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Abstract

We develop the first statistical matching micro approach reflecting the natural uncer-
tainty arising during the integration of categorical data. A complete synthetic file is
obtained by imprecise imputation, replacing missing entries by sets of suitable values.
We discuss three imprecise imputation strategies and raise ideas on potential refine-
ments by logical constraints or likelihood-based arguments. Additionally, we show how
imprecise imputation can be embedded into the theory of finite random sets, providing
tight lower and upper bounds for parameters. Our simulation results corroborate that
their narrowness is practically relevant and that they almost always cover the true
parameters.

Keywords: statistical matching; data integration; imprecise imputation; micro approach; finite
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1 Introduction

Nowadays, a large amount of data is accessible, provided by researchers, companies, or
governments. Thus, instead of collecting new data to answer research questions, it is a
more convenient alternative to use already available data sources. However, often there
is no single data source which includes all information of interest. Statistical matching
furnishes a method with which researchers can integrate data collected in different surveys.

Assume that we are interested in three blocks of variables X, Y, and Z, while there
are two data files A and B available. Data file A contains nA observations of (X,Y), and
data file B contains nB observations of (X,Z). The observations in B come from the same
population but are disjoint from the observations in A. The aim of statistical matching,
namely the gain of joint information about not jointly observed variables, is twofold (e.g.
D’Orazio et al., 2006b, p.2):

(i) the estimation of the joint distribution of X, Y, and Z or any of its characteristics
(macro approach), and/or

(ii) the creation of a synthetic data file with complete observations on X, Y, and Z
(micro approach).
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‡augustin@stat.uni-muenchen.de
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As the schematic representation in Figure 1 suggests, statistical matching can be in-
terpreted as a missing data problem. The observations of the specific variables Y and Z
are missing in a special block-wise pattern in A d B, which denotes the union of the two
available data files.1 This absence of joint information on all variables results in a severe
identification problem: the parameters which concern the relationship between Y and Z
are not directly estimable from A d B (in the sense of providing a single-valued estimate,
see below.)

For instance, D’Orazio et al. (2006b) show different ways to remedy this problem. On
basis of their underlying concepts, they can be allocated into three basic groups:
Approaches which

(i) assume the conditional independence of the specific variables given the common
variables X, in order to achieve a factorisation of the joint distribution whose com-
ponents are estimable on A d B,

(ii) require auxiliary information in terms of a third file or other external information
about inestimable parameters,

(iii) refrain from aiming at precise point-estimates and account for the uncertainty of the
statistical matching problem by estimating a set of plausible parameters, resulting
in lower and upper bounds for the parameters concerning the relationship between
Y and Z.2

In practice, it is not testable whether the conditional independence assumption holds,
and in most applications it might be contested. Manski’s Law of Decreasing Credibility
(Manski, 2007, p.3), which states that the maintenance of unjustified assumptions re-
duces the credibility of analyses, makes a very strong argument against the first group
of approaches. Moreover, auxiliary information, which is the basis of the second group
of approaches, is often not available for a certain statistical matching task. Hence, the
application of statistical matching taking the underlying uncertainty credibly into account
is the means of choice.

In the context of statistical matching, typically the term uncertainty refers exclusively
to the previously mentioned identification problem.3 It points to the fact that even if we
have complete information on the marginal distributions of (X,Y) and (X,Z), the joint
distribution of (X,Y,Z) cannot uniquely be determined (e.g. D’Orazio et al., 2006a).
Thus, lower and upper bounds on the parameters are the best which can be obtained
without relying on strong untestable assumptions or external information. The elaboration
of the concept of uncertainty and how to measure it formed the central focus of the papers
by Conti et al. (2012) and Conti et al. (2017). Much of the current literature on uncertainty
regarding the statistical matching task pays attention to the continuous case, especially
on normally distributed variables (e.g. D’Orazio et al., 2006b, Rässler, 2002, Ahfock et al.,
2016). However, there is also a relatively small body of literature that is concerned with
categorical data. For instance, D’Orazio et al. (2006a), Vantaggi (2008), or Di Zio and
Vantaggi (2017) deal with statistical matching of categorical data considering different
circumstances.

1The missingness is induced by the given attribution to a certain data file, and the missing data
mechanism in the framework of statistical matching can convincingly be assumed to be missing completely
at random (e.g. D’Orazio et al., 2006b, p.6).

2These estimates can be interpreted as set-valued point estimates, not to be confused with confidence
regions.

3Also in this paper, the component of general uncertainty which regards to the sampling process is not
addressed.
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As emphasized by Conti et al. (2012, p.70), the “third group of techniques” reflecting
the natural uncertainty of statistical matching, does usually not “directly aim at recon-
structing a complete data set”. In the present paper, we introduce imprecise (single)
imputation as the first micro approach for categorical data which accounts for the natural
uncertainty of statistical matching. It is based on the imputation of sets of plausible val-
ues, which leads to a complete synthetic data file with partially set-valued observations.
Furthermore, embedding imprecise imputation into the framework of finite random sets4

will allow us to derive lower and upper bounds for the parameters of interest.

The paper is structured as follows. Section 2 recalls the background of our work by
giving a brief overview on the basic setting of statistical matching, its interpretation as a
missing data problem, and hot deck imputation in this framework. Section 3 describes the
idea of imprecise imputation and introduces three imputation procedures. Subsequently,
in Section 4, we embed imprecise imputation into the theory of finite disjunctive random
sets and show how it can be utilised to estimate lower and upper bounds for the parameters
of interest from our imputed data set. Section 5 sketches some aspects of refining imprecise
imputation in the presence of contextual information or by likelihood-based arguments.
After the simulation study in Section 6, we conclude with a summary and outlook in
Section 7.

2 Statistical matching

2.1 The basic setting and its missing data interpretation

Throughout the paper, let us assume that we have two data files A and B, indexed
by IA and IB, respectively5, with nA and nB disjoint observation units. Furthermore,
let X = (X1, . . . , Xp) be the vector of common variables, and Y = (Y1, . . . , Yq) and
Z = (Z1, . . . , Zr) be the vectors of specific variables. Denote the domains of the potential
values of X`, ` = 1, . . . , p, by X`, their corresponding Cartesian product by X , and proceed
analogously for the specific variables, defining Y1, . . . ,Yq, Z1, . . . ,Zr, as well as Y and Z.

As displayed in the schematic representation in Figure 1, data file A contains exclus-
ively information on (X, Y), while data file B comprises information on (X, Z) only.
Consequently, there is no observation that contains simultaneous information on Y and
Z. In the following, the available information will be consolidated in the incomplete sample
AdB, representing the union of files A and B (cf. Figure 1) with n := nA+nB observations
and indexed by I = IA ∪ IB.

Furthermore, we assume that all observations are independently and identically dis-
tributed, each following the joint probability distribution P (X = x,Y = y,Z = z), where
(x,y, z) := (x1, . . . , xp, y1, . . . , yq, z1, . . . , zr) depicts the realisations of the variables. By
collecting all probability components of the underlying distribution, we derive the para-
meter vector consisting of the probability entries of the multidimensional probability table
of X, Y, and Z.

As previously mentioned, statistical matching may be regarded as missing data prob-
lem. Hence, a natural strategy to solve the statistical matching task is imputation, i.e. the
substitution of the missing entries with suitable/similar real or artificial values to derive
a complete (but partially synthetic) data set. To prepare our method, we focus in the

4See, for instance, Nguyen (2006) or Couso et al. (2014).
5Without loss of generality, we assume for convenience that the index sets are disjoint, e.g.

IA = {1, . . . , nA} and IB = {nA + 1, . . . , nA + nB}.
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yi1 . . . yiq xi1 . . . xip zi1 . . . zir

⇓

xb1 . . . xbp zb1 . . . zbr

ya1 . . . yaq xa1 . . . xap data file A

data file B

joint information

nA

nB

A d B

Figure 1: Schematic representation of the statistical matching problem (cf. D’Orazio et al.,
2006b, p.5 (modified)).

following section on hot deck imputation where the missing entries of an observation (re-
cipient) are replaced by records from a similar observation (donor) of the same sample.6

By applying hot deck imputation, we ensure that only so-called live values, i.e. actually
observed and no artificial values are substituted, and the marginal and conditional distri-
butions are preserved well for large samples (e.g. Conti et al., 2008). Hot deck imputation
methods are frequently used in practice, comparatively easy to apply and non-parametric
(e.g. Andridge and Little, 2010).

2.2 Hot deck imputation for statistical matching

In the context of statistical matching, hot deck imputation belongs to the group of non-
parametric micro approaches. D’Orazio et al. (2006b, Chapter 2.4) describe it as follows
for four variables (X1, X2, Y1, Z1). The data samples A and B are assigned to the roles of
recipient file and donor file7. Since it is a symmetric problem, they only describe the case
where A is the recipient file and B the donor file. The reverse case works analogously.

Random hot deck imputation means that for each missing entry in the recipient file,
a donor record from the donor file is randomly chosen by simple random sampling and
its corresponding values are used to replace the missing entries in the recipient file. This
means that every missing entry of the specific variable Z1 in the recipient file A, i.e. z1a,
a ∈ IA, is replaced by the synthetic value z̃1a := z1b, b ∈ IB, where b is the randomly
chosen observation unit from the index set IB of data file B, and hence z̃a ∈ {z1, . . . , znB

}.
Hence, the a-th observation of data file A is composed of (xa1, xa2, y1a, z̃1a), where the
tilde marks the imputed and thus synthetic value..

However, simple random sampling gives all observation units in the donor file the same
probability to be selected. Thus, this procedure implicitly induces the independence of
the common variables and the specific variables.

A more promising procedure is the assignment of donor and recipient records within
groups of similar (homogeneous) records which are developed by exploiting the information
of the common variables8. The instantiations of selected categorical common variables9

are used to generate groups of similar records in both the recipient and the donor file.

6For the general missing data case, see e.g. Little and Rubin (2002, p.66).
7The choice of whether only A, only B, or A d B should be imputed depends on many factors. In this

paper, we impute A d B without loss of generality. See, for instance, D’Orazio et al. (2006b, pp.35–36) for
a discussion on this issue.

8The choice of the common variables which are actually used to perform statistical matching (the so-
called matching variables) is of high impact on the resulting matching quality. It is desirable that the
common are highly correlated with, or good predictors for the specific variables (Rässler, 2002, p.10).

9See, for instance, D’Orazio et al. (2017) on how to choose the matching variables.
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Following D’Orazio et al. (2006b), we call these groups donation classes10.
Consider again data file A as the recipient file. The first step is the assignment of all

observations in AdB to donation classes. For this purpose, partition the index set I into
D ≤ |X | index sets Id, d = 1, . . . , D, such that for any d all observation units in Id have
the same realisations x. Moreover, define IdA := Id ∩IA and IdB := Id ∩IB. Every missing
entry of the specific variable Z1 of a observation unit from A in the d-th donation class,
i.e. z1a, a ∈ IdA, is replaced by z̃1a := z1b, b ∈ IdB, which is the corresponding value of a
randomly chosen observation from the donation class IdB, and hence z̃a ∈ {zb : b ∈ IdB} for
all a ∈ IdA.

Using donation classes, the imputation of Z is conditional on X, and thus basically
reproducing the empirical conditional distribution of Z given X in A. Since no common
observations of all variables are available, an additional conditioning on Y is not possible,
which means that, in principle, empirical conditional independence given X of the imputed
values of Y and the values of Z is implicitly established (cf. Rässler, 2002, pp.200 – 204).11

Any synthetic data set with observations (xa,ya, z̃a)a∈IA and (xb, ỹb, zb)b∈IB naturally
delivers estimates of the underlying joint distribution by evaluating the observed relative
frequencies. For any event E = EX × EY × EZ with EX ⊆ X , EY ⊆ Y and EZ ⊆ Z, one
obtains

P̂ (E) =
1

n

∣∣∣
{
a ∈ IA : (xa,ya, z̃a) ∈ E

}
∪
{
b ∈ IB : (xb, ỹb, zb) ∈ E

}∣∣∣

=
1

n

(∣∣∣
{
a ∈ IA : xa ∈ EX ,ya ∈ EY , z̃a ∈ EZ

}∣∣∣

+
∣∣∣
{
b ∈ IB : xb ∈ EX , ỹb ∈ EY , zb ∈ EZ

}∣∣∣
)
. (1)

In the context of missing data, it is a well-known problem that single imputations
are not able to reflect the uncertainty which arises from the missingness. Therefore, it is
commonly recommended to apply multiple imputation techniques (e.g. Little and Rubin,
2002, Chapter 5.4), where the replacement of the missing entries is performed several times.
The obtained complete data files are then analysed by common methods for complete data
and the results are subsequently pooled to achieve valid point estimates. Such multiple
imputation techniques have been further developed by (Rässler, 2002, Chapter 4) for the
application in the context of statistical matching with the intention to estimate lower and
upper bounds for the parameters of interest in the spirit of Manski (1995). However,
Rässler (2002) only considers normally distributed data and, as stated in Ahfock et al.
(2016, p.82), by applying multiple imputation “there is no guarantee that the range of
imputed datasets fully captures the uncertainty over the partially identified parameters”.

3 Imprecise imputation

3.1 Basic idea and terminology

Based on these considerations we now develop the concept of imprecise imputation where
we suggest to impute a set of plausible values for a missing entry. This leads to precise

10Little and Rubin (2002) call these groups adjustment cells.
11Another consequence of an imputation process based on donation classes is that the observations are

slightly dependent of each other. In accordance with most literature on statistical matching, this aspect is
also not problematised here and in the following sections.
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observations (x, y) in A and (x, z) in B, and to imprecise, i.e. set-valued, observations z̃
in A, and ỹ in B.

The following subsections detail and illustrate imprecise imputation. Depending on
how strong and trustworthy the underlying relationship between the common and specific
variables is, three different ways of determining the sets of plausible values to be imputed
are introduced. Without loss of generality, let again A be the recipient and B the donor
file, and let the donor classes be defined in the same way as in Section 2.2.

• D Domain imputation replaces every missing entry za`, a ∈ IA, of a variable Z`,
` = 1, . . . , r, with its domain, i.e.

z̃a` := Z` , ∀a ∈ IA , ` = 1, . . . , r . (2)

• VW Variable-wise imputation on basis of donation classes replaces every missing entry
za`, a ∈ IdA, of a variable Z`, ` = 1, . . . , r, with the set of live values of Z` within
the corresponding class IdB. Thus,

z̃a` :=
{
zb` : b ∈ IdB

}
, ∀a ∈ IdA , d = 1, . . . , D, ` = 1, . . . , r . (3)

• CW Case-wise imputation, i.e. the simultaneous imputation of all missing entries of
an observation a in IdA, where every tuple (za1, . . . , zar), a ∈ IdA, is replaced with
the set of live tuples in the corresponding class IdB. Consequently,

z̃a :=
{

(zb1, . . . , zbr) : b ∈ IdB
}
, ∀a ∈ IdA , d = 1, . . . , D . (4)

3.2 Illustration and discussion of the different types of imprecise im-
putation

3.2.1 Domain imputation

The most cautious way to determine the set of plausible values which are candidate values
for the substitution of a missing entry is to use the whole domain of the corresponding
variable. Concretely, this means that every missing entry za`, a ∈ IA, ` = 1, . . . , r, is
substituted by the set of all possible realisations of Z`, i.e. its domain Z`. Hence, z̃a` := Z`,
∀a ∈ IA, becomes a set-valued entry in data file A, where all elements of the set are treated
as equally plausible. the imputed sets for one variable are equal for all observations. This
procedure is briefly illustrated in the following toy example.

Minimal Example 1. Consider two data files A and B which consist of nA = 2 ob-
servations of (Y1, Y2, X1, X2), and nB = 3 observations of (X1, X2, Z1, Z2), respectively.
The corresponding domains of the variables are X1 = X2 = Y1 = Z1 = {0, 1}, and
Y2 = Z2 = {0, 1, 2}. Domain imputation results in the following completed data set.

y1 y2 x1 x2 z1 z2

1 2 1 0 {0; 1} {0; 1; 2}
0 2 0 0 {0; 1} {0; 1; 2}
{0; 1} {0; 1; 2} 1 0 0 0
{0; 1} {0; 1; 2} 1 0 1 1
{0; 1} {0; 1; 2} 0 0 1 2
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Numbers in bold represent the original data. The files A and B are visually divided by
the line. The numbers in curly brackets depict the sets of possible realisations of the cor-
responding variables, i.e. the domains, which are here the replacements for the previously
missing entries.

This imputation procedure resembles the approach of Ramoni and Sebastiani (2001)
who use an incomplete sample to estimate bounds for the parameters of conditional prob-
ability distributions in the context of Bayesian networks.

As previously mentioned, domain imputation is very cautious, and it thus can also be
applied if the common variables are not good predictors for the specific variables. Applying
this imputation approach, it is guaranteed that the true (but missing) value is always
element of the imputed set. As it neglects any available dependence structure between the
common and specific variables, we will introduce two other methods to determine the set
of values for imputation.

3.2.2 Variable-wise imputation

If the common variables are good predictors for the specific variables, domain imputation
nevertheless ignores these relationships and alleviates existing dependencies. The imputa-
tion of only live values within donation classes ensures that the associations between the
common and specific variables are incorporated. As a consequence, the preservation of the
dependence structure is improved and the estimated bounds for the parameters of interests
become more narrow. If q ≥ 2 or r ≥ 2, with due regard of the association between the
common and specific variables, imputation can be performed on two different levels, either
by treating each of the specific variables separately or the two blocks of specific variables
simultaneously (cf. e.g. Joenssen, 2014, Chap. 3).

Without loss of generality, let again A be the recipient file and B the donor file. All
observations i ∈ IA∪IB are allocated into donation classes depending on their realisations
of the matching variables selected from the common variables X, following the notation
as introduced in Section 2.2. For every observation a ∈ IdA, the missing entry za` of the
variable Z`, ` = 1, . . . , r, is substituted by the set of all live values of this variable from
the same donation class in the donor file B, resulting in (3).

Minimal Example 2. Consider the same data situation as in Example 1. Now we illus-
trate the application of the just described variable-wise imputation. The grey background
displays the different donation classes based on the combinations of the realisations of X1

and X2, both of which are used as matching variables.

y1 y2 x1 x2 z1 z2

1 2 1 0 {0; 1} {0; 1}
0 2 0 0 {1} {2}
{1} {2} 1 0 0 0
{1} {2} 1 0 1 1
{0} {2} 0 0 1 2

This procedure preserves the dependencies between the common variables and the spe-
cific variables, however, the successive imputation of single variables breaks the depend-
ence structure among the specific variables. Little and Rubin (cf. 2002, p.72), for instance,
have already stated that imputation should be multivariate to preserve the dependencies
between the variables. If one attaches high value to this requirement, the imputation
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should be performed simultaneously for all variables in the data file as described in the
following section.

3.2.3 Case-wise imputation

For case-wise imputation, we interpret the missing entries of one observation a ∈ IdA out
of the d-th donation class in the recipient file as tuple of the form (za1, . . . , zar). This
tuple of missing entries is replaced by the set of tuples z̃a, which have been observed in
the donor file B and the same donation class d , as in (4) . This strategy ensures that the
dependencies among the specific variables Z remain unchanged. The following example
illustrates the simultaneous imputation procedure.

Minimal Example 3. Consider again the starting point as in Example 1. Interpret the
empty cells za1 and za2 as tuples (za1, za2), a = 1, 2, and analogously yb1 and yb2 as tuples
(yb1, yb2), b = 3, 4, 5.

(y1, y2) x1 x2 (z1, z2)

(1,2) 1 0 {(0, 0); (1, 1)}
(0,2) 0 0 {(1, 2)}
{(1, 2)} 1 0 (0,0)
{(1, 2)} 1 0 (1,1)
{(0, 2)} 0 0 (1,2)

3.2.4 General remarks

A potential issue arises if at least one donation class in the donor file is empty. If so,
variable-wise and case-wise imputation cannot directly be applied and we recommend to
impute the domains Z1, . . . ,Zr or the Cartesian product of the domains Z, respectively.

Variable-wise and case-wise imputation are a set-valued generalisation of hot deck
imputation based on homogeneous donation classes. They transfer, to a different extent,
the association structure between the common and the observed specific variables into the
synthetic file.

So far, we have produced synthetic data files with the aid of imprecise imputation. In
contrast to widely-adopted imputation procedures yielding singe-valued data, we are here
in the situation of statistical analysis of partially set-valued data. To frame it formally,
imprecise imputation will be embedded into the concept of finite disjunctive random sets,
which will allow the estimation of tight lower and upper bounds for the parameters.

In order to allow for a concise description in the following sections, we will take the
observation-wise perspective on the imputed sets (i.e. the notation in terms of tuples),
which corresponds to the one taken by the case-wise imputation. The imputation results
of the other procedures can by transferred by taking the Cartesian product:

z̃a = z̃a1 × . . .× z̃ar .

4 Imprecision imputation and finite disjunctive random sets

Imprecise imputation provides us with partially set-valued data. To prepare a well-founded
statistical analysis, we have to formalise the situation probabilistically. For this purpose,
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the direct formalisation in terms of the vectors X,Y and Z of random variables12 and
corresponding realisations is no longer sufficient. Two types of generalisations, which
indeed will prove compatible among each other, could be imagined. Firstly, we could
abstractly look for a concept of set-valued variables with corresponding set-valued realisa-
tions. Secondly, we could assume that every set represents outcomes of various random
variables, one of which is the true underlying, yet not precisely observable random variable.

In this section it will be shown how set-valued observations, and thus in particular
the resulting data files of the three imprecise imputation procedures, are covered by the
concept of disjunctive random sets, also known as ill-perceived random variables (Couso
et al., 2014)13. This embedding allows for the assessment of probability statements and
the construction of corresponding estimates from the partially set-valued synthetic file
derived from imprecise imputation.14

4.1 Random set formulation of imprecise imputation

The true random variables X,Y,Z map from the underlying population space, denoted
by Ω in the sequel, into the domains X ,Y and Z, yielding realisations x,y, z, respectively.
Now, either y or z are not available, but are replaced by ỹ and z̃, respectively, according
to Equations (2), (3) and (4), depending on the chosen imprecise imputation procedure.
To formalise this situation, we follow the common practice in statistical matching to take
a conditional perspective on the sampling process, treating IA and IB as fixed.

This allows us to globally replace Y and Z by the set-valued variables Y and Z (with
realisations y and z). The imputed values are already sets, so they fit in nicely, but in order
to deal with the already observed realisation, we regard them as singletons containing just
the observed value, e.g. zb` = {zb`}, ∀b ∈ IB, ` = 1, . . . , r. The variables Y and Z map into
the corresponding power sets 2Y and 2Z , whereby mapping into the empty set is excluded.

If we collect the random variables of interest in a variable Γ and defineW := X×Y×Z,
then, with X × 2Y × 2Z ⊂ 2W ,

Γ := (X,Y,Z) : Ω −→ 2W \ {∅} (5)

is a finite non-empty random set (cf. Definition 3.1 in Nguyen, 2006, p.35), satisfying the
required measurability condition by equipping 2W with its power set. Since in our setting
the imputed (synthetic) set-valued entries of the specific variables are understood as the
collection of possible underlying true values, this random set has to be interpreted in the
so-called disjunctive way (cf., e.g. Couso et al., 2014).15

In general, any disjunctive random set Γ induces an upper inverse Γ∗ and a lower
inverse Γ∗. When considering an event of interest E ⊆ W, which is now a singleton in
the considered space 2W , the upper inverse contains all the elements of the population
whose image overlaps with E, while the lower inverse contains only those elements of the

12Throughout this paper we use the term random variable to refer to a mapping to the real numbers as
well as to some non-numerical finite space. In context of the latter the term random element is sometimes
used for the sake of distinction.

13See also in particular Nguyen (2006)
14The interpretation of the set-valued quantities as disjunctive random sets corresponds to the view

of Dempster (1967), on which the so-called Dempster-Shafer theory of belief functions (Shafer, 1976) is
built, which has become very popular in artificial intelligence (See, e.g. Denœux, 2016). Yet it comes with
different interpretations of derived concepts, especially when considering conditioning. Nevertheless, many
technical results can be used.

15See also the discussion in Couso and Dubois (2014).
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population whose (non-empty) image is entirely contained within E:16

Γ∗(E) :=
{
ω ∈ Ω : Γ(ω) ∩ E 6= ∅

}
(6)

and
Γ∗(E) :=

{
ω ∈ Ω : Γ(ω) ⊆ E

}
. (7)

By using the probability measure P defined on the original probability space involving Ω,
the upper and lower probabilities are then defined in terms of the upper and lower inverse,
respectively:17

P ∗(E) = P
(
Γ∗(E)

)
and P∗(E) = P

(
Γ∗(E)

)
∀E ⊆ W . (8)

If we turn to the view of an underlying, ill-perceived random variable W0 : Ω −→ W,
only knowing that the unobserved true value W0(ω) lies within the observed set Γ(ω) (with
probability one) , it can be shown (cf., e.g. Couso et al., 2014) that for every event E in
W the upper and lower probabilities induced by the random set enclose the probability of
W0:

P∗(E) ≤ PW0(E) ≤ P ∗(E) ∀E ⊆ W .

This leads to another way to interpret a random set, namely as producing a family of
compatible precise probability measures P(Γ), which is a subset of the set P of all probab-

ility measures on (2W , 22
W

). In the present special case of finiteW, the set P(Γ) coincides
with the credal set M(P ∗), i.e. those precise probability measures that respect the upper
and lower bounds defined by P ∗ and P∗ event-wise (cf. Miranda et al., 2010)18, which also
embeds the situation considered here into the framework of imprecise probabilities (e.g.
Walley, 1991, Augustin et al., 2014).

In particular, P∗ and P ∗ are lower and upper probabilities that are just the envelopes
of all probability measures P in M(P ∗)

P∗(E) = inf
P∈M(P ∗)

P (E) and P ∗(E) = sup
P∈M(P ∗)

P (E) .

Indeed, P ∗, P∗ and M(P ∗) are three mathematically equivalent formulations, which
can be transferred into each other. Therefore, from a applied point of view, each of them
can be seen as the core result of a probabilistic description of imprecise imputation. For
any possibly true probability distribution PW0 , our embedding into random sets provides
us with a set of distributions M(P ∗) induced by PW0 and the concretely chosen imputa-
tion procedure such that M(P ∗) contains PW0 . By construction, this is the smallest set
that is deducible from the concrete imputation procedure without adding further assump-
tions/knowledge. Dually, P ∗(E) and P∗(E) are the narrowest bounds, deducible on the
probabilities of an event E.

16In a heuristic formulation the upper inverse looks at all aspects that do not contradict E, while the
lower inverse collects all aspects that necessarily imply E.

17In order to improve readability we do not mark the image probability measure induced by the random
set Γ, i.e. PΓ = P , and we proceed analogously with the corresponding set-functions P ∗ and P∗. If we
refer to a different image measure, the according inducing random quantity will be set as subscript to P .

18Nguyen (1978) showed that if W is finite, the probability distribution induced by Γ corresponds to the
basic probability assignment in Dempster-Shafer theory and thus makes the belief function mathematically
equivalent to P∗, and thus technical results from that area may be used as well.
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4.2 Conditioning disjunctive random sets

The representation via the set M(P ∗) of compatible probability distributions including
the embedding into the framework of imprecise probabilities guides the further probabil-
istic analysis of the partially set-valued data file achieved by imprecise imputation. For
instance, if the elements of X ×Y×Z are eventually associated with real-valued outcomes,
then a generalised expectation is logically defined via the infimum and supremum of all
compatible traditional expectations based on image measures of elements of M(P ∗).

A similar procedure suggests itself for conditioning, namely an element-wise application
of conditioning for all P ∈M(P ∗), provided P (C) > 0 for the conditioning event C. One
obtains the following closed form results19 for the upper conditional probability20

P ∗(S|C) = sup
P∈M(P ∗)

P (S|C) =
P ∗(S ∩ C)

P ∗(S ∩ C) + P∗(S̄ ∩ C)
(9)

and the lower conditional probability

P∗(S|C) = inf
P∈M(P ∗)

P (S|C) =
P∗(S ∩ C)

P∗(S ∩ C) + P ∗(S̄ ∩ C)
. (10)

However, literature about imprecise probabilities warns that special care needs to be
taken when performing conditioning. A distinction of the nature of conditioning has to be
made, resulting in several concepts which in the classical setting of precise probabilities
lead to the same numerical results.21

4.3 Parameter estimation by means of disjunctive random sets based on
imprecise imputation

So far, this approach has been described in a probabilistic setting, where every entity
involved is known (besides the true hidden/ill-perceived random variable). In the following,
the statistical perspective will be taken in which the probabilities corresponding to the
random set need to be estimated from a finite sample. Consequently, we take our synthetic
data set derived from imprecise imputation as consisting of n realisations γi, i ∈ I, of the
corresponding generic random set Γ from (5).22 Referring to (8) with (6) and (7), we
obtain, in generalisation of (1), for our generic event E = EX × EY × EZ

19The second equality in (9) and (10) is a consequence of the so-called two-monotonicity of P∗ from
(8). The interested reader is referred to, e.g. de Campos et al. (1990), Couso et al. (2014) and Fagin and
Halpern (1991), where (9) and (10) are derived.

20S̄ denotes the complement of S.
21The approach just introduced in (9) and (10) can be rigorously justified in Walley’s framework of

coherent inference (cf. Walley, 1991, Chapter 6). As proven by Jaffray (1992) in the context of capacities,
those upper and lower probabilities coincide in the theory of belief functions with plausibility and belief
functions, respectively. However, they are to be interpreted in the notion of ‘focusing’, also known as ‘Fagin-
Halpern updating’. The second major concept of defining a conditional imprecise probability, the revision
of the probability distribution, will lead to lower and upper probabilities, which numerically coincide with
belief and plausibility if they are obtained via so-called Dempster’s rule of conditioning. (See Dubois and
Prade (1992) and Fagin and Halpern (1991) for a comparison of both concepts.)

22In the approach within the framework of belief functions, leading to numerically identical estimators,
the basic probability assignment is set to the relative frequencies, and then belief and plausibility are
derived for all the events of interest.
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P̂ ∗(E) =
1

n

∣∣∣
{
i ∈ I : γi ∩ E 6= ∅

}∣∣∣

=
1

n

(∣∣∣
{
a ∈ IA : (xa,ya, z̃a) ∩ E 6= ∅

}∣∣∣+
∣∣∣
{
b ∈ IB : (xb, ỹb, zb) ∩ E 6= ∅

}∣∣∣
)

=
1

n

(∣∣∣
{
a ∈ IA : xa ∈ EX ,ya ∈ EY , z̃a ∩ EZ 6= ∅

}∣∣∣

+
∣∣∣
{
b ∈ IB : xb ∈ EX , ỹb ∩ EY 6= ∅, zb ∈ EZ

}∣∣∣
)

(11)

and

P̂∗(E) =
1

n

∣∣∣
{
i ∈ I : γi ⊆ E, γi 6= ∅

}∣∣∣

=
1

n

(∣∣∣
{
a ∈ IA : (xa,ya, z̃a) ⊆ E

}∣∣∣+
∣∣∣
{
b ∈ IB : (xb, ỹb, zb) ⊆ E

}∣∣∣
)

=
1

n

(∣∣∣
{
a ∈ IA : xa ∈ EX ,ya ∈ EY , z̃a ⊆ EZ

}∣∣∣

+
∣∣∣
{
b ∈ IB : xb ∈ EX , ỹb ⊆ EY , zb ∈ EZ

}∣∣∣
)

(12)

From that also an estimate of the induced underlying set of probability measures can be
derived as

M̂(P ∗) =
{
P ∈ P : P̂∗(E) ≤ P (E) ≤ P̂ ∗(E) , ∀E ⊆ W

}
. (13)

For comparing the estimates resulting from the different types of imputation proced-
ures, it is essential to recall that, by construction, the generated set-valued data sets are
ordered by set inclusion, with respect to all compatible underlying precise data sets. The
set resulting from domain imputation is a (non-strict) superset of the set obtained from
variable-wise imprecise imputation, which contains the set produced by case-wise impre-
cise imputation. Therefore, with the abbreviations introduced in Section 3.1, it holds
naturally that

M̂
(
P ∗

CW
)
⊆ M̂

(
P ∗

V W
)
⊆ M̂

(
P ∗

D
)

(14)

and, for every event E ⊆ W,

P̂∗
D

(E) ≤ P̂∗
VW

(E) ≤ P̂∗
CW

(E) ≤ P̂ ∗CW (E) ≤ P̂ ∗VW (E) ≤ P̂ ∗D(E) .

This allows to compare the results obtained by the different imputation approaches to
the result under conditional independence, which yields a single precise probability distri-
bution. It can be argued that the probability distribution under conditional independence
is contained in any of the estimated sets. Furthermore, as it can be seen from the relations
between the different sets of probabilities in Equation (14), the one induced by case-wise
imputation can be regarded as containing probability distributions neighbouring the one
under conditional independence. The others can be interpreted to deviate even more from
conditional independence, with domain imputation as approach demonstrable neglecting
any conditional dependence structure in the construction of its bounds. For domain im-
putation the bounds are maximal (but not vacuous), despite constricting the parameter
space.
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Minimal Example 4. For demonstrative purpose let us estimate the bounds of conditional
probabilities P (Y1 = 1|Z1 = 1) for the case-wise imputed data of our toy example from
Example 3. For the upper conditional probability we need to estimate P ∗(Y1 = 1, Z1 = 1)
and P∗(Y1 6= 1, Z1 = 1) in accordance to Eq. (9). We estimate the upper joint probability
with Eq. (11) by counting how many observations have or could have realisation with y1 = 1

and z1 = 1. This holds for observations 1 and 4: P̂ ∗(Y1 = 1, Z1 = 1) = 1
5 · 2 = 0.4. The

lower joint probability is obtained by Eq. (12) by counting how many observations have
only realisations with Y1 6= 1 and Z1 = 1. This holds for observations 2 and 5, and
hence P̂∗(Y1 6= 1, Z1 = 1) = 1

5 · 2 = 0.4 and thus the upper conditional probability is

P̂ ∗(Y1 = 1|Z1 = 1) = 0.4
0.4+0.4 = 0.5. Similarly, the lower and upper joint probabilities are

estimated, occurring in Eq. (10): P̂∗(Y1 = 1, Z1 = 1) = 0.2 and P̂ ∗(Y1 6= 1, Z1 = 1) = 0.4,

resulting in the lower conditional probability P̂∗(Y1 = 1|Z1 = 1) = 0.2
0.4+0.2 = 1

3 . Thus,

P̂ (Y1 = 1|Z1 = 1) is within the interval [13 ; 1
2 ].

5 Refining imprecise imputation: logical constraints and
likelihood-based arguments

During the imputation process, it is possible that imprecise variable-wise, and in particular,
domain imputation creates combinations of variable realisations which are contextually
unjustified. Assume, for instance, that Y1 indicates sex (0: male/ 1: female), and Z1 is
a binary variable describing the pregnancy state (0: not pregnant/ 1: pregnant) in the
previous examples. We can appropriately assume that the combination (y1, z1) = (0, 1) is
impossible considering usual circumstances and that we want to exclude this combination
from our synthetic data. Following D’Orazio et al. (e.g. 2006b), we call such rules logical
constraints23.

D’Orazio et al. (e.g. 2006b, p.126) distinguish between two main cases of logical con-
straints when dealing with categorical data:

(i) ‘existence of some quantities’ (which corresponds to the previous example, where
pregnant men have to be excluded from the synthetic data), and

(ii) ‘inequality constraints’ (e.g. people who eat healthy have a higher probability to
have a better body mass index than people who eat fast food regularly).

The first case can easily be incorporated in the imputation step. For that purpose the
data file can be transformed into the tuple notation exemplified in Example 1 by applying
the Cartesian product to each observation unit.

Minimal Example 5. Numbers in bold represent again the information of the original
data files A and B.

(y1, y2, x1, x2, z1, z2)
{

(1,2,1,0, 0, 0); (1,2,1,0, 0, 1); (1,2,1,0, 0, 2); (1,2,1,0, 1, 0); (1,2,1,0, 1, 1); (1,2,1,0, 1, 2)
}

{
(0,2,0,0, 0, 0); (0,2,0,0, 0, 1); (0,2,0,0, 0, 2); (0,2,0,0, 1, 0);(0,2,0,0, 1, 1);(0,2,0,0, 1, 2)

}
{

(0, 0,1,0,0,0); (0, 1,1,0,0,0); (0, 2,1,0,0,0); (1, 0,1,0,0,0); (1, 1,1,0,0,0); (1, 2,1,0,0,0)
}

{
(0, 0,1,0,1,1);(0, 1,1,0,1,1);(0, 2,1,0,1,1); (1, 0,1,0,1,1); (1, 1,1,0,1,1); (1, 2,1,0,1,1)

}
{

(0, 0,0,0,1,2);(0, 1,0,0,1,2);(0, 2,0,0,1,2); (1, 0,0,0,1,2); (1, 1,0,0,1,2); (1, 2,0,0,1,2)
}

23These kinds of zero frequencies which are caused by impossible combinations are also known under
the terms fixed zeros (cf., e.g. Fienberg, 2007) or structural zeros (cf., e.g. Berger and Zhang, 2005).
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Using this tuple notation, it is straightforward to identify and remove tuples with entries that
contradict these logical constraints. In the example, tuples with the combination (y1, z1) = (0, 1)
are crossed out, and the corresponding set-valued variables in Section 4 have to be adapted.

The second type of logical constraints can be considered in the estimation step if
we interpret them as additional constraints on the estimated set M̂(P ∗) of probabilities

derived from our imprecise imputation (cf. Equation (13)). Since, by construction, M̂(P ∗)
can be represented by a convex polyhedron in R|W|−1, in particular linear constraints can
be incorporated very conveniently.

In further extension of the first type of constraints, one could also argue that, in
particular in very large data sets, not only contextually impossible but also combinations of
values that showed to be very rare should be excluded from the set to be imputed variable-
or case-wise. In principle, this means that the set of (variable-wise or case-wise) live values
is restricted to the set of all values whose relative frequencies exceed a certain threshold
δ, which may be dependent on the donation class.24 Going further, confining imprecise
imputation to sets Sδ of values with relative likelihood exceeding δ would gradually push
with increasing δ the cautious perspective taken here into the background. Technically,
such approaches can still be handled within the framework developed in Section 4, after
appropriately adjusting the multi-valued mapping Γ. With increasing δ the induced set
of imputed values would become naturally smaller, until each missing observation is just
replaced by the corresponding most frequent observation (if unique). This would lead to
fixed single-valued imputation and estimates degenerating to a single value.

6 Simulation study of imprecise imputation

To investigate the quality of imprecise imputation, we have performed a simulation study.
For this purpose, we simulated a complete categorical data file AdB with i.i.d. observations
and split it into two separate files A and B with nA = nB. Subsequently, the observations of
Z and Y are deleted from A and B, respectively, and the two files are statistically matched
by imprecise imputation. To assess the statistical matching quality, we analysed on the one
hand whether the true parameters of the marginal distributions and the joint distributions
are within their respective estimated bounds, and on the other hand the distance between
the upper and the lower bound. This distance, which we will call interval width in the
following, is an appropriate performance measure since the true parameters would always
lie within the estimated bounds if we chose the unit interval as a trivial estimator of a
probability component. Thus, the narrower the interval which covers the component of
the true parameter, the better the procedure performs. In the following, we will detail the
simulation design, parameters, and results.

6.1 Simulation design

The starting point of our simulation analysis are two categorical data files A and B. Both
of them contain information on four common variables X = {X1, X2, X3, X4}, and four
specific variables Y = {Y1, Y2, Y3, Y4} or Z = {Z1, Z2, Z3, Z4}, respectively, with domains
X1 = X2 = Y1 = Y2 = Z1 = Z2 = {0, 1} and X3 = X4 = Y3 = Y4 = Z3 = Z4 = {0, 1, 2}.

Altogether we modify the following four simulation parameters:

24This idea is motivated by the approach of Cattaneo (2013), who developed a likelihood-based decision
theory based on sets of parameter values that are not too implausible given the observed data.
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Scenario C Jensen-Shannon Divergence

1 [0; 0.2) far away
2 [0.2; 0.6) far away
3 [0.6; 1) far away

4 [0; 0.2) close
5 [0.2; 0.6) close
6 [0.6; 1) close

Table 1: Overview on the simulation scenarios.

1. The strength of the bivariate associations in terms of the corrected contingency
coefficient25 C (low: C ∈ [0, 0.2), medium: C ∈ [0.2, 0.6), high: C ∈ [0.6, 1)).

2. The Jensen-Shannon divergence (e.g. Lin, 1991) from the marginal distribution of
the common variables to the discrete uniform distribution.

This leads to the six simulation scenarios depicted in Table 1. Additionally, we vary

3. the numbers of observations nA = nB ∈ {50, 100, 250}, and

4. the dependence structure among the variables (cf. Figure 2).

Altogether, we achieve 72 simulation scenarios.
An explanation of the choice of the simulation parameters follows in the next section.
An exhaustive justification and description of the simulation design can be found in Ap-
pendix A and Appendix B, respectively.

6.2 Simulation parameters

As already stated by Rässler (2002, p.10), the common variables should be good predictors
for the specific variables. This ensures that the donation classes are suitable to generate
homogeneous groups of observations which lead to proper donor values for a missing entry.
Taking this fact into account, we vary the dependence structure within a simulated data
file in terms of its bivariate associations.

Figure 2 shows four different dependence structures which are covered by our simula-
tion design. The upper six variables of each design represent the binary variables, the six
variables below the dashed line represent the variables with three categories. The connect-
ing lines between the variables display the bivariate dependencies among these variables.
For example, in the first design in the upper left block, the variable X1 is connected to
variable Y1 and also to variable Z1. The strengths of these bivariate associations are con-
trolled by the corrected contingency coefficient C ∈ [0, 1]. This association measure for
categorical variables is based on the χ2-coefficient for contingency tables but it is corrected
for the number of observations as well as the number of categories.

At the first sight, the number of observations plays a counter-intuitive role in this
simulation study. We expect that the distances between the lower and upper bounds for
the parameters of interest increase in situations with a higher number of observation. This
is due to the fact that a growth of the number of observations also causes an increase of
the number of missing entries which in turn leads to less precise estimations.

The Jensen-Shannon divergence from the marginal distributions of the common vari-
ables to the discrete uniform distribution is expected to have an indirect effect on the

25Also known as Sakoda’s adjusted Pearson’s C.
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dependence design 1:

Y1
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Y3

Y4

X1
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X3

X4

Z1

Z2

Z3

Z4

dependence design 2:

Y1

Y2

Y3

Y4

X1

X2

X3

X4

Z1

Z2

Z3

Z4

dependence design 3:

Y1

Y2

Y3

Y4

X1

X2

X3
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Z3
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dependence design 4:

Y1

Y2

Y3

Y4

X1

X2

X3

X4

Z1

Z2

Z3

Z4

Figure 2: Four different dependence structures among the variables in the simulation
study. An edge between two variables displays dependence between them.
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imputation
procedure

min. 1st
quartile

median 3rd
quartile

max. mean

domain 1 1 1 1 1 1
variable-wise 0.9250 0.9613 0.9867 0.9967 1.0000 0.9792
case-wise 0.8500 0.9446 0.9725 0.9921 1.0000 0.9649

imputation
procedure

min. 1st
quartile

median 3rd
quartile

max. mean

domain 1 1 1 1 1 1
variable-wise 0.9994 0.9998 0.9999 0.9999 1.0000 0.9998
case-wise 0.9994 0.9998 0.9999 0.9999 1.0000 0.9998

Table 2: Relative number of probability table components for which the true parameter
of the marginal distributions (top) / joint distributions (bottom) lies inside the estimated
bounds, aggregated over all repetitions. The presented summary lists the result when
pooling all simulation scenarios.

statistical matching quality. If one or more of these marginals are far away from the
discrete uniform distribution, we obtain rare realisations of our matching variables which
induce rare donation classes. This circumstance may likely lead to situations where cer-
tain rare donation classes of the recipient file do not exist in the donor file. In these cases
we impute, in accordance with the recommendation in Section 3.2.4, the domain for the
missing entries which corresponds to a minimum of information which in turn leads to
bounds which are further apart.

6.3 Simulation results

As discussed, we use two measures of quality. Firstly, we investigate whether the true
parameters of our simulation distributions lie within the corresponding lower and upper
bounds estimated on the synthetic and partially set-valued data. Secondly, we report the
mean interval widths which equal the mean distances between the upper and lower bound.
An interval width of 0 corresponds to a precise estimation.

Table 2 shows that the true values of the marginal and the joint distributions almost
always lie inside the estimated bounds. For domain imputation, the true value was indeed
always element of the set of estimated parameters.

The interval width was separately analysed for the components of the marginal dis-
tributions and the joint distributions within the simulation. The aggregated results are
displayed in the figures in Appendix C and summarised in the following.

The mean and maximal interval widths of the estimated intervals for the marginal
distributions using domain imputation are always 0.5. This is the maximum interval
width which can be achieved if we impute AdB under the constraint that nA = nB. Both,
variable-wise imputation and case-wise imputation yield intervals which are in most of the
cases smaller than the intervals obtained by domain imputation. This also holds for the
components of the joint distributions.

The interval widths of the marginals are conspicuously affected by the divergence of
the marginal distributions to the discrete uniform distribution. If the marginals are close
to the uniform distribution, the intervals are narrow. However, this effect decreases if there
are less direct connections between the specific variables and the common variables. For
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the interval widths of the components of the joint distribution, we can observe a slightly
contrary effect regarding the combination of marginals which are close to the uniform
distribution and few direct connections between the specific variables and the common
variables. For the simulation designs with a higher divergence to the uniform distribution,
the variation of the interval widths are considerably smaller. Moreover, in these cases,
the median of the interval widths lies below the median of the design with a smaller
divergence to the uniform distribution. This result is somewhat counter-intuitive, but
can be explained as follows. Given a fixed value for the corrected contingency coefficient
C, with marginal distributions of the common variables which are far away from the
discrete uniform distribution, we obtain a probability table which has less combinatorial
possibilities for each cell than with marginals close to the uniform distribution. This
circumstance makes the estimation more precise in some cases which in turn leads to
smaller interval widths.

The results furthermore show that the interval widths of the marginal distributions
slightly increase with a growing number of observations. The interval widths also show
higher variations in these cases. The interval widths for the components of the joint
distribution show the same behaviour with respect to the number of observations.

The strengths of the bivariate associations in terms of the corrected contingency table
also effects the widths of the intervals concerning the marginal distributions. In particular,
the first dependence structure shows that the interval width decreases with a higher C.
Nevertheless, the difference between low and high associations is in few cases (especially
for marginals close to the uniform distribution) opposite or only visible in the variations.
Considering the interval widths for the components of the joint distribution, we can see
that high associations improve the estimation.

The simulation results also show that the dependence structure among the variables in
a data file has, as expected, an influence on the estimated lower and upper bounds of the
parameters of the marginal distributions. The mean interval widths increase if the specific
variables and the common variables have only less connections. The last dependence
structure where there are much less connections between the common variables and the
specific variables tends to lead to intervals with higher widths for the components of the
joint distribution.

To sum up, all imputation procedures yield lower and upper bounds which cover the
components of the true parameter value almost always. (The number of cases where
component of the true parameter lies outside of the estimated interval is negligible.) Ad-
ditionally, the width of the intervals decreases the more the dependence structure among
the variables in the data file are incorporated in the imputation procedure. This also
holds for small associations and for structures, where the specific variables only have few
connections to the common variables.

7 Concluding remarks

We presented the first micro approach for statistical matching of categorical data that
reflects the natural uncertainty of statistical matching. Our approach relies on imprecise
imputation, i.e. the idea to impute sets of plausible values. We suggested three types of
imputation strategies: domain, variable-wise and case-wise imprecise imputation. They
can be distinguished by their ability to reproduce the available dependence structure in
the original files A and B. They also differ in the amount of data constellations pro-
duced beyond the ones obtained by single or multiple imputation under the conditional
independence assumption.
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The most cautious approach, domain imputation, breaks the dependence structure
available in the original data during the creation of the synthetic part of the resulting
complete file. It is the most general approach in the sense that it does not rely on typ-
ical assumptions usually made in the framework of statistical matching. Against this
background, domain imputation is even a suitable statistical matching approach when the
common variables are no good predictors for the specific variables since it encompasses the
results for all possible realities which are compatible with the available data. On the other
hand, imprecise imputation based on donation classes is able to utilise even the smallest
observed dependencies between the common and the specific variables.

Embedding imprecise imputation into the framework of finite random sets allows to
derive set-valued estimates of the underlying true parameters. These estimates – possibly
after their refinement by external information, see e.g. Section 5 – reflect the uncertainty,
inherent to the identification problem of statistical matching. The estimation procedure
utilises to full extent the set-valued information without artificially reducing the com-
plexity of the imputed sets. Simulation results, based on a new simulation technique for
dependent categorical data, corroborated that the true parameter values lie almost always
inside the respective estimated bounds.

Imprecise imputation is an intuitive statistical matching micro approach which can
easily be extended for more than two data files. In an strongly unbalanced statistical
matching situation where, e.g. nA � nB, imprecise imputation can be applied straight-
forward to impute only the smaller file. If so, A takes the role of the recipient and the
larger file B the role of the donor. In this special situation, the estimates for the specific
variables Y are precise.

Moreover, the imprecise imputed data set with synthetic set-valued observations can
be used as a starting point to derive one or multiple data sets of the usual form. This
would bring back the opportunity to use statistical procedures for the analysis of these
now entirely single-valued data and to combine the results obtained on those data sets by
common multiple imputation techniques. However, then one would loose to a considerable
extent sight of the conviction of this work to produce a credible analysis by taking the full
uncertainty into account.

Further studies need to be carried out to validate the performance of imprecise im-
putation. On the one hand, additional simulation parameters and dependence structures
should be investigated in simulation studies and on the other hand, the performance of
imprecise imputation applied to real data should be assessed in detail. A further nat-
ural progression of this work is the comparison to existing statistical matching macro
approaches which also address the identification problem. For this purpose, a comparison
of the uncertainty measures introduced in Conti et al. (2012) or Conti et al. (2017) is
desirable.

Finally, we should stress that imprecise imputation is not restricted to the block-wise
missing pattern in the statistical matching framework, and is also applicable to general
missing data problems. All three types of imprecise imputation promise considerable
potential for a credible analysis of (non)randomly missing data far beyond statistical
matching, worthwhile to be elaborated and evaluated in detail.
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Appendices

A Why we need a new simulation procedure

To generate simulated categorical data meeting all the desired properties, we propose a
new procedure which we detail in the following. But, as a start, we want to elucidate
why conventional simulation approaches are not suitable for our requirements. The key
aspects can be listed as follows:

(i) One way to generate categorical data with predefined properties is to draw random
observations from a multidimensional probability table which on the one hand fulfils
all of these properties and which on the other hand represents the probability entries
of the joint distribution of all variables. The main disadvantage of this procedure is
that it can be very difficult to find a suitable joint distribution which fulfils all the
desired properties. Furthermore, we would argue that it is necessary to consider sev-
eral joint distributions to draw valid conclusions about the performance of imprecise
imputation which in turn makes the problem of finding suitable distributions even
harder.

(ii) Another option would be the simulation of categorical data based on a multidi-
mensional (logit) regression model. However, a regression model cannot be used to
control for the dependence structure and strength within the set of variables.

(iii) The simulation of categorical data which imply a certain dependence structure can
also be realised using a probabilistic graphical model like a Bayesian network. The
major problem with this way to proceed is the resulting conditional independence
among parts of our variables. If the – in real-world applications usually unjustified –
conditional independence assumption holds in our simulated data, statistical match-
ing techniques directly utilising this assumption would unfairly outperform, making
a fair comparison of procedures impossible.

(iv) A further feasible way to generate dependent categorical data is to employ a mul-
tivariate normal distribution with a predefined correlation matrix and discretise the
data drawn from it. Nevertheless, the resulting simulated data have an ordinal scale
instead of a nominal scale and we have no direct control on the strengths of the
dependencies in terms of the corrected contingency coefficient. The same problems
hold for simulation techniques which are based on a Gaussian copulas like the one
suggested by Barbiero and Ferrari (2017).

To sum up, our goal is to use a simulation technique which takes all of our desired prop-
erties into account and avoid the problems described previously.

B Simulation procedure

For this purpose, we created a new simulation procedure which is directly based on tables of
relative frequencies and a suitable association measure.26 The bivariate associations within
the simulated data can be expressed by this association measure on bivariate frequency
tables of sizes 2× 2, 2× 3, and 3× 3 (c.f. the domains listed in Section 6).

26As mentioned above, we use the corrected contingency coefficient to express the strength of associations.
Since the absolute frequencies can be directly derived by the relative frequencies, and vice versa, this
association measure is also suitable for tables of relative frequencies and leads to the same results.
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In a first step, we generate a set S of relative frequency tables which represents the
set of all possible frequency tables of above mentioned sizes. S is created by taking all
combinations of two discrete probability (marginal) distributions, whose event probabil-
ities are strictly positive27 and on a one percent grid. Thus, S covers a large variety of
marginal distributions and association measures (|S| = 48 044 502).

In a second step, we randomly draw one frequency table from S? for each bivariate
association depicted in Figure 2, where S? ⊆ S denotes the set of probability tables
which meets all predefined requirements for a specific simulation setting. Afterwards, we
multiply the selected tables of relative frequencies with the desired number of observations
and create a data file with complete observations x, y, and z. To meet the challenges of a
statistical matching framework, we split this data file into two files A and B, with nA = nB,
and remove the observations z from A and y from B, respectively.

C Simulation results

Figures 3 – 8 show the interval widths of the parameter estimates on the partially set-
valued synthetic data, aggregated for 20 simulation runs. The graphics are grouped by the
different dependence designs (cf. Figure 2) and the numbers of observations. The results
are displayed separately for the parameters of the marginal distributions and the para-
meters of the joint distributions. The whiskers range from the minimum to the maximum
to ensure better readability. Please note that the interval widths for the components of
the joint distribution are reported on a square root scale to spread the values and make
the different results better visible, the values itself are not transformed.

27Zero-entries in the marginal distributions lead to zero-entries in the table under independence. This
entails that the χ2-coefficient and all association measures based on it are not defined.
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Figure 3: Mean and maximal interval widths of the components of the marginal distribu-
tions of the specific variables for domain imputation. The two columns display the pooled
results for the marginals of the specific variables Y and Z, respectively. This figure indeed
depicts the desired result that all estimated probability intervals have width of one half.
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Figure 4: Mean and maximal interval widths of the components of the marginal distribu-
tions of the specific variables for variable-wise imputation. The two columns display the
pooled results for the marginals of the specific variables Y and Z, respectively.
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Figure 5: Mean and maximal interval widths of the components of the marginal distri-
butions of the specific variables for case-wise imputation. The two columns display the
pooled results for the marginals of the specific variables Y and Z, respectively.
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Figure 6: Mean and maximal interval widths (on the square-root scale) of the components
of the joint distributions of (X, Y, Z) for domain imputation.
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Figure 7: Mean and maximal interval widths (on the square-root scale) of the components
of the joint distributions of (X, Y, Z) for variable-wise imputation.
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Figure 8: Mean and maximal interval widths (on the square-root scale) of the components
of the joint distributions of (X, Y, Z) for case-wise imputation.
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