily,
free oriented methods with a more flexible selection of partitioning lines may join vertices
and thus avoid those drawbacks. However, the container approximation is strongly affected
by the orientation of the partitioning lines. Vertical and horizontal lines provide a good
bounding box approximation, whereas partitioning lines with angles in
{k · π / 4 , k e {ι, 3 , 5 , 7 } } maximize dead space. Therefore, even for orientation free ap­

proaches a 'nearly* axis parallel partitioning is advisable.
• geometric and topologic locality

The central idea of object decompositions is a local and selective processing of complex
spatial objects. Therefore, geometric locality is the crucial property of structural decompo­
sitions. With regard to applications such as the organization of versioned objects or geo­
graphic and topologic maps with neighboring areas expressed by common polylines, the
preservation of a topologic locality is essential as well.

• regularity of the components
A basic requirement to the representation of spatial objects in real applications is a guaran­
tee for stability and the exclusion of degenerations. This demand is important with respect
to spatial, redundancy, and structural aspects. It affects the partitioning process by strict con­
ditions concerning the extension, the number and the complexity of the components. These
criteria strongly depend on the object topology and partially describe opposing require­
ments. Therefore, for designing the partitioning process an integrated consideration of those
requirements is necessary. Between opposing parameters, a weighting with a sufficient
variability has to be determined for a global consistency and applicability.
An example for a spatial criterion of regularity can be found in the Delauney-triangulation
of simple polygons. It is the 'Lawson-criteriorC ([Law 72]) incoiporating a regularity
condition on the angles of the triangles. Contrarily, the trapezoid decomposition ([AA 83])
is not bound to any regularity in the shape of the trapezoids and thus, may create degener­
ated 'line-shaped' components. The decomposition methods investigated in [KHS 91] do
not fulfill all regularity criteria outlined above as shown in table 1.

• small number of components (minimum decompositions)
Beside those degeneration aspects there is the demand for a manageable number of com­
ponents regarding certain complexity constraints. A minimum number of components gen­
erally imposes very expensive algorithms typically with NP-complete or NP-hard time
complexity ([Kei 83], [KS 85]). Particularly, for a dynamic decomposition method meet­
ing some regularity conditions, it is inevitable to relax the strict minimality criterion. Instead
an algorithmically more simple, suboptimal method with more flexibilities has to be de­
signed

385

shape redundancy complexity

trapezoid decomposition - + +
convex decomposition - +

identity - + -
Table 1: Regularity of spatial object representations

Having surveyed the general aspects concerning the partitioning process of structural decom­
positions, we next investigate an appropriate degree for the number of components and their
structural complexity. As there is no general answer for an arbitrary type of spatial objects and
appücations, we develop a set of criteria serving as a basis to an adequate redundancy instan­
tiation for a given appücation. However, topologic aspects remain unconsidered in this context
The amount of redundancy
Based on the variety and heterogeneity of geometric appücations as weU as on the structural
variance of spatial objects, appücational and object-oriented aspects have to be considered de­
fining the measure of redundancy in object representation. A global and flat rated instantiation
is not possible. It rather depends on a set of factors influenced by the conditions of the under­
lying appücation. In the foUowing, the important factors tetermining redundancy are ex­
plained.
• object-onented aspects

• structural complexity
The complexity of a spatial object strongly influences the number of compo­
nents. Obviously, an object with say 10 vertices, needs no partitioning at aU,
whereas a complex object consisting of 50,000 vertices should be partitioned
into several hundreds of components.

• geometric shape and geometric complexity
For a simply shaped object, e.g. a convex polygon, less and simpler components
are generated than for a strongly meandering object (see figure 5). This is due to
the fact that the spatial locatity of the components depends on the geometric
complexity of the object

• object area relative to the data space
The strong variance of the area of spatial objects exerts a bad influence on the
clustering and therefore, on the selectivity properties of SAMs. Thus, one goal
is to homogenize the area and extension of spatial objects. Large objects are par­
titioned more distinctiy than small objects.

• query oriented aspects
Depending on the selectivity of appücation oriented spatial queries, a stronger preference
for the number of components or for their complexity may be adequate. In the case of high-
selectivity queries, e.g. point queries, a higher amount of redundancy is useful and vice
versa (see the results in section 6 and [KHS 91]).

• hardware aspects
The given hardware environment determines the ratio of the time for one secondary storage
access to the time for one typical CPU-operation. Because redundancy is I/O-intensive,
whereas complexity is CPU-intensive, the best possible balance between redundancy and
complexity has to be tuned for a given hardware environment

386

• application specific aspects
Requirements to object complexity may be imposed by the application system. For exam­
ple, a polygonal object has to fit in a single page on secondary storage and therefore, only
a limited number of vertices are allowed.

• general aspects
• data page as clustering unit

The term of a data page represents the atomic unit of transfer between main
memory and secondary storage. This observation leads to a component com­
plexity approximately meeting the space of a data page. In this case, the redun­
dancy corresponds to the number of data pages. As the structural overhead of the
partitioning is low, the number of actual data pages is most likely not increased
with respect to the linear sequence of pages, necessary for storing the complex
object. However, a spatially organized and accessible set of pages takes the place
of the sequentially organized traditional representation.

• dynamic balancing between redundancy and complexity
A 'fair' balance between redundancy and complexity is provided by the root cri­
terion'.

A structural decomposition method fulfills the root criterion, if the complex­
ity of the components is in the range of I c-\Jn] , ι c-*Jn] +11, where c is
a real constant and η denotes the complexity of the original object. A typical
measure of the constant c is given by c ~ 1.
As an example, for a polygon with 100 (50,000) vertices the complexity of
the 5-10 (112-223) components is in the range [10, 21] ([224,449]).

These aspects describe different starting-points for an adaptive selection of the number of com­
ponents. We have shown that the number of components depends on various application spe­
cific aspects. Our goal within this paper is not an evaluation of all those aspects and their mutual
affects but to present a number of different decomposition methods under the criterion of a con­
strained redundancy.

The next section will introduce several structural decomposition methods defining a simul­
taneous restriction of complexity and redundancy. Two basic methods will be introduced: com­
position methods are based on an object decomposition into very simple spatial components
suitably merging those components to more complex components. However, fragmentation
methods directly construct the components by a sophisticated definition of partitioning lines.

5 Object-oriented decomposition methods
Composition methods
Within this section, we generalize the decomposition methods into convex polygons, trape­
zoids, and heterogeneous components as described in [KHS 91] by merging a number of com­
ponents to more complex component objects resulting in a decreased amount of redundancy.

Fig. 4. Examples of object-oriented decompositions

387

Convex composition method
Convex decompositions are based on the treatment of notches, i.e. vertices violating the

convexity property. Recursively introducing partitioning lines, in every step of the 'naive' par­
titioning process, components with a smaller number of notches are generated (see [CD 85]).
This process finishes up with convex components containing no notches.

6obj.

80-100 vertices

The generalized approach imposes a new criterion on the break off of the partitioning process.
Components are partitioned only if their complexity exceeds a predefined constant even if they
contain notches. On the logical level, this constraint partitioning process corresponds to a merge
of neighboring convex components. Figure 5 depicts the result of the partitioning process with
a constraint number of vertices for the axis-parallel (AP) and the orientation free convex com­
position. The axis-parallel method is one of the competitors in the performance comparison
given in section 6.
Trapezoid composition
The main drawbacks of the decomposition into trapezoids originate in the linear number of
components and in their degenerated shape inducing a lacking spatial locality. However, the
demand for axis parallelism in one dimension causes a partial order on the trapezoids charac­
terizing a neighborhood relation on the components. Thus, a merging process on the set of trap­
ezoids is simple and leads to still axis parallel but less degenerated components. This con­
strained merging process, however, hinders the definition of locality based components.

'Lake Volta 'Gambia'

Fig. 6. First and second directory-level of an R*-tree for heterogeneously decomposed objects

Heterogeneous composition
The heterogeneous decomposition (see [Schi 93], [KHS 91]) is based on a separation of the
contour and the interior of a spatial object. The principal building block of a heterogeneous
composition is given by a merge of components describing a locality based part of the object.
Joining neighboring edges leads to a topologic locality, whereas their merge with suitable in­
terior components preserves a geometric locality.

One possible instantiation of this merge process is given by the data pages of a clustering
SAM. A merge of the components clustered, for example, in one data page of an R -tree, while
checking some connectivity and integrity constraints yields a good spatial locality of the com­
ponents (see figure 6).

Fig. 5. Examples of the convex composition method

388

Fragmentation methods
An alternative approach of object-oriented spatial decompositions of simple polygons is given
by the class of fragmentation methods. Fragmentation methods directly decompose a spatial
object with respect to a given simplicity constraint. The paradigm of a binary space partition is
applied. As there is no preceding decomposition into simple components, a much more flexible
partitioning process is available with respect to topologic, geometric, or structural object prop­
erties.

A wide range of different partitioning methods is available, all based on the fragmentation
approach. We do not want to present all those variants, but describe one selected fragmentation
method, which is efficient for a number of reasons.

Within the following, pi = (pi ,/>.), l < ι < m, denotes the vertices of a simple polygon
ρ = (ρ j , p v ..., p m) , where the edges of the polygon are given by pairs of consecutive vertices
(P\>P2)> iPvP*)*-* <J>m-vPj> (pm,^i).Let <J>i>Pj) denote the line connecting the points p.
and p.. Then distinßj) := min {(i-j + n) M O D ny (j-i + n) M O D n} denotes the index-dis­
tance of pt and p.. The term of an index-distance describes the number of edges between two
given vertices of Ρ .

In the partitioning process, we connect vertices which have a minimum distance from each
other under some constraints. Using the Euclidean distance, the following minimization func­
tion has to be solved for a polygon ρ = (pl, p 2 , . . p m) and a predefined constant dmin:

min < min < 7 < ^ Γ ' Λ) 2 + ^ ~ ^ ,) 2)) ·
1 < ι < m i<j< m, distinßtj) > dnint <ρ·,ρ.)<ζΡ

Obviously, the primary effect of this procedure is a minimization of the unnatural contour
and therefore, of the contour of the components. However, there are a number of advantageous
consequences to the spatial and topological properties of the components.
• spatial and topologic locality of the components
• no Steinerpoints, i.e. no new vertices induced by the components
• small contact of the components defined by single edges and not by polylines
• object-oriented and not component-oriented approach

The realization of this decomposition method necessitates some additional examinations
as described in the following:
• using the Euclidean metric for determining the minimum distances, we can make no state­

ment with respect to the orientation of the partitioning lines. We expect uniformly distrib­
uted orientations in the range of [-π/2, π/2) . For approximation and regularity reasons,
however, axis parallel lines, i.e. lines close to the orientation values of {-π/2, ο, π/2} , are
desirable. Therefore, we apply the Manhattan metric instead, penalizing anon-axis-parallel
orientation: distsujpi>Pj) = l^-^-J + \piy-Pjy\ ·

• as introduced above, we use the root-criterion determining the complexity of the compo­
nents. Therefore, the complexity as well as the number of the components is o(Jn). To
avoid a degeneration in the case of objects with a small number of vertices, we define a
lower bound of 10 for the number of vertices of one component, therefore:
MinCompl(n) = max{ [*Jn\ • cAO). The value of c is defined as c = 2.0.

• a major problem of the partitioning process is the preservation of regular components.
Thus, partitioning lines must be completely included within the object and may not have
an intersection with the object border. Principally, any computation of minimum distances
has to check for some visibility constraints resulting in a high computational effort. To re-

389

duce this effort, we choose a 'suboptimaT way to proceed. For this purpose, we define two
stria visibility conditions (see figure 7).
Two Points Pj and P 2 of a simple polygon Ρ are called locally visible, if:

3 ε ρ ε 2 > 0 with ({ Ρ , + δ· {P2-Pl)90<b<el} c P) Λ ({ Ρ 2 + δ · (Ρ , - P 2) , 0 < δ <ε 2} c P)

Particularly, two interior points of Ρ are locally visible by definition,
p, and Ρ 2 3rc called globally visible or visible, if: { Ρ , + δ · (Ρ 2 - Ρ ,) , ο < δ < 1} c P .

While checking for the global visibility constraint takes linear time in the number of verti­
ces, the local visibility is evaluated in constant time. Therefore, within the minimization
phase for every vertice we only check the local visibility. Instead, the process of searching
pairs of vertices of minimum distance checks the global visibility to maintain correctness.
This approach, not guaranteeing the global minimum distance of two points joined by a par­
titioning line, reduces the time complexity by a linear factor.

Ν / / / n o t global but
^ W y } J / J~-~X~4-- local visible

Local visibility constraint Global visibility constraint

Fig. 7. Global and local visibility condition

releasing the strict structural constraint
Based on the arbitrarily but fixed defined constant of the minimum component complexity,
a reduction of the natural locality may be the consequence. In order to prevent this, at least
partially, we define a range of fussiness $(n) and a fixed upper bound Δ . Now, we introduce
a relaxation of the strict minimum complexity constraint:
If, for two points p. and p., the following condition holds:

distsum(pi> Λ) < (1 - Δ) · min (^tsuJP, Pk)) with
{i<k<n,äistiJi^)>MinKompl(n) J

MinKomPiin) > distinß, k) > MinKompl(n) - ϋ(η)

then a partition line is introduced between pi and p} neglecting the low component com­
plexity. A careful selection of the values of ϋ(η) and Δ is necessary. If ϋ(η) is too large or
Δ is too small, the above defined criteria become annulled. In our instantiation, we define
ϋ(η) = 0.05 · w and Δ = 0.25.

Properties of the fragmentation method
The effect of the algorithm strongly depends on the shape of the object justifying the name of
an object-oriented method. We distinguish two basic treatments (see figure 8):
• the join of two dents
• the cut of bulges

If an object includes distinct dents, the minimum distance of a pair of points occurs between
those dents under the predefined constraints. This treatment results in a spatial and topologic
localized and more regular shape of the components, both underlying a further recursive par­
titioning. If no such dents exist, i.e. if there is an obvious kernel (see figure 8), parts of the object
'sticking out' in the form of bulges will be cut. Successively, the object is reduced to a topo-
logically simple kernel and a set of components along the object border. As every step of the
partitiorting treats one bulge, two unsimilar components are generated One represents the

390

bulge yet fulfilling the complexity property, whereas the other describes the rest of the object
which is further partitioned.

Ulis decomposition process for spatial objects is particularly determined by the object
shape and topology. The two basic treatments guarantee for a high locality with respect to spa­
tial and topological aspects. In particular, the difficult problem of defining an adequate kernel
is solved in a direct and pragmatic way. The existence of a distinct kernel preserves spatial lo­
cality and supports answering spatial queries by only considering the kernel.

desirable partition treatment of dents and bulges of the objects

Fig. 8. Instantiation of the object-oriented decomposition method

In the following section, we will evaluate this method of decomposing a complex spatial
object with respect to the filter and the refinement step of spatial query processing comparing
it to presently known methods.

6 Secondary memory organization and spatial query processing
As outlined in section 2, spatial query processing on complex spatial objects is performed in a
two step approach: based on an approximation oriented object representation, the filter step re­
duces the set of objects to a set of candidates most likely fulfilling the query condition. The re­
finement step exactly evaluates the query condition. Within this section, we will examine the
decomposition methods introduced above, i.e. the convex composition (comp) and the frag­
mentation method (frag), with respect to this two step approach of spatial query processing. In
the performance comparison, we use the identity representation (ide) as well as the convex de­
composition (conv) introduced in [KHS 91] as a measuring stick.

This comparison utilizes three different datafiles, two of them corresponding to real geo­
graphic objects that do not overlap (county regions of 'Europe' (see figure 9)) and 'Baden-
Württemberg' (BW), and the third representing a set of synthetic objects with some 85 vertices
and two holes on the average ('sph_85'). 'Europe' and 'BW' mainly differ with respect to the
number of objects as well as the average object complexity influencing the amount of decom­
position redundancy. The average object complexity of the strongly homogeneous 'sph_85'-
file meets the object complexity of 'Europe', while the number of vertices in 'BW' is about six
times higher.

The following tables depict the major parameters of the particular representations. They in­
clude the number of components and their average and total complexity, the storage needed
for the representation and spatial organisation of the decomposition components compared to
a linear organization of the objects, each within one or more 2 KByte-secondary memory
pages, and the bounding box approximation characterizing the efficiency of the filter step ex­
pressed by the number of false hits (see also [BKS 93]).

The convex decomposition turns out to generate a extremely high number of components
(about 1/2 the total number of vertices) and a low and constant component complexity (4.5-5
vertices on the average). The overall complexity factor of about 2.5 is a measure for the strong
structural overhead caused by a multiple storage of identical vertices within different compo­
nents and by Steinerpoints. However, this overhead is small for our new decomposition meth-

391

ods. The convex composition method shows a constant component complexity. Due to the
merge of convex components, their complexity is much higher and thus, their number is much
lower compared to the convex decomposition. The component complexity of the object-ori­
ented decomposition by definition strongly depends on the complexity of the original objects.

aua&er of cörapoaents refeti ve- &ot ag£ space

Europe BW spb_85 Europe BW sph_85

ide 471 1,298 1,000 0.71 1.00 1.00

conv 22,296 367,815 51,183 2.56 4.41 3.74

comp 2,091 29,810 3,093 0.96 1.68 1.36

frag 1,410 12,602 3,573 0.92 1.52 1.31

Table 2: Decomposition parameters (1)

medium comp, complexity overall complexity kouadifig box approx,

Europe BW sph_85 Europe BW sph_85 Europe BW sph_85

ide 94.9 572.5 83.3 1.00 1.00 1.00 2.15 2.00 1.72

conv 4.94 5.01 4.57 2.46 2.48 2.81 1.31 1.05 1.16

comp 23.7 27.8 29.0 1.11 1.12 1.08 1.92 1.30 1.74

frag 33.1 60.8 24.8 1.04 1.03 1.06 1.93 1.54 1.84

Table 3: Decomposition parameters (2)

Now, our goal is to perform spatial queries based on these representation schemes measur­
ing the performance of the particular methods. For that purpose the objects and the components
are organized in an R*-tree, an efficient SAM for rectangles using the concept of overlapping
regions ([BKSS 90]). We define a 'one-path' page buffer supporting query processing.

The main criteria determining query efficiency are (see also [KHS 91]):
• disc accesses and main memory page search operations, i.e. "point in rectangle operations

and rectangle intersections, performed by the SAM (filter step) and
• exact spatial operations rx̂ rformed on the original objects or their decomposition compo­

nents (refinement step)
In the case of a decomposed object representation an additional filter of redundancy has to

be incorporated within the refinement step to avoid redundant spatial operations. Our instanti­
ation is a temporary main memory binary search tree structure, implemented as an AVL tree.

The tables below present the performance results of point queries and window queries de­
pending on the size of the query window. The percentage values describe the extension of the
query window in each dimension of the data space, i.e. a 10%-window query corresponds to a
window covering 1 % of the data space. As the performance of the access method is indepen­
dent of the object distribution, the query windows are evenly distributed in the space covered
by the data objects. Thus, only successful queries are performed for a good simulation of ap-
phcation specific requirements. The performance values are divided into filter and refinement
performance, parametrized as follows:

filter = number of accesses - taccess + number of comparisons • tco

ref= number of duplicates · *fre<f_wercA + spatial operations · t i a l a t i o n

392

Fig. 9. Partitionings of the 'Europe' file

The time parameters are averaged over the corresponding values measured in numerous
experiments on HP 720 RISC workstations under GP MODULA-2. We instantiate the values
'access = o.\2msftcomp = 0.002m,, and ttree_ s e a r c h = o.oi5m, averaged tspatial_operation strongly
depends on the type of the spatial operation. In the case of a query region which is large com­
pared to the average object area, the refinement operation is performed by a small number of
comparisons, whereas point queries require for the evaluation of the complete shape of the spa­
tial objects. Therefore, this time parameter cannot be globally defined. However, for point que­
ries and small window queries we have approximately: t i a l o p e r a l i o n = η · o.oi ms, where η
denotes the object complexity.

The following table 4 depicts the average time required for the evaluation of one single
query. Due to space limitation, the results for thr 1 %-window queries are not presented in the
table. The values are given in microseconds. For a clearer evaluation they are divided into the
time for the filter step and the refinement step. In the table, we have shadowed the best per­
forming method for each type of query. A summation of both values resulting in the total time
needed for the processing of one spatial query is represented in figure 10.

393

Ipoißt queries 0.5 % ~ !
wind w qt*.

1 0 % ~ j 2 5 % .

filter ref. filter ref. filter ref. filter ref. filter ref. filter ref.

Europe - file (471 objects / 44,716 vertices)

ide 0.79 3.05 0.83 2.53 0.97 1.06 1.32 0.64 2M 0,35 1 O J

con ν &S9 ! 0.05 0.83 0.13 1.33 0.52 2.67 1.84 5.78 5.31 21.2 23.2

comp 0.48 0.29 &S5 0.25 0.75 0.16 1.26 0.21 2.35 0.48 7.6 1.8

frag 0.50 0.47 0.55 0.38 0̂ 73 tu? 11111 0Λ5 2.20 0.28 7.1 1.0

B W - file (1,297 objects 7 743,137 vertices)

ide 6.98 11.2 7.55 14.0 9.67 13.8 14.8 13.0 26.0 8.31 75,4· %%
conv m 1.76 0.60 5.91 4.54 21.7 22.5 65.6 75.0 302 370

comp 0.81 0.32 I U 4 QJ6 2.73 1.85 8.26 2.21 23.7 6.50 101 29.5

frag 0.78 1.32 1.04 1.47 2 3 7 I IM 7.1$ "ITS'" . mo 4.06 88.1 11.7

sph_85 - file (1,000 objects / 83,291 vertices)

ide 2.70 14.7 2.88 15.1 3.46 17.6 4.74 22.3 7.3 17.8 17.7 11.3

conv L78 Ö55 I W I 3.09 IM 5.86 2.84 12.6 9.4 47.3 49.5

comp 2.12 5.17 2.31 4.84 2.91 3.75 4.32 3.63 7.3 2.2 20.2 2.7

frag 2.12 4.69 2.30 4.07 2.88 3.71 4M 3,15 7,1 2,1 . 3 ^

Table 4: Average time per query (in ms)

These results reveal strong differences in query performance. As expected, for each of the
test files the decomposition based representations perform good for high selectivity queries,
whereas for queries with low-selectivity, i.e. for extremely large window queries, their perfor­
mance gets poorer. In principle, for very large queries a spatial clustering is not supportive any­
more. Then, a sequential scan over the objects may turn out to be the best choice. Typical ap­
plication-oriented queries extract small portions of the objects and therefore, are restricted to
small query windows. In this case, any of the object decomposition methods clearly outper­
forms the identity representation up to an order of magnitude. The identity representation is su­
perior to the decomposition methods only for very large queries when the performance of the
decomposition methods degenerates.

The break-even point of the performance curves depends on the characteristics of the un­
derlying objects. The identity representation performs considerably worse than the decompo­
sition methods for a wide range of the window sizes, if the overlap of the objects is strong and
the average object area is high (see file 4sph_85'). However, for small objects and for large win­
dow queries, the average computational geometry cost becomes cheap in comparison to the
cost for handling the high amount of redundancy. Thus, window queries exceeding a
break-even point which is in the range of [0.1,0.35] of the size of the data space in each dimen­
sion, are performed most efficiently by the identity representation. However, in most applica­
tions these very large window queries rarely occur.

Caused by the reduced amount of redundancy and still a small complexity of the compo­
nents, the two new methods outperform the convex decomposition already for small window
queries and improve their superiority with increasing query size. Only for point queries, where

394

the whole amount of redundancy is neutralized by the clustering effect of the SAM, due to its
bounding box approximation quality and its simple refinement operations, the convex decom­
position displays the best performance. However, in a wide range of small and medium sized
window queries decomposition methods based on a balance between complexity and redun­
dancy take advantage of much less redundancy, and, nevertheless, a reasonably small object
complexity (see figure 10). To be more precise, the following table 5 normalizes the total query
time for each method and each type of query with respect to the most efficient method. The
table clearly shows that for small and medium sized window queries (window sizes in the range
of 0.5% to 10% of the data space in each dimension) our new methods are superior to the tra­
ditional methods by a factor which varies between 1.24 and 11.34. Possibly even more impor­
tant, our new methods are very robust in performance over the whole range of queries. For the
BW-file there is no query type where their performance is worse than the best method by a fac­
tor of more than 2. Since ithas been demonstrated that the performance of theR -treeisbasicaly
independent of the object parameters, the above results reflect the performance of the decom­
position and not the performance of the access method. .

point
queries

0 . 5 % -
window

1 % -
window

2 % -
window

5 % ~
window

1 0 % -
window

25 % -
window

B W - file

ide 17.15 11.34 8.82 5.87 3.12 1.43 i+00
conv 1.00 1.24 1.68 2.61 4.96 5.84 8.66

comp 1.07 LOO 1.00 1.15 1.18 1.26 1.68

frag 1.98 1.32 1.13 im 1.00 LÖ0 1.29

Table 5: Performance of spatial queries normalized with respect to the most efficient method

Sph_85

Europe B W

Fig. 10. Total query time (in ms) depending on the window size of spatial queries

395

Due to the strict axis-parallel partitioning process of the convex composition method, its
approximation is superior to the fragmentation method. This property is particularly influenc­
ing the performance of small sized window queries. For larger query windows the spatial lo­
cality of the fragmentation method inducing a better clustering results in a better performance.
However, the performance of the two methods is very sunilar which is due to the similar com­
plexity and redundancy.

These trends come out even clearer for region queries where the query is specified by a po-
lygonally shaped object Region queries are typically performed by the sequence of a window
query using the query window formed by the bounding box of the query region followed by
refinement operations based on the exact shape of the query region. Particularly for the new
decomposition methods inducing a low amount of redundancy, a decomposition of the query
region combined with an iterated query processing of simple and local query regions becomes
a promising approach.

Generally, the refinement operation of the identity representation strongly suffers from an
increase of the query region complexity. Typically, the algorithmic complexity is 0{r · η),
where r and η denote the complexity of the query region and the complexity of the refined ob­
ject, respectively. As the decomposed spatial objects are considerably less complex, their re­
finement complexity is much lower, particularly for complex query regions.

A map overlay of two object files (e.g. [KBS 91]), an essential operation for geographic
appücations, results in a set of object pairs, one of each file, fulfilling a predefined join condi­
tion. Again, a two step approach is applied by first computing a set of candidate pairs based on
their bounding box approximation, followed by the evaluation of the overlay condition on the
exact object shapes. The identity representation as a first approach reveals two strong draw­
backs with respect to its performance: as a result of the bad approximation, a high number of
object pairs has to be considered and their evaluation takes the same quadratic effort as outlined
above for region queries. Contrarily, the convex decomposition exhibits both an excellent ap­
proximation and very simple refinement operations. However, as the redundancy of decompo­
sition methods takes quadratic effort, it has to be carefully controlled. Our new decomposition
schemes provide simpler spatial algorithms combined with a still small measure of redundancy.
Therefore, first results confirm that their perfonnance improvement for map overlay operations
is much higher than for simple spatial queries. Final results are left to a future performance com­
parison of our new decomposition methods for the map overlay operation.

7 Conclusions
Spatial query processing of complex spatial objects is typically perfonned by a two step

approach. The first step, based on a coarse spatial approximation of the objects embodies a sim­
ple spatial filter yielding candidates, whereas in a second step the exact spatial properties of the
candidates are evaluated. Up to now, the so-called identity representation is commonly used
based on an integrated evaluation of the complete object shape organized by a bounding box
approximation of the object First approaches gaining in efficiency for small sized query re­
gions by decomposing the complex object into simple components are given in [KHS 91].
However, the high number of components involves some inherent disadvantages: a high
amount of storage and redundancy, an expensive inversion of the partitioning process, and,
most essential, a strong degeneration of the query performance for medium and large sized
query regions. Therefore, we have defined a group of decomposition methods, taking into ac­
count both a small number of components and a low component complexity. The implemen­
tation and evaluation of two selected methods show a clear gain in efficiency in comparison to
the identity representation and the convex decomposition method, the winner in [KHS 91]. For

396

small and medium sized window queries (window sizes in the range of 0.5% to 10% of the
data space in each dimension) this gain in performance is by a factor in the range of 1.24 to
11.34. Possibly even more important, our new methods are very robust in performance over
the whole range of window queries. Furthermore, for spatial queries more complex than win­
dow queries, this gain will be even higher. Thus, for all applications where extremely large que­
ries do not occur, in other words for most practical applications, our new decomposition meth­
ods turn out to be a good choice.

References
[AA 83] Ta. Asano and Te. Asano, Minimum partition of polygonal regions into trapezoids, Proc. 24th EEEE

Annual Symp. on Foundations of Computer Science, 1983,233-241.
[BKS 93] Τ. Brinkhoff, H.-P. Kriegel, and R. Schneider, Comparison of approximations of complex objects used

for approximation-based query processing in spatial databases, in Proc. 9th Int Conf. on Data Engineer­
ing, Vienna, Austria, 1993.

[BKSS 90] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger, The R*-tree: An efficient and robust access
methodfor points and rectangles, Proceedings ACM SIGMOD Int Conf. on Management of Data, At­
lantic City, NJ,1990,322-331.

[Bra 92] Α Braun, A graphic-oriented tool for analyzing spatial objects: 'its design and application to real
worlddata\ Master thesis, Institute for Computer Science, University of Munich, Germany, 1992, (in
German).

[CD 85] B. Chazelle and D.P. Dob kin, Optimal convex decompositions, in computational geometry, Proceed­
ings Comp. Geometry, Elsevier Science, Netherland, 1985,63-134.

[Fra91] A.U. Frank, Properties of geographic data, Proceedings 2nd Symp. on Large Spatial Databases,
SSD'91, ΕΤΗ Zurich, 1991,225-234, in: Lecture Notes in Computer Science, Vol. 525, Springer, 1991.

[Kei 83] J.M. Keil, Decomposing polygons into simpler components, Ph.D. thesis, Department of Computer Sci­
ence, University of Toronto, 1983.

[KS 85] J.M. Keil and J.R. Sack, Minimum decomposition of polygonal objects, in Computational Geometry,
G.T. Toissant (Ed.), Amsterdam, Netherland, 1985,197-216.

[KBS 91] H.-P. Kriegel, T. Brinkhoff, and R. Schneider, An efficient map overlay algorithm based on spatial ac­
cess methods and Computational Geometry, Int. Workshop on Database Management Systems for Ge­
ographical Applications, Capri, Italy, 1991, in: Geographic Database Management Systems, Springer,
1992,194-211.

[KHS 91] H.-P. Kriegel, H. Horn, and M. Schiwietz, The performance of object decomposition techniques for
spatial query processing, Proceedings 2nd Symp. on Large Spatial Databases, SSD'91, Zurich, 1991,
257-276.

[Law 72] C . L Lawson, Generation of a triangular grid with application to contour plotting, CIT Jet Propulsion
Laboratory, Technical Memorandum 299, Pasadena, CA, 1972.

[NHS 84] J. Nievergelt, H. Hinterberger, and K.C. Sevik, The Grid File: an adaptable, symmetric multikey file
structure, ACM Transactions on Database Systems, Vol. 9, 1, 1984,38-71.

[Ore 89] J. Orenstein, Redundancy in spatial databases, Proceedings 1 st International Symposium on Large Spa­
tial Databases, SSD'89, Santa Barbara, CA, 1989.

[OM 86] J. Orenstein and F. A. Manola, Spatial data modeling and query processing in PROBE, Technical Re­
port CCA-86-05, Xerox Advanced Inform. Technology Devision, 1986.

[PS 88] F.P. Preparata and M.I. Shamos, Computational Geometry, Springer, New York, 1988.
[Sam 90] H. Samet, The Design and Analysis of Spatial Data Structures, Addison-Wesley, 1990.
[Schi 93] Μ. Schiwietz, Storage and Query Processing of Complex Spatial Objects, Ph.D. thesis, (in German),

Inst for Computer Science, University of Munich, Germany, 1993.
[Sehn 92] R. Schneider, A Storage and Access Structure of Spatial Database Systems, Ph.D. thesis, (in German),

Institute for Computer Science, University of Munich, Germany, 1992.
[SK 91] R. Schneider and H.-P. Kriegel, The TR -tree: a new representation of polygonal objects supporting

spatial queries and operations, Proceedings 7th Workshop on Computational Geometry, Bern, Swit­
zerland, 1991, in: Lecture Notes in Computer Science, Vol. 553, Springer, 1991,249-264.

[See 89] B. Seeger, Design and implementation of multidimensional access methods, Ph- D. thesis, (in German),
Depart of Computer Science, University of Bremen, Germany, 1989.

