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Abstract. We explore which types of probabilistic updating commute with

convex IP pooling (Stewart and Ojea Quintana, 2017). Positive results are

stated for Bayesian conditionalization (and a mild generalization of it), imag-
ing, and a certain parameterization of Jeffrey conditioning. This last observa-

tion is obtained with the help of a slight generalization of a characterization of

(precise) externally Bayesian pooling operators due to Wagner (2009). These
results strengthen the case that pooling should go by imprecise probabilities

since no precise pooling method is as versatile.

1. Introduction

Bayesian conditionalization is the gold standard of probabilistic learning. Yet
several authors advocate modifications of conditionalization for a number of rea-
sons. For example, conditionalization entails assigning probability 1 to the evidence.
Dissatisfied with such “dogmatic epistemology,” Richard Jeffrey proposed his prob-
ability kinematics as a way of updating on uncertain evidence (Jeffrey, 2004). To
take another example, consider probabilistic imaging. One widely pursued goal in
work on the logic of conditionals is to find a way of identifying the probability of a
conditional with the corresponding conditional probability. Attempts to do so have
been repeatedly frustrated by a series of triviality results. However, David Lewis in-
troduces imaging and shows that a version of the identity holds when formulated in
terms of imaging instead of in terms of conditionalization (Lewis, 1976). And there
are other proposals, such as minimizing the Kullback-Leibler divergence (Kullback
and Leibler, 1951). Here, the objective is to accommodate the evidence in such
a way as to minimize a measure (the K-L divergence) of the difference between
posterior and prior.

Probabilistic opinion pooling can be viewed as part of an important strand in
Bayesian epistemology and statistics concerned with consensus. The received view
is that personal probabilities are subjective (Ramsey, 1931; Savage, 1954; de Finetti,
1964), resulting in much fretting about the implications for scientific methodology.
The worry is that the objectivity of scientific confirmation, explanation, inference,
and the like is compromised to the extent that such probability plays a role. A
prominent Bayesian response comes in the form of convergence and merging of
opinions theorems, which show that, given agreement about probability 0 events
and enough evidence, probabilities converge (almost surely) (Savage, 1954; Gaifman
and Snir, 1982).1 Conditionalization, that is, leads to consensus, “washing out” the
problematically subjective priors leaving intersubjective agreement in their place.

Date: April 1, 2017.
1Not all merging of opinions results require probabilities to converge to certainty (Blackwell

and Dubins, 1962). Under certain conditions, Bayesian conditionalizing can bring probabilities
close even if they do not converge to 1 or 0.
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Pooling offers a distinct way of reaching a consensus in probabilistic opinion, one
available even when the opportunity to collect more evidence is not. Consensus is
reached immediately via methods for aggregating probabilistic judgments instead
of in the long run via conditionalization (Huttegger, 2015). After all, as Keynes as-
tutely observes, we have reasons not to be particularly concerned with the long run.
As with convergence arguments, intersubjective agreement stands in for objectivity
in the pooling context. Still, in the literature on probabilistic opinion pooling, one
of the constraints of central concern is external Bayesianity, which requires that
pooling and Bayesian conditionalization on a common likelihood function commute
(Madansky, 1964). That is, the result of pooling and then updating is the same
as first updating and then pooling. The order of operations does not change the
outcome. One natural question to ask in light of the aforementioned alternatives to
conditionalization is, what about commutativity with alternative updating policies?
This is the question that concerns us in the present essay.

Much of the focus in the pooling literature is on characterization and impossi-
bility results. Such results are not the intended contribution of this paper (though
Proposition 2 generalizes a characterization result due to Wagner to the imprecise
probabilities setting). Instead, we continue an exploration of the potential of im-
precise probabilities in the context of learning and pooling (Stewart and Ojea Quin-
tana, 2017). There, we argue that collective opinion is more properly represented
by imprecise probabilities (IP). We provide three arguments. First, if pooling is
interpreted as reaching a consensus in probabilistic opinion, IP pooling is on firmer
philosophical ground (Cf. Levi, 1985; Seidenfeld et al., 1989). The point, briefly,
is that IP models allow for suspending judgment between some number of proba-
bility distributions by not ruling them out for use in deliberation and inquiry, and
reflect the common ground among the group concerning which probability distri-
butions are ruled out. Such a consensus constitutes a neutral initial position from
which to launch further inquiry. Precise pooling functions, on the other hand, do
not allow for an analogous suspense of judgment, and may yield collective prob-
abilistic opinions endorsed by none of the group members. Second, there are IP
pooling functions that jointly satisfy more of the standard pooling constraints than
any precise pooling recipe can. Third, in the IP setting, the tension between a
pooling method’s being justified on epistemic or procedural grounds (Dietrich and
List, 2014)—reflected in the tension between satisfying certain formal epistemic and
procedural constraints—dissipates, an artifact of the assumption of precision.

The results that follow may be taken to contribute to that case for IP. Briefly put,
we show that, while the form of updating for a given precise pooling method is quite
restricted under the requirement of commutativity, relaxing the assumption that
the collective opinion should take the form of a numerically determinate probability
function enables us to lift many of those restrictions. Several revision methods are
consistent with pooling understood the IP way. After introducing the mathematical
pooling framework in the next section, we begin with the gold standard in Section 3.
We remain neutral as to whether Jeffrey conditionalization and imaging ultimately
admit of sufficient motivation, though we rehearse some of the standard motivations
for and reservations about probability kinematics (Section 5) and imaging (Section
6), and state the commutativity results. Motivations for requiring commutativity
of learning and pooling are discussed Section 4.
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2. Preliminaries

Ω denotes a sample space, a set of mutually exclusive and exhaustive possible
states of the world.2 In what follows, we assume that Ω is countable. A function
p : Ω Ñ r0, 1s is a probability mass function (pmf) iff

ř

ωPΩ ppωq “ 1. An algebra
A of events over Ω is a set of subsets of Ω closed under complementation and finite
unions (closure under countable unions yields a σ-algebra). We assume throughout
the paper that A is a σ-algebra. Given a pmf, we can define a probability measure,
(abusing notation by using the same symbol as for pmfs) p, on events in general:
ppEq “

ř

ωPE ppωq.
Let P be the set of all pmfs on Ω. A precise pooling function is a function,

F : Pn Ñ P, mapping a profile of n pmfs, pp1, ...,pnq, to a single pmf, F pp1, ...,pnq.
Typically, the n pmfs are taken to represent the opinions of a set N of individuals,
and F pp1, ...,pnq is supposed to represent, in some sense, the aggregate or collective
opinion. Various candidate interpretations of an opinion pool exist in the litera-
ture: a rational consensus (adopted genuinely by all members or adopted merely
“for the sake of the argument”); a compromise adopted for the purpose of group
decision making; the opinion a group member adopts after learning the opinion of
her “epistemic peers”; the opinion an external agent adopts upon being informed
of the n expert opinions, etc. (Genest and Zidek, 1986; Wagner, 2009). There are
a number of concrete pooling functions discussed in the literature, but, by far, the
two most prominent are linear and geometric pooling functions.

Linear Opinion Pools. F pp1, ...,pnq “
řn
i“1 αipi, where αi ě 0 and

řn
i“1 αi “ 1.

A linear opinion pool is just a weighted arithmetic average of the n probability
functions. A geometric pooling function takes the (weighted) geometric average of
the n pmfs.

Geometric Opinion Pools. F pp1, ...,pnq “ c
śn
i“1 p

αi
i , where αi ě 0 and

řn
i“1 αi “ 1, and c “ 1

ř

ω1PΩrp1pω
1qsα1 ¨¨¨rpnpω

1qsαn
is a normalization factor.3

The focus of this paper will be on a generalization of pooling functions to the IP
setting: F : Pn Ñ PpPq.4 We use F , opposed to F , to denote set-valued pooling
operators. IP pooling functions are maps from profiles of probability measures to
sets of probability measures. In particular, we consider pooling functions that map
profiles of n pmfs to the convex hull of those functions: Fpp1, ...,pnq “ convtpi :
i “ 1, ..., nu. The convex hull is the smallest convex set containing pi for i “ 1, ..., n.
A set is convex if it satisfies the following property.

2Ω may be thought of as a partition of a space of agent-relative serious possibilities determined

by consistency with a state of full belief. As is a state of full belief, Ω is open to being revised,
refined, etc., as judged appropriate (Levi, 1980).

3Notice that, due to the way geometric pooling is defined, there are profiles for which
F pp1, ...,pnqpωq “ 0 for all ω P Ω—in violation of the probability axioms. Such a situation

arises if for each ω P Ω there is a pi P pp1, ...,pnq such that pipωq “ 0. Circumventing this
problem, Wagner restricts the domain of pooling operators to the set of profiles for which this
does not happen. That is, the domain of a pooling function is the set of profiles such that there
is some ω P Ω for which pipωq ą 0 for all i “ 1, ..., n.

4See (Schervish and Seidenfeld, 1990; Herron et al., 1997) for studies of convergence relevant
to IP.
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Convexity. If p1,p2 P P , then αp1 ` p1´ αqp2 P P for α P r0, 1s. 5

Put another way, Fpp1, ...,pnq is the set of all convex combinations of the individual
probability functions. We let Fpp1, ...,pnqpAq denote the set of probability values
assigned to A:

Fpp1, ...,pnqpAq “ tppAq : p P Fpp1, ...,pnqu

There are alternative IP formats, including set-based formats that do not require
convexity, interval-valued probability functions, or, more operationally, sets of de-
sirable gambles, for instance. In our view, all are worthy of extensive study. Convex
sets are quite commonly employed in the theory of IP, including in sophisticated
decision theories. Since we do not intend to settle complex debates internal to IP
theory here, and the results to come do not hinge on convexity in the sense that
there are alternative IP formats for which they hold, we will simply restrict our
attention to convex sets as an illustration of the potential of IP in theorizing about
pooling.

3. External Bayesianity

Essential to Bayesian methodology is the assumption of a prior probability dis-
tribution on the algebra of events (or propositions) of concern. Learning proceeds
by conditionalizing the prior on the evidence, yielding a posterior distribution.
Conditionalization of a probability function, p, on evidence, E, results from set-
ting the posterior probability for any event A P A equal to the prior conditional
probability ppA|Eq.

pEpAq “ ppA|Eq “
ppAX Eq

ppEq
, when ppEq ą 0.

The posterior, pE , can be thought of as the result of learning E. In the context of
sets of probability functions, conditionalization can be generalized by conditional-
izing each member of the set:

FEpp1, ...,pnq “ tp
E : p P Fpp1, ...,pnq, ppEq ą 0, and pEp¨q “ pp¨|Equ

Call FEpp1, ...,pnq the prior-by-prior conditionalization of Fpp1, ...,pnq (when
Fpp1, ...,pnq is convex, FEpp1, ...,pnq is called the convex conditionalization of
Fpp1, ...,pnq).

6 We define prior-by-prior conditionalization generally, allowing ppEq “
0 for some p P Fpp1, ...,pnq (Cf. Kyburg, 1987, p. 279). But when we first update
the pi, we assume pipEq ą 0 for i “ 1, ..., n; otherwise, FppEi , ...,pEn q is not defined.
Though not stated in the language of probabilistic opinion pooling, proofs of the
commutativity of convexifying a set of probability functions and conditionalization
exist in the literature.

Theorem 1. (Levi, 1978; Girón and Rı́os, 1980) Convex IP pooling commutes
with conditionalization.

5Within the IP research community, convexity is a matter of some controversy. For attacks on

the requirement, see (Seidenfeld et al., 1989; Kyburg and Pittarelli, 1992; Seidenfeld et al., 2010).
For defenses, see (Levi, 1990, 2009).

6In the IP setting, conditionalization can actually lead to greater uncertainty in the short-run,
a very interesting phenomenon known as dilation (Seidenfeld and Wasserman, 1993; Pedersen and

Wheeler, 2014).
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Figure 1. Commutativity of Pooling and Conditionalization

pp1, ...,pnq

Fpp1, ...,pnq ppE1 , ...,p
E
n q

FEpp1, ...,pnq FppE1 , ...,pEn q

Importantly, linear opinion pooling does not commute with conditionalization,
though geometric pooling does (Genest, 1984; Russell et al., 2015). As we will see,
linear pooling does commute with imaging, though geometric pooling does not.

As standardly pointed out, external Bayesianity is a generalization of the require-
ment that pooling and standard conditionalization commute (Wagner, 2009; Diet-
rich and List, 2014; Russell et al., 2015), because conditionalization on a common
likelihood function generalizes standard Bayesian conditionalization on an event.
A likelihood function, λ : Ω Ñ r0,8q, is intended to encode, given any ω P Ω, how
expected some evidence is with the number λpωq. The conditionalization of a pmf,
p, on a likelihood function, λ, is give by the following formula.

pλpωq “
ppωqλpωq

ř

ω1PΩ ppω1qλpω1q
, when

ÿ

ω1PΩ

ppω1qλpω1q ą 0

For the special case of Bayesian conditionalization on an event E, define λ as the
indicator function for that event:

λpωq “

#

1, if ω P E

0, otherwise.

(We verify the claim with routine subsititions in the footnote.7)
External Bayesianity requires that updating the individual probabilities on a

common likelihood function and then pooling is the same as pooling and then
updating the pool on that likelihood function.

External Bayesianity. For every profile pp1, ...,pnq in the domain of F and
every likelihood function λ such that ppλ, ...,pλnq remains in the domain of F ,
F ppλ1 , ...,p

λ
nq “ Fλpp1, ...,pnq.

When pooling is presumed to produce a numerically determinate probability func-
tion for the group, generalized geometric pooling functions uniquely satisfy external

7For any A P A ,pEpAq “ ppAXEq

ppEq
“

ř

ωPAXE ppωq
ř

ωPE ppωq
. By the definition of a probability measure,

ppAq “
ř

ωPA ppωq, so
ř

ωPA pλpωq “
ř

ωPA ppωqλpωq
ř

ω1PΩ ppω1qλpω1q
gives us pλpAq. We show that these two

fractions are equal by showing the equality of both the numerators and denominators. Since, for all
ω P A, ppωqλpωq “ ppωq if ω P E and 0 otherwise,

ř

ωPA ppωqλpωq “
ř

ωPAXE ppωq “ ppAX Eq.
Hence, the numerators are equal. And since, for all ω1 P Ω,ppω1qλpω1q “ ppω1q if ω1 P E and 0
otherwise, we have

ř

ω1PΩ ppω1qλpω1q “
ř

ω1PE ppω1q “ ppEq. Hence, the denominators are equal,

too. So, pE “ pλ.
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Bayesianity (Genest et al., 1986; Nau, 2002). Extended to the IP setting, the con-
straint requires Fppλ1 , ...,pλnq “ Fλpp1, ...,pnq. The requirement is still that learn-
ing by updating on a common likelihood function and pooling commute, but the
format of the pool is altered. What is not altered, we submit, are the compelling
aspects of the constraint. The following observation can be shown.

Proposition 1. (Stewart and Ojea Quintana, 2017, Proposition 2) Convex IP
pooling functions are externally Bayesian.

(The propositions in this paper are our results. When provided, proofs are rele-
gated to the appendix.) And since Bayesian conditionalization is a special case
of updating on a likelihood function, it follows that any IP pooling function (not
necessarily convex) that is externally Bayesian also satisfies commutativity with
conditionalization.

The fact that updating on a common likelihood generalizes updating on an event
may serve to show that the assumption of a common likelihood function is not
quite as strong as it may appear initially, since the conditionalization of the pi on
some event drops out as a special case. That is, learning the same event is an
instance of a shared likelihood function. It is also worth pausing to consider why
Bayesians would deal in likelihood functions in the first place if updating with a
likelihood function presents ways of learning not reducible to conditionalization.8

One reason is that, under certain conditions, there is a way of regarding updating
with a likelihood function as a case of Bayesian conditionalization by refining the
algebra so that there is an event such that conditionalizing on it yields the same
results as updating with the likelihood function on the coarser algebra. We return to
this point—which is relevant to Jeffrey conditionalization and imaging as well—at
the close of Section 5.

4. Commutativity

But why should it matter if a pooling method is externally Bayesian? More
generally, why should we insist on the commutativity of learning and pooling? A
few motivations, which we now briefly survey, are offered in the literature.

In introducing the external Bayesianity constraint, Madansky points out that
the decisions of a group with common interests employing an externally Bayesian
pooling operator will appear to outsiders as the decisions of a single Bayesian
agent (1964). How? A Bayesian agent conditionalizes. So, given group opin-
ion, F pp1, ...,pnq, the updated group opinion should result from the group prior
by conditionalization, Fλpp1, ...,pnq. If the group employs a pooling operator that
is not externally Bayesian, and learning happens at the level of individuals, the
posterior group opinion may not result from the prior group opinion by condition-
alization: F ppλ1 , ...,p

λ
nq ‰ Fλpp1, ...,pnq. If the relevant learning happens at the

level of group opinion, then the posterior group opinion may not be the result
of applying the (non-externally Bayesian) pooling method that allegedly gives us
the way of arriving at group opinion when applied to individual opinions: again,
F ppλ1 , ...,p

λ
nq ‰ Fλpp1, ...,pnq.

Of course, there are a number of interpretations of the pool of individual opin-
ions, including as “a rough summary” of the n pmfs (Wagner, 2009). The properties
that are appropriate for a pooling function to exhibit depend on the interpretation

8Thanks to Paul Pedersen for emphasizing this point to us.
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of the pool and the use to which it is put. When pooling is interpreted as a method
of reaching either a compromise or a genuine consensus for use in group decision
making, it may be important to ensure adherence of “group opinion” to norms of
individual rationality. For views according to which groups can be agents subject
to the same rationality conditions, for example, failing to satisfy external Bayesian-
ity raises problems insofar as Bayesian conditionalization is rationally mandatory.
More generally, those problems hold for failure of commutativity of pooling with
any rule of learning held to be normatively compelling.

Furthermore, Russell et al. charge pooling methods that fail to commute with
conditionalization with being subject to a diachronic Dutch book (2015). When the
group posterior does not result from the group prior by conditionalizing on what
the individuals learn, the conditions for a diachronic Dutch book are met. Echoing
Raiffa (1968, pp. 221-226), Dietrich and List offer other strategic considerations
in favor of external Bayesianity. If a pooling method is not externally Bayesian,
collective opinion is open to manipulation. By disclosing relevant information at the
appropriate time, someone could affect collective opinion by increasing the influence
of certain opinions, for example (2014). There are, in short, possible manipulations
besides those of a clever bookie.

Perhaps most uncontroversially, pooling operators for which learning and pooling
commute save us the trouble of having to figure out whether updating should come
before or after pooling, whether susceptibility to a diachronic book is damning for
the pooling method, how and when to safeguard against manipulation, etc. In any
event, the main position argued for in this paper can be understood as a conditional:
if one finds commutativity of learning (of various types) and pooling compelling,
then one has reasons to seriously consider IP pooling formats.

5. Jeffrey Conditionalization

As indicated in the introduction, standard Bayesian conditionalization requires
that the event conditionalized upon receives probability 1 in the posterior distribu-
tion. Jeffrey’s point is that not all learning experiences are like that. Sometimes
observation leads to a revision in subjective probability even when there is no propo-
sition (event) E that is learned “for certain.” Jeffrey’s famous candle light example
serves to illustrate his point. Suppose you observe your friend’s coat, but only
under candle light. The coat looks blue, but you are not quite sure. The impact
of this observation is a shift in your subjective probabilities concerning the color
of the coat, but none of the options goes to 1. This sort of scenario, some Jeffrey
sympathizers claim, is “the normal case” (e.g., Spohn, 2012, p. 38). Improved
lighting generally only shifts probabilities a bit more.

Let E “ tEiu be a countable family of pairwise disjoint events partitioning
Ω. In the candle light example above, the partition of concern consists of the
possible colors of the coat. A posterior, q, comes from a prior, p, by Jeffrey
conditionalization by updating on the new probabilities for the cells of E, qpEiq, in
the following way:

qpAq “
ÿ

i

qpEiqppA|Eiq

The qpEiq express the direct effect of an observation on subjective probabilities for
the cells of the partition. When qpEiq “ 1 for some Ei, Jeffrey conditionalization
reduces to standard Bayesian conditionalization.
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A fact about Jeffrey conditionalization that many have found problematic is the
failure of learning sequences to commute (Skyrms, 1986).

Figure 2. Commutativity of Updatings

p

q Q

R r

FE

F E

Suppose that the learning experiences prompting the revision from p to q and the
revision of Q to r are the same, as are those leading to the revision of q to R
and p to Q (reflected in the updating partitions E and F , respectively). Jeffrey
conditionalization can yield R ‰ r. That is, switching the order in which a pair
of observations is learned can yield different probabilities in the end. Van Fraassen
complains:

Two persons, who have the same relevant experiences on the same
day, but in a different order, will not agree in the evening even if
they had exactly the same opinions in the morning. Does this not
make nonsense of the idea of learning from experience? (1989, p.
338)

It is because of the issue of commutativity of learning experiences (as well as the nice
off-the-shelf result of Wagner’s (Theorem 3) we appeal to below) that we present
here a particular parameterization of Jeffrey conditionalization intended to address
the commutativity difficulty.

Hartry Field offers a fix, identifying conditions that are sufficient to ensure that,
for finite partitions, R “ r in Figure 2 above (Field, 1978). Wagner generalizes the
result to countable partitions (Wagner, 2002). We introduce some useful notation.
Where A and B are events and q is a revision of p, the Bayes factor is the ratio of
new to old odds:

Bpq,p;A : Bq “
qpAq{qpBq

ppAq{ppBq

Instead of being reflected in identical posteriors, the proposal on the table is to
understand identical learning as reflected in identical Bayes factors. Wagner points
out that identifying identical learning with identical Bayes factors has a distin-
guished pedigree in Bayesian thinking (Good, 1983; Jeffrey, 2004).9 What Field
shows is that Jeffrey conditionalization is commutative when identical learning is
interpreted as identical Bayes factors.

9Wagner contends that identical learning should be thought of as identical Bayes factors rather

than identical posteriors. One alleged reason is that posteriors are tainted by the prior, whereas
Bayes factors are an uncontaminated measure of the impact of the evidence. How do Bayes factors

measure the impact of the evidence in isolation from the prior? Consider the case in which q comes
from p by Bayesian conditionalization on E. Then,

qpAq{qpBq “
ppA|Eq

ppB|Eq
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Theorem 2. (Wagner, 2002, Theorem 3.1) Consider the revision scheme of Figure
2. If

Bpq,p;Ei1 : Ei2q “ Bpr,Q;Ei1 : Ei2q for all i1, i2

and
BpR, q;Fj1 : Fj2q “ BpQ,p;Fj1 : Fj2q for all j1, j2,

then R “ r.

Wagner further shows that Jeffrey conditionalization has an equivalent parame-
terization in terms of Bayes factors (2009, Theorem 3.2). q gives us posteriors for
atomic events, bk “ Bpq,p;Ek : E1q, k “ 1, 2, ..., and rω P Eks is the characteristic
function of the set Ek:

rω P Eks “

#

1, if ω P Ek

0, otherwise.

Wagner’s parameterization, then, is the following.

qpωq “ pE
J pωq “

ř

k bkppωqrω P Eks
ř

k bkppEkq

There are two very nice features of this parameterization that are relevant. First,
as we have been explaining, it responds to the complaints about commutativity
because the result of a sequence of updates is invariant under permutations of that
sequence when Jeffrey conditionalization is understood this way, with identical
learning reflected in identical Bayes factors instead of identical posteriors.

The second nice feature, as Wagner shows, is that with his parameterization, we
can articulate a version of commutativity with Jeffrey conditionalization that pro-
vides us with a characterization of externally Bayesian pooling operators in terms
familiar to formal epistemologists and philosophers of science. We call Wagner’s
version of commutativity with Jeffrey CJCW .

CJCW . For all partitions E “ tEku of Ω, all profiles pp1, ...,pnq in the domain

of F , the Jeffrey update of the pool, FE
J pp1, ...,pnq “

ř

k bkF pp1,...,pnqr¨PEks
ř

k bkF pp1,...,pnqpEkq
, is iden-

tical to F p
ř

k bkp1r¨PEks
ř

k bkp1pEkq
, ...,

ř

k bkpnr¨PEks
ř

k bkpnpEkq
q “ F ppE

1J , ...,p
E
nJq, the pool of the (Jeffrey

updated) posteriors.10

and

Bpq,p;A : Bq “
ppA|Eq{ppB|Eq

ppAq{ppBq
.

So, Bpq,p;A : Bq is a measure of the change the evidence, E, induces in favor of A over B.
Bpq,p;A : Bq can also be rearranged using Bayes’ theorem.

qpAq

qpBq
“

ppA|Eq

ppB|Eq
“

ppAqppE|Aq

ppEq

ppBqppE|Bq

ppEq

“
ppAqppE|Aq

ppBqppE|Bq
“

ppAq

ppBq
ˆ

ppE|Aq

ppE|Bq

Dividing now by ppAq

ppBq
, the denominator of Bpq,p;A : Bq, gives us

Bpq,p;A : Bq “
ppE|Aq

ppE|Bq

The quantity ppE|Aq
L

ppE|Bq is sometimes referred to as the likelihood ratio. So, the Bayes factor
is a ratio of the non-prior quantities involved in Bayes’ theorem, the quantities that revise the

prior.
10Wagner’s version of commutativity with Jeffrey conditionalization involves some additional

technical assumptions. First, that pipEkq ą 0 for all i and all k. Second, that b1 “ 1 and
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Crucially, the Bayes factors, bk for k “ 1, 2, ..., are held fixed across the pi (and
also used in updating F pp1, ...,pnq). This is quite different from holding fixed a
common posterior distribution, q, in Jeffrey conditionalizing the pi. Put another
way, he shows that External Bayesianity is equivalent to CJCW .

Theorem 3. (Wagner, 2009, Theorem 3.3) A (precise) pooling operator is exter-
nally Bayesian iff it satisfies CJCW .

We take FE
J pp1, ...,pnq to be given by Jeffrey conditionalization of each element of

Fpp1, ...,pnq on the partition E, holding fixed the Bayes factors bk for k “ 1, 2, ...
for pi for i “ 1, ..., n. A very slight mathematical generalization allows us to extend
Wagner’s result to IP pooling functions in general.

Proposition 2. Let F : Pn Ñ PpPq be an IP pooling function (not necessarily
convex). F is externally Bayesian iff F satisfies CJCW .

In particular, moving to the convex IP setting does not break the equivalence
between external Bayesianity and commutativity with Wagner’s parameterization
of Jeffrey conditionalization. Putting Propositions 1 and 2 together, we obtain the
following.

Proposition 3. Convex IP pooling satisfies CJCW .

We have the following immediate corollary (the proof is trivial given Proposition
3, and is omitted).

Proposition 4. Convexity is preserved under Jeffrey conditionalization with com-
mon Bayes factors.

To say that convexity is preserved means that, if we start with a convex set, we do
not lose convexity in moving to the set of updated probability functions.

However, when qi comes from pi by standard Jeffrey conditionalization on some
shared posterior distribution, q, over a partition, E, and the pool is updated likewise
by updating each element of Fppi, ...,pnq on that same posterior distribution over
E, Jeffrey conditionalization and convex IP pooling do not commute.

Proposition 5. Convex IP pooling does not commute with Jeffrey conditionaliza-
tion on a common posterior.

Instead of holding fixed common Bayes factors, here we assume a fixed posterior
distribution on E. Neither is commutativity of Jeffrey conditionalization so formu-
lated and pooling guaranteed in the precise setting (Wagner, 2009, pp. 340-341).
In particular, linear and geometric pooling fail to commute with Jeffrey in general.
Furthermore, certain “objective” Bayesian updating methods, like minimizing the
Kullback-Leibler divergence between posterior and prior, generalize Jeffrey condi-
tionalization (Diaconis and Zabell, 1982). A corollary of Proposition 5, then, is
that minmizing the Kullback-Leibler divergence does not commute with convex
IP pooling. Minimizing the Kullback-Leibler divergence is also a generalization
of Jaynes’ Maximum Entropy formalism (e.g., Williams, 1980). While there are
many advocates of the Kullback-Leibler approach (e.g., Hartmann, 2014), even in

ř

k bkpipEkq ă 8 for i “ 1, ..., n. Third, where qipωq “
ř

k bkpipωqrωPEks
ř

k bkpipEkq
, it is the case that

0 ă
ř

k bkF pp1, ...,pnqpEkq ă 8. In the IP setting, this last assumption may be adjusted to be a

requirement for each p P Fpp1, ...,pnq.
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the precise setting, a number of Bayesian-style objections to MaxEnt methods have
been voiced in the literature (see, e.g., Seidenfeld, 1986; Gaifman and Vasudevan,
2012).

How much ground does Jeffrey conditionalization ultimately gain over standard
Bayesian conditionalization? In certain cases—characterized by the so-called super-
conditioning criterion—Jeffrey conditionalization can be represented as Bayesian
updating on certain evidence in a richer probability space (Diaconis and Zabell,
1982, Theorem 2.1). In fact, Diaconis and Zabell’s point is general, applying to
any revision method, including imaging, so long as the superconditioning criterion
holds. For finite algebras, the effect of Jeffrey conditionalization can always be so
represented by Bayesian conditionalization (fn. 1, Wagner, 2002, p. 268).11 Ky-
burg attributes an early, informal version of this result to Levi (Levi, 1967; Kyburg,
1987, Lemma A.5). The point, as Kyburg puts it, is not that we make effable the
ineffable observational input motivating Jeffrey conditionalization: “This is not to
say that we need to specify that evidence; it is that there is an algorithm by means
of which the impact of the uncertain evidence can be represented as the impact of
other ‘certain’ evidence” (Kyburg, 1987, p. 280). The obvious question is whether
or when the superconditioning move is a philosophically legitimate one.

6. Imaging

An hypothesis occupying the attention of many scholars working on the logic of
conditionals asserts that the probability of a conditional is identical to the relevant
conditional probability: ppA Ñ Bq “ ppB|Aq. There are, of course, a number of
ways to interpret the components of the claim. There are, for instance, various ways
to define a conditional probability, ppB|Aq, just as there are various ways to specify
an interpretation of a conditional connective, Ñ. Suppose we take conditional
probability to be defined standardly as in Section 3. Is there an interpretation
of Ñ such that the desired identity holds for all p? No, on pain of triviality, as
Lewis proved (1976). That is, a conditional satisfying the identity exists only for
trivial probability models. Similar triviality results hold for alternative readings of
the identity. For example, “for any p there exists some Ñ such that ppA Ñ Bq “
ppB|Aq” runs into similar problems. An impressive battery of such triviality results
has been obtained for different ways of reading the identity. A helpful overview of
much of the relevant literature can be found in (Hájek and Hall, 1994). Though it
fails in general when formulated in terms of conditionalization, Lewis shows that
a version of the identity holds if formulated in terms of imaging instead. We turn
now to a brief presentation of imaging and Lewis’ possibility result.

Robert Stalnaker specified the semantics of the so-called Stalnaker conditional,
ą, in terms of possible worlds. Ω is interpreted as a set of possible worlds.12

Propositions are subsets of Ω. We assume that A is a σ-algebra of subsets of Ω,
the set of relevant propositions. For any ω P Ω, let ωA be the “most similar”
possible world at which A holds, the “closest” A-world to ω. Say that A ą B is

11In finite spaces, any revision method can be represented as conditionalization in a richer space

via superconditioning provided the posterior probability is absolutely continuous with repsect to
the prior.

12A metaphysically deflationary conception of possible worlds has it that a possible world is
just a maximally complete set of sentences in some propositional language, instead of a “possible

totality of facts.”
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true at ω iff B is true at ωA (when the antecedent is impossible, A ą B is taken
to be vacuously true at all worlds). Lewis tailors a probabilistic revision scheme to
the Stalnaker semantics.

For any non-empty E P A , imaging shifts the probability from each ω1 P Ω to
its “image” atom, ω P E. If ω1 P E, then ω1 is its own image atom. Lewis offers
an interpretation in terms of possible worlds. On the assumption that for each
world there is a unique “most similar” world in E, imaging can be thought of as
the process of revising probabilities by shifting the total probability of each world
to its most similar world in E. Relaxing the uniqueness assumption results in what
is known as general imaging. General imaging allows the probability of each ω1 P Ω
to be shifted to an image set, each element of which receives some fraction of the
total probability of ω1. Clearly, general imaging reduces to imaging when the image
set is a singleton and the total probability of each ω1 P Ω is transferred to its image
set.

Formally, we represent the relevant transfer of probability with a transfer func-
tion, T : A ˆΩˆΩ Ñ r0, 1s, such that

ř

ωPΩ TEpω
1, ωq “ 1 for all ω1 P Ω. For any E

and all ω, ω1 P Ω, TEpω
1, ωq (times 100 percent) specifies the percentage of the total

probability mass that is transferred from ω1 to ω. It is sometimes assumed—e.g., by
Lewis but not by Leitgeb—that

ř

ωPE TEpω
1, ωq “ 1, so that E bears probability

1 after imaging on it. With T in place, we can formulate the recipe for general
imaging. Say that q comes from p by general imaging if

qpωq “ ppω||Eq “
ÿ

ω1PΩ

ppω1qTEpω
1, ωq

The constraint on T of summing to 1 for each ω1 ensures that all probability mass
is transferred, so no probability mass is created or destroyed, and the result of
imaging is again a pmf. As before, the probability of an event A P A can be ob-
tained by summing across ω P A. Lewis claims that conditionalization and imaging
are both minimal revisions, but in different senses. While conditionalization “does
not distort the profile of probability ratios, equalities, and inequalities among sen-
tences that imply A,” imaging “involves no gratuitous movement of probability from
worlds to dissimilar worlds” (1976, p. 142). Lewis proves the following possibility
result for (sharp) imaging and the probability of conditionals.

Theorem 4. (Lewis, 1976, p. 142) The probability of a Stalnaker conditional
with a possible antecedent is the probability of the consequent after imaging on the
antecedent: ppA ą Bq “ ppB||Aq “ qpBq.

More important for the purposes of the present paper is that, as Hannes Leitgeb
observes, a result about general imaging due to Peter Gärdenfors can be restated
in the language of pooling operators (2016). By update mechanism, Leitgeb means
a function U : P ˆ A Ñ P that maps a probability function and a (non-empty)
proposition to a probability function. Gärdenfors shows that general imaging is
the unique probabilistic revision method that preserves convex combinations of
probability measures. Leitgeb repurposes this result, obtaining the following insight
about pooling.

Theorem 5. (Cf. Gärdenfors, 1982, Theorem 1) Update by general imaging (with
respect to a fixed transfer function T ) is the unique update mechanism that com-
mutes with linear pooling with respect to arbitrary coefficients.
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(Here, the transfer function, T , is invariant across priors.) Together with Leitgeb’s
insight, Gärdenfors’ theorem makes showing the next result very easy.

Proposition 6. Convex IP pooling commutes with general imaging.

(Commutativity with imaging (CI) could be stated as an axiom for pooling op-
erators.) An analogue of Proposition 4 follows immediately from Proposition 6:
convexity is also preserved under general imaging.

Interest in imaging extends beyond natural language semantics and the philos-
ophy of language. Part of the concern with identifying the probability of a condi-
tional with the relevant conditional probability, after all, comes from attempts to
give acceptability conditions for conditionals. Furthermore, some have argued that,
while conditional probability represents matter-of-fact supposition in the context of
probability, imaging represents counterfactual supposition.13 Lewis himself thought
that an interpretation like Stalnaker’s is right for subjunctive conditionals or coun-
terfactuals, but not for indicative conditionals. Imaging finds crucial employment
in James Joyce’s account of causal decision theory. Causal relationships are thought
to be expressed by subjunctive conditionals, so the probability of such conditionals
is of central concern on that view (1999). Baratgin and Politzer contend that em-
pirical evidence indicates that general imaging has some claim as a description of
actual revision of probabilistic judgment in dynamic environments (2010). Many
authors, however, complain that a philosophically defensible interpretation of the
requisite similarity relation among possible worlds has yet to be provided. Some see
both the Stalnaker conditional and imaging as questionable shifts from epistemol-
ogy to metaphysics (Arló-Costa, 2007). Moreover, beginning at least with Ramsey,
an alternative line of research attempts to provide acceptability conditions for coun-
terfactuals in terms of belief revision theory, eschewing construals of counterfactuals
as bearing truth values (Levi, 1996). Nevertheless, imaging seems to have captured
the fancy of many philosophers and others working on conditionals, counterfactual
reasoning, and decision theory.

7. Discussion

Propositions 3 and 4 have important implications outside of the context of opin-
ion pooling. While IP models have been widely and convincingly advanced as
superior to precise Bayesian representations of uncertainty, standard conditional-
ization via certain learning has been by and large retained as the relevant updating
rule (Levi, 1978; Girón and Ŕıos, 1980). Proposition 4 shows that there is no math-
ematical necessity in that retention for convex Bayesians. For those compelled by
Jeffrey’s vision of learning, they can have their convex sets of probabilities and their
probability kinematics, too.14 A similar point holds for imaging. Since convexity
is preserved under imaging, imaging constitutes a possible “dynamics” for convex
Bayesians.15

13Others, however, have offered more uniform accounts of supposition (e.g., Levi, 1996).
14Though, as Diaconis and Zabell’s aforementioned result shows us, in a range of cases there

is no mathematical necessity in adopting Jeffrey conditionalization in order to obtain the results

of Jeffrey conditionalization.
15Though it is not uncontroversial that conditionalization or some other type of updating of

represents learning. Isaac Levi, for instance, writes, “All conditions of rationality are equilibrium
conditions. In a sense they are synchronic conditions [...] Furthermore, in stating conditions

of rational equilibrium, no prescription is made regarding the psychological path to be taken in
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Furthermore, in the precise setting, only linear opinion pooling commutes with
imaging. But linear opinion pooling does not commute with Bayesian condition-
alization. It follows that no precise pooling method commutes with both imaging
and Bayesian conditionalization. In this way, one’s hand is forced on the question
of updating methods by commitments to pooling methods, and vice versa. Not so
in the imprecise setting.

Table 1. Summary of Pooling and Updating Commutativity

Linear Geometric Convex IP
External Bayesianity X X X
CJCW X X X
CI X X X

Another way to put our point is that, if commutativity of learning and pooling is
endorsed and more than one updating method is found acceptable (depending on
context, say), then there may exist no accommodating precise pooling method.

Further limitations issue from results obtained in the literature. For example,
suppose commutativity of pooling with both standard Bayesian conditionalization
(or Jeffrey conditionalization) and marginalization is endorsed. In the precise set-
ting, we are out of luck. Again, not so in the IP setting, as our results in conjunction
with those of (Stewart and Ojea Quintana, 2017) attest. Philosophical positions
that argue for or assume that pooling should be of a particular format are an-
swerable for the limitations of those methods. For instance, in the epistemological
debate about peer disagreement, a prominent position encourages peers to “split
the difference” between their probabilistic opinions (Elga, 2007). So-called concil-
iatory views on disagreement generally counsel revising opinions in the direction
of the dissenting opinions. The revision goes by equal-weight or near equal-weight
linear pooling (Christensen, 2009). Some consequences of the failure of commuta-
tivity with conditionalization are highlighted in (Russell et al., 2015). As indicated
above, Russell, et al. allege that a variant of a diachronic Dutch book can be
made against parties following such a policy of disagreement resolution. Similar
points can be made regarding other properties of particular pooling methods. For
example, neither linear nor geometric pooling preserves probabilistic independence
in general (Genest and Wagner, 1987), though convex IP pooling preserves Levi’s
confirmational irrelevance, a generalization of probabilistic independence (Stewart
and Ojea Quintana, 2017, Proposition 4). Seidenfeld, Schervish, and Kadane offer
a decision-theoretic counterexample to the reasonableness of linear pooling on the
basis of its failure to preserve independence (2010). Arguing similarly, Elkin and
Wheeler present a variant of a Dutch book argument against resolving disagree-
ments according to the equal weight view (2016). We submit that, not only are IP
pooling functions more flexible formal tools, but they admit of stronger normative
motivations when various prominent pooling criteria (including the commutativity
criteria above) are taken as normative yardsticks.

moving from disequilibrium or from one equilibrium position to another. In other words, there
are no norms prescribing rational learning processes” (Levi, 1970).
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Appendix: Proofs

Proof of Proposition 2

Proof. We follow through Wagner’s proof for the precise case (2009, Theorem 3.3),
adapting it for IP where necessary.
pñq Assume that F is externally Bayesian, i.e., for all profiles and any likelihood

function, Fλpp1, ...,pnq “ Fppλ1 , ...,pλnq. We want to show that, for all partitions
E “ tEku of Ω and all profiles in Pn,

FE
J pp1, ...,pnq =

"ř

k bkpr¨ P Eks
ř

k bkppEkq
: p P Fpp1, ...,pnq

*

“ F
ˆř

k bkp1r¨ P Eks
ř

k bkp1pEkq
, ...,

ř

k bkpnr¨ P Eks
ř

k bkpnpEkq

˙

“ FppE
1J , ...,p

E
nJq

where the first and last equalities are definitional. Recall the definition of bk:

bk “ Bpq,p;Ek : E1q “
qpEkq{qpE1q

ppEkq{ppE1q
, k “ 1, 2, ... Set λpωq “

ř

k bkrω P Eks.

Wagner observes the following chain of equalities then obtains for pi, i “ 1, ..., n
(2009, (3.10), p. 342):

p‹q
ÿ

ωPΩ

λpωqpipωq “
ÿ

ωPΩ

pipωq
ÿ

k

bkrω P Eks “
ÿ

k

bk
ÿ

ωPΩ

pipωqrω P Eks “
ÿ

k

bkpipEkq

Since each of the terms bkpipEkq is positive and
ř

k bkpipEkq ă 8, λ is a likelihood
function for pi, i “ 1, ..., n. Using p‹q, we can obtain

FppE
1J , ...,p

E
nJq “ F

ˆ

p1λp¨q
ř

ω1PΩ p1pω
1qλpω1q

, ...,
pnλp¨q

ř

ω1PΩ pnpω
1qλpω1q

˙

by substituting, for each i “ 1, ..., n, λp¨q for
ř

k bkrω P Eks in the numerator and
ř

ω1PΩ pipω
1qλpω1q for

ř

k bkpipEkq in the denominator. But by definition,

F
ˆ

p1λp¨q
ř

ω1PΩ p1pω
1qλpω1q

, ...,
pnλp¨q

ř

ω1PΩ pnpω
1qλpω1q

˙

“ Fppλ1 , ...,pλnq

and by assumption Fppλ1 , ...,pλnq “ Fλpp1, ...,pnq. By definition, Fλpp1, ...,pnq “

tpλ : p P Fpp1, ...,pnqu. But, for all p P Fpp1, ...,pnq, p
λ “

ř

k bkpr¨PEks
ř

k bkppEkq
. Hence,

Fλpp1, ...,pnq “ FE
J pp1, ...,pnq. So, FE

J pp1, ...,pnq “ FppE
1J , ...,p

E
nJq follows from

the assumption.
pðq Suppose that F satisfies CJCW and that λ is a likelihood function for

pi, i “ 1, ..., n. Let pω1, ω2, ...q be a list of all of those ω P Ω such that λpωq ą 0,

and let E “ tE1, E2, ...u, where Ei :“ tωiu. Setting bk “
λpωkq
λpω1q

for k “ 1, 2, ..., it

follows that bk ą 0 and that b1 “ 1. Since λ is a likelihood for pi, i “ 1, ..., n,
we have

ř

k bkpipEkq ă 8, i “ 1, ..., n, and that pq1, ..., qnq P Pn, where qipωq :“
ř

k bkpipωqrωPEks
ř

k bkpipEkq
. From CJCW , it follows that 1q 0 ă

ř

k bkppEkq ă 8 for all p P

Fpp1, ...,pnq, and that 2q FE
J pp1, ...,pnq “ FppE

1J , ...,p
E
nJq. 1q implies that 0 ă

ř

ωPΩ λpωqppωq ă 8 for all p P Fpp1, ...,pnq, and 2q implies that Fλpp1, ...,pnq “

Fppλ1 , ...,pλnq (since substituting the definition of bk in terms of λ in
ř

k bkpipωqrωPEks
ř

k bkpipEkq
,
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the formula for obtaining the qi, reduces that formula to the formula for updating
on that λ).

�

Proof of Proposition 5

Proof. We provide a case in which convex IP pooling and Jeffrey conditionalization
as standardly construed do not commute. Let qi come from pi by Jeffrey condi-
tionalization, and let q be a common posterior distribution over partition E for pi,
i “ 1, ..., n. Let FE

J pp1, ...,pnq come from Fpp1, ...,pnq by Jeffrey conditionalizing
each p P Fpp1, ...,pnq using q, the common posterior distribution over E. We offer
a counterexample to commutativity in which FE

J pp1, ...,pnq ‰ Fpq1, ..., qnq.
Let Ω “ tω1, ω2, ω3, ω4u, and consider the following two pmfs.

Table 2. Priors

ω1 ω2 ω3 ω4

p1 1{4 1{4 1{4 1{4

p2 1{8 1{2 1{4 1{8

Let E “ tE1, E2u with E1 “ tω1, ω2u and E2 “ tω3, ω4u be a partition of Ω. Jeffrey
updating both pmfs using q, where qpE1q “ 2{3 and qpE2q “ 1{3, we obtain the
following posteriors.

Table 3. Posteriors

ω1 ω2 ω3 ω4

q1 1{3 1{3 1{6 1{6

q2 2{15 8{15 2{9 1{9

Consider the .50 ´ .50 mixture of p1 and p2, p‹ “ 0.5p1 ` 0.5p2. It is clear that
p‹ P Fpp1,p2q. Jeffrey conditionalizing p‹ with q gives us q‹. In particular,
q‹pω1q “ 2{9 and q‹pω3q “ 4{21. It is clear that q‹ P FJ

Epp1,p2q. Any q‹ P
Fpq1, q2q is of the form q‹ “ αq1 ` p1´ αqq2 for α P r0, 1s.

Suppose that FE
J pp1,p2q “ Fpq1, q2q. Then, there is a q‹ P Fpq1, q2q such that

q‹ “ q‹. In particular, q‹pω1q “ 2{9 and q‹pω3q “ 4{21. Letting q‹pω1q “ 2{9, we
can compute α.

2{9 “ q‹pω1q “ αq1pω1q ` p1´ αqq2pω1q “ α1{3` p1´ αq2{15

Solving, we get α “ 4{9. However, we are supposed to have q‹pω3q “ 4{21. For
α “ 4{9, that is not the case.

q‹pω3q “ αq1pω3q ` p1´ αqq2pω3q “ 4{9p1{6q ` 5{9p2{9q “ 16{81 ą 4{21 “ q‹pω3q

It follows that FE
J pp1,p2q ‰ Fpq1, q2q.

�
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Proof of Proposition 6

Proof. We want to show that Fpq1, ..., qnq “ FE
I pp1, ...,pnq, where qi comes from

pi by general imaging on E, and FE
I pp1, ...,pnq comes from Fpp1, ...,pnq by general

imaging each p P Fpp1, ...,pnq on E. Again, we show both inclusions. In the proofs,
we appeal to the fact any element of a convex set is some convex combination of
the generating, extreme points: For any p P Fpp1, ...,pnq,p “

řn
i“1 αipi, where

αi ě 0 for i “ 1, ..., n, and
řn
i“1 αi “ 1 (see, e.g., Stewart and Ojea Quintana, 2017,

Lemma 1).
Let q P Fpq1, ..., qnq. So, q “

řn
i“1 αiqi. Since q is a linear pool of qi for

i “ 1, ..., n, by Gärdenfors’ result, Theorem 5, q is also the result of imaging
p “

řn
i“1 αipi on E, because linear pooling and general imaging commute. Since

p P Fpp1, ...,pnq, it follows that q P FE
I pp1, ...,pnq.

For the other direction, assume that q P FE
I pp1, ...,pnq. So, q is the result

of general imaging some p P Fpp1, ...,pnq on E. For any p P Fpp1, ...,pnq,p “
řn
i“1 αipi. By Gärdenfors’ result, q “

řn
i“1 αiqi, where the qi come from the pi

by general imaging on E, because general imaging and linear pooling commute.
But then it follows that q P Fpq1, ..., qnq.

�
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Girón, F. J. and S. Ŕıos (1980). Quasi-bayesian behaviour: A more realistic ap-
proach to decision making? Trabajos de Estad́ıstica y de Investigación Opera-
tiva 31 (1), 17–38.

Good, I. J. (1983). Good Thinking: The Foundations of Probability and Its Appli-
cations. U of Minnesota Press.
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