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Preface 
Algebraic specification, nondeterminism and term rewriting are three active 
research areas aiming at concepts for the abstract description of software 
systems: Algebraic specifications are well-suited for describing data structures 
and sequential software systems in an abstract way. Term rewriting methods are 
used in many prototyping systems and form the basis for executing specifi­
cations. Nondeterminism plays a major role in formal language theory; in 
programming it serves for delaying design decisions in program development and 
occurs in a "natural" way in formalisations of distributed processes. 

Heinrich Hussmann presents an elegant extension of equational specification and 
term rewriting to include nondeterminism. Based on a clean modeltheoretic 
semantics he considers term rewriting systems without confluence restrictions as 
a specification language and shows that fundamental properties such as the 
existence of initial models or the soundness and completeness of narrowing, the 
basic mechanism for executing equational specifications, can be extended to 
nondeterministic computations. 

The work of Heinrich Hussmann is an excellent contribution to Algebraic 
Programming; it gives a framework that admits a direct approach to program 
verification, is suitable for describing concurrent and distributed processes, and it 
can be executed as fast as Prolog. 

Munich, January 1993 Martin Wirsing 
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Chapter Ο 

Introduction 

This monograph presents a generalization of the theory of equational algebraic 
specifications, where the equational axioms are replaced by directed rewrite rules. 
A model-theoretic semantics for such specifications is given, which provides a 
rather general framework for studying 
• the integration of nondeterminism into algebraic specifications, and 
• model-oriented semantics for general (non-confluent) term rewriting. 

The study of this central topic leads to interesting side results in the fields of 
• relationships between algebraic and logic programming, and 
• relationships between term rewriting and graph rewriting. 

The starting point for this work is the observation that the available formal 
specification languages for software are very much influenced by the concepts of 
traditional mathematical logic. In particular, the notion of equality (which is a 
symmetric operation) plays a central role in algebraic specifications. This 
emphasis on symmetry does not correspond well to the fact that software 
belongs to a computational paradigm, which is always directed. Every execution 
of an algorithm consists in a directed evaluation of its formal descripton 
(therefore leading to such problems as the question of termination). This kind of 
directed evaluation transforms syntactical objects into semantically equal ones. 
Classical (deterministic) evaluation gives a close connection between a non-
symmetric relation between objects (the operational evaluation) and a symmetric 
one (the semantical denotation). The theory of term rewriting is an ideal 
framework for studying such connections. 
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The central step during an evaluation using a term rewrite system needs two 
decisions: which rewrite rule to apply and at which position (redex) of the actual 
target term. This obviously is a situation of nondeterminism. (Nondeterminism 
means here that the next step within the computation is not uniquely 
determined.) The whole well-developed theory of canonical term rewrite systems 
is concerned with conditions which ensure that this implicit nondeterminism 
does not affect the computation of the actual result. In other words it uses the 
directed relation operationally, but simultaneously keeps the symmetrical 
relation between objects on the semantical level. 

The basic idea of the approach presented here is to make positive use of the 
powerful framework of term rewriting, as a tool to specify nondeterministic 
computations. It is a rather special (and, admittedly, important) subcase where a 
nondeterministic computation is determined to give one fixed result. However, 
there are many situations in computing where nondeterminism is explicitly 
present or even needed. The most typical occurrences of nondeterminism are: 
• Distributed systems, using concurrency and communication. Here, the 

actual result of a computation depends on various parameters (including 
messages from other components), which are not completely predictable. 
So it is necessary to classify a set of possible results of a particular 
computation. 

• Stepwise program development. In an abstract description of a program, it 
is often useful to keep a whole range of implementations open using a 
nondeterministic choice like "Choose an arbitrary element of the set M " . 

These are also the reasons why much of the research even in the early days of 
computer science was invested into the investigation of nondeterminism. 

So the general goal for this text is to employ the formalism for nondeterministic 
computations, which is given by (non-canonical) term rewriting, as a 
specification language. In difference to classical term rewriting, the interpretation 
of a rewriting step is no longer the (symmetric) semantic equivalence but a 
directed notion. It is quite obvious that the appropriate directed notion on the 
semantical level is set inclusion, since every state of a nondeterministic 
computation in fact describes a set of possible results, and every step of 
computation can make a choice, which further restricts the set of possible 
results. The concept of a multi-algebra, that is an algebra where the operations 
are interpreted by set-valued functions, gives the appropriate semantical 
background for such an interpretation. 
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These considerations give a clear technical working plan for this book: 

(1) Give a detailed technical definition for the "set-valued" interpretation 
sketched above. 

(2) Investigate soundness and completeness of term rewriting with respect to 
the semantics given in step (1). 

(3) Demonstrate that equational algebraic specifications form a subcase of the 
new approach. 

(4) Investigate the integration of the new approach with advanced concepts of 
algebraic specification and term rewriting, like conditional rules, partial 
algebraic specifications, or theory-unification procedures. 

(5) Compare the new approach with other frameworks, like logic 
programming. 

From the traditional theory of algebraic specifications, another point comes onto 
the working plan, which is somehow related to (2): 

(2a) Investigate the structure of model classes, in particular the existence of 
initial models. 

The text provides results for all the steps of the working plan. However, at 
various stages, the syntax of specifications and also the rewriting calculus have 
to be enriched and adapted in order to get sensible results. 

Before going into the technical details, the next section gives a sketchy overview 
of the main stream of argumentation, and puts together the main results 
presented in this monograph. 

0.1 Preview 
The notion of equational algebraic specifications is generalized to 
nondeterministic specifications. As usual, a specification consists of a signature 
(defining sort and function symbols) and a set of axioms. Syntactically, the 
main difference to classical specifications is that the axioms now contain the 
directed symbol " - » " instead of the symmetric symbol "=". 
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Semantically, a class of multi-algebras is associated with a given specification. 
Within a multi-algebra A, a function symbol 

f: si -> s2 
is interpreted by a set-valued function 

f A : s l A p + ( s 2 A ) , 
which delivers a finite and non-empty subset of s 2 A as its result. It is important 
to note that for the interpretation of a term, the set-valued functions are put 
together in an additive way. For instance (let I A [ t ] denote the interpretation of 
term t in multi-algebra A): 

I A [ f ( g ) ] = { e 6 f A ( e ' ) l e ' G g A } . 
This gives an interpretation of terms by sets of elements from the carrier sets. 
The interpretation is easily extended to terms with variables, using an 
environment β which provides actual values for the variables. 

The validity of a (directed) axiom is now given by set inclusion: An axiom 
t l - > t2 

is valid in a multialgebra A, iff for all environments β we have 

Iß [ t l ] 2 I ß [t2]. 

This concludes (apart from technical details) the step (1) of the working plan. 

For step (2), soundness and completeness of standard term rewriting have to be 
investigated with respect to the new semantics. This leads to a negative result: 
standard term rewriting is unsound in this sense. The reason for this is closely 
related to procedure call conventions in programming languages. The term 
rewriting approach uses a technique similar to "call-by-name", whereas the 
multi-algebras have a clear "call-by-value" semantics. (In the detailed exposition, 
the more precise terms "run-time choice" and "call-time choice" wil l be used.) 
This makes a difference for rewrite rules where a variable occurs several times in 
the right hand side, like in: 

double(x) -> add(x,x) 
I f the variable χ is substituted by a nondeterministic term, then term rewriting 
generates two independent copies of the term in the right hand side which can be 
evaluated separately to different values. However, in the interpretation of the 
axioms for a model, the interpretation of the variable χ is a single value, which 
is the same for all occurrences of x. So the term rewriting process deduces 
consequences from the axioms which are not semantically valid in all models. 
This is a first (negative) result: 
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Standard term rewriting and multi-algebras rely on different semantic 
concepts. 

One way to overcome this difficulty is to introduce a second kind of axioms 
which gives a syntactic way to state that a term must be interpreted deterministi-
cally. Such axioms (determinacy axioms) are written like 

DET(t) 
which means: "The interpretation of t in every model must be a one-element 
set." 
The term rewriting calculus now can be adapted to this concept. It is now only 
allowed to substitute a term for a variable of an axiom, i f the substituted term 
has been proven to be deterministic. This gives the calculus a much more "call-
by-value" flavour (and differs from standard term rewriting). We call this new 
calculus "DET-rewriting" here, for short. It turns out that DET-rewriting is 
sound, but unfortunately it can be shown now to be incomplete. This is a 
second (negative) result: 

The introduction of determinacy rules into specifications and calculus 
achieves soundness, but does not suffice to ensure completeness of the 
calculus. 

The reason for the problem can be understood best when looking at an attempt 
to constuct a term model for a specification (which is the usual technique to 
prove completeness). A specification may contain the following axioms: 

f ( g ) - a , g - b , f ( a ) - b , f ( b ) - b , 
DET(a), DET(b). 

A term model should basically interpret every term by the set of deterministic 
terms it can be reduced to within the calculus. I f the interpretation of the term 
f(g) in such a term model is built up piecewise from the operations, the set { b } 
is the natural result (since g can be reduced to b only). However, the axioms 
require the interpretation of f(g) to contain a, too. 

The problem with axioms like <f(g) a> above is that they do not admit an 
additive construction of a term model. So they are excluded by a syntactical 
condition for axioms, which is called DET-additivity. DET-additivity is a rather 
complex condition, which fortunately can be ensured by simple syntactical 
criteria. A simple and useful criterion is that in the left hand side of an axiom 
only the topmost symbol is allowed to be a nondeterministic operation. 
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Under the precondition of DET-additivity, soundness and completeness results 
hold. In general, only weak ground completeness can be shown, which means 
that every logically valid inclusion <tl t2> is deducible in the case, where t l 
and t2 do not contain variables and t2 is a deterministic term. This is a (positive) 
result: 

Under the precondition of DET-additivity, DET-rewriting is sound and 
weakly ground complete. 

The book contains more detailed investigations how to achieve more general 
completeness results, which are not reflected here. An interesting side effect of 
the completeness proof is that the constructed term model turns out to be an 
initial one. 

Under the precondition of DET-additivity, initial models always exist. 

Stepping to item (3) of the working plan from above, it can be easily shown 
that classical equational specifications are a subcase of the new approach (by 
simply declaring all terms as deterministic). 

Equational specifications are a special case of nondeterministic 
specifications. 

Step (4) of the working plan contains several, mainly unrelated pieces, most of 
which do not uncover unexpected effects. One topic which causes rather diffcult 
technicalities is the integration of partial functions. The combination of 
nondeterminism with partiality is slightly problematic, but an approach can be 
found which generalizes the results in a satisfactory manner to partiality. 

The main results can be carried over to the case of partial functions. 

In order to investigate some questions related to the steps (4) and (5), an 
interesting and important subclass of nondeterministic algebraic specifications is 
identified, which are called construe tor-based. This is inspired by a very popular 
style of algebraic specfications. Basically, a subset of the function symbols is 
designated as the so-called constructors, and the left hand sides of the rules are 
restricted to terms of the shape 

f ( c i , . . . , c n ) 
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where f is a non-constructor function symbol, and the q consist only of 
constructor symbols and variables. In contrast to classical algebraic 
specifications, we do not require here any conditions besides this syntactic one. 
In particular, the "principle of definition , , is not assumed (which for instance 
would require a complete case analysis over all constructors for any non-
constructor symbol to be given). I f constructors are assumed to be deterministic 
(and always defined), then such specifications are automatically DET-additive. 

Constructor-based specifications are characterized only syntactically. All 
results hold for constructor-based specifications without any additional 
precondition. 

For this special class of specifications, also the extension to a unification 
algorithm can be given successfully. There is a complete narrowing procedure 
for such nondeterministic specifications. This completeness holds independently 
of confluence or termination of the rule system, giving an interesting 
generalization of results in the literature. 

For constructor-based nondeterministic specifications, narrowing is 
complete without any confluence or termination conditions. 

This result builds the bridge to step (5) of the working plan, which examines the 
connections to logic programming. The special case of constructor-based 
nondeterministic specifications can be shown to be one-to-one related to logic 
programming for definite clauses. This also generalizes results known from the 
literature, which needed the restriction to canonical rewrite systems. 

For constructor-based nondeterministic specifications, there is a one-to-
one correspondence between narrowing and logic programming. 

Finally, a new point (6) appears on the working plan, which has not been 
mentioned above. Since the DET-rewriting calculus differs from standard term 
rewriting, it is questionable, whether existing implementations of term rewriting 
can be used for the new approach. Fortunately, for the subcase of constructor-
based specifications a positive result can be found. I f an implementation of term 
rewriting is used which represents terms by directed acyclic graphs with "variable 
sharing", the implementation is sound and complete with respect to the DET-
rewriting calculus. A particularly interesting observation is that the "sharing" of 
subterms used in such implementations takes care of the soundness with respect 
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to multiple occurrences of variables. So an arbitrary redex selection strategy 
again is admissible, as in standard term rewriting. 

For constructor-based nondeterministic specifications, any implementa­
tion of term rewriting using shared term structures is sound and 
complete with respect to the multi-algebra semantics. 

Thus, for the special case of constructor-based specifications, the original aims 
are reached completely, despite of the discouraging negative results during the 
first steps of the study. 

The book is structured as follows: The second section of this introductory 
chapter (chapter zero) gives an overview of the historical background of this 
work, a third section introduces some basic notions. The subsequent first chapter 
already contains the elementary framework for nondeterministic algebraic 
specifications (the notion of a model and the calculus of term rewriting). Within 
this chapter, emphasis is put on a detailed motivation for the design decisions. 
The definition of the calculus leads to complications which can be resolved in a 
second version of the theory, presented in the second chapter. In the third 
chapter, the particular question of a lattice structure of the model classes is dealt 
with, a topic which may be skipped by the reader not interested in semantic 
investigations. At this point the theory has gained some kind of completeness, 
so the fourth chapter gives a detailed view of the relationships between the new 
approach presented here and other approaches such as equational logic, term 
rewriting, and logic programming. The fifth chapter concerns itself with more 
practical consequences: In its first part it deals with implementation issues from 
a rather abstract point of view; in its second part the application to a number of 
simple examples is demonstrated, taken from various areas of computer science. 
The sixth chapter again treats theoretical questions, and that is to integrate the 
new approach with a treatment of partial functions, as proposed in [Broy, 
Wirsing 82]. The concluding (seventh) chapter shows the application of 
nondeterministic algebraic specifications to a non-trivial example: the language 
of communicating sequential processes. 
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0.2 Historical Background 
The technique of algebraic specifications, established in the years 1975-80 
([ADJ78], [Guttag 75]), is an attempt to use results of Universal Algebra 
([Birkhoff35]) for the mathematical description of data structures ("abstract data 
types"). The basic idea of this approach is to describe a data domain together 
with its characteristic operations. An algebraic specification has a precise 
mathematical semantics, given by its models (which are so-called heterogeneous 
algebras, consisting of data sets and operations on them). The specification 
restricts the class of models by a number of axioms in a logic language. So 
there is a corresponding calculus which admits to derive further properties of a 
specification. Of particular interest is the evaluation of expressions over the 
specification which is an abstract form of operational semantics. These basic 
ideas have been refined in various ways, for instance by concepts for modulari­
sation and the treatment of partial functions ([Wirsinget.al. 83]). Altogether, a 
specification language arose which combined the expressive power of a 
programming language with a formal treatment of data types. 

Even earlier, about 1970-75, nondeterminism has been recognized as important 
for the abstract description of programs ([Floyd 67], [Manna70], [Dijkstra76]). 
Up to now it is an open question whether nondeterminism is useful for practical 
programming. But as it was argued above, a demand of abstractness within 
descriptions often leads to nondeterminism. Although abstractness was the aim 
of algebraic spefication, there have been only a few attempts to connect 
nondeterminism and algebraic specifications. [Subrahmanyam81] and [Broy, 
Wirsing81] should be mentioned here, which show essentially how to simulate 
nondeterministic structures by (relatively complex) algebraic specifications of 
the classical type. 

Within the last years there have been attempts to integrate nondeterminism as a 
basic concept into algebraic specifications ([Nipkow86], [Hesselink88]). 
These approaches consider operations of algebras as relations, i . e. as set-valued. 
The notion of a so-called multi-algebra ([Pickett67]) could be used there, as 
well as first similar ideas in [Kapur 80]. Both papers [Nipkow86] and 
[Hesselink88] treat nondeterministic algebras and basic relations between 
algebras, but they exclude the question of a well-suited specification language. A 
nondeterministic specification language is presented in [Kaplan 88], but this 
approach is based on the classical notion of a model and the classical calculus, 
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extended by "built-in" mechanisms for handling sets of data objects. The paper at 
hands extends the existing work by giving a specification language for the 
multi-algebra approach. 

In a very recent paper [Meseguer 92], the basic idea of using term rewriting as a 
general framework for computing, without taking care of an equational 
interpretation, has been covered in detail. In its motivation, these results are very 
closely related to the work presented here. However, in [Meseguer 92] the 
semantics are adjusted in such a way that standard term rewriting is sound and 
complete, leading to a "call-by-name" approach (which is unsound for multi-
algebra semantics). The semantics there are mainly oriented towards an initial 
algebra approach, using category-theoretic tools. In contrast, here the semantics 
are given by a loose class of multi-algebras in a classical set-theoretic 
framework, which induces a "call-by-value"-like interpretation. This principle is 
carried over to the calculus, leading to a calculus which differs from standard 
term rewriting on the level of deduction systems. Interestingly, the frequently 
used implementation by graph rewriting turns out to be adequate for our 
approach, but not completely adequate for standard term rewriting (see section 
5.2, example 5.18)! 

Another even more recent approach is [Walicki 92/93], where a rather general 
calculus is introduced for an algebraic treatment of nondeterminism. This work 
is partially based on earlier versions of our approach. It defines a specification 
language as well as a sound and complete calculus. However, the syntactical 
framework used there is much richer than the simple term-rewriting-style of the 
calculi presented here. It is shown in [Walicki 92/93] that our approach can be 
seen as a true subcase within the more general framework. The main 
distinguishing property of our subcase is that we are interested in a 
programming oriented style of specification, which keeps close connections with 
term rewriting and admits a direct application of prototyping tools. 

0.3 Basic Notions 
This section introduces some technical notations which will be used within this 
book frequently. It may be convenient to skip this section on first reading. 
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In order to deal with set-valued functions, it is often necessary to construct the 
power set of a given set. The following notation will be used (M is an arbitrary 
set): 

p ( M ) = { N ! N C M } 
p+(M) = { N I N C M Λ N * 0 } 
Pfin(M) = { N I N C M Λ Ν finite} 

Another concept from set theory is the comparison of two arbitrary sets (finite 
or infinite) with respect to cardinality: 

I Μ I & I Ν I <=>def 3 f: M - * N and f is surjective. 

Similarly, sometimes the set of finite sequences over an arbitrary set Μ is 
needed, which is denoted by N * . The empty sequence is written as ε, a non­
empty sequence is given as a list of its elements, enclosed within angle brackets 
(<>). The sequence concatenation operator is an infix operator ·, which is defined 
inductively by the following equations (where s, s' Ε Μ*, e Ε Μ): 

ε · s = s, 
(<e> · s) · s' = <e> · ( s · s'). 

A l l other notions are common either in the field of algebraic specification or 
term rewriting. The used notation is similar to [Wirsingetal.83] and [Huet, 
Oppen80], respectively. 

Definition 0.1 (Signature) 

A signature is a tuple Σ = (S, F), where S is a set of sort symbols and 
F is a set of function symbols. Every function symbol fEF has a fixed 
finite sequence of sort symbols (its argument sorts) and a sort symbol 
(its result sort). 
The notation [f: si χ ... χ s n -> s]EF is used to denote a function 
symbol fEF with argument sorts s i , s n and result sort s (si, sES). 

ο 
The symbol X always means a given countably infinite set of variable symbols, 
where again each xEX has a fixed sort. More precisely, X is a family of sets of 
variable symbols: 

X = (Xs)sES. 
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Definition 0.2 (Term) 

Let Σ be a signature, X a variable set as above. The set \ν(Σ, X ) s of the 
Σ, X-terms of sort s is the smallest set which fulfils the following 
conditions: 

• Every x E X s is contained in λ¥(Σ, X ) s 

• I f [f: s i χ ... χ s n -> s] Ε F and ti is contained in \ν(Σ, X ) s - (for 

1 έ i £ n), then f ( t i , . . . , t n ) is contained in \ν(Σ, X ) s . 

The set ν/(Σ, 0 ) s of the ground terms of sort s is denoted by \ν(Σ) δ. I f 
the sort index of a set of terms ( s ) is obvious from the context, it is 
omitted frequently. 0 

For the sake of simplicity, all signatures Σ have to be sensible as defined in 
[Huet, Oppen 80], that is for every sort there has to exist at least one ground 
term. 

Definition 0.3 (Subterm, Occurrence) 

The mapping Occ computes the set of occurrences (or tree addresses) 
within a term. It is standard to describe such occurrences by finite 
sequences of natural numbers: 

Occ: W ( Z , X ) - * p + ( N * ) 

Occ is defined recursively by: 
Occ[x] = { e } ifxEXs 
Occ[f(ti, . . . , t n)] = {ε} U{ i*u I i E { l , . . . , n } Λ uEOcc[ti] } 

i f [f: si χ ... χ s n s] Ε F, 1{ΕΨ(Σ, Χ ) 8 · . 

t/u denotes the subterm of a given term t at the occurrence u Ε Occ[t]: 
t / ε = t 
f ( t i , . . . , t n ) / i - u = t i / u 

t [u*- t ' ] denotes the term which results from replacing within t the 
subterm t/u (u Ε Occ[t]) by the term t': 

t [e«-f] = V 
f(t ι,.. , t n )[i-u«-f] = f ( t i , . . . ,tj[u«-t'],... t n ) 0 
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Varsft] denotes the set of all variables occurring within a term t: 
Varsft] = { x E X I 3 u e O c c [ t ] : t/u = χ } 

Definition 0.4 (Substitution) 

A substitution σ is a family of mappings σ = (a s) s^s where 
σ 8 : X s - W ( Z , X ) s 

such that only for a finite number of xEX, σ is different from the 
identity (σ(χ) * χ). Again, the sort index ( s ) is omitted frequently. 

A substitution can be easily extended to an endomorphism on \¥(Σ, X): 
a(f( t i , . . . , t n )) = f(at i , . . . ,a t n ) 

The domain of a substitution σ is denoted by 
Domfa] = { xEX I σχ * χ } . 

The set of all variables occurring within the substitution terms is 
denoted by Vars[o]: 

Varsfo] = Vars[ti]U...UVars[t n], 
where { t i , . . . , t n } = { σχ I σχ * χ } . 

A substitution ρ is called a renaming, iff ρ is injective and 
VxEX: pxEX. 

For two substitutions σ and τ , a composed substitution στ is given by 
the usual functional composition. The union oUx of two substitutions 
σ and τ is only defined, i f Dom(o)nDom(x) = 0; it means to combine 
σ and τ into a substitution with the domain Dom(o)UDom(x). 

S U B S T ( Z , X) is the set of all substitutions σ: X — \ ¥ ( Σ , X ) , 
SUBST(Z) is the set of all ground substitutions σ: X — W ( I ) . 0 

A substitution σ, which replaces xEX by the term t l and yEX by the term t2 
(and nothing else), is denoted in an explicit notation by: σ = [ t l /x , t2/y]. ι is the 
identity substitution (i.e. VxEX: i(x) = x). 

Given two terms t l and t2, a substitution σ is called a unifier of terms t l and t2 
iff σ t l = σ t2. I f t l and t2 are unifiable, there is always a most general unifier 
(mgu) μ. This means that for every unifier σ for t l and t2, there is a substitution 
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λ such that σ = λμ . The most general unifier of two terms can be computed 
efficiently (see for instance [Corbin, Bidoit 83]). 

The following sketch of the theory of (equational) algebraic specifications has 
the only purpose to introduce the notation, for details see [Wirsingetal.83]. 

A specification Τ = (Σ, Ε) is a tuple, where Σ is a signature and Ε is a set of 
equations between Σ , X-terms (of the same sort). The central notion for the 
semantics of such a specification is the notion of a Σ-algebra: 

Definition 0.5 (Σ-AIgebra) 

Let Σ = (S, F) be a signature. A Σ-Algebra is a tuple A = ( S A , F A ) , 
which consists of: 

• a family of non-empty carrier sets 

S A = ( s A ) s eS . s A * 0 for sES 

• a family of functions: 
F A = (f A ) fEF 

such that for [f: si χ ... χ s n -> s] Ε F: 
f A : s i A χ ... χ s n

A s A . 

The class of all Σ-algebras is called Alg(Z). () 

Within a Σ-algebra A , now the interpretation of a term t can be defined. For the 
interpretation of a non-ground term t, all variables from X occurring in t must 
be bound to values in A. This is done by a valuation β: 

ß = (ßs)sES> ß s : X s - s A 

The interpretation 

I ß = d ß ) S ) s G S , l £ s : W ( Z , X ) s ^ s A 

can be defined easily as an extension of the algebra operations. An equation <tl = 
t2> is called valid in A (A 1= t l = t2), iff for all valuations β holds: 

I ß [ t l ] = I ß [ t 2 ] . 

The Σ-algebra A is called a model of the specification Τ = (Σ,Ε), i f f all 
equations in Ε are valid in A. EqMod(T) denotes the class of all models of the 
equational specification T. 
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The calculus of equational logic explains how new equations can be deduced 
from the equations in E. It can be seen as a definition for the following relation 
on terms: 

t l = E t2 <*>def 3 uEOccftl], oESUBST(I, X) , <1 = r> Ε Ε: 

t l / u = al Λ t2 = t l [ u « - o r ] 
By = E * we denote the reflexive-transitive-symmetric closure of =£. 

The most important result for equations and equational logic as a specification 
framework is 

Birkhoff's theorem: 
11 = E * t2 EqMod(T) 1= ( t l = t2 ) (if Τ = (Σ, Ε)) 

According to this theorem, it is ensured that the calculus can be used only to 
derive equations which hold in all models of the specification (soundness). 
Moreover, an equation which is valid in all models is deducible with the calculus 
(completeness). 





Chapter 1 

Nondeterministic Algebraic 
Specifications 

This chapter wil l show precisely how to generalize the model classes and the 
specification language for algebraic specifications to the case of nondeterminism. 
Particular emphasis is laid on a motivation for the design decisions and on a 
comparison to other approaches. 

1.1 Nondeterministic Algebras 
An algorithm is called nondeterministic, i f there are computation states of the 
algorithm, where the further computation steps are not determined, i .e. where a 
free choice between different alternatives is admitted. I f the final result of the 
computation is fixed, indepently of the choices, the result is called determinate. 
Here we will study the more general case of nondetermism where even the final 
result is non-determinate. This means that the algorithm may deliver different 
results when started under equal environment conditions. In a more abstract 
view, the result of the algorithm is a set of possible results (called "breadth" in 
[CIP 85]). 
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Nondeterministic programs have been considered already in rather early papers 
([McCarthyol] , [Floyd 67], [Manna70], [Dijkstra76]). Here the main 
motivations were: 

• The programmer should be freed of unnecessary details at design time 
([Dijkstra76]). The design should fix what is the function of the program; 
if there are different ways how to realize this function in detail, the decision 
between them can and should remain open. (A typical example for such a 
single step with a non-determinate result is: "Choose an arbitrary number 
between 0 and N".) 

• Nondeterminism often is an adequate form of description for a system 
which depends on unknown parameters. A typical example is an operating 
system, the behaviour of which depends on the number of users, on the 
activity of ressources etc. I f all these parameters were known, the 
behaviour of the system would be deterministic. But it is realistic and 
useful to treat the system without knowing all parameters, consequently to 
deal with a nondeterministic algorithm ([Hennessy80]). 

Both arguments use nondeterminism as a means of abstraction for the 
description of complex systems. This results in a good motivation for 
integrating nondeterminism into an abstract specification language for the 
description of algorithms. 

For models of algebraic specifications, nondeterminism means that the result of 
the interpretation of a given function, applied to a given argument, is not fixed 
uniquely. Below a number of alternative approaches are discussed which try to 
model this situation mathematically. 

1.1.1 A Discussion of Alternative Approaches 

Let [f: s -> s'] be a function symbol, s and s' sorts of a given signature. 

A first variant of nondeterminism is already present within classical algebraic 
specifications: 
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(a) Nondeterminism on model level 

Let A l and A2 be two different models of a given specification where: 
f A l : s A l _ > s . A l f 

fA2. SA2-+ S ' A 2 ? 

Then for e Ε sA^ Π s A 2 we may have: 
f A 1 ( e ) = e l , f A 2 ( e ) = e2 and el * e2. 

This example presupposes a so-called loose semantics which has been proposed 
e. g. by [Bauer, Wössner 81], [Wirsing et al. 83]: As the semantics of a 
specification, a class of models is taken. The result of an operation is not fixed 
uniquely, since it may differ in different models. 

This form of nondeterminism is useful for the description of early phases of a 
design where design decisions shall be kept open [McCarthy 61]. Within a 
single model, however, all computations are deterministic. 

But sometimes explicitly non-determinate (and therefore nondeterministic) 
computations are to be described. Abstract specification of programs on 
operating system level leads to such descriptions, as in the theory of 
communicating processes. Here the approach described above is no longer 
adequate, a notion of a model is needed, which admits nondeterministic 
computations within a single model. 

A first option to achieve this aim is the interpretation of a function symbol by a 
set of functions: 

(b) Nondeterminism on operation level 

Let Β be a model of a given specification: 
f B = { f l , f 2 } , 
f l : s B - s ' B 

f2: s B - s ' B . 
Then for e Ε s B we may have: 

f l B ( e ) = e l , f2 B(e) = e2 where el * e2. 

This approach describes precisely the concept of (local) nondeterminism within a 
functional computation. When a function is applied to given arguments, one out 
of several prescriptions is chosen to compute the resulting value. 
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The theory of algebraic specifications stresses the function application as the 
most important operation on functions. It only considers the input-output 
behaviour of a function. Therefore, an abstraction of the approach (b) also 
provides an appropriate notion for a model, which uses set-valued functions. 

(c) Nondeterminism on result level 

Let C be a model of a given specification: 
f 0 : s C ^ p ( s ' C ) . 

Then for e G s ^ we may have: 
fCfc) = { e l , e2 } where el * e2. 

It is obvious, how for an algebra Β corresponding to approach (b) an algebra C 
corresponding to (c) can be found: Define 

f C(e) = { g ( e ) l g G f B } 

This is a true abstraction, i . e. algebras corresponding to (c) contain less 
information about the structure than in approach (b). Consider the following 
example: 

Let B l and B2 be algebras according to (b) where: 

s B l = s ' B 1 = s B2 = s>B2 = { 0 ) L } j 

f B 1 = { not, id } , f B 2 = { true , false } , 

not, id, true, false: { 0 , L } - * { 0 , L } , 

not(O) = L , not(L) = O, 
id(0) = 0 , id(L) = L , 
true(O) = L , true(L) = L , 
false(0) = 0 , false(L) = 0 . 

The following algebra C is an abstraction of Β1 as well as of B2: 

s c = s ' C = { 0 , L } , 
f C : { 0 , L } - p ( { 0 , L } ) , 
fC(O) = { Ο , L } , fC(L) = { Ο , L } . 
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I f we restrict our attention to the input-output behaviour of functions, the 
function f has the same behaviour in B l and B2, The function f, applied to an 
element out of the set { O, L } delivers nondeterministically either Ο or L . 

As long as functions are not considered as objects (like in "higher order" 
specifications ) , (c) is equivalent to (b). Since (c) fits well to the abstract style 
found in algebraic specifications, (c) seems to be better suited for the definition 
of nondeterministic models. I t is interesting to note that exactly the 
generalization of Σ-algebras described as (c) has already been studied in the 
Sixties under the name of a multi-algebra. As an early source, confer 
[Pickett67], where for the origin of the notion "multi-algebra" P. Brunovsky 
(1958) is referred. Below, only the multi-algebra approach wi l l be followed, 
which forms the basis for the work of [Nipkow86] and [Hesselink88], too. 
But two other possibilities for introducing nondeterminism should be mentioned 
before. 

(d) Nondeterminism on the level of sorts 

Let D be a model of the given specification: 
f D : p ( s D ) - » p ( s ' D ) . 

Then for e E s ^ w e m a y have: 
fD({ e }) = { e l , e2 } where el * e2. 

This approach arises as a generalization of (c), by switching from set-valued 
functions to functions operating on sets. Nevertheless, the specific properties of 
nondeterministic operations are lost: Simple heterogeneous algebras are 
considered here, with powersets as its carriers, even non-additive and non-
monotone operations are admitted. In [Kaplan 88] this approach is chosen for the 
description of nondeterminism, but some additional restrictions (in particular the 
U-distributivity af all functions) essentially lead back to the power of the 
approach numbered (c) here. 

A completely different approach, finally, is characterized by a simulation of 
nondeterminism by deterministic operations: 
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(e) Nondeterminism by deterministic predicates 

Let Ε be a model of the given specification. Let Ε contain relations 
instead of functions: 

f E C s E χ s ' E 

The well-known relational product then defines a structure which is 
comparable to approach (c). 

On the model level, it is a matter of taste, whether a functional or relational 
description is preferred. For instance in [Nipkow86] a relational description for 
multi-algebras is used; however, an appropriate specification language is not 
dealt with there. In [Subrahmanyam81], axioms containing nondeterministic 
operations are translated into axioms for the corresponding predicates; however, 
the direct relationship between terms and values (interpretation) is lost there. It 
could be considered an advantage of relational specifications that Prolog-like 
Horn clauses, i f chosen as a specification language, may admit Prolog-like 
resolution calculi. This idea is investigated in more depth below in chapter 4. 

Relationally described nondeterministic specifications obviously are an 
equivalent, interesting alternative. But for the purposes followed here, this 
approach has too few similarities with the functional viewpoint of algebraic 
specifications. In particular, we are interested here in a formal framework which 
explicitly shows the principle of uni-directionality (for instance from input to 
output) which is central to most programming paradigms. This is the reason 
why we prefer here the set-valued approach listed above as (c). 

Below we wi l l define calculi which correspond directly to specifications of 
approach (c), and which enable, by term rewriting, a syntactical simulation of 
computations, too. In this case the uni-directional evaluation by term rewriting 
corresponds to a choice out of a set of possibilities. 

1.1.2 The Principle of Extensionality 

The principle of extensionality is a basic paradigm for applicative and data-flow 
oriented programming. It means: The identity of a function is determined by its 
input-output behaviour. Functions with the same input-output-behaviour are 
considered as equal. This way, we can abstract from the concrete realization, how 
the function value is computed. A function becomes a "black box" which is 
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observed from the outside only. This point of view has advantages for the 
modular construction of large systems ("information hiding"). This section wil l 
try to motivate the multi-algebra approach again, from the input-output point of 
view. 

In the case of nondeterminism, the interpretation of a function symbol 
f: s s' 

in an algebra A can be seen as a computation unit with input and output 
channels: 

In order to keep with the modularity paradigm, we presuppose that nondeter­
ministic decisions are made locally . 

In a given nondeterministic computation there is only one value on the input 
channel. Nondeterministic decisions are made within the computation unit and 
thus deliver just one value on the output channel. 

Experiments with the "black box" f A consequently may lead only to 
observations of the shape: 

" I f χ is an input value, y ι , y n are possible output values." 

Approach (c) of the section above exactly mirrors this kind of input-output 
behaviour. 

Approach (b), transferred to our visualisation, would admit additional 
observations about the way of computation which is chosen by the unit: 

" I f f A chooses computation description f i , then the input value χ 

delivers the output value y." 

Approach (d), in contrast, assumes a computation unit f \ which takes a set of 
values as its input, and which delivers a set of output values, dependent on the 
input set: 
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" I f the possible input values are χ ι , x n , the possible output values 

a r e y i , . . . , y m " 

Note that the preference for approach (c) (instead of (b) or (d)) can be motivated 
only by pragmatic arguments, what is seen as a "realistic" or "interesting" 
notion for the input-output behaviour. 

As a consequence of the choice of approach (c), it is clear now how to define the 
composition of functions: Just take the input-output behaviour of f g , i . e.: 

Given an input value x, possible results of the entire system are exactly the 
possible results of g A under input y, where y is a possible output of f A under x: 

(f A -g A )(e) = { e2 I e2 Ε g A ( e l ) Λ el Ε f A (e) } 
This means, the additive extension of f A to sets is used. This choice corresponds 
to the classical relational product and to the usual definitions for multi-algebras. 

I f these design decisions are compared with those of [Meseguer 92], it is obvious 
that Meseguer puts more emphasis on fixing the deduction calculus to classical 
term rewriting. The semantic constructions are adjusted to fit this calculus, 
whereas here the priority has been set the other way round: We fix the semantic 
model first, and then adapt the calculus. In fact, the semantics in [Meseguer 92], 
following an initial algebra approach, are defined in terms of deductions within 
the rewriting calculus. Further below, the technical differences wi l l be stated 
more precisely. 

1.1.3 The Notion of an Algebra 

Using the arguments above, we fix the following generalization of the notion of 
a heterogeneous Σ-algebra: 

Definition 1.1 (Total Σ -Mult i -Algebra) 

Let Σ = (S, F) be a signature. A (total) Σ-multi-algebra is a tuple A = 
( S A , F A ) , which consists of 

a family of non-empty carrier sets 
S A = (sA)sGS> s A * 0 for s Ε S 
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• a family of set-valued functions where the result is always non­
empty: 

F A = (f A )fGF 
such that for [f: si χ ... χ s n -> s] Ε F: 

f A : s i A χ ... χ s n

A - * p + ( s A ) . 

The class of all Σ-multi-algebras is denoted by M A l g ( I ) . φ 

Below we also use the word "algebra" for a multi-algebra, where no confusion is 
possible. 

It is not completely obvious, why the functions are restricted to deliver only 
non-empty result sets. For instance in [Hansoul 83], also empty result sets are 
admitted in multi-algebras. The main argument for exclusion of the empty set is 
that it somehow represents the non-existence of a result, which is equivalent to 
undefinedness. It is well known from the theory of algebraic specifications that 
an adequate integration of partial functions leads to a number of serious 
problems. So the question of partiality is postponed to chapter 6, and functions 
are restricted here to "total" ones, which always deliver at least one result. 

Example 1.2 

Let Σ = (S, F) be the following signature: 

sort Nat 

func zero: Nat, succ: Nat Nat, 
add: Nat χ Nat -* Nat, or: Nat χ Nat Nat, 
some: -> Nat 

The algebra A then is a Σ-multi-algebra, where 
N a t A = N , 
zeroA: ρ + ( N ) , zeroA = { 0 } , 
succA: Ν -* p + ( N ) , succA(n) = { n+1 } , 
add A : Ν χ p + (N) , addA(n,m) = { n+m } , 
o r A : Ν χ Ν -» p + ( N ) , or A(n,m) = { η , m } , 
someA: -> p + ( N ) , someA = Ν 

(where m, nEN). 
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Another Σ-multi-algebra is B, given by 
Nat B = { Z , N } , 
zeroB = { Ζ } , succB(e) = { Ν } , 
addB(Z,e) = { e } , addB(N,e) = { Ν } , 
o r B ( e l ,e2) = { e l , e2 } , someB = { Ζ, Ν } 

( w h e r e e , e l , e 2 E { Z , N » φ 

In the algebra A of this example, the operations o r A and someA are called (truly) 
nondeterministic, since they actually do deliver a choice between different 
results. The other operations are single-valued functions and therefore called 
deterministic. 

The operation someA in the example above shows that multi-algebras in general 
admit infinite result sets (indicating a choice out of infinitely many values, 
which is sometimes called unbounded nondeterminism). Please note that the 
choice of names in the example above shows a close correspondence to the 
semantics assigned to them by the multi-algebra A. However, the formal 
specification (which is only a signature up to now) does not resemble these 
informal ideas at all. It is easy to give a multi-algebra for the same signature 
where some is a deterministic operation and zero a nondeterministic one! 

The set of ground terms can be made into a multi-algebra (since every Σ-algebra 
is a Σ-multi-algebra with singleton result sets, too). This is a very particular 
algebra, where every operation is deterministic. 

Example 1.3 

For an arbitrary signature Σ, a Σ-multi-algebra ΨΣ (the term algebra) is 
given by: 

8 \ΥΣ = W ( 2 ) s f o r s G Σ 

f W 2 ( t l , . . . , t n ) = { f ( t i , . . . , t n ) } f o r f E F . 0 

In order to define the interpretation of terms in a multi-algebra, the operations of 
the algebra just have to be composed as the structure of the term indicates. 
However, for giving a meaning also to terms containing variables, we need a 
notion of an environment which binds variables. A term with variables can be 
interpreted only i f the environment defines fixed values for the variables. It is 
consequent to admit here as values to be assigned to variables only single values 
out of the carrier set (no set-valued environments). The reason for this is that a 
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computation within a given algebra contains only single values as intermediate 
results. Within the informal description of section 1.2 above, set-valued 
environments would correspond to observations under a fixed set of possible 
input values. I t is clear that such observations can be composed out of 
observations with single-valued environments, by additive extension. 

Definition 1.4 (Environment) 

Let A = ( S A , F A ) be a Σ-multi-algebra. 
An environment β of X in A is a family 

ß = ( ß s )sGS 
of mappings 

ß s : X s - s A . 

ENV(X, A) denotes the set of all environments of X in A. φ 

The definition of interpretation composes the operation provided by the algebra, 
using an additive extension, when applying a function to a set of values: 

Definition 1.5 (Interpretation) 

Let A Ε MAlg f f ) , β Ε ENV(X, A) . 

The interpretation Iß is a family of mappings 

Iß = ( I ß s )sES, I β > s : W ( I , X ) s - Ρ + ( s A ) for sES. 

I R is defined inductively as follows: p,s 

(1) I f t = xandxGX s : 

I ß s [ t ] = { ß ( x ) } 

(2) I f t = f ( t i , . . . . t n ) where [f: sj χ ... χ s n -* s] Ε F 
( t i £ W ( Z , X ) s i f o r a I I i e { l , . . . , n}): 

l £ s [ t ] = { e G f A (e i , . . . , e n ) I ej G i j ^ . [ tj ] , 1 s i s η } 

Δ A 
I f t is a ground term (out of W^) s ) ,we write also I A instead of I n § . 0 
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Example 1.6 

In the multi-algebra A from example 1.2 the following propositions 
hold: 

I A [ zero ] = { 0 } 
I A [ add(or(zero,succ(zero)),or(zero,succ(zero))) ] = { 0 ,1 ,2 } 

I f β is an environment with β(χ) = 0, ß(y) = 1, then we have: 

lp[add(x,or(x,y))] = { 0 , l } . 

In the multi-algebra Β the following holds: 
I B [ zero ] = { Ζ } 
I B [ add(or(zero,succ(zero)),or(zero,succ(zero))) ] = { Ζ , Ν } (} 

1.2 Inclusion Rules as a Specification 
Language 
The semantics of a classical algebraic specification is given by a class of 
algebras which are characterized by a set of axioms. Basically, algebraic 
specifications may use arbitrary first-order formulas as axioms ([Wirsing et. al. 
83]), where the atomic formulas are equations. 

Particular interest has been paid to specifications where the axioms are only 
equations or conditional equations (positive conditionals) with universally 
quantified variables. On the one hand, the model class always has a nice lattice 
structure in this case; on the other hand, the equational calculus is particularly 
simple and therefore well-suited for support by software tools. These tools 
usually are based on term rewriting (rewriting engine, Knuth-Bendix-completion, 
Ε-unification by narrowing). 

1.2.1 Axioms and their Semantics 

When switching to the nondeterministic case, we first have to find an 
appropriate notion replacing the equations. The purpose of these atomic 
formulas is to describe the nondeterministic choice out of several possibilities. 
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Such a process of decision does not preserve the information contained in a term, 
but may reduce the amount of information. Therefore, we use unsymmetric 
(oriented) atomic formulas. Below, "inequations" play the role which equations 
have in the classical case. An inequation between two terms t l and t2 is denoted 

t l — t2. 
It is to be understood informally as: 

"Every (nondeterministic) possibility for the evaluation of t2 is a 
(nondeterministic) possibility for the evaluation of t l , too." 

With respect to the intended interpretation, we call the inequations from now on 
inclusion rules. The notation for inclusion rules is the same as it is standard for 
rewrite rules, because below a tight correspondence to term rewriting wi l l be 
developed. 

Definition 1.7 (Inclusion Rule) 

An (atomic) (Σ, X-)inclusion rule is a pair of terms of equal sort, which 
is denoted as a formula 

t l -> t2 
where t l , t2 Ε W ( I , E ) s , s Ε S. 0 

Variables occuring in inclusion rules are implicitely understood as universally 
quantified (like in equational specifications). 

The validity of an inclusion rule has to take care of the orientation. In contrast 
to equational logic, which centers around the notion of equality, our objects are 
decision processes, and this leads to set inclusion. 

Definition 1.8 (Validity) 

Let A be a Σ-multi-algebra. An inclusion rule t l -> t2 is called valid 
in A , written: 

A 1= t l -> t2 
i f f for all environments β Ε ENV(X, A): 

Iß [ t l ] 2 I ß [t2]. 0 
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Note that this definition of validity relies on the definition of an environment: A 
variable within an axiom always means a (determinate) object, and not a 
nondeterministic expression. 

Example 1.9 

Within the multi-algebras Α und Β of example 1.2 the following 
inclusion rules are valid: 

add(zero,x) x, add(succ(x),y) -> succ(add(x,y)) 
or(x,y) -> x, or(x,y) -» y 
some -> zero, some -> succ(some) () 

Now we can define nondeterministic algebraic specifications in analogy to the 
standard approach. 

Definition 1.10 (Nondeterministic Algebraic Specification) 

A (nondeterministic) (algebraic) specification is a tuple Τ = (Σ, R), 
which consists of a signature Σ and a finite set R of Σ , X-inclusion 
rules, which are called the axioms of the specification. φ 

Definition 1.11 (Model) 

A nondeterministic Σ-algebra A is called a model of the nondeterminis­
tic specification Τ = (Σ, R), iff for all inclusion rules O E R : A 1= Φ. 
Mod(T) denotes the class of all models of the specification Τ . () 

Example 1.12 

This first example of a specification combines the signature from 
example 1.1 with the inclusion rules from example 1.9. We use a 
notation similar to many standard specification languages (for instance 
OBJ, PLUSS): 

spec NAT 
sort Nat 
func zero: Nat, succ: Nat -> Nat, 

add: Nat χ Nat -» Nat, or: Nat χ Nat -> Nat 
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axioms 
add(zeroX) x, add(succ(x),y) -* succ(add(x,y)), 
or(x,y) x, or(x,y) -» y 
some -» zero, some succ(some) 

end 

The algebra A from example 1.2 now is a model of NAT. () 

1.2.2 The Calculus of Term Rewriting 

As already indicated above, the axioms of a nondeterministic specification shall 
be used for a calculus for the derivation of further properties, which hold within 
the model class of a specification. The tight relationship to the formalism of 
term rewriting wi l l lead to a situation, where this calculus can be seen as an 
operational interpretation of the specification as well. 

The well-founded theory of term rewriting (see [Huet, Oppen 80]) offers an 
"oriented" analogon to equational logic (see also [Meseguer 92]). The 
orientation of the rules admits a much more efficient way to carry out deductions 
in comparison to equational logic. This is the reason why term rewriting forms 
the basis for most of the software tools available for equational specifications 
now (e. g. OBJ, ASSPEGIQUE, AXIS, OBSCURE, RAP). 

The classical theory of term rewriting also assumes a finite set R of inclusion 
rules, but as an additional restriction for all axioms <tl-» t2> Ε R it is required 
that the variable condition holds: 

Vars[t l ]2Vars[t2] . 

This requirement can be omitted in our approach, since it aims mainly at the 
notion of confluence, a condition which is always violated by non-trivial 
nondeterministic specifications (if considered as a system of rewrite rules). See 
below for a formal definition of confluence. 

The term rewriting relation — > R (for a given axiom set R) is a binary relation 
between terms of the same sort: 

t l ->R t2 *>def 
3 u Ε Occ[ t l ] , σ Ε SUBST(Z, X) , <1 -* r> Ε R: 

t l / u = σΐ Λ t2 = t l [u <- or] 
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The symbol - * R * means the reflexive-transitive closure of - * R . 

This notion exactly describes the "oriented" generalization of the relation = £ 

known from equational logic. 

The theory of term rewriting becomes useful for equational logic by means of 
the property of confluence: 

A term rewriting system R is called confluent i f f 
V t l , t2, t3: ( t l - * R * t2 Λ t l - ^ R * t3 ) 

=> 3 t4: ( t 2 - ^ R * t4 Λ t3 - > R * t4 ) . 
In words, the result of every rewriting sequence has to be determined 
independently of the actual choice of the rewriting steps. 

The theorem below connects equational logic with term rewriting: 

Confluence Theorem: 
I f R is confluent, then: 

t l = R * t2 o ( 3 t3: t l - ^ R * t3 Λ t2 - * R * t3 ) 

It is obvious that in the case of nondeterminism the confluence condition wi l l 
not hold: Here we are interested explicitly in deriving several different results for 
a given term. 

Below we wi l l try to circumvent the confluence theorem. We aim at a result 
similar to Birkhoffs theorem for general, non-confluent term rewriting. Ideally 
we would try to prove: 

t l - * R * t2 <*> M o d ( R ) 1= ( t l t2 ) 

The proposition above does not hold in general, but it holds under specific 
preconditions which wi l l be explained later. The driving idea of this and the next 
chapter wi l l be to isolate particular circumstances under which a usable variant 
of this proposition does hold. 

First we wi l l give an alternative formulation of - * R * , then the =>-part of the 
proposition above (soundness) w i l l be studied, followed by the <=-part 
(completeness). This development cycle wi l l be repeated three times until a 
sufficient solution is reached. 
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The term rewriting relation can be represented also by a calculus which 
can be used to derive formulas of the shape t l -> t2 from the given set of 
inclusion rules. This form of description (which is used consequently for 
instance in [Padawitz 88]) is easier to handle within proofs. 

Definition 1.13 (Calculus of Term Rewriting) 

Let Τ = (Σ, R) be a nondeterministic algebraic specification. Then a 
formula t l -> t2 is called deducible in T, written as 

Τ l-RC t l t2, 
i f f there is a formal derivation for t l -» t2 using the following 
deduction rules: 

(REFL) 
t - * t i f t e w ( z , x ) 

(TRANS) t l t2 , t2 -* t3 

t l t3 i f t l , t 2 , t 3 Ε λΥ(Σ,Χ) 

(CONG) t] -> t i ' 

f ( t i , t i - i , t i , t i + i , . . . , t n ) f ( t i , . . . . t i - i . t i ' . t i + i , t n ) 

i f [f: si χ ... χ s n —> s] Ε F, 
tj Ε W ( I , X ) s j where j Ε { 1 , . . . , η} , t i ' Ε W(Z, X ) s i 

(AXIOM) 
σΐ - * or i f <l->r> Ε R , σ Ε SUBST^, Χ) 

( i . e . o : X — W ( Z , X ) ) φ 

The notation I - R C (rewriting calculus) has been used in order to distinguish the 
calculus from similar calculi which wi l l be introduced below. In the following, 
sometimes R I - R C is written which is meant as a synonym for Τ I - R C (T = 
( Σ ^ ) a specification). I f it is clear from the context which specification is 
meant, the notation is further simplified by omitting Τ or R, respectively. (The 
same notational convention wi l l be applied for all other calculi introduced 
below.) 
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1.2.3 Soundness: A Negative Result 

When a logical calculus is analysed, the most important (and therefore first) 
question is whether it is sound with respect to the underlying semantics. 
Soundness means that the calculus allows us only to derive statements which are 
semantically valid. 

It is this question which already leads into problems for the calculus above. But 
the difficulties appearing here are well-known from the semantics of 
nondeterministic programming languages. In [Bauer, Wössner 81], for instance, 
the following example is mentioned. 

Let a function declaration (in a classical algorithmic language) be given 
funct double = (nat n)nat: η + η 

which computes for a natural number the double of its numerical value. 

It is now interesting to consider a call of this function with a nondeterministic 
expression as its argument, e. g. 

double(zero_or_one) 
where zero_or_one means the nondeterministic choice between the values 0 and 
1. Basically, two points of view can be thought of, which are known as "call-
time-choice" and "run-time-choice" ([Hennessy 80], [Benson79]). 

"Call-time-choice" assumes that the function gets only deterministic objects, and 
not nondeterministic expressions, as its arguments. The call above therefore is 
equivalent to one of the both calls 

double(O) or double(l) , 
thus the possible results are described by the set { 0,2 } . 

"Run-time-choice", however, treats the call as equivalent to 
zero_or_one + zero_or_one, 

which is similar to the "copy rule" of ALGOL 60: The nondeterministic 
expression is copied into the function body. Now the values out of { 0, 1 , 2 } 
are admissible results. The value 1 is legal, since both "copies" of zero_or_one 
may choose the result value independently one of the other. 

The semantics introduced in the sections 1.1 and 1.2 correspond to call-time-
choice. Unfortunately, the term rewriting calculus corresponds to run-time-
choice (copy rule), as it can be seen from the following example: 
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Example 1.14 

spec DOUBLE 
sort Nat 
func zero: -* Nat, succ: Nat -» Nat, 

add: Nat χ Nat Nat, double: Nat -* Nat, 
zero_or_one: -> Nat 

axioms 
add(zero,x) - » x , 
add(succ(x),y) succ(add(x,y)), 
double(x) -* add(x,x), 
zero_or_one -» zero, 
zero_or_one -> succ(zero) 

end 

A model of DOUBLE is e. g. the algebra Ν below: 

N a t N = N , 

zeroN = { 0 } , succN(n) = { n+1 } , 
addN(n,m) = { n+m } , doubleN(n) = { 2n } , 
zero_or_oneN = { 0 , 1 } 

A derivation within the term rewriting calculus is: 

(1) I-RC zero_or_one -»zero (AXIOM) 
(2) I-RC zero_or_one -> succ(zero) (AXIOM) 
( ? ) I-RC add(zero_or_one,zero_or_one) -> add(zero,zero_or_pne) 

(CONG),(l) 
(4) l-RC add(zero,zero_or_pne) add(zero,succ(zero)) 

(CONG), (2) 
(5) I-RC add(zero_or_one,zero_or_pne) -> add(zero,succ(zero)) 

(TRANS), (3), (4) 
(6) I-RC add(zero,succ(zero)) -> succ(zero) (AXIOM) 
0) I-RC add(zero_or_one,zero_or_one) -» succ(zero) 

(TRANS), (5), (6) 
(8) I-RC double(zero_or_one) add(zero_or_one,zero_or_one) 

(AXIOM) 
(9) I - R C double(zero_or_one) -» succ(zero) (TRANS), (7), (8) 
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But in Ν the following inclusion does not hold: 
double(zero_or_one) succ(zero) 

(since I^[double(zero_or_one)] = { 0 , 2 } ) . φ 

The example shows that (AXIOM) does not treat the inclusion rule 
double(x) -*> add(x^c) 

in a sound way, because both "copies" of the term which is substituted for χ 
(zero_or_one in the example), can be evaluated independently. 

It must be decided now whether the semantic concepts from above (in particular 
the interpretation of a term) should be revised, or whether the calculus should be 
modified. There are good reasons why the given semantical framework has been 
chosen. The basic assumption that a variable always stands for a single value 
comes from the intention to model a somehow "realistic" scenario for 
nondeterministic computation, where only single data items are transmitted 
between computational units. Therefore the deductions have to to be adapted to 
the semantic framework. 

It is an interesting observation that the soundness problem does not appear in 
[Meseguer 92]. There the semantics are adjusted in such a way that the rewriting 
calculus RC is sound and complete. This excludes models like Ν above, but it 
contradicts to our basic paradigm that a function gets only single values as its 
input, and therefore variables always stand for single values. To put it simply, 
[Meseguer 92] uses a "run-time-choice" strategy, in difference to the "call-time-
choice" which is preferred here. 

There are various possibilities to refine the calculus in such a way that it 
becomes sound with respect to the multi-algebra semantics studied here. 
Basically, two approaches are most promising: 

(1) The rewriting calculus can be changed in such a way that it truly reflects a 
"call-time-choice" strategy. For this purpose there must be some 
syntactical possibility to recognize whether a term is determinate, that is 
whether it is always interpreted by a singleton set. 

(2) The application of an axiom can be adapted in such a way that it keeps the 
information about which term is a physical copy of another one. This is a 
step towards rewriting on graph-like structures. 
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Both approaches will be worked out in more detail in later chapters (approach (1) 
in chapter 2, approach (2) in chapter 5, section 5.2). Another example is very 
helpful for deciding which way to go for the adaptation of the calculus now. 

Example 1.15 

The algebra NN below is another model of the specification DOUBLE 
defined in the preceding example 1.14: 

zero_or_oneN N = { 0 , 1 , 2 } 

The model NN shows that even the most simple application of the 
axiom for double is unsound. In NN we have: 

( N N 1= double(zero) -> zero), 
since 

This example shows that there is a rather general problem in treating inclusion 
rules with multiple variable occurrences on the right hand side. In fact it even 
shows that the expressivity of the specification language is still too low, since 
intuitively we would expect the inclusion double(zero) -> zero to hold in all 
models of DOUBLE. But this expectation implicitly uses the assumption that 
zero is a deterministic function, which is not the case in this counterexample. 

Considering approach (2), it does not suffice to extend the term rewriting 
calculus by a notion of rewriting on terms with sharing of subterms. We use the 
notation 

let χ = zero in add(x,x) 
to denote a term which contains two shared occurrences of the subterm zero. It is 
not difficult to extend the interpretation to such terms with sharing in a way 
which ensures that both copies of the shared term (zero) always are evaluated to 
the same elementary value. So the interpretation of the let-term from above in 

N a t N N = N 
z e r o N N = { 0 , l } , 
add^Cn^m) = { n+m } , 

succ N N (n) = { n+1 } , 
d o u b l e 1 ^ ) = { 2n } , 

iNNfdoubleizero)] = { 0 , 2 } , I ^ z e r o ] = { 0 , 1 } . 

So any calculus which allows us to deduce 
double(zero) zero 

is not sound. 
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NN is intended to be { 0 , 2 } . The calculus can be extended in such a way that it 
allows us to derive the inclusions 

I- double(zero) let χ = zero in add(x,x) 
I- add(zero,zero) -» zero. 

However, the inclusion let χ = zero in add(x,x) -> add(zero,zero) again does not 
hold in NN (the first term has the interpretation { 0 , 2 } , the second one means 
{0 , 1, 2}.) So also a sound graph-rewriting calculus should not admit the 
application of the add-rule to the term containing the shared subterm zero. 
Unfortunately, standard graph rewriting, as it is defined for instance in 
[Barendregt et al. 87], would perfectly admit the application of the add-rule. See 
chapter 5 (section 5.2) for a re-examination of this idea in a more detailed 
framework. 

However, approach (2) can be dealt with nicely within the new framework of 
[Walicki 92/93]. This work leads to a richer syntax, where deductions are made 
in a context consisting of variable bindings. We use here the notation "xEt" to 
express that χ is bound to some value out of the interpretation of term t; and 
implication to prefix an inclusion with such a binding context. From this 
notation, it should be obvious how the semantics can be extended. Within such 
a calculus, we can derive the formula 

χ Ε zero => double(x) -> add(x,x), 
which is the most refined statement about double(zero) which can be deduced 
soundly. However, this approach uses the deduction of conditional statements 
which is a significant step beyond standard (and even conditional) term-rewriting. 

The next chapter addresses an extension of the specification language following 
the approach number (1). On a first reading, it is recommended to skip directly 
to this chapter 2 from here. The section 1.2.4, which follows immediately 
below, just studies an interesting special case for which classical term rewriting 
is sound and complete. Unfortunately, this special case excludes almost all 
realistic software specifications, so it is interesting only from the theoretical 
point of view. 

1.2.4 Right-Linearity: A Special Case 

It is quite obvious that all the difficulties discussed in the section above came 
from axioms which contained multiple occurrences of a variable within their 
right hand sides. The idea of this section is to exclude such multiple occurrences 
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syntactically. I t turns out that for this special case a general soundness and 
completeness result holds. 

A term which contains exactly one occurrence for every one of its variables is 
called linear. The next definition carries this definition over to systems of 
inclusion rules. 

Defini t ion 1.16 (Linear i ty) 

A term t Ε W(Z, X) is called linear iff there are no multiple occurrences 
of a variable within it, i . e.: 

V xEX: V u l , u2E0cc(t): (t/ul = χ) Λ (t/u2 = x) => (ul = u2). 

An inclusion rule <1 -> r> is called right-linear i ff the term r is linear. 
A set R of inclusion rules is called right-linear iff all axioms in in R 
are right-linear. () 

The following theorem shows that a restriction to right-linearity entails 
soundness of classical term rewriting under nondeterministic interpretations. 

Theorem 1.17 (Soundness) 

Let Τ = (Σ , R) be a nondeterministic algebraic specification where R is 
right-linear. Then for t l , t2 Ε W ( I , X) holds: 

Τ I-RC t l t2 => Mod(T) 1= t l -* t2 . 

Proof: 
The proof of soundness is done by induction on the (length of the) 
derivation. When in this proof the deduction rule (AXIOM) is 
considered, the condition of right-linearity is necessary for the 
application of the following lemma: 
Lemma 1.17.1 
Let A Ε Mod(T), β Ε ENV(X, Α), σ Ε SUBST(I, X) . 
Then for t Ε W ( I , X) holds: (*) 

Iß [at] • {e Ε I ^ [ t ] I γ Ε ENV(X, Α) Λ Vx Ε Vars[t]: γχ Ε Iß [σχ]} 

I f t is linear, within the proposition (*) set equality holds. 

The proof of lemma 1.17.1 is given in appendix A. 
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In order to prove also the completeness of term rewriting, a term model is 
constructed now, similar to classical equational logic. However, the construction 
follows the idea of an ideal completion (confer [Möller 82]) instead of forming a 
quotient of the set of terms. 

Definition 1.18 (Term Algebra W Z / R ) 

For a given signature Σ and a set of axioms R, a Σ-Algebra λΥΣ/R is 
constructed by: 

s W 2 / R = WCS, S) s for s G S 
f W I / R ( t l f . . . . t n ) = { tGWff, X) I R I-RC f ( t i , . · . , t n ) -> t } 

for f E F . 

s WZ/R^0 holds, i f for all sorts there is at least one variable. According 
to (REFL) then f W 2 / R ( t i , . . . , t„) * 0 . 0 

Theorem 1.19 

Let Τ = (Σ, R) be a specification where 1 Ε X for all <1 -> r> Ε R. 
Then WΣ/R is a model of T. 

Proof: See appendix A. 0 

Example 1.20 

Within the term model WΣ/DOUBLE for example 1.14 we have: 

I W ^ D O U B L E r d o u b l e ( z e r o _ o r _ o n e ) ] = 

{ double(zero_or_one), add(zero_or_one,zero_or_one), 
add(zero_or_one, zero), add(zero,zero_or_one), 
add(zero,succ(zero)), add(succ(zero),zero), 
add(succ(zero),succ(zero)), succ(add(zero,zero)), 
succ(add(zero ̂ ucc(zero))), succ(succ(add(zero ,zero))), 
succ(succ(zero)), succ(zero), zero } , 

I w ^ O U B L E [ s u c c ( z e r o ) ] = { succ(zero) } , 
i.e.: WΣ/DOUBLE1= double(zero_or_one) -* succ(zero) 0 
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A small example may illustrate why the precondition 
l g X für <1 r> Ε R 

is necessary to ensure that the term model in fact is a model of the specification. 

Example 1.21 

spec LD 
sort s 
func a: -> s, b: -» s 
axioms 

χ -> a 
end 

The algebra WZ/LD is not a model of LD, as can easily be seen. Let β 
be an environment assigning a term to the variable x. Then according 
to definition 1.5: 

Iß Μ = { ßx }· 

I f the environment β is specialized to assign the term b to the variable 
x, this means: 

Iß W = { ß } S { a } = I ß [a], 

so the single inclusion rule of LD does not hold in WZ/LD. () 

Example 1.21 also illustrates that the condition " l ^ X " (which is sometimes 
called lefi-definiteness) is a necessary prerequisite for completeness. Without it 
completeness is lost. 

Example 1.22 

Consider again the specification LD from example 1.21. 

The axiom χ -*· a forces the interpretation of a and b to be equal 
within all models of LD : 
Let A be a model of LD , eD Ε I A [ b ] . 
Using the environment ß(x) = eD, the axiom has to hold, thus: 

{ e b } 3 I A [ a ] . 
This means (because of I A [a]*0): 

e b £ I A [ a ] . 
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Therefore holds: 
I A [ a ] 2 I A [ b ] . 

Thus: Mod(LD) 1= a -> b, although this inclusion is not deducible. () 

With the appropriate preconditions, however, there is a completeness result. 
Please remember that this completeness does only make sense for right-linear 
specifications, because this is the case for which the soundness of the term 
rewriting calculus RC has been proven. 

Theorem 1.23 (Completeness) 

Let Τ = (Σ, R) be a nondeterministic algebraic specification where \0i 
holds for all <1 -> r> Ε R. Then for t l , t2 Ε W ( I , X) holds: 

Mod(T) 1= t l t2 => Τ I - R C t l t2. 

Proof: 
Completeness follows from the existence of the term model WΣ/R. 
(For the lemma 1.19.1, see appendix A.) 

Mod(T) 1= t l t2 (Thm. 1.16) 
WΣ/R1= t l -* t2 => (Defn. 1.8) 

I W S / R [ t l ] 2 j ^ / R [ t 2 ] ^ (Lemma 1.19.1) 

{ 11 R I - R C t l -> t } • { 11 R l - R C t2 -> t } => 
(since I-12 -* t2) 

R I-RC t l — t2 0 

Unfortunately, the restriction to right-linear specifications is too strong to be 
acceptable for a practical specification technique. For instance, the standard 
description for the multiplication of natural numbers already contains non-right-
linear inclusion rules. Example 1.14 above also shows that even quite "natural" 
specifications violate the right-linearity condition. Chapter 2 therefore discusses 
ways for the construction of a more general calculus which still remains very 
similar to term rewriting. 



Chapter 2 

Specifications 
Deterministic 

with a 
Basis 

The conclusions from chapter 1 are: 
(1) Classical term rewriting is unsound for nondeterministic specifications. 
(2) I f the axioms are restricted to right-linear inclusion rules, classical term 

rewriting is sound and complete, however this restriction is not satisfactory 
for practical applications. 

Moreover, chapter 1 gave indications that the specification language of inclusion 
rules itself is too simple to designate an appropriate model class. In particular, it 
does not provide any way to express that some term is deterministic, this is that 
it must always be interpreted by a single value. 

In this chapter, the language is extended by a particular kind of formulae which 
state explicitly for a term that it must have a one-element interpretation. This 
restricted language admits a sound calculus, which is very close to classical term 
rewriting. Under reasonable preconditions, also completeness can be shown. 

The essential idea for the refinement is to designate a "basis" part of a 
specification which is called deterministic, because it must always be interpreted 
determinately. 
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2.1 Deterministic Basis 
As good starting point for the development of a sound calculus, example 2.1 
recalls examples 1.14 und 1.15, which showed that term rewriting is not sound 
in general. 

Example 2.1 

The algebra NN below was defined in example 1.15: 

zero_or_oneN N = { 0 , 1 , 2 } 

The model NN fulfils the axioms from example 1.14: 
add(zero,x) x> 
add(succ(x),y) -> succ(add(x,y)), 
double(x) -> add(x,x), 
zero_or_one -> zero, 
zero_or_one -> succ(zero), 

but not the inclusions listed below (which are nevertheless deducible by 
term rewriting): 

double(zero_or_one) -* add(zero_or_one,zero_or_one), 
double(zero) -* add(zero ,zero). φ 

Obviously, the "mistake" comes from the application of the non-right-linear 
rule. However, with an intuitive idea of the specification in mind, one would 
expect that at least the inclusion 
(*) double(zero) -» add(zero,zero) 
does hold in all models. This intutitive interpretation always assumes the well-
known symbol "zero" to be interpreted as the singleton set { 0 } . Here the model 
semantics contradicts intuition. 

The other inclusion 
(**) double(zero_or_one) add(zero_or_one,zero_or_one) 
is not an intuitive consequence of the axioms (since "zero_or_one" is obviously 
a nondeterministic function symbol). Here the deduction semantics given by 
term rewriting is counterintuitive. 

NatNN = N 
z e r o N N = { 0 , l } , 
addNN(n,m) = { n+m } , 

succ N N (n) = { n+1 } , 
double N N(n) = { 2 n } , 
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To capture this idea, the fact must be formalized that zero is a deterministic 
operation for all models. This leads to an exclusion of the "non-standard" model 
NN (where zero is interpreted by a choice between two values). The calculus 
then must be adapted in such a way that it admits the deduction of (*), but not 
of (**). 

2.1.1 Soundness and Deterministic Basis 

The specification language has to be enriched by a means to state whether the 
result of a function application is determinate or not. So the specification gains 
a deterministic basis part, enriched by possibly nondeterministic extensions. 
This concept coincides with the basic design decision for our theory which 
studies nondeterministic functions working on a set of (deterministic) objects. 
The deterministic basis corresponds to a specification of our basic objects. 
Therefore, also the term rewriting calculus has to be adapted to respect the 
decision that variables range only over single values. So only deterministic 
terms can be substituted for a variable. 

A first approach in the direction of a deterministic base could be to designate a 
subset of the operation symbols as the "basic operations". This idea is sufficient 
for many applications (and wi l l be studied below in more detail), however it is a 
special case of a simpler approach. The idea is generally to fix a subset D of the 
terms which are "deterministic terms". I f all terms in D are interpreted as 
singleton sets, we have a compatibility property with the inclusion rules: 

I f tED and Τ 1= t -* t ' , then t 'ED . 

The terms contained in D can be marked by writing down an axiom 
DET(t) (read: "t is deterministic"). 

Then the compatibility property can be made into a deduction rule for such 
formulas. The set D then is described indirectly by 

D = { t E W ( I , Χ) I Τ I- DET(t)}. 

There is a close analogy between this idea and the extension of algebraic 
specifications to partial functions as it is explained in ([Broy,Wirsing82]) 
using a definedness predicate. Interested readers can find more detailed material 
on this topic in chapter 6. 
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2.1.2 Determinacy Predicate 

The following definition just formalizes the concepts which were explained 
above informally. 

Definition 2.2 (DET-Axiom, Validity) 

Α(Σ,Χ-) DET-axiom is a term, which is denoted as a formula using 
the so-called determinacy predicate or DET-predicate : 

DET(t) 
where tEW(Z,X). 

A DET-axiom <DET(t)> is valid in a Σ-Algebra A (A 1= DET(t)) i f f 
for all valuations ßEENV(X, A) the interpretation is determinate: 

I Iß W 1=1. 

The notions "algebraic specification" and "model" from now on are 
meant to admit DET-axioms within the axiom set, too. 0 

Example 2.3 

Let the specification DOUBLE from example 1.14 be extended to a new 
specification DOUBLE' which contains the following additional 
axioms: 

DET(zero), DET(succ(x)) 

The algebra Ν from example 1.14 is a model of DOUBLE', too. 

NN from example 1.15 is not a model of DOUBLE', since 

I I N N [ z e r o ] I = I { 0 , 1 } I = 2. 
Moreover, in Ν the following formulae hold (which are not axioms): 

Ν1= DET(add(x,y)) Ν1= DET(double(x)) φ 
The term rewriting calculus now is extended by deduction rules for DET-axioms. 
The deduction rule (AXIOM) is modified, in order to ensure soundness: Variables 
now can be instantiated only with such terms which are proven to be 
deterministic. 
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The calculus defined below is the most frequently used calculus in this text. 
Therefore deductions within this calculus are written without a special index, in 
difference to deductions within all other calculi (like I-RC). 

Definition 2.4 (Term Rewriting with D E T ) 

Let Τ = (Σ, R) be a nondeterministic algebraic specification (with DET-
axioms). A formula <tl -> t2> or <DET(t)>, respectively, is deducible 
in T, written symbolically: 

Τ !- t l - * t2 or Τ I- DET(t), respectively, 
iff there is a deduction for the formula using the following deduction 
rules: 

(REFL) i f t e W ( Z , X ) 

(TRANS) t l t2, t2 - * t3 
i f t l , t 2 , t 3 6 W ( Z , X ) 

t l -> t3 

(CONG) 

f ( t i , . . . , t i _ i , t i , t i + i , t n ) f ( t i , . . . , t j . i , t j \ t i + i , . . . , t n ) 

i f [f: si χ ... χ s n -> s] Ε F, 
tjGWCS,X) s j where J E { 1 , n } , t i ' E W f f , X ) s i 

(AXIOM-1) DET(axi) , . . . ,DET(ax n ) 

σΐ -» or 

i f <1 r> Ε R, σ Ε S U B S ^ , X) , 
{ x i , . . . , x n } = Vars(l)UVars(r) 

(AXIOM-2) DET(axi ) , . . . , DET(ax n ) 

DET(crt) 

i f <DET(t)> Ε R, σ Ε S U B S ^ , X) , 
{ x i , . . . , x n } = V a r s ( t ) 
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(DET-X) i f x G X 
DET(x) 

(DET-D) D E T ( t l ) , t l t2 
i f t l , t 2 G W ( I , X ) 

DET(t2) 

(DET-R) D E T ( t l ) , t l — t2 
if t l , t2 e W(Z, X) 

t2 — t l 0 

Example 2.5 

Examples for deductions in the specification DOUBLE' of example 2.3: 

DOUBLE' I- double(zero) zero : 

(1) I- DET(zero) (AXIOM-2) 
(2) I- double(zero) -> add(zero^ero) (AXIOM-1), (1) 
(3) I- add(zero,zero) zero (AXIOM-1), (1) 
(4) I- double(zero) zero (TRANS), (2), (3) 

DOUBLE' I- double(zero_or_one) -> succ(succ(zero)): 

(1) l-DET(zero) (AXIOM-2) 
(2) I-DET(succ(zero)) (AXIOM-2), (1) 
(3) I- add(succ(zero),succ(zero)) -> succ(add(zero,succ(zero))) 

(AXIOM-l) ,( l) , (2) 
(4) I- add(zero ,succ(zero)) -» succ(zero) (AXIOM-1), (2) 
(5) I- succ(add(zero,succ(zero))) -> succ(succ(zero)) 

(CONG), (4) 
(6) I- add(succ(zero),succ(zero)) succ(succ(zero)) (TRANS), (3), (5) 
(7) I- double(succ(zero)) add(succ(zero),succ(zero)) 

(AXIOM-l),(2) 
(8) I- double(succ(zero)) succ(succ(zero)) (TRANS), (7), (6) 
(9) I- zero_or_one succ(zero) (AXIOM-1) 
(10) I- double(zero_or_one) -> double(succ(zero)) (CONG), (9) 
(11) I- double(zero_or_one) succ(succ(zero)) (TRANS), (10), (8) 
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The "wrong" deduction from example 1.14 is not allowed here: 
^(DOUBLE' I- double(zero_or_one) succ(zero)) φ 

Theorem 2.6 (Soundness) 

Let Τ = (Σ, R) be a nondeterministic algebraic specification on a 
deterministic basis. Then for t, t l , t2 e W ( I , X): 

Τ I - t l t2 => Mod(T) 1= t l t2 
Τ I- DET(t) => Mod(T) 1= DET(t) 

Proof: By induction on the derivation, see appendix Α. φ 

The calculus above is slightly more restricted than it was necessary for 
soundness: The premises of deduction rule (AXIOM-1) are needed only for 
variables which have multiple occurrences in the right hand side of the axiom. 
This is a simple consequence of theorem 1.19. Therefore, the following 
deduction rule is sound, too: 

(AXIOM-1-RLIN) DET(axi ) , . . . ,DET(ax n ) 

σΐ -> or 

i f <1 -* r> Ε R, σ e SUBSTff, X) , 
{ χ ] , . . . ,Xn) = { xEVars[r] I 3 u l , u2EOcc[r]: ul*u2 Λ r/ul=x Λ r/u2=x } 

The results given below can be obtained also using the calculus of definition 
2.4, which is simpler in its structure. This is one reason why the calculus of 
definition 2.4 is preferred within this manuscript. The other reason is that there 
is no significant gain in completeness i f the more complex rule (AXIOM-1-
RLIN) is used. The next section studies completeness issues in more detail. 

2.1.3 Completeness: A Negative Result 

It is the obvious next question whether the calulus introduced above in 
Definition 2.4 is complete in some sense. Unfortunately, there exist 
counterexamples which demonstrate the incompleteness of the calculus. 
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For a restricted specification language (right-linear rules), in chapter 1 a 
completeness proof was given (theorem 1.23). However, the proof technique 
used there cannot be applied in the same way to specifications on a deterministic 
basis. I f the deduction rule (AXIOM-1) is used to prove the validity of the 
axioms within a term model, then the carrier set of the term model contains 
provably deterministic terms. On the other hand, i f we want to derive from 
Mod(T) 1= t l -> t2 a proof of the formula t l - * t 2 within the calculus, then the 
interpretation of the term t l (within the term model) must contain the term t2 
itself. This means, this idea leads at most to a proof for the following property: 
(*) V t l , t 2 G W ( I , X ) : 

Mod(T) 1= t l t2 Λ Τ I- DET(t2) => Τ I- t l - * t2. 
This property (*) is called weak completeness below. 

Weak completeness still is an interesting result i f looked at from the 
programmer's viewpoint. It states that for every pair of terms, denoting a 
nondeterministic expression and a value, the calculus provides a satisfactory 
method to check whether the value is a possible outcome of the nondeterministic 
expression within all models. Unfortunately, the following counterexample 
shows that even weak completeness does not hold in general. 

Example 2.7 

Consider the following nondeterministic specification INC: 

spec INC 
sort s 
func a: -> s, b: -» s, 

f: s -> s, 
h: s χ s -» s, 

g: s, 
k: s -» s 

axioms 
DET(a), 
f(g) -> a, 
g - b , 

DET(b), 
f ( a ) ^ b , 
h(x,a) -» a, 

f ( b ) - b , 
h(x,b) b, 

k (x ) -h (x , f (x ) ) 
end 

We show now that 
INC 1= k(g) - a, 

i.e. that this inclusion holds in every model of the specification INC. 
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Let A be a model of INC. Then the interpretations of the terms a and b 
must be singleton sets; therefore we use the convention I A [ a ] = { a } , 
I A [ b ] = { b } . 
The axiom 

f ( g ) - a 
means that 

I A [ f (g)] = { eGfA(e') I e'G g A } D { a } . 
Therefore there is an element e()Eg A such that aEfA(eo). Using this 
element eo, the 
following chain of inclusions holds: 

I A [ k ( g ) ] 
• k^ieo) (since eoEgA, and because of Defn. 1.5) 
• hA(eo,fA(eo)) (axiom <k(x) -> h(x,f(x))>) 
• hA(eo,a) (because of aEfA(eo)) 
• { a } (axiom <h(x,a) a>). 

Using deductions within the calculus of Definition 2.4, this inclusion 
cannot be proven. The only way to reduce a term starting with a "k" is 
by applying the axiom <k(x) -* h(x,f(x))>. This axiom can be applied 
only, i f a provably deterministic term is substituted for the variable χ 
(for soundness reasons). The only provably deterministic terms are a 
and b, therefore we can deduce: 

INC I- k(a) h(a,f(a)), INC I- k(b) -* h(b,f(b)). 
Only the second one of these inclusions can be connected with the term 
k(g) by the axiom <g -> b>. Using (TRANS), we have: 

INC l-k(g)-*h(b,f(b)). 
Unfortunately, the only way to reduce the right hand side of this 
inclusion further is by deducing: 

INC I- k(g) -* b (axiom <h(x,b) b>). 
There is no way to reach the term a by such a deduction: 

^ ( I N C I - k ( g ) - a ) . 0 

The example 2.7 does not only show that the calculus is incomplete; it even 
shows that weak completeness does not hold. This follows simply from the fact 
that the inclusion used to demonstrate the incompleteness had a deterministic 
term on its right hand side. This example works as a counterexample also for 
another popular way of weakening the notion of completeness: the so-called 
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ground completeness, where attention is restricted to inclusions between ground 
terms. (The terms k(g) and a used in the example are ground.) 

Another interesting observation is that a relaxation of the calculus as indicated 
above, using the rule (AXIOM-1-RLIN), does not avoid the completeness 
problem. In this modified calculus it is also forbidden to instantiate the variable 
χ in <k(x) -» h(x,f(x))> to the term g. 

At this point, again a decision must be made where to attack the deficiencies 
which were exposed by the example. There are two options: to change the 
calculus again or to restrict the syntactic form of the axioms (but not as severely 
as to right-linearity). 

A closer inspection of the example above gives some hints how to decide. The 
problem in the example comes from the fact that the semantic argumentation 
mainly relies on the axiom 

f(g) -> a, 
which cannot be used in the deduction (since the term f(g) cannot be generated). 
Generally, this axiom has a somewhat spurious meaning. The following 
argumentation (which sloppily mixes syntax and semantics) tries to isolate the 
problem: The axiom says something about the meaning of f applied to g, but it 
does not explain the consequences for both single functions f and g. The only 
property of g directly stated in the axioms is 

g - b , 
but this value of b for g apparently does not lead to a value of a for f(g) (since 
f(b) seems only to have the value b). Even i f g had additionally the value of a, 
nothing would change here. So the axioms implicitly contain the assumption 
that there is another "third" basic object, let us call it c. This element c is 
distinct from a and b, c is a value of g and f applied to c delivers the value of a. 
This complex argumentation obviously does not fit into the simple framework 
of a rewriting-like calculus. 

The framework of [Walicki 92/93] showed recently, how the semantic arguments 
can be transferred into a calculus. The main idea there is to introduce a "binding 
context" for variables. So the sentence "There is an element e( )Eg A such that 
aEfA(eo)" from the proof above is formalized as a deduction rule (binding 
introduction) which can derive the formula 

χ Ε g => f(x) a. 
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The variable χ in this formula still denotes a single value; the Ε-s ign and the 
implication are to be interpreted with their usual mathematical semantics. Based 
on this formula, the other axioms can be applied leading to 

χ Ε g => k(x) -> a. 
A final deduction (binding elimination) now can remove the binding, since the 
bound variable occurs only once within the term: 

k(g) - a. 
In [Walicki 92/93], soundness and completeness of this more complex calculus 
is shown. This paper also contains a detailed comparison with our work. For the 
purposes of the text at hands, however, we wil l concentrate on rewriting-oriented 
and tool-supported calculi like the one from definition 2.4. In order to achieve 
completeness for this kind of calculi, we have to exclude the anomalies shown 
by example 2.7. 

In the next sections we wil l restrict the axioms syntactically in such a way that 
the calculus directly can handle it. This does not necessarily mean to exclude 
axioms like <f(g) -> a>, where a nondeterministic function is applied to another 
one within the left hand side. But the restriction wil l ensure that such an axiom 
is consistent with some other deduction which shows how the computation can 
be led applying only functions to deterministic terms. 

From a methodical point of view, it is important to state that specifications like 
INC above are not simply "bad". Such a specification must be seen as a rather 
abstract and sketchy formulation which just does not fix all details how the 
functions work together. The restrictions defined in the next section describe a 
smaller class of specifications which is suitable for a term rewriting style of 
deduction. This can be seen as a step from abstract specification towards 
programming. 

2.2 Additive Specifications 
This section shows how the specification language can be adapted more closely 
to the needs of a deterministic basis, such that a completeness result for the 
calculus from above holds. 
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It is a good starting point for this section to think about the way how a general 
term model for a specification with a deterministic basis can be constructed. 
From the idea underlying the notion of a deterministic basis, it is obvious that 
the carrier sets of such a term model must be formed by provably deterministic 
terms. The natural interpretation for a given nondeterministic term then is the 
set of all deterministic terms it can be reduced to. In order to ensure the well-
definedness of such a model, two properties must be fulfilled: 
• For every nondeterministic term there must be a deterministic term it can 

be reduced to. This ensures that the interpretation of every term is a 
nonempty set. This property is called DET-completeness below. 

• The effect which was present in the example 2.7 from above must be 
avoided. This property is called DET-additivity below. 

2.2.1 DET-Completeness and DET-Additivity 

The first and rather simple condition for the construction of a term model is 
DET-completeness. Formally, it means: 

Vt :3 t ' : T l - t - ^ t ' Λ Τ I- DET(t'). 

DET-completeness is very similar to the so-called sufficient completeness 
known from the classical theory of algebraic specifications [Guttag 75]. This 
similarity helps to make precise the ranges of the quantifiers which have been 
omitted in the formula above. It is reasonable to restrict the range for t and t' to 
ground terms. Otherwise, for every term containing variables (like add(x,y)) there 
must be a deterministic term it can be reduced to! This would definitely be a too 
strong restriction for practical specifications. At this point, it becomes obvious 
that the term model wi l l be constructed also from ground deterministic terms 
only, and therefore wi l l only help to ensure ground completeness. 

Please note that due to the similarity of the notions, the existing methods for 
testing sufficient completeness can be carried over for testing DET-
completeness, too (see also sections 2.4 and 4.4.1). 

Definition 2.8 (DET-Completeness) 

A specification Τ = (Σ, R) over a deterministic basis is called DET-
complete i ff 

VtGW(Z): 3 t ' e W ( I ) : Τ I-1 -> t ' Λ Τ I- DET(t'). 0 
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The second, more complex notion to be defined is DET-additivity. It is 

understood best by looking again at the problematic axiom from example 2.7: 

f(g) -» a. 

This is an inclusion which is deducible (since it is an axiom), but which is not 
consistent with the inclusions holding in a term model. Within a term model D 
constructed from deterministic terms, the interpretation of f(g) is defined 
additively: 

I D [ f ( g ) ] = { t e f D ( t ' ) l t ' Q D [ g ] } . 

Using the axioms of specification I N C , and the convention that a term is 
interpreted by the deterministic terms it can be reduced to, the interpretation of g 
must be: 

I D [ g ] = { b } . 
Again, using the axioms of I N C , it is not possible to reduce the term f(b) to a. 
So the deterministic term a wil l not be contained within f^(b), and also not in 

i D [ f ( g ) ] . 

This means that the axiom <f(g) a> states a non-additive property, which 
cannot be derived by first looking at the interpretation of the arguments and then 
at the operation applied to them. The property which is necessary for an additive 
axiom system is, for this example: 

3 t: I- DET(t) Λ I - g -* t Λ I- f(t) a. 
Obviously, I N C does not fulfil this property. A generalization to terms with 
arbitrary many arguments gives the formal definition of DET-additivity. 

Definition 2.9 (DET-Additivity) 

A specification Τ = (Σ JR) over a deterministic basis is called DET-
additive iff 

V[f: si χ ... χ s n -> s] Ε F: 
v t i e w ( i ) s l , . . . , t n e w ( Z ) S n , t e w © s : 

T l - f ( t i , . . . , t n ) - t Λ TI-DET(t) 
3 t i ' E W f f ) s l , . . . , t n ' E W £ ) S n : 

T l - f ( t i \ . . . , t n ' ) - t Λ 

Τ I- ti - * t i ' Λ ... Λ Τ I- t n - » t n ' Λ 

Τ I- DET(ti') Λ ... Λ Τ I- DET(tn') 0 
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DET-additivity means that the term rewriting relation is an additive extension of 
rewriting on deterministic terms. In other words, the specification must be 
equivalent to a set R ' of inclusion axioms 

f ( t i ' , . . . , t n ' ) - > t ' 
where t i t n ' , t' are deterministic terms. 

Example 2.10 
The specification INC from example 2.7 is DET-complete, but not 
DET-additive. It can be made DET-additive by adding the axiom 

f(b) - a. 
There are many other ways to achieve DET-completeness, among them 
an extension of the signature by a new constant c: -> s, with the new 
axioms: 

DET(c), g - c , f ( c ) ^ a . 0 

In a more abstract view, the DET-additivity of a specification means that non­
determinism is specified in a local manner, that is as a number of alternatives for 
the behaviour of a single function. The specification INC, however, contains a 
kind of "global" nondeterminism which does not belong to either the function f 
or g (but to the collaboration of both). This sort of effect is called "non context-
free nondeterminism" in [Kaplan 88]. Similar to our approach, [Kaplan 88] 
excludes the unwanted form of nondeterminism by a restriction to so-called 
regular specifications. The main advantage of DET-additivity, as it is defined 
here, over regularity is that DET-additivity immediately ensures a kind of 
completeness for the rewriting calculus. In regular specifications, a particular 
kind of confluence is needed again for completeness of term rewriting. For the 
DET-additivity of a specification there is a rather simple criterion which can be 
used in many practical examples: 

Theorem 2.11 

I f a specification Τ = (Σ, R) fulfils the conditions A l and A2 below, 
then Τ is DET-additive: 

(Al ) For all axioms <1 -» r>ER, the term 1 does not consist of a 
single variable, i.e. 1 = f ( t i , . . . , t n ) . 
Moreover, for all i E { l , . . . , η}: Τ I - DET(ti). 
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(A2) For all deterministic terms t (i.e. Τ I- DET(t)), where t does 
not consist of a single variable (i.e. t = f ( t i , t n ) ) , the 
subterms must be deterministic again, i.e. for all i E { l , n}: 
Τ I- DET(ti). 

Proof: See appendix Α. φ 

The specification DOUBLE' from example 2.3 can be proven to be DET-
additive using theorem 2.11. Chapters 5 and 7 contain larger examples which 
show the practical application of the criterion. 

2.2.2 Term Models and Completeness 

Now the construction of the term model can be given in detail, which was the 
main motivation for introducing the notions of DET-completeness and DET-
additivity. The following notion is a preliminary for the model construction: 

Definition 2.12 (Induced Equivalence of Terms) 

A nondeterministic algebraic specification Τ = (Σ, R ) induces a relation 
» on W(Z) as follows 

t l - t2 <*>def Τ I- t l -> t2 Λ Τ I-12 -> t l 

(where t l , t 2 e W ( I ) ) . 

The deduction rules of the calculus (Definition 2.4) ensure that « is an 
equivalence relation as well as a congruence with respect to the term-
constructing operations, [t] denotes the equivalence class of the term t 
with respect to «. φ 

The construction of a term model now uses equivalence classes with respect to « 
as its carriers. 

Definition 2.13 (Term Model ΟΣ/R) 

Let Τ = (Σ, R ) be a DET-complete specification. The algebra ϋΣ/R is 
defined by: 

s D 2 / R = {[t] I t e W ( Z ) Λ Τ I- DET(t) } where sES 
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f D Z / R . W ( I ) s l / « χ . . . χ W(Z) S n/« - p + ( W ( I V « ) 

f D 2 / R ( [ t i ] , . . . , [ t n ] ) = 

{[t] I t e W ( I ) A T I - DET(t) Λ Τ I - f ( t i , . . . , t n ) - * t } 
where [f: si χ .. . χ s n -» s] Ε F. 

The DET-completeness ensures that f ^ ^ ^ ( [ t i ] , . . . , [ t n ] ) * 0 and 

g D Z / R ^ ( s i n c e £ j s presupposed to be sensible). The well-definedness 

of D I / R follows from the fact that » is a congruence. () 

This algebra corresponds well to the intuitive understanding of a nondeterminis­
tic specification. The algebra DI /DOUBLE' according to example 2.3, for 
instance, is isomorphic to the model Ν from example 1.14. However, the 
algebra D I / I N C according to example 2.7 is not a model of INC. In order to 
ensure that the term algebra really belongs to the model class, the property of 
DET-additivity is needed. 

Theorem 2.14 

Given a DET-complete und DET-additive specification Τ = (Σ, R), the 
algebra ΌΣ/R according to definition 2.13 is a model of T. 

Proof: See appendix Α. φ 

The main reason for the construction of the term model was to prove a 
completeness result. This result is formulated within the corollary below. The 
term model is needed also for another sort of results, which refer to initiality. 
For such results, see chapter 3. 

The kind of completeness which follows from the term model construction is 
restricted in two ways: 
• It refers only to inclusions between ground terms, since the term model 

uses ground terms for its carrier sets. (This is due to the fact that we did 
not want to impose a too strong version of the DET-completeness property 
on the specifications.) 

• It refers only to inclusions which have a deterministic term as their right 
hand side. This was called weak completeness above, and is a consequence 
of the fact that the model uses only deterministic terms for its carrier sets. 
(This is the price which has to be paid for the soundness of the calculus.) 
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Corollary 2.15 (Weak Ground Completeness) 

Let Τ = (Σ, R) be a DET-complete and DET-additive specification, 
AEMod(T). Then for t l , t2GW(I): 

Mod(T) 1= t l -* t2 Λ Τ I- DET(t2) => Τ I- t l -» t2 

Proof: 
Mod(T) 1= t l t2 

=> ΏΣ/R 1= t l -> t2 (Theorem 2.14) 
=> (V t ' : Τ I- DET(t') Λ Τ I-12 ^ t' => Τ I- t l t ' ) 

(Lemma 2.14.1, see appendix A) 
=> Τ I- t l t2 (because of Τ I- DET(t2), using (REFL)) φ 

The following counterexample illustrates the fact that only ground weak 
completeness has been achieved. It shows that in general ground completeness 
does not hold even for DET-complete and DET-additive specifications. 

Example 2.16 

spec GIC 
sort s 
func a: -> s, b: s, 

g: -> s, f: s -> s, h: s χ s -» s 
axioms 

DET(a), DET(b), 
g -> a, f(x) h(x,x), h(x,x) -* χ 

end 

For an arbitrary AEMod(IC), semantic arguments show that 
A l = f ( g ) - * g : 

e E g A 

where ß(x) = e (Definition 1.5) >eEIß[x] 

>eEIß[h(x^)] 

•eEIß[f(x)] 

>eE{kEf A ( l )HElp[x]} 

(because of h(x,x) ~* x) 

(because of f(x) -* h(x,x)) 

(Definition 1.5) 
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=>eefA(e) 

=^ee{kEfA(l)llGIß[g]} 

=>ea6f(g)] 

(Ax] = {e» 

(because of eEg A ) 

(Definition 1.5). 

But this inclusion is not deducible, since DET(g) is not deducible in 
IC. Even i f the calculus is extended by the deduction rule (AXIOM-1-
RLIN), the inclusion f(g) -* g cannot be deduced from the axioms of 

The next section aims at a situation where a true (non-weak) ground 
completeness result can be shown. This leads to a final refinement of the 
concepts, concerning the calculus as well as the model classes. 

This section concludes the investigation of completeness results by showing 
how the restriction to "weak" completeness can be removed. It is shown that 
this can be achieved by similar techniques as they are used for the treatment of 
term-generated models in the classical case. 

2.3.1 "Junk" in Nondeterministic Models 

The notion of "junk" is well known from the theory of equational specifications. 
There it is used to denote elelents within the carrier set of a model which are not 
an image of the interpretation of some term. Such elements cannot be 
constructed by the provided operations, and they cannot be controlled by 
deductions using terms over the given signature. However, propositions 
containing free variables always have a semantics where the variables also range 
over junk elements. It is widely accepted that a practically usable specification 
language has to concentrate on models which do not contain junk. In particular, 
for junk-free models it is sound to use an induction principle on the structure of 
terms, which is one of the most important proof techniques in the field of 

GIC. 0 

2.3 Junk-Free Models 
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program and data structure verification. The semantical investigations in this 
manuscript also aim at junk-free models. 

I t is an interesting observation that nondeterminism introduces a second source 
of junk besides the classical problem concerning the range of free variables. In 
nondeterministic specifications, there exists also a dimension which is called the 
breadth of a nondeterministic expression. The breadth is the range of possible 
outcomes for a nondeterministic computation. Some observations clearly 
indicate a similarity between "non-standard elements" in the classical junk 
priciple and "non-standard outcomes of a nondeterministic expression". As an 
illustration, the example 2.16 is revisited. 

Example 2.17 

In example 2.16, the following specification has been defined: 

spec GIC 
sort s 
func a: s, b: -> s, 

g: -> s, f: s -> s, h: s χ s -» s 
axioms 

DET(a), DET(b), 
g a, f(x) -> h(x,x), h(x,x) -* χ 

end 

The term model DI/GIC uses the following interpretation: 
I D 2 / R [ g ] = { [ a ] } , I D 2 / R [ a ] = { [ a ] } , 
I D 2 / R [ f ( g ) ] = { f D 2 / R ( a ) } = { [ a ] } . 

Therefore in DI/GIC the following inclusions are valid: 
ΌΣΙΚ 1= f(g) g, DZ/R 1= a -* g. 

A different model Μ of GIC is given by 
s M = { a , b } , a M = { a } , b M = { b } , g M = { a , b } , 
f M ( e ) = { e } , h M (el ,e2) = { e l } fo re ,e l , e2G {a,b } . 

The model Μ uses the following interpretation: 
I M [ g ] = { a , b } , I D 2 / R [ a ] = { a } , 

I M [ f ( g ) ] = { a , b } . 
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Therefore in Μ the inclusion <f(g) ~> g> is valid (M 1= f(g) -> g), 
but <a -> g> is not valid ( Μ 1= a -» g )). () 

From this example, some observations can be made: 

(a) Within the model DI /R , a number of inclusions (even ground inclusions) 
hold, which cannot be deduced by the calculus of Definition 2.4. As an 
example, consider the inclusion <f(g) g> which does hold in DZ/GIC, 
but which is not deducible. 

(b) Within the model DZ/R, a number of inclusions (even ground inclusions) 
hold, which do not hold in all models. As an example, consider the 
inclusion <a -* g> which does hold in DI /GIC, but not in M . 

(c) The phenomena described above appear only for inclusions the right hand 
side of which is not provably deterministic. (For other inclusions, 
Corollary 2.15 can be applied.) 

This situation is quite similar to the situation in classical equational logic where 
a ground term model can be constructed also (the so-called initial model). The 
analogy is obvious: 

(a') Within the initial model, some equations hold, which cannot be deduced by 
equational reasoning. These equations are called "inductive consequences". 

(b') Within the initial model, some equations hold, which do not hold in all 
models. This also refers to the "inductive consequences", which do hold 
only for the so-called term-generated (junk-free) models. 

(c') The phenomena described above appear only for equations which contain 
free variables (non-ground equations). 

Within nondeterministic specifications, both difficulties arise. The sort of 
difficulty described by (a) to (c) exists even for ground inclusions. This is due to 
unexpected elements in the breadth of a nondeterministic expression (like b in 
I ^ [ g ] ) - Obviously, the difficulty concerning non-ground inclusions (as in (a') to 
(c')) is present within nondeterministic specifications, independently of that. 
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In the following, the techniques known from the classical theory for the 
treatment of junk are carried over to treat the problem of junk in the 
nondeterministic breadth of a term (see (a) to (c) from above). For this purpose, 
(1) The calculus is extended to a kind of "inductive" calculus which describes 

exactly those inclusions which are valid in the term model DI /R; 
(2) The model class is restricted to junk-free models in such a way that the 

extended calculus is sound and model Μ from the example above is 
excluded. 

2.3.2 Breadth Induction 

Within the theory of equational specifications, there is a calculus for the 
deduction of so-called "inductive" consequences which are valid only for junk-free 
models. The basic idea of the calculus is to describe exactly the equalities within 
the initial model. Due to Gödel's results, such a calculus is either incomplete or 
it is different from a true formal system (since the theory of Peano arithmetics 
can be described by initial models). A rather well-known technique for such a 
calculus is the use of a semi-formal system. This means that deduction rules are 
used which have an infinite number of premises. For practical proofs, the 
infinite premise is covered by a kind of induction proofs (for instance on the 
term structure). Below an extension of the calculus from definition 2.4 is given 
which also contains semi-formal rules. 

Definition 2.18 (Breadth Induction Calculus) 

The calculus given by definition 2.4 is extended by the following semi-
formal rules: 

(IND-R) V tSW(Z): I - DET(t) Λ I- t2 -» t => I- t l t 

l-IND t l - t2 

if t l , t 2 G W(Z) 
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(IND-D) 
V t l , t2EW(I) : I-1 t l Λ I - DET(tl) Λ I-1 -* t2 Λ I - DET(t2) 

=> I - t l - * t2 

l-INDDET(t) 

iftEW(Z) 

The calculus is called "inductive", and its derivations are denoted using the 
symbol I-IND> since in many cases the premises of the rules can be proven only 
using an induction principle. This is the case as soon as the number of 
deterministic terms a given term can be reduced to is infinite (so-called 
unbounded nondeterminism). Please note that for specifications containing only 
bounded nondeterminism, the "inductive" calculus remains a formal system. 

The following theorem shows that breadth induction for ground inclusions 
exactly deduces the inclusions valid in the term model DZ/R. 

Theorem 2.19 (Correspondence with the Term Model) 

Let Τ = (Σ, R) be a DET-complete and DET-additive specification. 
Then for ground terms t, t l , t2 Ε W ( I ) : 

Τ 1-iND t l -> t2 <=> D I / R 1= t l -> t2 
TI-iNDDET(t) ο D I / R 1= DET(t) . 

Proof: 
ΌΣ/R \= t l - * t 2 

^ r D Z / R [ t l ] 3 i D I / R [ t 2 ] ( s i n c e D S / R m o d e i Q f T) 

^ V t E W ( I ) : l-DET(t) Λ I- t2-*t => I- t l — ( l e m m a 2.14.1) 

ο 1-iND t l -*t2 (rule aND-R)) 

ΌΣ/R 1= DET(t) 
I I D 2 / R [ t ] I = 1 (since ΌΣ/R model of T) 

ο I { [ f ] I I-t-»t* Λ I- DET(t') } I = 1 (lemma 2.14.1) 
ο V t l , t2EW(Z) : 

l - t ^ t l Λ l -DET(t l ) Λ l - t - * t 2 Λ l-DET(t2) => I - t l -» t2 
<=> 1-iND DET(t) (rule (IND-D)) 0 
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The example below shows a case where induction is used for proving the 
premise of a semi-formal rule: 

Example 2.20 

spec I N A T 
sort Nat 
func zero: -» Nat, succ: Nat -» Nat, 

double: Nat -> Nat, some: Nat 
ax ioms 

DET(zero), DET(succ(x)), 
double(zero) -> zero, 
double(succ(x)) -» succ(succ(double(x))) 
some -> zero, 
some -> succ(some) 

end 

We want to prove: MGen(T) 1= some -» double(some). For this 
purpose, it can be proven (using structural induction) that for an 
arbitrary ground term tGW(I) fulfilling I- DET(t): 

I- some -» t 

t = zero: 

(1) I- some -* zero 

t = succ(tl): 

(1) I- some -* t l 
(2) I- succ(some) succ(tl) 
(3) I- some -» succ(some) 
(4) I- some -> succ(tl) 

Therefore: 
V tEW(I ) : I- double(some) 
and, using (IND-R): 

1-IND some double(some). 

(AXIOM-1) 

(Induction hypothesis) 
(CONG) 
(AXIOM-1) 
(TRANS), (3), (2) 

t Λ l-DET(t) => l-some-*t 

The calculus achieved so far is sound only for the standard term model, but it is 
not sound for arbitrary models, as can be seen from example 2.17. Breadth 
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induction allows us to deduce the formula GIC 1-IND DET(g), which does not 
hold in the model M . The next section excludes Μ as a model containing 
(breadth-)junk. 

2.3.4 DET-Generated Models 

In this section, a characterization for a class of models is given which obey a no-
junk principle for the breadth of a nondeterministic term. This characterization 
mainly says that every possible deterministic outcome of a nondeterministic 
term must be due to a deduction within the specification. This leads to a 
formulation which may look a bit strange from the logical point of view, 
because it somehow mixes semantic and syntactic arguments. In section 3, a 
purely semantical characterization of junk-free models for nondeterministic 
specifications wil l be given. 

Definition 2.21 (Term-Generation, DET-Generation) 

A Σ-multi-algebra A is called term-generated, iff for all s Ε S: 
V e Ε s A : 3 t Ε W ( I ) S : I A [ t ] = { e } 

Gen(Z) denotes the class of the term-generated Σ-multi-algebras. The 
class of all term-generated models of a specification Τ is called Gen(T). 

Let Τ = (Σ, R) be a nondeterministic specification. A model A Ε 
Mod(T) is called DET-generated, iff for all s Ε S: 

V t G W ( I ) s : V e E I A [ t ] : 
3 t ' G W ( I ) s : T I - t - M ' Λ TI -DET( t ' ) Λ I A [ t ' ] = { e } . 

The class of all DET-generated models of Τ is called DMod(T). 0 

Example 2.22 

By definition, the model ΌΣ/R for any DET-complete and DET-additive 
specification is DET-generated. 

The model Μ from example 2.17 is not DET-generated, since b e i M [ g ] , 
but this cannot be motivated by a deduction: -> (GIC I- g -» b ) . φ 
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The following theorem shows that the DET-generated models are exactly those 
models for which the extended calculus is sound and correct. 

Theorem 2.23 

Let Τ = (Σ, R) be a DET-complete and DET-additive specification. 
Then for t , t l , t 2 G W ( Z ) : 

ΌΣ/R \= t l — t2 <=> DMod(T) 1= t l t2, 
ΌΣ/R 1= DET(t) <*> DMod(T) 1= DET(t). 

Proof: 
The "<="-direction follows from ΌΣ/R Ε DModT). 
The first line of the "=>"-direction can be seen as follows. Let A Ε 
DMod(T). 

e Ε I A [ t 2 ] 
=> 3 t ': I-12 t' Λ I- DET(t') Λ I A [ t ' ] = { e } (A Ε DMod(T)) 
= > t ' G I D I / R [ t 2 ] (Lemma 2.14.1) 
=> t ' E iDS/Rft γ ] ( D 2 / R E Mod(T)) 
= > l - t l — t ' Λ l-DET(t') Λ I A [ t ' ] = { e } (Lemma 2.14.1) 
= > e E I A [ t l ] (Theorem 2.6) 
Therefore, A 1= t l -> t2. Analoguous arguments apply for DET(t). () 

As already indicated, ground soundness and completeness now follows as a 
simple combination of the two last theorems. 

Corollary 2.24 (Ground Soundness and Completeness) 

Let Τ = (Σ, R) be a DET-complete and DET-additive specification. 

Then for ground terms t, t l , t2 Ε W(2, X): 
Τ 1-iND t l - M 2 ο DMod(T) 1= t l t2, 
Τ 1-iND DET(t) <̂> DMod(T) != DET(t). 

Proof: Combination of theorems 2.19 and 2.23. 6 

2.3.5 Term-Generated Models 

Before proceeding further, let us summarize what has been achieved so far: 
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• Weak Ground Soundness and Completeness (Corollary 2.15) for the 
calculus from defintion 2.4 and the class of all models; 

• General Ground Soundness and Completeness (Corollary 2.24) for the 
calculus from definition 2.18 and the class of DET-generated models. 

These results deal with the first source of junk (breadth-junk) in nondeterministic 
algebras. However, the standard model ΌΣ/R is term-generated, too, and so is 
junk-free also with respect to the scond source. As an illustration, consider the 
following example: 

Example 2.25 

spec NTG 
sort s 
func a: s, b: s, f: s -> s 

A model J for this specification is given by: 
ŝ  = { a, b, c } , 
fJ(a) = { a } , f J ( b ) = {a} , f J (c ) = { c } . 

This model J is DET-generated but not term-generated. 
The inclusion 

f ( x ) - a 
does hold in ϋΣ/NTG and in all term-generated models, but not within 
the model J (which contains the junk element c). φ 

This example demonstrates clearly what the model class is which coincides best 
with the standard model D I / R . It is the class of term-generated and DET-
generated models. 

Def in i t ion 2.26 
Let Τ = (Σ, R) be a nondeterministic specification. The class of all 
DET-generated and term-generated models of Τ is called DGen(T). (} 

axioms 
DET(a), 
f(a) - a, 

DET(b), 
f ( b ) - a 

end 

One important observation is that the ground completeness results from above 
easily are carried over to the model class DGen(T). 
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Corol lary 2.27 (Ground Completeness) 

Let Τ = (Σ, R) be a DET-complete and DET-additive specification. 

Then for ground terms t, t l , t2 Ε W(Z, X): 
DGen(T) 1= t l t2 => Τ I - I N D t l t2, 
DGen(T) 1= DET(t) => Τ I - I N D DET(t) . 

Proof: Consequence of the fact that ΌΣ/R Ε DGen(T) and theorem 2.19. 0 

Another slightly more general result shows that within the model ΌΣ/R exactly 
those non-ground inclusions hold which hold in the class DGen(T). But please 
note that we did not give a calculus for generally deducing the non-ground 
inclusions which hold in DZ/R. Such deductions may involve structural 
induction. 

Theorem 2.28 

Let Τ = (Σ, R) be a DET-complete and DET-additive specification. 

Then for t , t l , t 2 G W ( I , X ) : 
ΌΣ/R 1= t l - * t2 <=> DGen(T) 1= t l -> t2, 
ΌΣ/R 1= DET(t) DGen(T) 1= DET(t). 

Proof : 
The "<="-direction follows from ΌΣ/R Ε DGen(T). 

For the "^"-direction, let β be a valuation in A Ε DGen(T). Since A is 
term-generated and Τ is DET-complete, there is a substitution σ Ε 
SUBST(Z) where: β(χ) = Ι Α [ σ χ ] and I-DET(ax) for χ E X . 

Then Iß [ t ] = I A [ o t ] for t Ε W ( I , X) , hence: 

e Ε Iß [t2] => e Ε I A [ ö t 2 ] = » e G I A [ a t l ] (as in theorem 2.23) 

= > e G l £ [ t l ] . 

Therefore, A 1= t l —> t2. Analoguous arguments apply for DET(t). () 
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In some sense, with the class DGen(T) now a satisfactory semantics for 
nondeterministic specifications has been reached. The models of this class 
coincide in their important properties with the "standard" model άΣ/R. We have a 
simple weakly ground-complete calculus as well as a more complex ground-
complete calculus available. 

Therefore we turn now to the question, how the developed framework can be 
compared and integrated with other existing formalisms. This leads to several 
blocks of material which may be of varying interest for various readers. Only for 
readers which are interested in semantic considerations and generalizations of the 
field of algebraic specifications it is recommended just to follow the thread of the 
text. For readers interested in deduction- and programming-oriented aspects it 
may be a good idea to move on directly to chapter 4. 

The following short section 2.4 gives a sketch how modularization techniques, 
as they have been developed in the field of algebraic specificaions, can be 
integrated with the nondeterministic framework. 

Chapter 3 then presents a number of results on the model-theoretic semantics of 
nondeterministic specifications. These results are connected with the material 
from above mainly by two aspects: 

• It is shown that the term model D I / R is an initial model within the class 
DGen(T). This can be seen as an additional argument showing that the 
"right" design decisions have been made. 

• A more semantical characterization for the class DGen(T) is given, which 
avoids the "mixture" between syntactic and semantic notions used in 
definition 2.21. 

Chapter 4 covers more general aspects by comparing nondeterministic 
specifications with common concepts like equational logic and logic 
programming. 
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2.4 Hierarchical Specifications 
I f a specification language is applied practically for the description of a larger 
system, means for structuring the whole text become very important. It is an 
advantage of algebraic specifications that there are criteria available which 
distinguish "good" modularizations. A "good" modular structure means here a 
structure where parts can be easily exchanged or refined without affecting other 
parts of the system. [Wirsing et al. 83] gives a detailed study of so-called 
hierarchical algebraic specifications. Below a short sketch is given, how the 
most important definitions and results concerning hierarchies can be transferred 
to the nondeterministic case. 

Definition 2.29 (Hierarchical Specification) 

A nondeterministic algebraic specification Τ = (Σ , R) is called 
hierarchical, iff a subspecification TO of Τ (i.e. TO = (Σ0, RO), Σ0ΟΣ, 
ROCR) is designated, which is called the primitive part of T. 
A model A Ε DGen(T) is called hierarchical, iff the ΣΟ-reduct of A is in 
DGen(T0). 

The specification Τ is called 
• hierarchy-preserving, iff every model of A is hierarchical, 
• hierarchy-faithful, iff every model AOEDGen(TO) can be extended 

to a model AEDGen(T) such that the ΣΟ-reduct of A is AO. 
• hierarchy-persistent, i f f Τ is both hierarchy-preserving and 

hierarchy-faithful. 0 

As a syntactical representation of hierarchical specifications, we use a notation 
which is similar to [CIP85]. I f the body of a specification contains a statement 
of the form 

basedon P\, P n , 
the union of P i , . . . , P n is meant to be the primitive part TO of Τ. 

The hierarchy-persistency of a specification in practice means that the primitive 
part and the non-primitive part can be developed independently, therefore it 
constitutes an important modularity condition. However, in order to check these 
conditions, we need more syntactical formulations. The following definition 
transfers the modularity conditions to the level of deductions. 
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Definition 2.30 (Hierarchy Conditions) 

A hierarchical specification Τ = (Σ, R) over a deterministic basis 
containing the primitive part TO = (Σ0, R0), Σ0 = (SO, F0) is called 
sufficiently complete, iff: 
V t G W ( Z ) s : 

Τ I- DET(t) Λ sESO => 3 t ' G W ( I 0 ) : Τ I-1 f . 
Τ is called hierarchy-consistent (sometimes also called hier ere hy-
conservative), iff: 
V t , t ' e W ( I 0 ) : 

Τ I-1 - * t' Λ Τ I- DET(t') => TO I-1 - Μ ' Λ TO I- DET(t').<> 

The following theorem shows (in analogy to a similar result in [Wirsing et al. 
83] that these deductive properties ensure the semantic condition of hierarchy-
persistency. 

Theorem 2.31 

Let Τ = (Σ, R) be a hierarchical specification over a deterministic 
basis containing the primitive part TO = (Σ0, RO), Σ0 = (SO, FO). 
I f Τ is sufficiently complete and hierarchy-consistent, then Τ is 
hierarchy-preserving. 

Proof: 
As a first step, we show that Τ is hierarchy-preserving. Let 
AEDGen(T). It is obvious that the ΣΟ-reduct of A also fulfils the 
axioms, so we have to show that the reduct is term- and DET-generated. 
For any element eEsOA of a primitive carrier set (sOESO), there is a 
term tEW(Z) such that I A [ t ] = { e } (term generation of A) . Because of 
the DET-generation of A, there is also a t ' G W ( I ) such that Τ I -
DET(t'), Τ I-1 —> t ' , and I A [ t ' ] = { e } . The sufficient completeness of 
Τ gives a term f ' E W ^ O ) such that Τ I- t ' - » t " ; obviously also Τ I -
DET(t") and I A [ t " ] = { e } . So term-generation of the reduct holds. 
Using (TRANS), we also have Τ I- t -> t " and Τ I - DET(t") , so by 
hierarchy-consistency of Τ also TO I- t - * t " and TO I- DET(t") , i.e. 
DET-generation holds, too. 0 

It is an interesting observation that this result needs a slightly stronger 
precondition than the corresponding proposition 4 of [Wirsing et al. 83]. 
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Sufficient completeness alone ensures only the term-generation of the reduct, for 
DET-generation also the hierarchy-consistency is needed. In the classical case, 
only term-generation is considered, therefore sufficient completeness alone 
suffices for the corresponding theorem. 

Theorem 2.32 

Let Τ = (Σ, R) be a DET-additive and DET-complete hierarchical 
specification over a deterministic basis containing the primitive part TO 
= ( I0 ,R0) ,Z0 = (S0,Fö). 
I f Τ is sufficiently complete and hierarchy-consistent, then Τ is 
hierarchy-faithful. 

Proof : 
Let AOEDGen(TO). We construct the model A extending AO 
analoguously to the construction ΌΣ/R. The carrier sets of the model A 
consist of a mixture between terms and values in the carriers of AO, 
replacing every primitive term by its value in AO. Formally, for a term 
teW(I) with Τ I- DET(t), we call this mixed term t A 0 , defined by: 

t A 0 e ? where I A [ t ] = { e } (e is unique, since Τ I- DET(t)); 
t A 0 =def f(t 1 · · , t n ) A iff t = f ( t i A 0 , . . , t n

A O ) £ W £ 0 ) . 
The hierarchy-consistency ensures that Τ I- DET(t) ο TO I - DET(t) for 
tEW^O) , so Τ is "additive" with respect also to the deterministic Σ0-
terms, and we can use the construction used for ϋΣ/R, giving a model 
A such that (for tGW(Z)): 

I A [ t ] = { [ t , A 0 ] I t 'EW(I ) Λ Τ I-1 V Λ Τ I- DET(t') } . 
Consider now a term tOEW^O). In this case, for every tO 'EW^) with 
Τ I- DET(tO'), sufficient completeness of Τ gives us a tO"eW(Z0) such 
that Τ I - DET(tO") and tO* « tO". Therefore I A [ t O ] = { [ t O ' A O ] I 
tO'eW(ZO) Λ Τ I- tO -* tO' Λ Τ I- DET(tO') } = { [ t O ' A O ] I tO'EW^O) 
Λ TO I- tO -* tO' Λ TO I - DET(tO') } (because of hierarchy-consistency). 
According to the definiton of t O ' A O , this means that I A [ tO] C I A O [ t O ] . 
The reverse inclusion I A [ tO] 2 I A O [ t O ] is a consequence of the DET-
generation of AO. 0 

In section 4.4, a class of specifications wi l l be defined, for which sufficient 
completeness and hierarchy-consistency can be checked by rather simple 
syntactical criteria. 
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The last result of this section illustrates to which extent the preconditions of 
theorem 2.32 already determine the admitted models of a given specification. In 
fact, there is only one model (up to isomorphism), as long as the non-primitive 
part does not introduce any new sorts ("functional enrichment"). 

Theorem 2.33 

Assume the preconditions of theorem 2.32, where Τ does not introduce 
new sorts, i.e. S = SO. 
Let AOEDGen(TO) be given, and let A ' be an arbitrary model such that 
the ΣΟ-reduct of A ' is AO. 
Then A ' is isomorphic to the model A constructed in the proof of 
theorem 2.32. 

Proof: 
Since S = SO, the reduct-condition means that the carrier sets of A ' and 
AO are identical. We show first that also in the carrier sets of A 
(according to theorem 2.32) only values from AO appear. 
For an arbitrary term t E W ^ ) , we have 

I A [ t ] = { [ t ' A 0 ] I t 'EWff) Λ Τ I-1 -> t' Λ Τ I- DET(t') } . 
Since S = SO, the term t is of primitive sort, and so is t ' . Therefore, 
sufficient completeness gives for any t' a term tO'EW^O) such that t' 
« tO'. Since t O , A O E I A O [ t O ' ] , I A [ t ] contains only values from the 
carriers of AO. 
It remains to show that the identity mapping is a homomorphism with 
respect to the operations in Σ\Σ0. This follows from the chain of 
equivalences 

eEf A (ej , . . . ,en) (e, ei in the carriers of AO) 
^ eEI A [ f ( t i , . . . , t n ) ] 
(with appropriate tj Ε W^0)such that I A [ t i ] = {e j} , due to term-
generation). 
Due to DET-generation, we can assume Τ I - DET(tj), and due to 
sufficient completeness (and S = SO) also t i E W ^ O ) . Equivalences 
continued: 
ο 5 t 'GW(I) : Τ I- f ( t i , . . . , t n ) V Λ Τ I- DET(t') Λ I A [ t ' ] = { e } 
Again we can assume t 'EW^O), so e = t ' A ^ . Equivalences continued: 
<*> eEf A ' (ei , . . . ,e n ) 
(definition of the extension A' as in theorem 2.32.) () 



Chapter 3 

Structure of the 
Model Classes 

This chapter is dedicated to a study of results concerning the relationship 
between various models of a nondeterministic specification. In particular, the 
notion of a Σ-homomorphism for multi-algebras is dealt with in the following 
sections. 

The significance of this whole theoretical approach using homomorphisms and 
extremal models (initial and terminal ones) is estimated very differently by 
various researchers. It is obvious that any serious generalization of the classical 
notions of algebraic specifications has to address this topic, and this is the 
motivation for this chapter. However, readers may skip this whole chapter, i f 
they are not interested in the material presented here. 

In this chapter, the notion of a homomorphism for multi-algebras is defined. 
The presence of nondeterminism leads to the introduction of two different 
notions of homomorphism, which are used both in the theory of extremal 
models. 

In a first pass, the general theory of multi-algebras is revisited from the 
structural point of view. A counterexample shows that in the general model 
class from above, an initial model does not always exist. A terminal model, 
however, can be constructed for every specification. 

In a second pass, extremal models for specifications over a deterministic basis 
are investigated. It is shown that the term model DZ/R, which was defined in the 
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last chapter, is initial in some sense. A semantical characterization for the model 
class DGen(T) from the last chapter is given, and it is shown that the term 
model is initial within this model class in another, stronger sense. 

3.1 Homomorphisms and Extremal 
Algebras 
In order to compare two multi-algebras, the central notion is that of a 
homomorphism. A homomorphism can be established between two multi-
algebras A and B, i f Β can be seen as an abstraction of A. An algebra Β is here 
called an abstraction of A, i f the structure of Β can be completely described by 
the structure of A, where elements of the carriers of A are identified, possibly. 

Definition 3.1 (Σ-Homomorphism) 

Let Σ = (S, F) be a signature, Α, Β Ε M A l g ( I ) . A (tight) Σ-
homomorphism φ from A to Β is a family of mappings 

Ψ = (<Ps)sES> 9s- s A -> & + ( s B ) , 
which fulfils the following condition: 

For all [f: si χ ... χ s n -» s] Ε F and all e i E s i A , e n E s n

A : 
{e* E c p s ( e ) l e E f A ( e i , . . . , e n ) } 

= { e ' G f B ( e i ' , . . . , e n ' ) I e i ' E q> s l(ei),.. . , e n ' Ε cp S n(e n) } 

φ is called a loose Σ-homomorphism, i f the following, less restrictive, 
condition holds: 

{ e ' E c p s ( e ) l e E f A ( e i , . . . , e n ) } 
C { e ' E f B ( e i \ . . . ,e n ' ) I e f E q p s l ( e i ) , e n ' Ε cp S n(e n) } 

φ is called element-valued, iff for all s Ε S : V e Ε s A: lqp(e)I = 1. 0 

The notion of a homomorphism, as it is defined above, is a bit more general 
than the definitions found in the literature. Homomorphisms for multi-algebras 
have been defined already in [Pickert 50] and later in [Pickett67], [Hansoul83], 
[Nipkow86] and [Hesselink88]. These papers always consider only element-
valued homomorphisms instead of the set-valued definition from above. The 
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definition above contains the element-valued homomorphism as a special case. 
The main reason why the generalization has been chosen is that it subsumes the 
interpretation of a term as a special case of a homomorphism. This question wi l l 
be studied in more detail below. 

A l l the definitions in literature contain a distinction between loose and tight 
homomorphisms. Unfortunately, the names vary from paper to paper. Loose 
homomorphisms enable sensible results, as it is shown below. A dual 
generalization (using " • " instead of "C") does not make any sense, since such a 
"homomorphism" can be always established between two arbitrary Σ-multi-
algebras. (Simply choose cps(e) = s B .) 

Below a few examples for simple homomorphisms are given. 

Example 3.2 

Let AEMAlg(Z), WZ the algebra of ground terms according to example 
1.3. Then the interpretation mapping I A 

l A : W I A, i f : W ( I ) S - p + ( s A ) 

is a tight Σ-homomorphism: 

{ e G I A [ t ] l t G f W 2 ( t i , . . . , t n ) } 
= { e e i A [ t ] l t e { f ( t i , . . . , t n ) } } 

= I A [ f ( t i , . . . , tn ) ] (Example 1.3) 
= {e e f A ( e i , . . . ,en) I q G I A [ t j ] } (Definition 1.5) 0 

Example 3.3 

Let AGMAlg(Z). The mapping id = ( i d s ) s e s 
i d s : s A -*· s A , id s(e) = { e } für eGsA 

is a tight Σ-homomorphism: 

{ e ' G i d ( e ) l e e f A ( e i , . . . , e n ) } 
= f A (ei , . . . ,e n ) 
= { e ' G f A ( e i e n ' ) I ei 'Gid(ei)} 0 
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Theorem 3.4 

Let A , B , C G MAlg(Z) and φ\: A B, cp2: Β -* C tight Σ -

homomorphisms. 

Then φ2*Φ1' A C is a tight Σ-homomorphism, again. 

An analoguous result holds for loose Σ-homomorphisms. 

Proof: 
{k e (<p2'<Pl)(e) I e G f A ( e i , . . . ,e n)} 

= {k G φ2(1) 11 G cpi(e) Λ e G f\e\..,en)} (Definition <p2'<Pl) 
= {k G φ 2(1) 11 G f B ( l i , . . . , l n ) Λ Ii G cpi(ei)} 

(φΐ is a homomorphism) 
= {k G fC(k i , . . . ,k n ) I ki G φ200 Λ Ii G <pi(q)} 

(φ2 is a homomoφhism) 
= {k G f ° (k i , . . . , k n ) I kj G (cp2*<Pl)(ei)} (Definition qp2*qpl) 
Analoguously for loose homomoφhisms. 0 

Within the model class of a given specification, the most extreme models are of 
particular interest. These are the maximally refined and the maximally abstract 
model which are admitted by the specification. 

Definition 3.5 (Initial and Terminal Algebra) 

Let Κ be a class of Σ-algebras. An algebra IGK is called (tightly) initial 
in K , i f f for every algebra AG Κ there exists exactly one Σ -
homomorphism from I to A. TGK is called terminal, iff for every AGK 
there exists at least one (tight) element-valued Σ-homomorphism from 
A to T. 
A is called loosely initial, i ff the definition of initiality is fulfilled, 
where tight homomorphisms are replaced by loose ones. φ 

The definition of terminality above uses only element-valued homomorphisms; 
therefore it is consistent with the notions in the literature. For most of the 
initiality results, which are given below, it turns out that also only element-
valued homomorphisms are involved. 

Exactly like in the deterministic case, a rather trivial terminal algebra can be 
constructed easily: 
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Def in i t ion 3.6 

For a given signature Σ = (S, F), let an algebra ΖΣ be defined by 
s Z 2 = { s } for sGS 
f Z 2 ( s i , . . , s n ) = { s } for[f : si χ ... χ s n s] Ε F 0 

Theorem 3.7 

ΖΣ is terminal in Mod(T) for a given specification Τ = (Σ, R). 

P roof : 
By induction on the term structure of t for an arbitrary valuation β in 
ΖΣ the following fact can be shown: 

7Σ 

VtGW(Z) s : Iß [t] = { s } . 

Therefore, for an axiom < 1 - > D G R , where 1 and r are of the same sort: 

ΐ β Σ [ ΐ ] = { 8 } = ΐ β Σ Μ . 

This means that ZΣEMod(T). 

For AEMod(T) the mapping 

φ: A ΖΣ, cps(e) = { s } fur eEs A 

is a tight Σ-homomorphism: 
{ e ' E 9 s ( e ) l e E f A ( e i , . . . , e n ) } = { s } 
{ e ' E f Z 2 ( e l , . . . , e n ) l e i ' E 9 S i ( e i ) } φ 

The fact that there is a unique (up to isomorphism) terminal algebra is due to the 
definition of terminality which refers to element-valued homomorphisms only. 
I f the notion of a terminal algebra was formulated with abitrary (set-valued) 
homomorphisms, an infinite number of non-isomorphic terminal models would 
be admitted. For a similar reason, "loosely terminal" models are not studied here. 

The algebra \ΥΣ of ground terms (from example 1.3) can be shown to be initial 
within all multi-algebras of a given signature, as in the classical case. This is 
only possible since the notion of non-element-valued homomorphisms has been 
introduced here. 
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Theorem 3.8 

ΨΣ is tightly initial in M A l g ( I ) . 

Proof : 
The existence of a homomorphism φ: λ¥Σ -> A can be shown 
analoguously to example 1.22, its uniqueness can be shown by 
induction on the term structure, like in [ADJ 78]. () 

3.2 Initial Models 
The result above was about initiality in the general class of all algebras of a 
given signature. This section now addresses the question of initiality within the 
class of all models of a nondeterministic specification. In a first approach, the 
general notion of a nondeterministic specification is presupposed, as it was used 
in chapter 1. Please note that this means in some sense a step backwards 
compared with the material of chapter 2! In order to keep this exposition as short 
as possible, we restrict ourselves here to the simplest case of ground 
specifications, where the axioms do not contain free variables. Despite of this 
restriction, it can be shown that also in general initial algebras do not exist. 

For this result, the notion of a term-generated model, as it was defined in 
definition 2.21, is needed again. A model A of a specification is called term-
generated, i f for every object e in the algebra there is a ground term t which 
describes the object: I ^ [ t ] = { e } . 

Theorem 3.9 

Let Τ = (Σ, R) be a ground nondeterministic specification. 
I f a multi-algebra CEMod(T) is loosely initial in Mod(T), then C is 
term-generated (i.e. CEGen^)). 

Proof : 
For a ground specification T, it is easy to construct a ground term 
model W which fulfils for every ground term tEW(Z): 

I W [ t ] = { t ' E W ( ^ I T I - R C t - t ' } 
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(The details of this construction are as in theorem 1.19, but for ground 
terms only.) 
Since C is loosely initial, there is a homomorphism ψ from C to the 
ground term model W. 
The interpretation 1 -̂ of ground terms gives a homomorphism from the 
algebra W to the algebra C. This is due to the fact that the rewriting 
calculus is sound for ground specifications (theorem 1.17), which 
means that 

{e Ε I c [ t ] I Τ I - R C f ( t i , . . . , t n ) - t } C l C [ f ( t l . . , t n ) ] . 
Now Ι^-'ψ: C-*C is a homomorphism from C to C (theorem 3.4) 
According to example 3.3, another homomorphism from C to C is 
given by the identity (id). Initiality means that the homomorphism 
from C to C is unique, therefore for a given eEs^ holds 

( I c ^ ) ( e ) = {e} , i.e. {e' Ε I c [ t ] 1 1 Ε ψ(χ)} C {e}. 
This means I ^ [ t ] = { e } for all tEi|)(e). Since ψ(β) * 0 , there is a 
tEW(I ) such that I c [ t ] = {e} . 0 

The following example is used for the demonstration that in Mod(T) loosely 
initial algebras do not always exist. 

Example 3.10 

spec ΝI 
sort s 
func a: -> s, b: s, 

g: -» s, f: s -> s 
axioms 

g - * a , f (a ) -*b , 
f ( b ) - a , f ( g ) - a 

end 

Two non-isomorphic models A and Β for NI are defined by: 

s A = s

B = { a , b } , 

aA = a B = { a } , b A = b B = { b } , 
g A = { a } , g B = { a , b } , 
f A (a) = { a , b } , f B(a) = { b } , 
f A (b) = { a } , f B (b) = { a } . 
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The specification N I is similar to INC from example 2.7 (which was used as a 
counterexample for general incompleteness of rewriting). It has been chosen in 
such a way that in all models the inclusion 

f ( g ) - a 
has to hold. But it is in no way clear whether this is a restriction which applies 
to the functions f or g. In the first case, a more precise axiom is 

f ( a ) - a 
the latter case can be described also by 

g - b . 
The models A and Β realise these both choices. These choices cannot be both 
represented within a (term-generated) initial model. 

Theorem 3.11 

Let Τ = (Σ, R) be a nondeterministic specification. 
In general, in Mod(T) loosely initial multi-algebras do not exist. 

Proof : 
Consider the class Mod(NI) of all models of N I , as it was defined in 
example 3.10, together with the two models A and B. Without loss of 
generality, let a * b for the elements of the carrier sets of A and B. 
Let C be a loosely initial algebra in this class. Initiality means that 
there are homomorphisms 

qpA' C A and φ β : C B. 
From the homomorphism condition for φΑ, applied to the functions a 
and b, the following propositions follow: 
(1) 9 A ( e ) = { a } foralleEaC, qpß(e) = { a } foralleEa^ 
(2) q>A(e) = { b } fo ra l l eEb C , cpß(e) = { b } f o r a l l e E b c 

From the homomorphism condition for φ A and function g follows: 
(3) {^cpA(e ) l eEgC}CgA = { a } 

Let eDEbC. Assume that eDEgC; then from (3) and (2) follows { b } 

C { a } , which contradicts to a * b. Therefore: 
(4) V eEb c : e £ g c 

Let eaEaC- From the homomorphism condition for φ β and function f 

follows: 

(5) {e'Eq)ß(e) I eEf^ea)} C { e 'Ef^ei ) I eiEqpB(ea) } 
Using (1), this means: 
(6) {e 'E9B(e) leEf c (e a )}C { b } 
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Assume now that e a Gf^(e a ) ; from (6) and (1) follows { a } C { b } , 

which contradicts to a * b. Therefore: 
(7) V eGa c: egf^e) 
In model C, the inclusion <f(g) -» a> has to hold. Therefore: 
(8) 3 e a Ga c , e()Gg c: eaGf^ieo) 
Since model C is term-generated (theorem 3.9), there must be a ground 
term to the interpretation of which is e(): I^[ to] = { eo } . The axioms 
of N I ensure that every ground term can be reduced either to a or b. 
Applied to to, this means that { eo } • or { eo } • b ^ . Slightly 
rephrased, this is: 
(9) eoGâ - ν eoGb^ 
From (7) and (8) follows that eo^a^. From (4) and (8) follows that 
eo^b^. This is a contradiction to (9). 

To summarize, an appropriate algebra C does not exist. φ 

This concludes the discussion of initial models for the general case. The theorem 
above may be seen as an additional argument why the extension to specifications 
on a deterministic basis, as it has been introduced in chapter 2, is useful. So let 
us now turn to the case of specifications with a deterministic basis. 

3.3 Initial Models with Deterministic 
Basis 
The aim of this section is to show that the term model ΌΣ/R for DET-complete 
and DET-additive specifications, as it has been defined in definition 2.13, is an 
initial model. This model is term-generated. Therefore, the following lemma is 
useful which states the consequences of these conditions onto homomorphisms 
from the initial model to an arbitrary model. As far as DET-complete 
specifications and term-generated models are concerned, the set-valued notion of 
homomorphism coincides with the classical notion of homomorphism. As long 
as initial models in Mod(T) are term-generated, as it is suggested by theorem 
3.9, this shows the consistency between the notion of homomorphism as it is 
used here and the literature on homomorphisms and initiality. 
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Lemma 3.12 

Let Τ be a DET-complete specification, AGGen(T), BEMod(T). Then 
every loose homomorphism φ: A Β is element-valued (i.e. it 
assigns only singleton sets). 

Proof: 
Let eEs A . Since A is term-generated, there is a tEW(I ) such that I A [ t ] 
= {e} . Since Τ is DET-complete, there is a t' such that I - DET(t') and I-
t - * t \ so I A [ t ' ] = {e} . The definition of a homomorphism gives cp(e) C 
I B [ f ] . Because of I- DET(t') we have lcp(e)l =s 1. 0 

Now the expected initiality result for ΌΣ/R can be shown. 

Theorem 3.13 

Given a DET-complete and DET-additive specification Τ = (Σ, R), 
ΌΣ/R is loosely initial in Mod(T). 

Proof: 
Let AEMod(T). Define the mapping 

φ: ΌΣ/R -* A 
as the extension of the interpretation I A to the carriers of ΌΣ/R : 

φ(Μ) = I A [ t ] where t E s D 2 / R . 
The well-definedness of φ is a consequence of theorem 2.6 and 
definition 2.12. 
For the remaining parts of the proof see appendix Α. φ 

ΌΣ/R is loosely initial in M o d ^ ) , but not tightly initial. This is demonstrated 
by the following example. 

Example 3.14 

spec NPI 
sort s 
func a: -> s, b: -» s, g: s, f: s s 
axioms 

DET(a), DET(b), g -> a, f(x) - » χ 
end 
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A model A of NPI is given by 
s A = { a , b } , a A = { a } , b A = { b } , g A = { a , b } , 
f A (e) = { e } f o r e , e l , e 2 G { a , b } . 

Within ΟΣ/ΝΡΙ, the loosely initial model, we have: 
g D I / N P I = { [ a ] } . 

Therefore, the condition of a loose homomorphism 
{ e G 9 ( [ t ] ) l [ t ] E g D 2 / N p i } = { a } C { a , b } = g A 

holds, but not the condition of a tight homomorphism (which involves 
set equality instead of subset relation). () 

Obviously, the model class has to be restricted, in order to show a tight 
initiality result. Example 3.14 shows also that the restriction to term-generated 
models is not sufficient for this purpose. A good candidate for an appropriate 
model class is the class DGen(T) of term-generated and DET-generated models, 
as it has been introduced in the last chapter (definition 2.26). (As a reminder: 
The models in DGen(T) are those where the interpretation of a nondeterministic 
term contains only elements which can be reached by a deterministic term, and 
where this inclusion can be derived on the level of terms within the calculus.) 

Before showing an initiality result, we address the general question of how to 
characterize this model class DGen(T). I t turns out that the notion of 
homomorphism can be used to give a more "semantic" characterization, which 
does not involve any reference to deduction. 

The basic idea is the observation that the models in DGen(T) are "maximally 
deterministic" in the sense that they do not contain any "superfluous" non­
determinism which is not explicitly mentioned in the specification. In order to 
speak about degrees of determinacy, the notion of a "descendant" (analoguously 
to [McCarthy 61]) is used. 

Definition 3.15 (Descendant) 

Let Τ = (Σ, R) be a specification, AEGen(T). Another model 
A'EGen(T) is called a descendant of A, iff: 

V tEWff) : I A [ t ] 3 I A , [ t ] . 
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A ' is called a proper descendant of A, i f f A ' is a descendant of A and if 
the additional condition holds: 

3 t E W ( Z ) : I A [ t ] * I A ' [ t ] . 0 

I f an algebra has proper descendants, it must not be called maximally 
deterministic. Unfortunately, this does not suffice to characterize maximally 
deterministic algebras. There are more complex cases of "superfluous" 
nondeterminism, as the following example shows. 

Example 3.16 

There is a proper descendant of the algebra A from example 3.14 above: 
s A ' = { a , b } , 
a A ' = { a } , b A ' = { b } , g A ' = { a } , 
f A ' (e) = { e } where e, e l , e2 Ε { a, b } . 

There is a loose homomorphism φ: A* -* A, defined by 
cp(a) = { a } , cp(b) = { b } . 

The new algebra A ' does not have any proper descendants. 

A more complex case is the following one: 

spec N M D 
sort s 
func a: s, 
axioms 

DET(a), 
f ( a ) - a , 

end 

with the model Β: 
s B = { a , c } , 
a B = { a } , b B = { a } , 
f B (x ) = { a , c } , f B (c) = { c } . 

Β does not have any proper descendants. But i f Β is "refined" (extending 
its carrier set), a "less deterministic" model can be constructed, which is 
called B': 

b: -> s, c: s, f: s -> s 

DET(b), DET(c), 
f ( b ) - c , f ( c ) -»c 

c B = { c } , 
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s B ' = { a l , a 2 , c } , 
a B ' = { al } , b B ' = { a2 } , c B ' = { c } , 
f B ' ( a l ) = { al } , f B '(a2) = { c } , f ß , ( c ) = { c } . 

Again there is a loose homomorphism ψ: B ' B: 
tp(al) = { a } , op(a2) = { a } , T|>(C) = { C } . 0 

The term model DZ/NMD gives a deterministic inteφretation for the operation 
f, therefore a maximally deterministic model should interpret f also as 
deterministic. The example gives a hint, how this property can be formulated in 
terms of models: An algebra A is maximally deterministic iff it does not have a 
more deterministic refinement: 

Definition 3.17 (Maximally Deterministic) 

Let A, A ' be term-generated Σ-algebras. 
A ' is called a refinement of A, i f f there is a loose Σ-homomorphism φ: 
A ' -> A. 
A ' is called more deterministic than A, iff: 

VteW ( I ) : I I A [ t ] l * I I A ' [ t ] l . 
A is called maximally deterministic, iff A is more deterministic than 
every refinement of A. Q 

The next lemma shows that the semantic characterization of maximal 
determinacy coincides with the model class DGen(T). Moreover, it shows a 
useful property about homomorphisms, which leads to the immediate 
consequence that a loosely initial model in DGen(T) is also a tightly initial one. 

Lemma 3.18 

Let Τ = (Σ, R) be a DET-complete and DET-additive specification, 
AEGen(T). Then the following three propositions are equivalent: 

(1) A is maximally deterministic. 

(2) V Β Ε Gen(T): 
φ: B->A is a loose Σ-homomorphism => 
φ is a tight Σ-homomorphism. 

(3) AEDGen(T). 
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Proof: See appendix A. () 

Please note that lemma 3.18 assumes the specification to be DET-additive. The 
results cannot be generalized easily to non-additive specifications. 

A consequence of lemma 3.18 (3) is the fact that DZ/R is maximally deter­
ministic. From this fact an initiality result follows: 

Theorem 3.19 

Let Τ = (Σ, R) be a DET-complete and DET-additive specification. 
Then DZ/R is tightly initial in DGen(T). 

Proof : 
Consequence of theorem 3.13 and lemma 3.18 (2), since 
DZ/REDGen(T). 0 

We conclude this chapter with a graphical sketch of the lattice structure 
connecting the models of a specification Τ = (Σ, R). 

- Ο — loose homomorphism 

tight homomorphism 

EEB DGen(T) 

Mod(T) 



Chapter 4 

Nondeterministic 
Specifications as a 
General Framework 

At this point, the presented theory has reached a stage, where it is interesting to 
investigate the relationship to classical concepts like the theory of term 
rewriting and equational logic as well as logic programming. It wi l l turn out 
that equational logic and (confluent) term rewriting can be seen as special cases 
of the new theory. It also wi l l be shown that a special variant of the theory has 
very close connections to algebraic and logic programming. 

The general observation is that nondeterministic specifications form a rather 
general framework which is well-suited for integrating and comparing various 
approaches from denotational and operational semantics. Even beyond the 
examples mentioned above, in [Meseguer 92] a whole catalogue of concepts 
from computer science can be found, which can be subsumed by a variant of 
rewriting, i f the confluence restrictions are left out. 

4.1 Equational Logic 
Equational logic can be easily integrated into our new framework. The basic idea 
is that a given equation is simulated by two rewrite rules, which differ only in 
exchanged left and right hand sides. This way, the symmetry deduction rule can 
be simulated within term rewriting. 
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In the framework of specifications over a deterministic basis, this effect can be 
achieved in an even simpler way. 

Definition 4.1 

For a given equational specification 
Τ = (Σ ,Ε) , I = (S,F), 

a nondeterministic specification NDEQ(T) 
NDEQ(T) = (Σ, R) 

can be constructed using: 
R = { <1 r> I <1 = r>EE} U { <DET(f(xi,...,x n)> I fEF } 

(where χ ι,..., x n are pairwise disjoint variables). (} 

The DET-axioms are chosen in such a way that all operations are deterministic. 
The simulation of the symmetry deduction rule is now achieved by the deduction 
rule (DET-R). 

Theorem 4.2 (Simulation of Equational Reasoning) 

Within the nondeterministic specification NDEQ(T) = (Σ, R) associated 
to an equational specification T, the following holds: 
(1) V t E W ^ , X ) : RI-DET(t) 
(2) V t l , t 2 E W ^ , X): t l = E t2 <=> R I - t l t2. 

Proof: 
(1) can be easily shown by structural induction on the number of 
function symbols in t. Either there is no function symbol in t (then we 
can use (DET-X)), or we can apply (AXIOM-2) using one of the DET-
axioms contained in R. 

(2) is shown by induction on the length of the derivation for t l = E t2 
within the classical equational calculus. The cases of reflexivity, 
transitivity and congruence (with respect to term building operations) 
can be directly covered using (REFL), (TRANS), (CONG). The 
remaining cases are: 
Application of an equation: 

Here t l = σΐ, t2 = ar, <1 = r>EE. Due to (1), we have 
V xEX: R I- DET(cx). 
Therefore, (AXIOM-1) can be applied to show R I- t l - * t2. 
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Symmetry: 
Here t2 = £ t l . By induction hypothesis, R I-12 -* t l . 
Due to (1), we have R I- DET(t2), so (DET-R) gives: 
R I - t 2 - M l . 0 

In other words, the calculus of definition 2.4 in this case exactly agrees with the 
equational calculus. Morever, theorem 4.2 (1) ensures that the interpretation of 
every term in any model of NDEQ(T) is a singleton set. Therefore, all models of 
NDEQ(T) correspond exactly to classical Σ-algebras. 

4.2 Term Rewriting 
In difference to the above results on equational logic, classical term rewriting 
cannot be subsumed by the rewriting relation as it has been axiomatized in 
definition 2.4. It was one of the main results of section 1 that classical term 
rewriting is unsound for the semantic framework of heterogeneuous multi-
algebras. This is also the main point where the approach studied here differs 
from the work of Meseguer ([Meseguer 92]). 

However, one would expect confluent axiom systems to show some particular 
semantical properties. Please note that the notion of confluence here refers to the 
rewriting relation between terms as it is established by the calculus of deinition 
2.4. Moreover, we restrict our attention to so-called ground confluence. A set of 
inclusion rules is called ground confluent, iff the rewriting relation generated by 
the calculus of definition 2.4 is confluent on ground terms. 

Theorem 4.3 

I f R is ground confluent, then in A E D G e n ( I , R) all operations are 
deterministic. 

Proof : 
Let e l , e 2 E I A [ t ] , t E W ( I ) . Since A is DET-generated (see definition 
2.21), there are t l , t2EW(I) such that 

I- DET(tl) , I - DET(t2), I-1 -* t l , I-1 -> t2, 
I A [ t l ] = { e l } , I A [ t 2 ] = { e 2 } . 

Ground confluence ensures that there is a t' such that 



92 NONDETERMINISTIC SPECMCATIONS AS Α GENERAL FRAMEWORK 

I- t l t \ l - t2-»t\ 
Using (DET-R), we have I - t ' t2, using (TRANS) I - t l t2. 
Therefore, using theorem 2.6: { el } 2 {e2}, i.e. el = e2. Hence 

ι i A [ t ] 1 = 1. 0 

Ground confluence forces all terms to be deterministic. Using the breadth-
induction calculus from definition 2.18, we can even deduce for every ground 
term t the formula DET(t). A difference to equational deduction is that there 
determinacy is ensured for all models and even for non-ground terms. In the case 
of non-confluent (nondeterministic) rewriting, the more refined notion of the 
model class DGen(T) is used, and only for these models and for ground terms the 
determinacy is enforced. These observations correspond closely to the various 
levels of abstraction described by [Meseguer 92] (for a summary see Fig. 5 in 
[Meseguer 92]). 

Another nice property of ground confluence is that it automatically ensures 
DET-additivity. 

Theorem 4.4 

I f R is ground confluent and DET-complete, then R is DET-additive, 
too. 

Proof: 
Let I- f ( t i , . . . , t n ) -» t, I - DET(t). Because of DET-completeness, there 
are t\\ t n ' where I - DET(tj ') , I - tj —> t j \ With (CONG) and 
(TRANS): l - f ( t i , . . . , t n ) - > f ( t i ' , t n ' ) . According to ground 
confluence, there is a t' such that l - f ( t i ' , . . . , t n ' ) -» t ' , I-1 -> t ' . Using 
(DET-R), it follows that I - t ' -> t, therefore (using (TRANS)) I -
f ( t i t n ' ) - t . 0 

In many cases, also DET-completeness can be guaranteed automatically. For this 
purpose, it is necessary that every term has a normal form with respect to and 
that the -^-terminal terms can be enumerated. Then a ground confluent set R of 
term rewrite rules over the signature Σ is transformed into the nondeterministic 
specification 

Τ = ( Σ, R U {<DET(t)> 11 is -»-terminal } ). 
According to theorem 4.3, the DET-axioms hold within DGen^,R). This means 
that they can be added without changing the semantics. The DET-axioms ensure 
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the DET-completeness and theorem 4.4 gives the DET-additivity. In this case, 
the semantics given by DGen corresponds exactly to equational logic. The 
advantage of the confluent rewriting system is that there are less DET-axioms 
needed, and that the automatic search of deductions is considerably easier, due to 
the fact that the rule (DET-R) is avoided. As in the classical case, deduction here 
can be restricted to uni-directional application of the axioms. 

Another aspect of non-confluent term rewriting can be quite interesting in some 
applications, where the confluence of a term rewriting system is yet unknown. 
The ideas from above give a semantics for term rewriting, independently of the 
confluence of the axiom system. I f ground confluence (for the rewriting relation 
from definition 2.4) holds, this semantics automatically coincides with the usual 
semantics. 

43 Conditional Axioms 
A generalization of algebraic specifications to conditional axioms is interesting, 
mostly for the reason that here the central results still hold and the 
correspondence to term rewriting and equational logic is kept. The results for 
equational logic can be carried over to conditional-equational axioms (see for 
instance [Broy, Wirsing 82]); conditional term rewriting systems ([Kaplan 84], 
[Bergstra, Klop 86]) give an operational semantics for such specifications with 
conditional axioms. Below follows a sketch of the way how conditional axioms 
can be integrated into the framework presented here. 

It is quite obvious how the syntax and semantics of conditional inclusion rules 
is to be defined. This differs from the situation in conditional term rewriting, 
where at least three variants of conditional axioms are distinguished. The three 
variants correspond to the following schemes of axioms: 

(a) t l t2 => l - * R r 
(b) t l J R t 2 => l ^ R r 
(c) t l - R * t 2 => 1 - R r 

Variant (a) admits conditions of the form " t l is equivalent to t2", which can be 
proven by arbitrary applications of the axioms (including "backward" 
applications). In variant (b), the condition can be only fulfilled i f both terms ( t l 
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and t2) have a common successor within the term rewriting relation ( - » R ) . 
Variant (c) ist the simplest one: Conditions can be fulfilled there only i f an 
(oriented) rewriting relation between the two terms can be proven. 

For non-confluent rewriting, variant (b) is not very interesting, since the relation 
t l i R t2 carries useful information only in the case of confluent rewriting (then 
it is equivalent to t l «^R* t2). 

For similar reasons, variant (a) can be excluded. The relation t l * * R t2 is 
useful for non-confluent specifications (it was called « above). But, i f only 
conditions of this kind were admitted, the language would be more restrictive 
than necessary. In general, the most interesting type of conditions is (c), where 
the application of a certain axiom is dependent of the question whether a term t l 
can be brought into the shape of t2 (by nondeterministic rewriting). Note that 
axioms of the type (b) can be simulated within this approach by 

t l — t2 & t2 t l 1 r. 

Definition 4.5 (Conditional Inclusion Rule) 

A conditional (Σ, X-) inclusion rule is a pair, consisting of a finite 
sequence of Σ, X-inclusion rules (the condition) and an atomic Σ, X-
inclusion rule (conclusion). In formula notation this is written: 

t i -* t i ' & ... & t n -* t n ' => 1 -> r 
where for i G { l , . . . , n } : t j , q 'EWff , X ) s i , siES, 1, r€W(Z, X ) s , sES. φ 

Definition 4.6 (Validity for Conditional Rules) 

Let A be a Σ-multi-algebra. A conditional inclusion rule is called valid 
in A , symbolically 

A 1= t i -> t f & ... & t n — t n ' => 1 -* r, 

i f f the following proposition holds: 
Every valuation ßEENV(X,A) which fulfils the following 
condition: 

V i E { l , . . . , n } : l£[tj] D l f a ] , 

also fulfils 

I ß [ l ] 2 I ß [ r ] . 0 
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The notion of a model is obvious. The next definition defines a suitable calculus 
for nondeterministic specifications with conditional axioms. 

Definition 4.7 (Term Rewriting Calculus with D E T and 
Conditional Rules) 

Let Τ = (Σ, R) be a nondeterministic specification containing DET-
axioms and conditional inclusion rules. Then a formula <tl-*t2> or 
<DET(t)>, respectively, is called deducible in T, written 

Τ l-COND t l -* tl or Τ l-COND DET(t), respectively, 
i f f there is a derivation for this formula using the following deduction 
rules: 

(REFL), ( T R A N S ) , (CONG), (AXIOM - 2 ) , 

(DET-X), (DET-D), (DET-R) (as in definition 2.4) 

(AXIOM- l -COND) 

D E T ( a x i ) , D E T ( a x n ) , a t i -> c r t i ' , o t n σ ι η ' 

σΐ - * or 

i f < t i - > t i ' & ... & t n - * t n ' => l - » r > G R , a e S U B S T ^ , X ) , 
{ x i , . . . , x m } =Vars(l)UVars(r)UVars(ti)U.. .UVars(t n)U 

Vars(ti ,)U...UVars(tn 5) 

(AXIOM-1) is now a special case of ( A X I O M - 1 -COND). 0 

The following theorem shows the soundness of this calculus. 

Theorem 4.8 (Soundness) 

Using the preconditions of definition 4.7, for t, t l , t2 Ε \ ¥ ( Σ , X ) the 
following implications hold: 

Τ l-COND t l t2 => Mod(T) 1= t l - * t2 
Τ l-COND DET(t) Mod(T) 1= DET(t) 

Proof: By induction on the length of the derivation, see appendix A . () 

The example below illustrates a new problem which arises now for the 
completeness of the calculus. 
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Example 4.9 

spec CIC 
sort s 
func a: -» s, b: -» s, 

f: -* s, g: -> s 
axioms 

DET(a), DET(b), 
f -> a, f b, g a, 
f - > g => a -> b 

end 

In DGen(CIC), independently of the condition, the following inclusion 
is valid (see the breadth-induction rule (IND-R)): 

DGen(CIC) 1= f -* g . 
Therefore (using the conditional axiom): 

DGen(CIC) 1= a -> b . 
But, according to definition 4.7: 

- (CIC I-COND f — g) and - ( CIC I-COND a -> b) 0 

The example shows that the calculus for conditional axioms is incomplete, even 
if, like in the unconditional case, only derivations for formulas of the shape 

'-COND t t* where I-COND DET(t') 
are considered. Conditional deductions of such formulas can lead recursively to 
the deduction of other formulas which do not have the special shape. There are 
two ways to obtain a completeness result: 

(1) The calculus can be augmented by the breadth-induction rules (IND-R) and 
(IND-D). In this case, a rather complex calculus is the result. The 
deduction rule (AXIOM-1-COND) contains a premise which may lead to an 
inductive proof which in turn makes use of conditional deductions. In the 
unconditional case (definition 2.18), this kind of mutual recursion could be 
excluded. 

(2) The conditional axioms can be restricted syntactically. A simple case is 
achieved, i f the preconditions of all conditional axioms have the shape 

t -* t' where I-COND DET(t') . 
Then the arguments of the unconditional case can be carried over to the 
conditional case. 
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The second variant is technically easier and it is sufficient for an interesting 
range of applications. Therefore it is studied in more detail. 

Definition 4.10 (Simple Conditional Rules) 

A conditional Σ, X-inclusion rule 
< t i - * t i ' & . . . & t n - * t n ' => h r > G R 

is called simple, iff: 

The notions of DET-completeness and DET-additivity are extended in analogy to 
definition 2.8/2.9 (using the new calculus, I-COND)-

For DET-complete and DET-additive specifications containing only simple 
rules, again an initial model can be constructed. 

Theorem 4.11 

Let Τ = (Σ, R) be a DET-complete and DET-additive specification 
which contains only simple conditional rules. Analoguously to 
definition 2.12, a model ΌΣ/R is constructed, where for tEW(Z) the 
interpretation is given by: 

I D 2 / R [ t ] = { [V] I Τ I-COND DET(t') Λ Τ l - C OND t -> f } . 
ΌΣ/R is initial in MGen(T), and for t l , ι2Ε\Υ(Σ) the proposition 
holds: 

ΌΣ/R 1= t l - M 2 <*> MGen(T) 1= t l — t2 . 

Conditional rewriting leads to a number of interesting theoretical problems even 
in the classical case. A detailed explanation of the underlying theory for the 
classical case has been given for instance in [Wechler 91]. 

A final example demonstrates the practical use of conditional axioms: 

Example 4.12 

A standard example from logic programming is the splitting of a 
sequence of data objects. The given sequence is splitted into two parts 
the concatenation of which results in the given sequence again. 

V i E { l , . . . , n } : Τ I-COND DET(ti'). 0 

Proof: See appendix A. 
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Obviously, there is a (nondeterministic) choice, where to split the 
sequence. A corresponding specification is: 

spec SPLIT 
sort Elem, Seq, Pair 
func { Operations for the sort Elem are omitted here } 

empty: -> Seq 
append: Seq χ Elem -> Seq 
cone: Seq χ Seq -» Seq 
pair: Seq χ Seq -» Pair { Pairs of sequences } 
split: Seq -> Pair 

axioms 
DET(empty), DET(append(s,x)), DET(pair(sl ,s2)), 
conc(s,empty) -* s, 
conc(append(sl,x),s2) -* append(conc(sl,s2),x), 
conc(sl,s2) -» s => split(s) -> pair(sl,s2) 

end 

SPLIT is DET-complete and DET-additive, the conditional axiom in 
SPLIT is simple. 

Below follows a deduction for 
split(append(append(empty ,b) ,a)) 

pair(append(empty ,a) ,append(empty ,b)), 
where a,b G Elem such that l-DET(a), l-DET(b): 
(1) l-COND DET(empty) (AXIOM-2) 
(2) l-COND DET(append(empty,a)) (AXIOM-2), (1) 
(3) l-COND DET(append(empty,b)) (AXIOM-2), (1) 
(4) l-COND DET(append(append(empty ,b) ,a)) (AXIOM-2), (3) 
(5) l-COND conc(empty,append(empty,b)) -»· append(empty,b) 

(AXIOM-1), (3) 
(6) l-COND append(conc(empty,append(empty,b)),a) 

append(append(empty ,b) ,a) (CONG), (5) 
(7) '-COND conc(append(empty,a),append(empty,b)) 

-* append(conc(empty ,append(empty ,b)) ,a) 
(AXIOM-1), (1),(3) 

(8) l-COND conc(append(empty,a),append(empty,b)) 
append(append(empty,b),a) (TRANS), (6), (7) 
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(9) I-COND split(append(append(empty,b),a)) 
-> pair(append(empty ,a) ,append(empty ,b)) 

(AXIOM-1-COND), (4), (2), (3), (8) 0 

For the sake of simplicity, from now on the scope of this text is restricted again 
to unconditional specifications only. However, all results can be transferred to 
conditional axioms in a similar way as it was sketched above. 

4.4 Algebraic Programming 
Under the notion of "Algebraic Programming", we summarize a growing 
collection of programming systems which try to integrate paradigms from term 
rewriting, functional programming and logic programming. Typical examples of 
such systems are SLOG ([Fribourg 85a]), BABEL ([Moreno, Rodriguez 88], or 
ALF ([Hanus 90]). A common feature of these systems is the use of narrowing 
as a mechanism for adapting the concept of a logical variable for functional 
programs. In order to achieve an effective algorithm, these languages restrict the 
syntactical form of the rewrite rules by a so-called constructor discipline. 

In this section, we do not build up a direct relationship to one of the above-
mentioned languages. Instead, it is shown how a restriction to constructor 
discipline can be combined with non-confluent rewriting. These so-called 
constructor-based specifications are of particular interest for this study, since 
they admit powerful mechanical checking of properties like DET-completeness 
and DET-additivity. In the framework of constructor-based specifications, an 
adaptation of the narrowing algorithm is studied, which forms the basis for 
algebraic programming techniques. The narrowing mechanism is also used in a 
later section for comparing nonconfluent rewriting with logic programming. 

4,4.1 Constructor-Based Specifications 

The so-called constructor-based specifications are of interest, because a large part 
of specifications used in practice fits into this class. A first remark in this 
direction was given in [Guttag 75], case studies with larger specifications also 
demonstrate this fact. Examples of such cases studies are [Geser 86], 
[Hussmann/ Rank 89], there are many others documented in the literature. The 
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approach taken here allows us to omit a number of restrictions which are 
sometimes presupposed in the literature on algebraic programming: left-
linearity, non-overlapping property, confluence. Termination of all rewriting 
sequences, however, is very useful (but not always necessary) for a successful 
algorithmic treatment. Even for specifications which are not DET-complete 
(constructor-complete, respectively), a sensible semantics can be given in this 
framework. 

The starting point of the definition is the observation that there is a close 
relationship between DET-completeness and the notion of sufficient 
completeness at is was coined in [Guttag 75]. An even closer relationship exists 
between DET-completeness and the notion of constructor-completeness, as it 
was defined in [Huet, Hullot 82]: 

Let C C F be a subset of the function symbols of Σ = (S, F). Function 
symbols in C are called constructors. An equational specification Τ = 
(Σ, Ε) is called constructor-complete, iff: 

V tEW(Z): 3 t 'EW^c) : t =E* f 
where Σ ο =def(S,Q. 

The notion of constructor-completeness can be easily adapted for nondeterminis­
tic specifications. For this purpose, the DET-axioms must be restricted in such a 
way that they designate a set of (deterministic) constructor operations. In the 
following, we assume that within Σ = (S, F) a subset CCF of constructors is 
designated. As a notation, constructors are marked by the keyword cons (instead 
of func) . 

Note that nondeterministic constructors are excluded here. They are not necessary 
in general, since in multi-algebras some kind of "constructor" for nondeterminis­
tic sets of values always is available (by the set-building operations). 

Within a constructor-based specification, it is not necessary to give explicit 
DET-axioms, i f all constructors are understood implicitly as deterministic. For 
the inclusion rules, a particular syntactical shape is assumed (like in [Huet, 
Hullot 82]) which guarantees that the term algebra of constructor terms is free. 

The syntactical restriction described in the next definition has been shown to be 
an acceptable compromise between an abstract description of a system and some 
kind of efficiency. Rather complex specifications can be written down within 
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this restricted language. On the other hand, there exist experimental compilers 
(for the case of a confluent rule set), which generate relatively efficient code from 
such specifications, for instance [Geser, Hussmann, Mück 88], [Hanus 90]. 

Definition 4.13 (Constructor-Based Specification) 

A specification Τ = (Σ, R), Σ = (S, F), where CCF is the set of 
constructor operations, is called constructor-based, iff: 

(1) A l l axioms in R are of the form 
f ( t i , . . . , t n ) - * t 

where fgC, MEW^c , X) for 1 <; i <; n. 

(2) R does not contain DET-axioms. A l l models of Τ implicitly must 
fulfil the following axioms: 

DET(c(xi,...^n)) 
for all constructors cEC (where x j , x n are pairwise disjoint 

variables). 0 

Example 4.14 

The specification DOUBLE' (example 2.3) can be written as a 
constructor-based specification: 

spec C_DOUBLE 
sort Nat 
cons zero: -» Nat, succ: Nat Nat 
func add: Nat χ Nat -> Nat, 

zero_or_one: Nat 
double: Nat -» Nat, 

axi oms 
add(zero,x) ->x , 
double(x) -» add(x,x), 

add(succ(x),y) -> succ(add(x,y)), 

zero_or_one -» zero, zero_or_one -» succ(zero) 

end 

In a constructor-based specification, we have: 
ΐ Ε λ ν ( Σ ο , Χ ) ο TI -DET( t ) . 

Therefore, a term can be tested for determinacy by a simple syntactical test. 
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From condition (1) it follows that the set of constructors is free, i.e.: 
I - DET(tl) Λ I- t l - * t2 => t l = t2. 

As a consequence of this fact, the deduction rules (DET-D) and (DET-R) are no 
longer needed for derivations. 

The property of DET-additivity is automatically given for constructor-based 
specifications: 

Corollary 4.15 

Every constructor-based specification is DET-additive (with respect to 
the implicit DET-axioms). 

Proof: Consequence of theorem 2.11 and definition 4.13. () 

The test for DET-completeness is particularly simple for constructor-based 
specifications. Well-known methods for testing constructor-completeness can be 
adapted for this purpose. 

Definition 4.16 (C-completeness) 

A constructor-based specification Τ = (Σ , R) (Σ = (S, F)) with 
constructors CQF is called C-complete, iff: 

V [f: si χ ... χ s n s] e F\C: 
V t i e W ( Z c ) s i , . . . , t n e W f f c ) s n : 

3 <f ( t i ' , . . . , t n ' ) t> Ε R, σ G S U B S T f f c , X): 
a ( f ( t i ' , . . . , t n ' ) ) = f ( t i , . . . , t n ) , 

i.e. i ff for any function symbol all potential arguments (seen as tuples 
of constructor terms) are covered by the argument pattern of some 
axiom. () 

Algorithms for a test of C-completeness have been described for instance in 
[Huet, Hullot 82], [Padawitz 83], [Kounalis 85]. 

In order to derive DET-completeness from C-completeness, an additional 
property is needed, which ensures that for any term at least one rewriting 
sequence terminates. The following specification, for instance: 
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spec NT 
sort s 
cons a: -» s, c: s -*· s 
func f: -> s 
axioms 

f - c ( f ) 
end 

is constructor-based and C-complete, but it is not DET-complete. 

Definition 4.17 (Termination) 

Let -> be a reflexive and transitive relation on Σ-terms which forms a 
semi-congruence with respect to to the term-building operations 
( i . e . t - > f = » f ( . . . , t , . . . ) - f ( . . . , t \ . . . ) ) . 

A term t is called -»--terminal, iff there is no proper -^-descendant of f, 
i.e. 

V t ' G W ( I ) : t -» t' => t' - t. 

The relation -* is called weakly terminating, iff for every term t there 
is at least one terminal -^-descendant of t, i.e. 

V t e W ( I ) : 5 t 'GW(I ) : t t* Λ t' -^-terminal. 

The relation -» is called (strongly) terminating, i f f for all tEW(Z): 
There is no infinite sequence of terms (ti)iQ^j where 

t to, tj -* t | + i and ti * t with i E N . 

Strong termination implies weak termination. () 

For testing the strong termination of a term rewriting relation there exist a 
number of powerful criteria (see [Huet, Oppen 80], [Dershowitz 87] for an 
overview). Criteria for weak termination can be derived from these methods (by 
considering subsets of the rewrite rules). In general, no algorithm can exist, 
which decides the termination of an arbitrary term rewriting relation (even in the 
restricted case of constructor-based specifications). 
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Theorem 4.18 

I f a constructor-based specification Τ is C-complete and i f the term 
rewriting relation generated by Τ (with the calculus according to 
definition 2.4) is weakly terminating, then Τ is DET-complete. 

Proof: 
Because of the weak termination property for every ground term t there 
is a -»-terminal term t* such that Τ I-1 -> t ' . 

For this term holds: t ' E W ( I c ) . I f otherwise there was a function 
symbol from F\C contained in t ' , then there would exist also a subterm 
of t' which has the form 

f (U, . . . , t n ) 
with tjEW(Zc) for i E { l , . . . , n } . Because of the C-completeness then an 
axiom could be applied to t \ in contradiction to the -»-terminality of 
the term t ' . 0 

For hierarchical constructor-based specifications, as they were defined in section 
2.4, even the modularity properties can be easily checked by a syntactical 
condition: Every constructor should be specified within the specification where 
its target sort is introduced. 

Theorem 4.19 

Let Τ = (Σ, R) be a hierarchical specification with constructor basis C. 
Let TO = (Σ0, R0), Σ0 = (SO, F0) be the primitive part of Τ with 
constructor basis CO C F0. 
If 

V [c: si χ ... χ sn—*· s]EC: sESO =s> cECO , 

then Τ is sufficiently complete and hierarchy-consistent. 

Proof: 
Let t E W ^ c ) s » sESO. By induction on the term structure of t, the 
condition on the declaration of constructors yields ίΕ\¥(Σ0). 
Let t, t 'EWffO), Τ I-1 -> t \ Because of definition 4.13 (1) no axiom 
out of R\R0 can be applied to t. By induction on the derivation we have 
T 0 l - t - > t \ 0 
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It is quite obvious, how the calculus for rewriting with DET (definition 2.4) can 
be specialized to the case of constructor based specifications: The precondition of 
determinacy can be tested just by the syntactical criterion whether a term is built 
from the constructor symbols and variable symbols only. 

Definition 4.20 (Constructor-Based Term Rewriting) 

Given a specification Τ = (Σ,R) with constructor basis C, a special case 
of the calculus from definition 2.4 is defined by: 

(REFL), (TRANS), (CONG) as in definition 2.4 

(AXIOM-1-C) 

σΐ - * ar i f <1 - * r> Ε R, σ Ε S U B S T f f c , χ ) . 

Here Σ £ denotes the constructor-subsignature of Σ (Σς; = (S,C)). 
Derivations within this calculus are denoted by the symbol l-c · 0 

The following theorem establishes the connection between chapter 2 and the 
above-mentioned calculus. 

Theorem 4.21 

In a specification Τ = (Σ, R) with constructor basis C, the following 
proposition holds for t l , t2 Ε \Υ(Σ, Χ): 

Τ I- t l t2 <*> Τ l-c t l -* t2. 

Proof: 
The "<="-case (soundness) is a consequence of the fact that l-c is a 
special case of the calculus from definition 2.4 except of (AXIOM-1-
C). Wherever (AXIOM-1-C) is applied, the condition: V xEX: I -
D E T ( Ö X ) holds because of the implicit DET-axioms, therefore 
(AXIOM-1-C) can be replaced by an application of the original 
deduction rule (AXIOM-1). 

"=>"-case (completeness): 
The proof is conducted by induction on the derivation. The following 
deduction rules can be excluded here: (DET-D) and (DET-R) (since no 
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rewrite rule can be applied to a pure constructor term, due to the form 
of the left hand sides). This means that deductions for formulas of the 
kind I- DET(t) can use only (DET-X) and (AXIOM-2). For both these 
rules tEW(Ic, X) holds. Therefore all deductions for DET-formulas can 
be omitted; applications of (AXIOM-1) can be replaced by (AXIOM-1-
C). The remaining deduction rules (REFL), (TRANS), and (CONG) are 
common to both calculi. () 

Please note that this establishes a soundness result for constructor-based 
rewriting, which holds independently of the C-completeness of the specification. 
In fact, a specification which does not possess the property of C-completeness 
can be given a reasonable semantics by regarding the missing cases as 
"undefined". This idea is followed in more depth below in chapter 6 on partiality 
in nondeterministic specifications. Chapter 6 below also contains a special 
section on constructor-based specifications (section 6.3). Let us state the main 
results from section 6.3 shortly in advance: 

• There is a well-defined semantics for constructor-based specifications even 
without the condition of C-completeness ("partial constructor-based 
specifications"). 

• The appropriate deduction calculus for partial constructor-based 
specifications coincides with the calculus of constructor-based rewriting 
(definition 4.20). Soundness and weak completeness results hold. 

• This leads to a sublanguage of nondeterministic specifications which does 
not need any checks for DET-completeness and DET-additivity (DET-
completeness is avoided by partiality; DET-additivity is ensured by the 
constructor discipline). 

For the detailed machinery behind these results, see chapter 6. The results have 
been reported already here, since they are useful for a comparison of constructor-
based nondeterministic specifications with algebraic and logic programming. 

To summarize this section: Constructor-discipline can be easily integrated into 
nondeterministic specifications. The resulting term rewriting calculus differs 
from classical term rewriting (by the restriction to constructor matchings in a 
rewrite step). However, this restriction is necessary to ensure soundness in the 
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nondeterministic case; and it additionally covers an elegant treatment of partiality 
without any further modification of the calculus. 

4.4.2. Narrowing without Confluence 

The catch-word "narrowing" denotes an algorithm, which tries to solve a system 
of equations within a theory described by equational axioms. A standard 
assumption in this field of research is that the set of axioms form a confluent 
and terminating term rewriting system. The idea of narrowing goes back to 
[Slagle 74] and [Lankford 75], a first formulation of the algorithm is due to [Fay 
79]. Like most literature on narrowing, the exposition given here is based on the 
description in [Hullot 80]. 

It is interesting that the narrowing relation (even for a confluent term rewriting 
system) may be non-confluent. This leads to the idea to use implementations of 
narrowing to get machine support for nonconfluent term rewriting. See chapter 5 
on more details about this approach. Another important observation is that the 
correctness and completeness proofs for narrowing do not make any use of the 
confluence property of a term rewriting system. This means that narrowing can 
be carried over to non-confluent rewriting systems, at least for those cases, 
where the rewriting relation is sufficiently similar to the classical case. Below, 
we study narrowing in the framework of (partial) constructor-based nondeter­
ministic specifications. 

Narrowing adds to term rewriting systems an algorithm similar to Prolog's 
resolution method which computes an answer substitution for queries. Given a 
constructor-based term rewrite system, a query consists again of inclusion rules 
of the form: 

t l -> t2, 
where free variables can occur in t l and t2. (More complex queries consisting of 
a sequence of such rules are omitted here, they can be treated analoguously.) The 
algorithm now has to look for constructor-substitutions σ such that 

R 1= a t l -> oil. 
Such a substitution is called a solution. A good algorithm should be able to 
enumerate all such solutions. In order to use the rewriting techniques developed 
above, the narrowing method tries to find instead a constructor-substitution σ 
such that 

R l-c a t l -* Gt2. 
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The connection to actual solutions then is given by soundness and completeness 
of constructor-based term rewriting. Since there is only a weak completeness 
result available for rewriting, we can only expect narrowing to be weakly 
complete (that is for t2 being a constructor term). 

In fact, the narrowing process is very tightly coupled with rewriting. It uses a 
relation which can be deduced in a similar way to the rewriting relation. 
Basically, the matching process in the rewriting algorithm is replaced by 
syntactical unification; and out of the unification process a partial approximation 
to the answer substitution is computed and stored. Rewriting sequences can be 
"lifted" into narrowing sequences, without any regard to confluence or 
termination assumptions. 

For describing the narrowing process, a new kind of formula is used: 

Definition 4.22 (Narrowing Rule) 

A narrowing rule is a triple consisting of two terms t l , t2EW(Z, X) of 
the same sort and a substitution aESUBST(Ic, X); it is denoted by 

Definition 4.23 (Narrowing) 

A narrowing rule t l - Ν - » σ t2 is called deducible using a constructor-
based rewrite system R (denoted by R I - t l -/V-»<j t2) i f f there is a 
deduction for t l -N-*o *2 according to the following deduction system: 

t l -N^o t2. 0 

(REFL-N) i f t e w ( i , x ) 

t - t f - n t 

(TRANS-N) t l t2, t2 ~N^X t3 

tl Ö 
i f t l , t 2 , t 3 E W ( Z , X ) , 
a ,xESUBST (Zc ,X) 

(CONG-N) 
t i -W-cjt i ' 

f ( t i , t j . i , t i , t i + i , . . . . t n ) -N^o 
f ( o t i , . . . , a t i _ i , t i \ a t i + i , . . . , o t n ) 
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i f f Ε F with rank f: si χ ... χ s n -* s, tj Ε W(Z, X ) s j , 
t i ' Ε W(Z, X)si, σ Ε SUBST(Ic, X) 

(AXIOM-N) 
t -N-^a apr 

i f t Ε W ( I , X) , t Ε X , <1 ^ r> Ε R, 
ρ is a renaming such that Vars(p)nVars(t) = 0 , 
σ Ε SUBST(Ic, X) where σ is a mgu of t and pi . 0 

This calculus formally defines the notion of narrowing and is consistent with the 
usual definitions. The only difference to the standard notion is that narrowing is 
restricted here to the generation of constructor-substitutions. Thus an 
implementation enumerating all derivations within this calculus can be gained 
from a classical narrowing implementation by a small modification. For 
constructor-based systems, the calculus describes only innermost narrowing 
steps. Moreover, for C-complete systems, the calculus coincides exactly with 
innermost narrowing, as it has been defined for instance in [Fribourg 85]. 

Example 4.24 

Consider the following specification of sequences over an arbitrary data 
sort (we do not give any function symbols for this sort here), together 
with a "choice" operation: 

spec SC 
sor t Data,Seq 
cons empty: Seq, insert: Set χ Data -» Seq 
func choose: Seq -> Data 
ax ioms 

choose(insert(s,x)) -> x, 
choose(insert(s,x)) -> choose(s) 

end 

Please note that this is a partial constructor-based specification; it treats 
choose(empty) as undefined. 

We have for instance the following narrowing derivations starting from 
the term 
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choose(U) 
(The variable U is a free variable to be considered as "unknown" in a 
query.) 
I- choose(U) -W-*<j χ where σ (U) = insert(s,x) 
I- choose(U) -N-^i y wheret(U) = insert(insert(s,y),x). () 

Correctness of the narrowing method above means that all narrowing sequences 
are just "liftings" of rewrite sequences. 

Lemma 4.25 

Let Τ = (Σ, R ) be a constructor-based specification, t l , t2EW(Z, X) , 
o G S U B S T f f c , X) such that 

Τ I- t l -/ν-* σ t2. 

Then the following rewriting derivation exists: 
Τ l-c ö t l -> t2. 

Proof: By induction on the length of the derivation for I- t l -N-*0 tl. () 

The following (rather technical) lemma shows that narrowing as defined above 
describes all "liftings" of a sequence of rewriting steps. This means, i f there is a 
solution to a query (in the sense mentioned above), then it can be found with the 
narrowing method. 

Lemma 4.26 

Let Τ = (Σ, R ) be a constructor-based specification, t l , ί2Ε\¥(Σ, X) , 
VCX a set of "protected variables" with Vars[tl]CV, a G S U B S T f f c , 
X) such that Dom[a]CV and 

Τ l-c a t l t2. 
Then there are substitutions λ, a 'GSUBST^c, X) , a term t 2 ' E W ^ , 
X) and a set of Variables V with VCV'CX such that: 

Τ I- t l -^ -» σ > t2' and 

(i) Vars[t2']CV Λ Dom[X]CV Λ Vars[ö ' ]CV\ 
(ii) σ =[γ ] λ σ ' , and 

(iii) Ι2 = λΐ2\ 
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Proof : 
The proof of this lemma (and the lemma itself) follows closely the 
ideas of [Hullot 80], which are described more extensively for instance 
in [Snyder 91]. 
For the details of the proof see appendix A. () 

In order to get an algorithm for solving queries, liftings of rewriting sequences 
are enumerated in such a way that a special case of every solution is reached. As 
it was remarked above, the weak completeness result entails that this works only 
well for queries t l -»· t2, where q is a constructor term. The algorithm for 
solving a query is then very similar to the classical narrowing algorithm: Its 
main part is an enumeration of all possible narrowing sequences starting from 
the left hand side of the query: 

Algor i thm 4.27 (Sketch) 
Input: R (a constructor-based rewrite system), <tl - * t2> (a query) 
Output: all possible solutions for the query 
Me thod : 
Search for all terms t2' and substitutions τ such that R I- t l -Ν-*χ XT 
holds. 
For all such terms and substitutions do: 

I f the term t2' is unifiable with the term t t2 (with mgu. μ), 
then output μτ as a solution. 0 

Note that a classical implementation of narrowing exactly performs the required 
algorithm, i f the query is reformulated as " t l = t2". I f t2 is a constructor term, 
no narrowing steps can take place within it . So the only way to solve the 
equation is by narrowing steps on t l and by unification of the left and right hand 
sides of the query. 

Example 4.28 

Given the specification SC from example 4.24 and the query 
choose(U) -» zero , the algorithm above wil l compute the following 
solutions: 

[insert(s,zero) / U] 
[insert(insert(s,zero),x) / U] 
[insert(insert(insert(s,zero),x),y) / U] 

and many other solutions (in fact an infinite enumeration). () 
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The correctness of the algorithm is an easy consequence of lemma 4.25, the 
completeness of the algorithm is formulated by the following theorem: 

Theorem 4.29 

Let Τ = (Σ, R) be a constructor-based specification, Q = [ t l -> t2] a 
given query where t2EWffc, X) . 
I f a substitution Ö E S U B S T ^ C , X) is a solution of Q , then there are 
substitutions λ , a ' E S U B S T ^ c , X) such that σ ' is computed by 
algorithm 4.27 and σ =[V] λ σ ' , where V =d e f Vars[tl]UVars[t2]. 

σ is a solution of Q (aESUBST^c, X)) 
R 1= o t l -> σι2 
R l-c a t l -* ot2 (Thms. 4.21, 2.6) 
R I- t l t 2 \ σ =[V] λ ' τ and oil = X't2' 

(Lemma 4.26) 
R I- t l - Λ ^ χ t2' and X'xtl = λ ' ι 2 ' (Vars[t2]CV) 
R I- t l -Ν-** tT and t2' is unifiable with t t2 

(let μ be the mgu.) 
The algorithm considers t2' and τ and computes the solution 
σ ' = μτ where λ ' = λμ 
σ =[V] λ ' τ = λμτ = λ σ ' . φ 

To summarize, the concept of narrowing can be adapted for constructor-based 
nondeterministic specifications. Since the calculus of constructor-based term 
rewriting is sound and weakly complete for partial constructor-based 
specifications as well, also narrowing can be carried over to this special 
sublanguage. 

The main advantages of partial constructor-based specifications are the presence 
of relatively powerful deduction techniques and the absence of any other than 
purely syntactical conditions - just the syntactic shape of constructor-based left 
hand sides of the axioms is sufficient. This interesting language has already been 
studied and used in a diffreent syntactical shape, within the framework of logic 
programming. The next section wil l show that we have reached now essentially 
a functional reformulation of classical logic programming. 

Proof: 
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4.5 Logic Programming 
Logic Programming is a very successful paradigm of programming, in particular 
in applications of symbolic computation. The language Prolog is the most 
famous representative of logic programming. For our purposes, we wi l l restrict 
ourselves to a small kernel of "pure Prolog" below. 

The idea of logic programming is to use a purely logical framework for 
programming. This leads to an approach which can be located in between a true 
programming language and a specification language, sometimes also called 
"declarative programming". Logic programming to a large extent has been 
developed independently of the research in algebraic specification and term 
rewriting; for an overview of the theoretical background see [Lloyd 84]. However 
there exist very close relationships between these different worlds, which have 
been described for instance by [Deransart 83] and [Bosco et al. 88]. In this 
section, we wil l show a one-to-one correspondence between partial constructor-
based nondeterministic specifications and classical definite logic programs. The 
results about narrowing in the nondeterministic framework above are needed 
here, as a functional equivalent to the concepts of logical variables and queries in 
logic programming. 

The following definition summarizes a few of the most basic concepts of logic 
programming, which are needed for this section. 

Definition 4.30 (Logic Program, SLD-Resolution) 

A (definite) logic program is built from terms over a signature Σ which 
contains two sorts, which are called here Data and Bool. There are only 
two kinds of operation symbols allowed: The predicate symbols and the 
function symbols, which are called constructors here. A predicate 
symbol ρ of arity η has the functionality 

p: Data χ ... χ Data -> Bool, 
a constructor c has the functionality 

c: Data χ ... χ Data -*> Data. 
The terms of sort Bool ( W ( I , X)ßool) a r e called atoms. 
A logic program consists of a finite set of program clauses, which are 
formulae of the shape 

H : - or H : - B i , . . . , B n 
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where H , B\, B n are atoms. Η is called the head of the program 
clause, the (possibly empty) sequence Β ι , . . . , B n is called its body. 
A query is a nonempty sequence of atoms: 

:- C i , C n 

where C i , . . . , C n are atoms. 

A goal is a (possibly empty) sequence of atoms together with a 
substitution aGSUBST(I, X ) , it is here written as 

C ι , . . . , C n where σ 
The empty sequence of atoms in a goal is denoted as [ ] . 
Given a program, a goal can be transformed into another goal by the 
following (SLD-)resolution rule: 

(RES) A i , A m , Afc where σ 

ΘΑ ι , . . . , 9 A m - 1 , ΘΒ ι , . . . , Θ Β φ 0 A m + 1 , . . . , 0Ak where θσ 

if <A :- Β ι , . . . , Bq> is a program clause, 
θ is a mgu of A and A m . 

Remarks: This rule also can be used to replace an atom by an empty 
body, which shortens the goal. We did omit the technicalities of 
creating a variant of a program clause, which can be treated by applying 
a renaming (like in the narrowing calculus). 

Given a query Q, a substitution σ is called an answer, iff, using this 
calculus 

Q where ι I- [] where σ 
can be deduced. () 

4.5.1. Narrowing Simulates Logic Programming 

As a first interesting correspondence, we wil l show that logic programming (in 
the simplistic sense of definition 4.30) can be simulated by narrowing. We use 
the framework developed above; however, the given simulation is independent of 
the extension to nondeterminism. 

The idea is simply to encode a logic program as a set of rewrite rules working 
on the sort Bool. The "comma" operator is replaced by a logical "and". 
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Definition 4.31 (Translation of Logic Program) 

Given a logic program P, a partial constructor-based specification Γ(Ρ) 
is associated to P, which is defined as follows. 

The signature of Γ(Ρ) consists of the sorts 
sort Data, Bool 
and the function symbols 
cons true, false: -* Bool, 

c: Data χ ... χ Data Bool 
func and: Bool χ Bool -» Bool, 

p: Data χ ... χ Data -> Bool 

The axioms of Γ(Ρ) are the following: 
and(true,true) true, 
and(false,x) false, 
and(x,false) —> false, 
H^and(Bi ,and( . . . , B n ) ) 

for every program clause < Η :- Β ι , . . . , B n >, 
Η -> true for every program clause < H:- >. 

A query Q = :- <Ci , . . . , Cn> is translated into 

r(Q)=defand(Ci,and(...,C n)). 
This is extended to empty sequences of atoms by 

r([])=deftrue. 0 

Example 4.32 

The following logic program is used to reverse lists. In difference to 
standard Prolog notation, we use the functions empty and cons to 
construct lists: 

empty: -> Data, cons: Data χ Data -> Data. 
The program clauses are: 

rev(L,R):- rev 1 (L,empty,R) 
rev 1 (empty ,R JR.) 
revl(cons(H,T),M,R):- revl(T,cons(HM),R). 

The corresponding specification is: 

for every constructor c in P, 

for every predicate ρ in P. 
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spec R E V 
sort Data, Bool 
cons true, false: -> Bool, 

empty: -> Data, cons: Data χ Data Data, 
func and: Bool χ Bool -» Bool, 

rev: Data χ Data -» Bool, 
revl: Data χ Data χ Data -> Bool, 

axioms 
and(true,true) true, 
and(false,x) -> false, 
and(x,false) -> false, 
rev(LJR.) -> rev 1 (L,empty ,R), 
revl (empty ,R,R) -> true, 
revl(cons(H,T),M,R) revl(T,cons(HJvl),R) 

end 

Please note that this specification is truly partial: E .g. the term 
rev 1 (empty ,empty ,cons( 1,2)) 

cannot be reduced to a Boolean constructor term. {) 

The following lemma makes the obvious relationship between resolution in Ρ 
and narrowing in Γ(Ρ) explicit. 

A purely technical remark: The lemma needs a more flexible use of the operator 
Γ, which transforms a sequence of atoms into a nested and-term. For the 
purposes of the proof, we consider such translations only modulo associativity 
of "and". Please note that this associativity is not added as an axiom to the 
specification Γ(Ρ), but is kept implicit within the proof. This is possible, since 
the structure of the and-term does not play any role in the narrowing 
computation; it is destroyed as soon as all the literals within it have been 
narrowed into "true". 

Lemma 4.33 

Let Ρ be a definite logic program, Γ(Ρ) the associated specification. 
Then for any deduction by resolution from Ρ holds: 
If Q where σ I- Q' where θ σ 
then Γ(Ρ) I- T(Q) W-*0 HQ ' ) . 
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Proof: 
For the case, where (RES) is applied, let Q = < A i , . . . , A m , . . . , Afc>. 
Then T(Q) = and(Ai ,and(..., and(Am , . . . Ak)))« 
According to (RES) there are a program clause < A :- Β ι , . . . , Bq> and a 
most general unifier θ of A and A m . 
In T(Q) there is an axiom <A -> and(Bi,and( Bq))>. Using 
(AXIOM-N),we have 

Γ ( Ρ ) I- A m -N-*Q and(0Bι ,and(..., 9B q )). 

Using (CONG-N) several times, we get 
Γ ( Ρ ) I - and(Ai ,and(..., and(Am , . . . A k » ) 
and(0Ai ,and(..., and(and(8Bι,and(..., 9B q)), . . .Mk)))> 

which modulo associativity of "and" means 
Γ ( Ρ ) l - r ( Q ) ^ e r ( Q ' ) . 

There are two other cases to consider, which are implicitly contained in 
the resolution calculus (since it is described as a deduction system). 
They correspond to the reflexive and transitive closure. In fact this 
means a proof by induction on the length of the derivation. 
The "reflexive" case (induction basis) is 

Q where σ I - Q where , i.e. Q' = Q, θ = t. 
Using (REFL-N), we get 

Γ(Ρ) l - r ( Q ) W - L r ( Q ) . 

The "transitive" case (induction step) is 
Q where σ I - Q" where θ ' σ I - Q'where θ " θ ' σ , 

i.e.e = 0 " 6 \ 
By induction hypothesis, we have 

r(P) ι- r ( Q ) -N-*Q> r ( Q - ) , Γ ( Ρ ) I - r ( Q " ) - Λ Η 3 » r « n . 

Using (TRANS-N), we get 
r ( P ) l - r ( Q ) ^ > 9 " r ( Q ' ) . φ 

Theorem 4.34 

Given a definite logic program Ρ and a query Q, any answer 
substitution σ , which is computed by SLD-resolution, is also a 
solution to the query r(Q)->true in the specification Γ(Ρ), and σ is 
computed by the narrowing algorithm 4.27. 

Proof: 
I f σ is an answer to Q in the logic program P, there is a deduction 
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Q where ι I - [] where σ 
Using lemma 4.34, then 

Γ(Ρ) I- T(Q) -/V— σ Γ([]), and therefore 
Γ(Ρ) I - T(Q) -N^a true. 

This means that algorithm 4.27 wi l l consider the subsitution σ, when 
working on the input <T(Q) -» true>. Since true is trivially unifiable 
with true using i , the substitution σ wil l be output as a solution. () 

Example 4.35 

Consider the logic program from example 4.32. Using SLD-resolution, 
the query 

:- rev(X,cons(l,cons(2,empty))) 
is treated as follows (we show here only the relevant parts of the 
where-terms): 

rev(X,cons(l,cons(2,empty))) where ι 
I- revl(X,empty,cons(l ,cons(2,empty))) where ι 
I- rev 1 (T1 ,cons(H 1 ,empty) ,cons( 1 ,cons(2 ,empty))) 

where [cons(Hl,Tl)/X] 
I- revl(T2,cons(H2,cons(Hl ,empty)),cons(l ,cons(2, empty))) 

where [cons(Hl,cons(H2,T2))/X] 
I- [] where [cons(2,cons(l ,T2))/X]. 

The corresponding narrowing sequences are: 
rev(X,cons(l ,cons(2,empty))) 

•N-*i rev 1(X,empty ,cons(l ,cons(2,empty))) 

-A^[cons(Hl,Tl)/X] 
rev 1 (Τ 1 ,cons(H 1 ,empty) ,cons( 1 ,cons(2 ,empty))) 

-A^[cons(H2,T2)/X] 
revl(T2,cons(H2,cons(Hl ,empty)),cons(l ,cons(2,empty))) 

-A^[2/H1,1/H2] true. φ 

The theorem and the example show that SLD-resolution can be simulated by 
constructor-based narrowing in all operational details. Even the apparent 
difference that SLD-resolution has a more direct representation of the solution 
(as in the example above), comes only from different representation in the 
respectively calculi. Any implementation of narrowing wil l keep an analoguous 
"where-part", as it was shown above for SLD-resolution. 
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To summarize, SLD-resolution can be simulated by constructor-based 
narrowing. The translation has been proven sound for definite programs, but the 
possibility to specify also the result "false" for a predicate gives access to a 
simulation of the more general "normal programs" (in the sense of [Lloyd 84]). 
The next section shows that also SLD-resolution can be used to simulate 
constructor-based narrowing. Altogether this means that both mechanisms are 
essentially equivalent. 

4.5.2. Logic Programming Simulates Narrowing 

In this section another close correspondence between narrowing within 
constructor-based specifications and logic programming is studied. A technique 
is described which simulates the narrowing calculus from above using SLD-
resolution. This can be used to construct a simple implementation of narrowing 
for nondeterministic specifications, in the partial constructor-based subcase. 

The basic idea is here to translate every non-constructor operation into a 
predicate symbol. Nested occurrences of non-constructors are "flattened", using 
auxiliary variables, in order to achieve the syntactical form of definite Horn 
clauses. This technique has been studied in several variations. A good overview 
using a rather general approach can be found in [Bosco et al. 88]. The first usage 
of the technique was, according to this paper, in [Brand 74]. In the framework of 
logic programming with equality, the flattening technique has been studied in 
[Deransart 83], [Tamaki 84], [Barbuti et al. 85], [van Emden, Yukawa 87], and 
others. 

Below the technique is sketched in a variant which is tailored to the particular 
subcase which is of interest here. 

Def in i t ion 4.36 (Flattening) 

Given a constructor-based specification Τ = (Σ, R), Σ = (S, F), where 
CCF is the set of constructor operations, the flattened signature Φ(Σ) is 
defined as 

Φ(Σ) = (SU{Bool}, CU{0(f) I fEF\C}), 
where for [f: s i χ ... s n s]EF: 

Φ(ί) = [f: si χ ... s n χ s-» Bool]. 
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Terms from \ ν ( Φ ( Σ ) , X) can be used to construct atoms of a logic 
program. 
The flattening of a term gives a constructor term together with a 
sequence of atoms: 

Φ : W(Z, X) W ( I C , X) x ( \ ν ( Φ ( Σ ) , X))*, 

Φ [ χ ] = ( χ , ε ) i f x E X , 
<£[f(U ,... , t n )] = ( f ( c i . . , c n ) , Β ι · . . . · Β η ) i f f e e , 
0 [ f ( t l , . . , t n )] = (z , f (c i , . . . £ η , ζ) ·Βι· . . . · Β η ) i f fEF\C, 

where ( q , B i ) = Φ[ίί] (i = 1,..., n), zEX a "fresh" variable.. 
Using these operations, a logic program Φ ( Τ ) can be derived from the 
specification, i f all sorts except of Bool are identified with Data, the 
predicate and constructor symbols are taken from Φ ( Σ ) , and every 
axiom <l^r>ER is transformed into a program clause Φ[1 -»Γ] according 
to: 

Off(ci , . . . ,c n)-*r] = <f(ci,... ,c n ,c):- B>, 

where ( c , B ) = Φ [ Γ ] . 0 

Example 4.37 

The logic program Φ ( 0 _ ϋ θ υ Β Ε Ε ) associated to the constructor-based 

version of the "double"-specification (see example 4.14) is: 

add(zeropc^) 
add(succ(x),y^ucc(z])):- add(x,y^i) 

double(x^2) :~ add(x,x,z2) 
zero_or_one(zero) :-
zero_or_one(succ(zero)):-. 

The deduction of 
double(zero_or_one) -> succ(succ(zero)) 

from example 2.5 can now be transformed into a resolution sequence 
within the logic program. We indicate the corresponding lines from 
example 2.7 in a separate column on the right side. 

:- double(z3,X), zero_or_one(z3) 

: - double(succ(zero) X) (9) 
:- add(succ(zero),succ(zero),X) (7) 
:- add(zero^ucc(zero)^3) where [succ(z3)/X] (3) 

:- [] where [succ(succ(zero))/X] (4) 
However, there are also various other deductions admitted by the logic 
program. The standard strategy of a Prolog system would lead to: 
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:- double(z4,X), zero_or_one(z4) 
:- add(z4,z4,X), zero_or_one(z4) 

:- add(z5,succ(z5)^6), zero_or_one(succ(z5)) where [succ(z6)/X] 

:- zero_or_one(succ(zero)) where [succ(succ(zero))/X] 

>[] 0 
It is an interesting observation that logic programming can expand the definition 
of double first, before expanding the definition of zero_or_one. This effect is due 
to the use of auxiliary variables, which lead to "structure sharing". For instance, 
the intermediate goal 

:- add(z4,z4,X), zero_or_one(z4) 
cannot be represented within a term rewriting framework, since it involves a 
"sharing" of the result of zero_or_one. See section 5.2 for another aproach to 
structure sharing. 

The soundness of the translation with respect to the intended semantics is almost 
obvious. To show the soundness, we adapt the interpretation of Horn clauses 
from logic programming (for instance :- is interpreted as reverse implication). 

Theorem 4.38 

Given a constructor-based specification Τ = (Σ, R) and a model 
AEPMod(T) 1 , let the interpretation of a predicate symbol <E>(f) (for 
fEF) be defined by 

0 ( f ) A ( e i , . . . , e n , e ) e Ε f A ( e i , . . . , e n ) 

(where e i , . . . , e n , e are elements out of the respective carrier sets). 

Then the axioms of Φ(Τ) are logically valid within A, i.e. A 1= O(R). 

Proof : 
I f the interpretation of a pair (c, Β ι · . . . · Β η ) , as it appears in the 

definition of Φ, is defined by 

Ifl[(c,Βι·...·Β η )] = { e Ε l £ [c] I ΐ£[Βι] Λ ... Λ l £ [ B n ] } , 

1 PMod(T) denotes the class of models of Τ which admits partial and strict 
functions as interpretations of the functions. For a precise definition of PMod(T) 
see chapter 6 below. 
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then by induction on the structure of t, for an environment β the 
following can be shown: 

Ιβ[ΦΜ]=ΙβΜ. 

For an inclusion rule < f ( c i , c n ) - > r > in R, and ( c, Β ) = Φ [ Γ ] , this 

means 

e Ε Iß [r] e Ε I ß [ Φ [ Γ ] ] ^ e Ε Iß[c] Λ Iß[B] (*) 

Since A is a model of T, we have 

( V e : e E I ß [ r ] = > e E I ß [ f ( c i , . . . , c n ) ] ) 

Therefore, using (*) 

(Ve: e Ε Iß [c] Λ Iß [Β] Λ ej Ε Iß fa] => e Ε f A ( e i , . . . ,en)) 

which implies (due to the definition of Φ ( ί ) Α ) 

(Ve: Iß[B]=>Iß[O(0(ci , . . . ,c n ,c)]]) . 

This last line is exactly the semantical meaning of O[f(ci,...,c n)-*r].0 

The completeness of the implementation of narrowing by flattened SLD-
resolution can be shown directly in terms of the deductions (as the first 
derivation in the example above indicates). Detailed proofs for this can be found 
in the literature. The following lemma shows the idea for such a proof, adapted 
to the special case studied here. 

Lemma 4.39 

Under the preconditions of definition 4.36, let t l , t 2 E W ( I , X ) , 
0ESUBST(I, X ) . Let the flattenings of t l and t2 be given by Φ[ί\] = 
( c l , B l ) , 0 ( t 2 ) = (c2,B2). 
Then the following implication connects derivations in Τ and Φ ( Τ ) : 

Τ I - t l - J V - * 0 t2 

V Ö E S U B S T ( Z , X ) : B l where σ I- B2 where θ ' σ 
where O'ESUBSTff, X ) such that 6 'cl = c2, θ' = θ υ λ , and ϋοπι[λ] 
contains only the variables introduced during the flattening of t l . 
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Proof: See appendix Α. φ 

Lemma 4.39 provides the main argument for the following theorem, which 
shows the close correspondence between constructor-based narrowing and SLD-
resolution. 

Theorem 4.40 

Let Τ = (Σ, R) be a constructor-based specification, Q = [ t l -> t2] a 
given query where t 2 E W ^ £ , X). 
Every solution aESUBST^c , X ) , which is computed by algorithm 

4.27, is an answer of the logic program 
0(T)U{ eq (X ,X) : -} 

(where eq is a predicate symbol not used in Φ(Τ)) 
to the query 

:- eq(cl ,t2)*Bl where ( c l , B l ) = 0 [ t l ] . 

Proof: 
I f σ is computed by the algorithm, there is a term t2' such that Τ I- t l 
-Ν-*ϊ t2 ' , σ = μσ and μ is a mgu. of τ t2 and t2'. Since t2' must be a 
constructor term, Φ[ι2'] = ( t2 \ ε). Using lemma 4.39, in Φ(Τ) exists 
the resolution sequence B l where σ I- [] where τ ' σ . This means for 
the query from above: 

eq(cl,t2) eBl where ι I- eq(x'cl,T't2) whereτ' 
According to lemma 4.39, x ' c l = t2' and x\2 = τ t2. So we have 

eq(cl,t2>Bl where ι 
I- eq(t2\xt2) where τ ' 
I- [] where μτ ' 

(using (RES) on the program clause for eq). 
This means that σ is an answer substitution. 0 

As an example for an implementation of non-confluent rewriting on top of 
Prolog, see the LOG(F) system [Narain 88]. 

This completes the comparison between algebraic programming in nondeter-
ministic specifications and logic programming. An almost one-to-one 
correspondence could be found in the subcase of partial constructor-based 
specifications. 
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From the logic programming viewpoint, this result can be understood as a way 
to subsume an important subcase of nondeterministic specifications. However, it 
should be kept in mind that the general case of nondeterministic specifications 
(and in particular partial ones, as studied below in chapter 6) provides a richer 
language than the simple sublanguage which can be translated to Prolog. For 
instance, it admits the definition of a deterministic basis which is different from 
a true subsignature, also reductions (equations) between terms of the 
deterministic basis are legal in the general case. 

From the algebraic specification viewpoint, the result above leads to a simple 
implementation of deductions within nondeterministic specifications, for the 
above-mentioned sublanguage. The task of computing for a ground term t l all 
ground constructor terms which fulfil Τ 1= t l -> t2, is accomplished by the 
query [ t l X ] , where X is a "fresh" variable. However, in the Prolog 
implementation it is not easy to take advantage of the situation, where a subpart 
of a specification is given using a canonical system of rules. In term rewriting 
(and narrowing) implementations, it is easy to normalize intermediate terms and 
goals using a canonical subsystem (see lemma 5.10 below). As an alternative, 
the techniques described in [Cheong, Fribourg 91] are interesting, where 
"simplification" of intermediate goals in logic programming is studied. 



Chapter 5 

Implementation and 
Examples 

For the practical use of a specification language, algorithmic support is 
essential. Software tools can be used for instance to test a given specification 
against informal requirements, to generate test data for an implementation, or to 
generate (semi-)automatically formal proofs for propositions over a 
specification. Below it is shown that existing tools for term rewriting can be 
used for experiments with nondeterministic specifications. 

5.1 Term Rewriting 
Most of the currently available interpreters for algebraic specifications provide an 
algorithm which reduces a term to normal form. In the following it is explained, 
how such algorithms can be generalized to non-confluent rewriting systems. It 
wi l l turn out that there are basically two ways to do so: Using classical term 
rewriting with a particular strategy, or using graph rewriting techniques. 

The question which has to be answered by a reduction algorithm is, for given 
ground terms t l and t2, whether 

Τ 1= t l t2. 
As it was shown above in section 2.2, a complete deduction system for this task 
can be constructed only using semi-formal rules (for instance breadth-induction) 
or by a conditional calculus in the sense of [Walicki 92/92]. So we restrict our 
attention here to the case where a simple rewriting-like calculus has been shown 
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to be sound and complete. This is the case for Τ I- DET(t2). Together with the 
weak completeness result, we are looking for ground terms t2 such that 

Τ I- t l t2 where Τ I- DET(t2). 

The calculus under discussion has been defined in definition 2.4 and is quite 
similar to term rewriting, except of one important point (which is necessary to 
achieve soundness in the nondeterministic case). The only difference between the 
classical term rewriting calculus and the calculus of definition 2.4 comes from 
the use of the DET-predicate and the corresponding deduction rules (DET-X, 
DET-D, DET-R, AXIOM-1 , AXIOM-2). The deduction rules (DET-X), (DET-
D), (DET-R) and (AXIOM-2) serve only for deducing DET-axioms, so the main 
difference is in (AXIOM-1), where a rewrite rule can be applied only i f for all 
terms of the matching substitution determinacy has been proven (using the 
DET-predicate). The classical term rewriting mechanism must be modified in 
such a way that it respects this built-in restriction for substituting only 
determinate terms. 

A first idea for avoiding the "built-in" predicate DET can be found in the 
analoguous situation for partial equational specifications (using a DEF-
predicate). [Broy, Pair, Wirsing 84] propose to simulate the DEF-predicate by an 
operation with a Boolean result. Unfortunately, this technique cannot be 
transferred to inclusion rules and the DET-predicate. For instance, consider the 
following axioms: 

DET_OP(a) true, DET_OP(b) true, f -> a, f b. 
In such a framework, with the rules (CONG) and (TRANS) the formula 

I- DET_OP(f) true 
can be deduced, which obviously is not always correct. 

5.1.1 Innermost Rewriting 

A better suited approach for a number of cases is the innermost-strategy for 
replacement which is well known from the operational semantics of applicative 
programming languages. Innermost-replacement means to apply a rewrite rule to 
a term t only, i f no axiom can be applied to any subterm of t. [O'Donnell 77] 
explains that innermost-rewriting corresponds to a "call-by-value" semantics (cf. 
also [Bauer, Wössner 81]). Similarly, innermost-rewriting is appropriate for the 
"call-time-choice"-semantics, which is under consideration here. I f the 
specification Τ is DET-complete, then for every ground term t the following 
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inclusion holds: 
No axiom can be applied to any subterm of t 1 => Τ I- DET(t). 

This means soundness of innermost rewriting with respect to definition 2.4. 
This idea is followed now in detail. 

In the theory of term rewriting the following notions are known [O'Donnell 77]: 

Defini t ion 5.1 (Redex) 

Let R be a term rewriting system. 
An occurrence uEOccft] within a term t is called a redex, iff there exists 
an axiom <1 -» r>ER and a substitution aESUBST(2, X) such that t/u 
= σΐ. A redex uEOcc[t] is called innermost, iff there is no further redex 
located in t below u, i.e. i f f for all vEN*, ν*ε: 

u evEOcc[t] => u ev is not a redex in t. 
A term rewriting step t l - > R t2 is called innermost, i f f an axiom of R 
is applied at an innermost redex in t l . The restriction of the term 
rewriting relation to innermost rewriting is denoted by " ^ j ^ 1 , its 

im* 
transitive closure by , respectively. () 

The relationship between innermost rewriting and nondeterministic rewriting 
over a deterministic basis can be made more precise (for ground terms) as 
follows. 

Theorem 5.2 

Let Τ = (Σ, R) be a DET-complete specification. Then for all t l , t2 Ε 
λ¥(Σ): 

t l - * ™ * t2 => Τ I- t l -* t2. 

Proof : 
As it was already mentioned, for every -^-terminal term t we have Τ I -
DET(t). (Because of DET-completeness, there must be a t' such that Τ 
I-1 -» t ' and I - DET(t'). Since t is terminal, the only possibility for 
this is the case using (REFL), where t = t'.) 

Such terms have been called terminal wrt. -» above in definition 4.17. 
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In an innermost rewriting step using the matching substitution σ, the 
terms σχ are terminal. Therefore Τ I - DET(ax), which fulfils the 
additional condition of the deduction rule (AXIOM-1). (} 

The following counterexample shows that the reverse direction does not hold: 

Example 5.3 

spec FDT 
sor t s 
func a: -» s, g: -> s, f: s -» s 
ax ioms 

DET(a), DET(g), 
f(g) -> a, g -+ a 

end 

The specification FDT is DET-complete and DET-additive. We have 
FDT I- f(g) -> a, 

but there is no innermost term rewriting sequence using the inclusion 
rules of FDT such that 

f(g)4m*a- 0 

The example above shows that additional syntactical restrictions for the 
specifications are necessary to ensure not only soundness but also completeness 
of innermost term rewriting. A very simple but usable sublass of specifications 
is given by the constructor-based specifications, as defined in section 4.1.1. So 
the further argumentation in this section only refers to constructor-based 
specifications. For C-complete constructor-based specifications, the theorem 
above can be sharpened. 

Theorem 5.4 

Let Τ = (Σ, R) be a C-complete constructor-based specification. Then 
for all t l , t 2 G W(Z): 

im* 
Τ I - t l —* t2 <*> t l -*" t2. 
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Proof: 
Theorem 4.21 gives the result Τ I- t l t2 <=> Τ l-c t l -> t2. So we 
can restrict our attention to constructor-based deductions (see definition 
4.20 for l-c). 
The "=>"-case is a consequence of the syntactic form of the axioms: A l l 
proper subterms of a l-c-redex are automatically constructor terms; 
therefore no redices can be contained within them. 
The "<="-case follows from theorem 5.2. φ 

These results can be reformulated immediately in the form of an algorithm. (We 
use here an informal notation, which should be self-explaining.) 

Algorithm 5.5 

Let Τ = ( Σ , R ) be a C-complete specification with constructor basis C. 

input: a ground term ίΕΨ(Σ) 

output: a ground term t ' E W f f c ) , such that: Τ l-c t -» t' 

funct reduce = (terms t) terms: 
if Ξ uEOcc[tl]: t/u = f( t i , . . . , t n ) Λ fgC 

then terrn^ t i ' = reduce(tj);...; terms t n ' = reduce(tn); 
Choose nondeterministically an axiom <1 —> D E R 
and oeSUBST(Ic), such that σΐ = f ( t i \ . . . , t n ' ) ; 
reduce(t[u<-or]) 

else t 
fi ο 

Here the innermost reduction is realized by the control flow: Al l subterms of the 
given term are normalized (transformed into a constructor form) before the 
application of an axiom. The C-completeness guarantees that there always exists 
an appropriate axiom at occurrence u. Note that the algorithms works nondeter­
ministically with a non-determinate result. It computes an arbitrary t 'EW(Zc) 
such that the condition l-c t -* t' is fulfilled. For many cases, it wi l l be a more 
realistic implementation to compute the set of all appropriate t ' . (Then it is easy 
to determine whether a given t' occurs within this set.) The algorithm reduce is 
correct (i.e. all the possible results t ' fulfil l-c t -> t ') and complete (i.e. for 
each t' such that I-1 t ' there exists a possible computation of reduce(t) with 
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result V). The correctness and completeness with respect to the semantical 
concepts of chapter 2 follows from the theorems 5.4,2.6 and 2.15. 

I f considered as an algorithm for the computation of a result set, reduce is a 
terminating algorithm only, i f the given axiom set generates a terminating term 
rewriting relation. For a non-terminating axiom set reduce can be considered as a 
semi-algorithm, which tries to generate the correct (infinite) result set. Such an 
enumeration obviously cannot terminate. (For implementation questions in this 
context see section 5.1.2 below.) 

Given a terminating rewriting relation, reduce is a true (terminating) algorithm. 
In this case for any ground term t there exist only finitely many t ' E W ( I c ) such 
that I-1 -> t \ As a consequence, then the -^-relation for arbitrary ground terms 
t l and t2 is decidable, by a comparison of the (finite) sets of constructor normal 
forms: 

Algorithm 5.6 

Let Τ = (Σ, R) be a C-complete specification with constructor base C 
where the corresponding rewrite relation is terminating. 

input: Two ground terms t l , t2 E W ( I ) 
output: Boolean value, indicating whether Τ l-c t l -» t2 

funct decide_-» = (term^ t l , termor t2)bool: 
V terms t ': t ' Ε Results(reduce(t2)) 

=> t' EResults(reduce(tl)) 0 

The correctness and completeness of algorithm 5.6 relies on the theorems 2.19 
and 5.4. 

In the general case of possibly nonterminating rewriting sequences (see example 
2.20), a breadth-induction proof can be necessary, in order to answer the question 
whether t l - * t2 holds (even for ground terms t l , t2). 

In the following two subsections, two essential issues wil l be adressed, in which 
an implementation for nonconfluent rewriting differs from usual implementation 
techniques for term rewriting. It turns out that the new problems are basically 
the same as they appear in an implementation of narrowing. 
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5.1.2 Search Strategies 

The main difference between a classical interpreter for term rewriting systems 
and algorithm 5.5 comes from the fact that within a nondeterministic 
specification all admissible results are of interest, using arbitrary (nondeterminis­
tic) choices during the evaluation. For confluent rewriting, it is sufficient to 
study an arbitrary evaluation, since the final result here is independent of any 
actual choices during evaluation. 

Example 5.7 

The following reductions refer to the specification NAT from example 1.12 
(which is made constructor-based by defining C={zero,succ}). We try to reduce 
the term add(some,some). 

add(some,some) 

add(zero,some) add(succ(some) ,some) 

add(zero,zero) add (zero ,succ(some)) 

zero add(zero,succ(zero)) add(zero,succ^succ(some)) 

succ(zero) 

I f a classical term rewriting interpreter (for confluent axiom sets) was applied to 
this example, it would deliver only one result. Whether this result is "zero" or 
"succ n(zero)" (for an arbitrary n) or even nontermination (that is no result, 
actually), depends on the chosen evaluation strategy. An interpreter for 
nondeterministic specifications, however, should enumerate all the possible 
results (even i f this is a nonterminating enumeration). Therefore the interpreter 
needs a tree-like organisation of rewriting sequences, as in the figure above; the 
corresponding tree search is similar to an interpreter for Prolog. In order to cope 
with nonterminating enumerations, a facility is needed to stop the interpreter 
after a finite number of results. 
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The example moreover demonstrates that an implementation of the tree search 
by backtracking {depth-first search) like in Prolog is not always appropriate. I f 
the axioms are applied in a "strange" order, a depth-first search may follow an 
infinite path, without ever reaching one of the results. For such cases a breadth-
first search seems to be more promising. A "breadth-first"-interpreter is 
guaranteed to deliver every result after a finite amount of time (nevertheless it 
may go into a nonterminating computation). For efficiency reasons, in many 
cases a "depth-first"-organisation wil l be preferred, maybe with a preset limit on 
the depth. This means that the user should have a choice between alternative 
search strategies. Another interesting approach is to use an appropriate multi­
processor architecture for the evaluation of independent rewriting sequences in 
parallel. (First attempts in this direction have been described for instance in 
[Pinegger 87], similar ideas are followed in [Dershowitz, Lindenstrauss 90].) 

It is clear that the nondeterministic rewriting algorithm is basically of 
exponential complexity. Therefore those optimizations are particularly useful 
which help to reduce the search space. 

5.1.3 Optimizations 

An essential step towards a smaller search space is achieved already by a special 
innermost strategy. I f the alternatives of one step are restricted to one singular 
redex, for instance the leftmost one {leftmost-innermost), then the search space 
from example 5.7 can be reduced to the following: 

add(some,some) 

add(zero ,some) add(succ(some) ,some) 

Please note that at every redex still the full range of applicable axioms is 
considered. In this example, there exist two alternative axioms for every redex 
(in comparison to 2*(number of redices) alternatives above). Again a similarity 
to Prolog's SLD-resolution technique can be observed here: The selection of one 
single clause from a goal is analoguous to the technique described here. 
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The optimization preserves correctness and completeness of the algorithm (since 
the replacements for various innermost redices can be considered independently). 

Another important optimization refers to confluence. It should be ensured that an 
interpreter for nondeterministic specifications works well in the special case of 
confluent axioms. In this case it should achieve roughly the same efficiency as a 
classical interpreter. Unfortunately, the situation is more complicated, since the 
interpreter has to handle mixed forms of confluent and non-confluent rewriting. 
An extreme example is the following variant of the specification NAT: 

Example 5.8 

Let the axioms of a specification (intended for natural numbers) be: 
add(zero ,χ) -* χ, add(x ,zero)->x, 
add(succ(x),y) -* succ(add(x,y)), add(x,succ(y)) -> succ(add(x,y)), 
zero_or_one -» zero, zero_or_one -» succ(zero). 

A tree of possible innermost rewritings then is given by: 

add(zero_or_one ,succ(zero)) 

add(zero ,succ(zero)) add(succ(zero) ,succ(zero)) 

succ(zero) succ(add(zero ,zero)) 

succ(zero) 

succ(add(zero ,succ(zero))) 

succ(zero) 

In this example, almost the full search effort goes into the inspection of 
superfluous paths, which are all equivalent to one out of two single paths. It 
should be sufficient to investigate these two paths. This idea goes into the 
direction of a remark in [O'Donnell 85] where an implementation of term 
rewriting is described (which does not yet support nondeterminism): "The ideal 
facility would allow equational definitions with multiple normal forms, but 
recognise special cases where uniqueness is guaranteed." (p. 135) 

The obvious idea for the example above is to normalize the terms occuring in 
the tree with the subset of axioms which is terminating and confluent. In the 
example, the rules for the operation add can be used for normalization: 
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add(zero_or_pne ,succ(zero)) 

add(zero ,succ(zero)) add(succ(zero) ,succ(zero)) 

succ(zero) succ(add(zero,succ(zero))) 

succ(succ(zero)) 

For the correctness of this optimization it is quite important that only those 
terms are normalized which contain deterministic operations only. 

The correctness of such an optimization is obvious, as long as the principle of 
innermost rewriting is kept. For a proof of completeness, it has to be shown 
that the subset of axioms used for normalization cooperates with the rest of the 
axioms. More precisely: Let D C R be a set of "deterministic" axioms, which 
shall be used for normalization, and therefore are terminating and confluent. 
Normalization induces an equivalence relation on ground terms: 

t « D t' <=>def the D-normal forms of t and t' are equal. 

Then we have to show the following "sub-commutativity property" : 

U ^ R Y D T 2 A
 t r ~ D t l => 3 t2': t l ' ^ J J J D t2' Λ t 2 - D t 2 * . 

The lemma below shows that this property holds under appropriate 
preconditions. We use here the following notion of an innermost-normal form: 

Definition 5.9 (Innermost Normal Form) 

im* 

Let D be a term rewriting system such that is terminating and 

confluent. 
The innermost-normal form i ^ [ t ] of a term t E W ( X ) is defined 
inductively by: 

1 D M=def< 

i™[t[u«-or]] if3uGOcc[t],<l—r>ED, 

a G S U B S T ( I c ) : t / u = a l 

. t otherwise. 
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Lemma 5.10 

Let Τ = (Σ, R) be a constructor-based specification, DCR a subset of 
the axioms such that the following conditions are satisfied: 

im* 
• is terminating and confluent. 

• D is non-overlapping with R\D, i.e. there does not exist any term 
t such that <lD-*rD>ED, <l-»r>GR, a e S U B S T ^ c ) and σΐο = t 
= σ1 . 

In this case, for t l , t2 e W(Z): 

3 t2 ' : l j J l [ t l ] - ^ ^ D t 2 » Λ i ™ [ t 2 ] = i ™ [ t 2 ' ] 

Proof: See appendix A. 

This lemma shows that the efficiency of confluent rewriting is not lost, when 
nonconfluent reduction is allowed. In order to designate a well-suited subset D, 
the following facts are to be observed: 

* . . . im* . 
• is terminating => is terminating 

* im * 
• is confluent =j> is confluent 

Therefore, termination can be tested with one of the usual methods (see 
[Dershowitz 87]). The confluence of D-innermost-term rewriting does not follow 
directly from the confluence of D, but the classical method from [Knuth, Bendix 
70] can be easily adapted to this case. (The critical pairs just have to computed 
with respect to innermost rewriting.) 

Example 5.8 demonstrates that there is an important gain of efficiency by 
normalization i f there are overlaps of the left hand sides of axioms within D. But 
even i f this not is the case, and the number of terms is not reduced, the 
normalization optimization can still improve the efficieny. Since it is more 
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expensive to represent a branching node ("choice point") of the proof tree on a 
real machine, memory space and time (for copying terms) can be saved. 

5.2 Graph Rewriting 
This section gives a discussion of a concept which is useful for the 
implementation of term rewriting in general, but in particular for non-confluent 
rewriting. The basic idea for this concept has been studied already in [Astesiano, 
Costa 79] for the semantics of nondeterministic processes ("Sharing in 
Nondeterminism"), but it can be generalized to arbitrary term rewriting systems. 
Term rewriting is performed here on terms which explicitly share some 
subterms. The term structure is enriched by information recording which pairs of 
equal subterms are identical. In [Hesselink 88], the combinator-like notation of 
terms ("accumulated arrows") leads to a similar effect. 

From a completely independent aspect, term rewriting with sharing has been 
studied as an efficient implementation technique for (confluent) term rewriting. 
Starting from techniques for the implementation of the lambda-calculus 
(Wadsworth 1971), various approaches have been developed by Staples (1980), 
Raoult (1984), Barendregt et al. (1987), Hofmann and Plump (1988). In 
[Corbin, Bidoit 83], it is recommended to represent terms by DAGs (directed 
acyclic graphs), to achieve a simple and efficient implementation of unification 
and substitution algorithms on terms. In many implementations of term 
rewriting (among them RAP [Hussmann 85/87]) these ideas have been used 
successfully. 

Unfortunately, the exact description of rewriting on graph-like structures leads to 
a significant technical overhead, i f compared with term rewriting. Below, we 
reproduce some of the most important notions from [Barendregt et al. 87] and 
demonstrate the particularities of non-confluent rewriting in this context. In 
order to use the terminology of [Barendregt et al. 87] with only slight 
adaptations, the following arguments only apply to the case which is studied 
there. Therefore we assume here tha axioms to be left-linear and not to contain 
"extra variables" (which occur in the right hand side of a axiom, but not in the 
left hand side). The results can be generalized to remove these restrictions; but 
this generalization is not covered here. 



IMPLEMENT ΑΉΟΝ AND EXAMPLES 137 

5.2.1 Representation of Terms by Graphs 

The following definition is almost literally taken from [Barendregt et al. 87]. 

Defini t ion 5.11 (Graph) 

Let Σ = (S, F) be a signature, X = (Xs)sES a sorted set of variable 
names. 

A (labelled directed) graph (over Σ) is a triple 
G = (N,lab,arg), 

where Ν is set of nodes, lab: Ν -> FUX is the labelling function, and 
arg: Ν -*· Ν* is the argument (or successor) function. The i-th 
component of arg(n) is denoted by arg(n)j. 
Th graph G is called well-sorted, i f f there is a function sort: Ν -> S 
such that for all nEN: 

lab(n) = χ Λ x E X s 

=> sort(n) = s, 
lab(n) = f Λ [f: si χ ... χ sfc -» s] Ε F 

=> sort(n) = s Λ sort(arg(n)0 = s[ 

(for all i E { 1....Jk} , i.e. Iarg(n)l = k). 
For two nodes n, n 'EN the node n' is said to be reachable from n, iff 
either n ' = η or there is a n " E N , such that arg(n)j = n " and n' is 

reachable from n " . 
The graph G is called acyclic iff every node is reachable from itself only 
through the trivial case in this definition. 
A rooted graph is a quadruple G' = (N, lab, arg, root), where rootEN 
and all nodes in Ν are reachable from root. 
The subgraph of G at a node nEN is defined as the graph Gin = ( N n , 
lab n , arg n) with node set N n ={mEN I m is reachable from n} , lab n = 
lablN n and arg n = arglN n. 0 

For the purposes of term representation, we use rooted directed acyclic graphs 
(DAGs). It is obvious that a term is a subcase of such graphs. However, it is 
important to use only representations which share variable occurrences. 
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Definition 5.12 (Graph Representation of Terms) 

Given a term tEW(Z, X) , a directed acyclic graph GR[t] = (N, lab, arg, 
root) representing t can be constructed as follows (where n < j n c i e x > is 
used as a name for a unique object out of some basic set of nodes). 

Ν = { n u I uEOcc[t] Λ t/ugX } U { n x I xGVars[t] } ; 
lab: Ν -> FUX such that 

xEX => lab(n x) = x, 
t/u = f ( t i , . . . , t k ) =>lab(n u) = f; 

arg: Ν -» Ν* such that 
xEX=*>arg(n x) = e, 
t/u = f ( t i , . . . ,tk) => larg(nu)l = k Λ arg(n u)j = n u . i for 

i E { l , . . . , k } ; 
root = η ε Ε Ν. 

Please note that for any variable x, there is only a single node in Ν 
labelled with x, which is called n x . 0 

Example 5.13 

The graphical notation for a graph is in most cases easier to understand 
and conceive than the formal notation from above. 

The term add(x,x) is represented by the graph depicted at 
the right margin. Please note that the variable χ is 
shared. The upper node is called η ε in the formalism 
above, the lower one is called n x . 

The graph at the right represents the 
term add(zero_or_one, zero_or_one). 
Please note that the arguments of add 
are not shared here. The upper node is 
called η ε in the formalism above, the 
lower ones are called n<i> and n<2>, 
respectively 0 

The following definition adds semantic interpretation to the notions of 
[Barendregt et al. 87]. The basic idea is here that every node of the graph is 
assigned to a single value (by a so-called valuation function). The nondeter­
ministic breadth of interpretations is given by the range of such valuation 

( a d d ) 

> ~ \ 
feero_or_one) (zero_or_one) 
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functions for the graph. This is needed to achieve a sensible interpretation of 
graphs which share other subterms than just variables. 

Definition 5.14 

Given a model AEMod(T) and an environment ß E E N V ( X , A) , the 

interpretation Iß [G] of a (rooted directed acyclic) graph G = (N, lab, arg, 

root) is defined by 

Iß [G] = { val(root) I valEVALß [G] } 

where VALß [G] denotes the set of admitted valuation functions. To be 

precise, it is a family of sets of functions, indexed by a sort. Again the 
sort is omitted for better readability. 

VALß[G] = 

{ val: Ν s A I 
VnEN: (lab(n) = χ Λ X E X => val(n) = βχ) Λ 

(lab(n) = f Λ f: s] χ ... χ sfc -> s] Ε F => 
val(n) Ε ffyvaKargin)!),..., val(arg(n)k)) } . 

The well-definedness follows from the fact that G is acyclic. 
A A 

It is obvious that lR [GR[t]] = I f t [ t] . 0 

5.2.2 Rewriting of Term Graphs 

The definition of a graph replacement rule again is mainly taken from 
[Barendregt et al. 87] (with correction of a minor error). Additionally, a formal 
translation of inclusion (or term rewrite) rules into graph rewrite rules is given. 

Definition 5.15 

A graph rewrite rule (over Σ) is a triple (G, rootL, rootR) where G is a 
graph and rootL and rootR are nodes of G such that every node of G 
is reachable from either rootL or rootR. 

Given an inclusion rule <1 r> over Σ and X , a graph rewrite rule 
GR[<1 -> r>] = (G, rootL, rootR) is defined by: 
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G = (N, lab, arg), 
Ν = { l u I uGOcc[l] Λ l/u(£X } U { r u I uEOccfl] Λ r/u<£X } 

U { n x I xGVars[l]UVars[r] } ; 

lab: Ν FUX such that 
xEX=>lab(n x ) = x, 
l/u = f ( t i , . . . , t k ) => lab(l u) = f, 

r/u = f(t i , . . . , tk) =>lab(r u) = f; 
arg: Ν -» Ν* in analogy to definition 5.12; 
rootL = 1ε £ Ν; rootR = r B E N . 

The application of a graph rewrite rule (G, rootL, rootR) to some target 
graph Go = (No, labo, ^gO* rooty) is defined as follows. 
A redex for the rule in Go is a graph homomorphism φ: GlrootL -*· 
Go, i.e. a function φ: Ν - * No, such that for all nEN, which are 
reachable from rootL holds: lab(n)^X => laboWn)) = lab(n) and 
argoWn)) = φ*(arg(n)), where φ* is the elementwise extension of φ to 
sequences of nodes. 
Given such a redex, the application of the rule proceeds in three phases: 
(i) build phase: We assume that nodes and variables of G and Go are 
disjoint. Then the right hand side of G is added to Go, instantiating 
variables according to φ. This gives a new graph G] = (Νχ, labj, argj, 
rooti), formally: 

N i = 

No U {nEN I η reachable from rootR and not from rootL }» 

l a b K m ) ^ , 1 3 ^ ) i f ™ e N 0 , f o r n G N l ; 
1 Llab(m) otherwise, 

rargo(m)i i fmENo, 
argl(m)i = \ a r g ( m ) i i f m , a r g ( m ) j E N n N i , 

U(arg(m)i) i f mENHN 1 ,arg(m)j£ ΝΠΝ ι , 

rootj = rooto. 
The root for the instantiated right hand side is now nfEN], where 

{ φ(rootR) ifrootRreachablefromrootL, 
rootR otherwise. 

(ii) redirection phase: A l l references to Φ ( Γ Ο Ο ^ ) are replaced by 

references to n r . This gives a new graph G2 = (N2, Iab2, arg2), 

formally: 
N 2 = N i , 
lab2(m) = labi(m), 
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» i W m V - / " r ifargi(m)iH>(rootL), 
a r g 2 ^ m ; i ~ \ a r g i ( m ) i otherwise, 

f n r i f root j^( rootL) , 
2 "~ \ r o o t j otherwise. 

(iii) garbage collection phase: Nodes which are not accessible from 
root2 are removed. Formally this gives a graph G3 = G2lroot2-

A graph rewriting step is denoted by G Q ~ * G R G3. 0 

Example 5.16 

In this example, the rule 
add(zero, x) -» χ 

is applied to the graph Go, which contains a shared 
occurrence of the function symbol zero. 

The rule is represented by the graph G. 
This is a special case, since the right hand 
side does not contain any non-variable 
nodes. 

The result of the pattern matching of G onto Go is represented by the 

graph homomorphism φ: 

The graph G i does not differ much from the 
original graph Go, since there is no node added. 
However, the nodes Φ(ΓΟΟΙΤ^) and n r indicate the 
nodes to be raplaced. 

Gi add ( Φ Ο Ό Ο ^ ) 

(zero) n_ 

file:///rootj
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After the replacement, n r becomes the root of 
the graph G2 (which does not differ from G\ in 
other respects). After garbage collection, G3 
contains one single node. 

Using the algebra NN from example 1.15, where the interpretation of 
the function symbols is: zero i N r s = {0 , 1}, a d d N N ( e l , e2) = {el+e2}, 
we have the following interpretations for the graphs: 

I N N [ G 0 ] = I N N [ G i ] = { 0 , 2 } , 

l N N [ G 2 ] = I N N [ G 3 ] = { 0 , l } . 0 

5.2.3 Soundness and Completeness 

Example 5.16 shows clearly that the standard graph rewriting techniques are not 
sound in the general case for nondeterministic interpretations. This is due to the 
non-injective mapping φ, which does not ensure that all the rule nodes which are 
mapped onto a single target node, are always interpreted equally. 

Again, the restriction to constructor-based specifications helps to overcome the 
problem. In this case all the nodes mapped by φ are interpreted deterministically 
(except of the root), and therefore graph rewriting is sound for this subcase. The 
following theorem formulates soundness of graph rewriting in this sense. 

Theorem 5.17 

Let Τ = (Σ, R) be a constructor-based specification, where all axioms 
are left-linear and where in each axiom the variables in the right hand 
side form a subset of the variables in the left hand side. 
Let Go be a rooted acyclic graph over Σ . Let G3 be a graph constructed 
out of Go using the graph representation GR[<1 -» r>] of a rule <1 —* 
r>ER, according to definition 5.15. 
Given a model A and an environment β, we have 

A A 
V val3EVALß [G3]: Ξ valoEVALß [Go]: valo(rooto) = val3(root3). 

Proof: 
The proof is technically rather complex. In appendix A, a sketch is 
given which covers the essential arguments. 0 
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Please remember that the restrictions which were put onto the form of the 
axioms are only due to the use of the framework of [Barendregt et al 87]; they 
can be removed by extending this framework. 

In [Barendregt et al. 87], it is shown moreover that also the completeness of 
graph rewriting with respect to term rewriting is not obvious. In general, there 
are term rewriting sequences which cannot be simulated by graph rewriting. This 
is illustrated by the following example. 

Example 5.18 (Example 5.4 from [Barendregt et al. 87]) 

spec CGR 
sor t s 
func a: -> s, 

f: s χ s s, 
ax ioms 

f(a,b) -> c, 
g(x) -> f(x,x) 

end 

There is a term rewriting sequence 
g ( a ) - f ( a , a ) - f ( a , b ) - c; 

but there is no graph rewriting sequence starting from any graph 
representation of g(a) and leading to a graph representation of c. The 
reason is that the first rule (f(a,b) -> c) can never be applied, due to the 
sharing of the subterms instantiated for χ. φ 

This counterexample has close similarities to the running example of this text 
(using the "double" operation). In fact, we can construct a model which shows 
that classical term rewriting is unsound for this example, under nondeterministic 
interpretations. This means that it is no longer a counterexample in the 
framework of this text. 

Example 5.19 

A nondeterministic model C for the specification CGR from example 
5.18 is given by: 
s c = { a l , a2, c } , 
a c = b c = { a l , a 2 } , c C = { c } , 

b: -* s, c: -> s, 
g: s -> s 

a b, b -* a, 
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fCfcl , a l) = { al } , fC(al, a2) = { c } , f ^ a l , c) = { c } , 
f 0 ^ , al) = { c } , f>(z2, a2) = { a2 } , f 0 ^ , C) = { c } , 
^ ( c , al) = { c } , f ^ c , a2) = { c } , f ^ c , c) = { c } , 
g c ( a l ) = { al } , g c(a2) = { a2 } , g c (c ) = { c } . 

Within the model C, the inclusion <g(a) -» c> does not hold: 
I C [g(a)] = { a l , a 2 } , l C [ c ] = { c } . 0 

This demonstrates that the counterexample cannot be carried over to the 
nondeterministic case. Even better, under the preconditions of the above 
soundness result, also completeness holds with respect to constructor-based term 
rewriting. In order to state this result formally, the notion of "unravelling" 
([Barendregt et al. 87]) a graph into a term is needed. 

Definition 5.20 

Let G = (N, lab, arg, root) be an acyclic and finite graph over a 
signature Σ and variable names X. 
The operation T M constructs a term Τ Μ | Ό ] Ε λ ν ( Σ , X) out of G, 
according to the following definition: 

lab(root)EX => TM[G] = x, 
where lab(root) = x; 

lab(root)0C => TM[G] = f (TM[Gi] , . . . ,TM[G n ] ) , 
where lab(root) = f, [f: si χ ... χ s n -> s] Ε F, 
Gi = Glarg(root)i for i E { 1,... ,n}. φ 

Theorem 5.21 

Let Τ = (Σ, R) be a constructor-based specification, where all axioms 
are left-linear and where in each axiom the variables in the right hand 
side form a subset of the variables in the left hand side. 

Then for any two terms t l , t2EW(Z, X) holds: 
Τ l-c t l -* t2 => 

3 graph G2: G R [ t l ] - > ^ R G 2 Λ TM[G2] = t2, 

where graph replacement refers to the rules {GR[<1 -»· r>] I <1 D E R}. 
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Proof: 
The proof mainly relies on the fact that the graph representation GR[t l] 
and subsequent rewriting steps always produce graphs in which all 
shared subgraphs are irreducible (with respect to graph rewriting). This 
is formalized by the following two predicates. 
Let G = (N, lab, arg), nEN. Then 
is_shared[n] ^ d e f 

3 n l , n2EN, i , j E N : nl*n2 Λ arg(nl)j = η = arg(n2)j, 

wf[G] <^def 
V n, n 'EN: is_shared[n] Λ n' reachable from η => 

lab(n')ECUX. 
Using the predicate wf, the following lemma can be shown for an 
arbitrary acyclic and finite graph G l over Σ and X: 

wf [Gl ] Λ TM[G1] = t l Λ l-c t l -* t2 => 

3 G2: wf[G2] Λ TM[G2] = t2 Λ G l — ^ R G2. 

The theorem then follows from the simple facts that wf[GR[t l ] ] and 
T M [ G R [ t l ] ] = t l . 
In the appendix A, a sketch for the proof of the lemma is given. (} 

To summarize, we have shown that an implementation by graph rewriting is 
sound for constructor-based specifications, and that it is able to reproduce all the 
derivations which are admitted in constructor-based rewriting. It should be 
mentioned that graph rewriting does even admit a greater number of sound 
derivations than constructor-based rewriting or the innermost strategy for 
classical term rewriting (see section 5.1). Since graph rewriting is sound for 
constructor-based nondeterministic specifications (theorem 5.17), an arbitrary 
redex selection strategy can be used. An outermost replacement sequence 
corresponding to example 1.12 is, for instance, the following one. Please note 
that this reduction sequence is not deducible using constructor-based rewriting. 

(double ) 

Ί 

fcero_or_one) 
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using the rule: double(x) add(x,x) 

using the rule: zero_or_one -> succ(zero) 

using the rule: add(succ(x),y) -* succ(add(x,y)) 

using the rule: add(zero,x) -» x. 

An implementation of terms by directed acyclic graphs admits another 
optimization. I f a subterm is changed (for instance by normalization), these 
changes may concern simultaneously many copies of the subterm. This 
behaviour is similar to the D-evaluation rule invented by Vuillemin (see [Bauer, 
Wössner 81]). Efficient implementations of graph reduction techniques are 
described for instance in [Johnsson 84]. 

It is also interesting to compare the implementation by graph rewriting with an 
implementation based on logic programming, as it was used for instance for 
example 4.37 above or in the LOG(F) system ([Narain 88]). Using the technique 
of translation to logic programs, a form of subterm sharing is present "for free", 
by Prolog's built-in variable sharing. This is the reason, why the logic 
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programming and graph rewriting approach both show more flexibility in the 
reduction strategy than constructor-based rewriting. 

To summarize, existing software tools can be used to perform deductions within 
nondeterministic algebraic specifications, if 
• only constructor-based specifications are studied, and 
• the implementation admits either 

• innermost term rewriting and a constructor-completeness test, or 
• representation of terms by graphs with variable-sharing. 

The system RAP [Hussmann 85/87], although designed independently of the 
nondeterministic framework, fulfils the requirements from above (since it uses a 
graph representation for terms), so it can be used for computer experiments based 
on nondeterministic specifications. 

5.3 Examples 
This section shows the application of nondeterministic specifications to a few 
typical examples. The examples are taken from different areas of computer 
science; in order to keep the length of the examples within a reasonable size, 
only the basic ideas are sketched here. The first two examples are from 
theoretical computer science, then two classical examples for nondeterministic 
algorithms are given, and finally it is sketched how nondeterminism can be used 
to specify abstractly some concrete sequences of events within an operating 
system. 

5.3.1 Nondeterministic Finite State Automata 

Automata theory frequently uses nondeterministic machine models. The 
following example shows that this classical nondeterministic framework can be 
specified easily by algebraic methods. 

In the following, a nondeterministic finite automaton is considered, which 
appears during the systematic construction of an algorithm for string pattern 
matching (cf. also [Knuth, Morris, Pratt 77]). The idea is here, to follow 
nondeterministically ("simultaneously") all possible patterns during the read 
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process. The following simple automaton comes out of the task of checking 
whether one of the patterns <OL> or <LO> appears within a sequence of binary 
digits ( { 0 « * ) : 

The symbol ε here denotes a so-called "spontaneous" transition. Please note that 
the automaton is constructed easily from the pattern matching task: For every 
pattern, a sequence of states and transitions is built, and from every state a 
spontaneous return into the start state is added. States s3 and s4 are "final 
states": Once one of these states has been entered by the automaton, the state 
cannot be changed furthermore, regardless of the input. 

The corresponding (constructor-based) specification contains sorts for the states 
and for the input symbols. The automaton is coded into axioms for the one-step 
transition relation. This relation is described by the operation trans, which 
computes a follow state out of a state and an input symbol, trans* models the 
transitive closure of this transition relation. For the description of trans*, 
sequences of input symbols have to be considered, too. 

spec NFA 
sor t Input, State, Seq 
cons O, L: Input, 

empty: -» Seq, append: Seq χ Input -> Seq, 
sO, s i , s2, s3, s4: -* State 

func trans: State χ Input State, 
trans*: State χ Seq State 

Start 

ε 
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ax i o m s 
trans(s0,O) s i , trans(sO,L) -* s2, 
trans(sl,L) -» s3, 
trans(s2,0) -> s4, 
trans(s3,0) s3, trans(s3,L) -» s3, 
trans(s4,0) -» s4, trans(s4,L) -> s4, 
trans(slpc) trans(sO,x), { ε-transitions } 
trans(s2,x) trans(sO,x), 
trans(s3,x) -> trans(sO,x), 
trans(s4,x) -> trans(sO,x), 
trans*(s,empty) -» s, 
trans*(s,append(t,x)) ->trans* (trans(s,x),t) 

end 

The first block of axioms describes the transitions of the automaton which 
process an input symbol, the second one gives the spontaneous transitions. The 
third block of axioms (which is not specific for this particular automaton) serves 
for the derivation of the transitive closure of the transition relation. 

The C-completeness of trans* is obvious, for trans the C-completeness can be 
seen from the fact that the following formulae are deducible: 

trans(s0,O) — si trans(sO,L) —> s2 
trans(s 1,0) -> s 1 trans(s 1 ,L) -* s3 
trans(s2,0) s4 trans(s2,L) s2 
trans(s3,0) -> s3 trans(s3J^) -> s3 
trans(s4,0) -> s4 trans(s4,L) -»· s4 

The axioms of NFA are terminating, since there is no way to derive a cyclic 
sequence of ε-steps. 

As an example for computations within NFA, consider the term 
trans* (sO ,append(append(append(append(empty JL) ,0) JL)) 

which specifies the set of automaton states after processing the input <LOL> 
(with start state sO). In a computer experiment, RAP computes the following 
set of states as a set of possible simplifications of this term: 

{ s2 , s3 , s4 } 
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This can be interpreted as follows: After having processed the input, the 
automaton is in one of the states s2, s3 or s4. The appearance of s3 and s4 
shows that the (overlapping) occurrences of both patterns (<OL> and <LO>) in the 
input have been recognised. 

This example clearly illustrates the purpose of a nondeterministic specification 
language: I t does not help for the development of an efficient implementation 
(for this purpose, the automaton should be transformed into a deterministic one 
by the well-known methods), but it allows us to describe an inherently nondeter­
ministic problem in a rather abstract and problem-oriented way. 

5.3.2 Petri Nets 

In order to demonstrate that also classical models of nondeterministic and 
distributed computing can be modelled using nondeterministic algebraic 
specifications, we give here a method for encoding Petri nets. In chapter 7, a 
more complex study of distributed computing (aiming at the language CSP) can 
be found. Here, we use a rather simplistic way of encoding Petri nets by a sort 
describing explicitly the state of the net. Other (mainly equivalent) ways of 
description from the literature ([Kaplan 88], [Meseguer 92]) also could be 
transferred to this framework. 

We use the following Petri net taken from [Kaplan 88] to demonstrate the 
encoding. The Boolean Petri net shows a variant of the famous "producer-
consumer" problem. 

cons 

One possible idea of the encoding is to define a sort with a single constructor 
(net) keeping the information which of the places of the net is occupied by a 
token. Each transition is translated into an axiom which transforms such net 
states according to the firing rules for Boolean Petri nets. Each input place for 
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the transition must contain a token, each output place must be free. The result 
state has tokens in all output places, and the tokens from the input places are 
removed. 

spec PN 
sor t Token, Net 
cons Y , N : Token, 

net: Token χ Token χ Token χ Token χ Token -» Net 
{ i-th argument of net corresponds to place i in the net } 

func trans: Net -> Net, trans*: Net -* Net 
a x i o m s 

trans(net(N, Y, p3, p4, p5)) net(Y, N , p3, p4, p5), {prod} 
trans(net(Y, Ν, N , p4, p5)) net(N, Υ, Y, p4, p5), {send} 
trans(net(pl, p2, Υ, Υ, Ν)) net(pl, p2, Ν, Ν, Y) , {rec} 
trans(net(pl, p2, p3, Ν, Y)) -> net(pl, p2, p3, Υ, N), {cons} 
trans*(n) -* n, trans*(n) -> trans*(trans(n)) 

end 

Every state of the net reachable from the start configuration shown in the picture 
can be computed by reducing the term 

trans*(net(N, Υ , Ν , Υ , Ν ) ) 

An example is: 
trans*(net(N, Υ , Ν , Υ , Ν ) ) 
trans*(net(Y, Ν, Ν, Υ, N)) {prod} 

-> trans*(net(N, Υ, Υ, Υ, N)) {send} 
trans*(net(N, Υ, Ν, Ν, Y)) {rec} 
trans*(net(N, Υ , Ν , Υ , Ν ) ) {cons} 
net(N, Υ , Ν , Υ , Ν ) . 

Please note that the specification contains two sources of nondeterminism. The 
first one is the function trans*, which nondeterministically computes every 
reachable state from a given configuration. The other one is the function trans 
itself, which is specified in a non-confluent way: 

net(Y, Ν, Υ, Υ, Ν) trans(net(N, Υ, Υ, Υ, Ν) net(N, Υ, Ν, Ν, Y) 

Generally, nondeterministic specifications allow us to express concurrency 
directly, avoiding the technicalities of interleaving sequences, as it was observed 
in [Meseguer 92]. 
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5.3.3 The Eight Queens Problem 

It is a classical programming problem to place 8 queens on a checker board such 
that all of them are safe, such that no queen can be attacked by another one. The 
problem has been mentioned in [Manna 70] as a typical example for a nondeter­
ministic program. Nondeterminism in this problem means, to find some 
position of the pieces which fulfils the safety condition. 

The specification of the Eight Queens problem gives an example for the modular 
construction of nondeterministic specifications by hierachies as well as for the 
use of conditional rules. Basically, the specification follows the ideas proposed 
in [Manna 70]. 

Let BOOL and INT be given specifications for the truth values and for the 
integer numbers. These specifications are deterministic (in the sense that in 
every maximally deterministic model all operations have to be deterministic). 
Based on INT, finite sequences of integer numbers can be described by 

spec SEQJNT 
basedon INT 
sort Seqlnt 
cons empty: -> Seqlnt, app: Seqlnt χ Int -> Seqlnt 
func length: -» Seqlnt 
a x i o m s 

length(empty) -+ zero, length(app(s,x)) -> succ(length(s)) 
end 

A configuration of the chess pieces on a nxn-board are described as a sequence of 
η natural numbers (the specification uses integer numbers), where the i-th 
number denotes, in which row the queen for column i is placed. The 
specification TEST defines the condition which is necessary for an extension of 
a correct configuration on a nxn-board to a correct configuration on the 
(n+l)x(n+l)-board: The queen placed in column n+1 must not be on a row or a 
diagonal which is already "occupied" by another queen. The specification uses 
the fact that a diagonal is characterized by a fixed value for the sum or difference 
of the row and column indices: 

spec TEST 
basedon INT, BOOL, SEQJNT 
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func ok: Seqlnt χ Nat -> Bool , 
samerow, samediagl, samediag2: Seqlnt χ Int -*· Bool 

ax i oms 
samerow(empty^) -> false, 
samerow(app(s,rl),r2) or(equal(rl,r2),samerow(s,r2)), 

samediagl (empty ,d) false, 
samediag 1 (app(s ,r) ,d) 

-» or(equal(add(r ,succ(length(s))) ,d) ,samediag 1 (s ,d)), 

samediag2(empty,d) -> false, 
samediag2(app(s j) ,d) 

-> or(equal(sub(r ,succ(length(s))) ,d) ,samediag2(s ,d)), 

ok(s,r) -> and(not(samerow(s,r)), 
and(not(samediag 1 (s ,add(r ,succ(length(s))))), 

not(samediag2(s,sub(r,succ(length(s))))))) 
end 

The Boolean term ok(s,r) is true i f f r is a safe position for the n+l-th queen, 
where the configuration of the first η queens is given by s. 

The nondeterministic specification itself now is rather simple: We look for a 
sequence of length 8 which has been constructed step by step according to the 
criterion above and which contains only numbers between 1 and 8: 

spec QUEENS 
basedon TEST, SEQJNT, INT, BOOL 
func queens: -^Seqlnt, qu: Seqlnt -> Seqlnt 
a x i oms 

queens qu(empty), 
less_equal(length(q),8) false => qu(q) q, 
less_equal(length(q),8) -> true & less_equal(0,r) -*· true & 
less_equal(r,8) true & ok(q,r) -* true 

=> qu(q) -* qu(app(q,r)) 
end 

Please note that this specification already takes a rather operational viewpoint by 
describing the incremental construction of a solution (which in fact leads to a 
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pruning of the search space). An even more optimized specification (or better 
program), tuned towards lazy nondeterministic rewriting, can be found in [Narain 
88]. 

In the initial model of QUEENS, the interpretation of the term queens exactly 
contains a representation of the solutions for the Eight Queens problem. 
Experiments with the RAP system show that this specification is executable, 
but that optimizations (like for instance in [Narain 88]) are urgently needed. On 
a SUN SPARCstation 10 workstation with 32 MByte RAM the first solution 
for the problem in the formulation from above is found after approx. 140 CPU-
seconds. An analoguous five queens problem needs 2 CPU-seconds for the first 
solution, all solutions are found within approx. 55 seconds. 

5.3.4 The Monkey-Banana Problem 

The next example also comes from [Manna 70], inspired by McCarthy. It is 
again a search problem, but, according to its origin from the field of "artificial 
intelligence", it is formulated as an experiment in animal behaviour. 

The experiment is as follows: A monkey sits within a room, where a high box 
is placed on the floor and where a banana is fixed at the ceiling in a height 
unreachable for the monkey. The room contains nothing else. The following 
possibilities now are available for the monkey in order to get the banana: It can 
move on the floor of the room, it can climb on the box, and it can move the 
box around on the floor. The solution is (obviously) to move the box under the 
banana and then to climb onto the box. 

A specification of this problem mostly contains the definition of trivial data 
structures. The specification WORLD contains the atomic objects which are 
needed for the problem description (vertical and horizontal positions, actions): 

spec WORLD 
sor t VPos, HPos, Action 
cons floor, ceiling: VPos, 

monkey_pos, banana_pos, box_pos: HPos, 
walk, carry: HPos -» Action, climb: Vpos -> Action 

end 
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The constants monkey_pos, banana_pos, box_pos mean the initial positions of 
monkey, banana and box on the floor. (Other positions are of no interest for this 
problem.) 

The following specification describes states for the description of situations: 

spec STATE 
sort State, Pair 
cons state: Hpos χ VPos χ Hpos -+ 
end 

State, pair: Action χ State -* Pair 

The states are to be interpreted as follows: A triple state(mh,mv,b) describes the 
actual position of the monkey (mh in horizontal, mv in vertical dimension), as 
well as the (horizontal) position of the box (b). Pairs of actions and states are 
used to represent the relationship between a particular action and its 
consequences. The specification OPERATIONS lists which actions are admitted 
in a given state and which is the subsequent state after the action. 
Nondeterminism is used here to describe the choice between alternative actions: 

spec OPERATIONS 
basedon WORLD, STATE 
func do: State -> Pair 
a x i o m s 

do(state(x,floors)) pair(walk(hp),state(hp,floors)), 
do(state(x,floor,x)) pair(carry(hp) ,state(hp,floor Jip)), 
do(state(x,y,x)) -* pair(climb(vp),state(x,vp,x)) 

end 

These three rules describe exactly how the "world" can be changed by actions of 
the monkey. The monkey can move horizontally to an arbitrary position hp; in 
this case it remains on the floor (first rule). It can move the box on the floor to 
an arbitrary position, provided it is on the floor and at the same horizontal 
position as the box (second rule). It can climb onto the box (or down from it), i f 
it is at the same horizontal position as the box (third rule). 

The last specification part describes how sequences of actions are performed (and 
recorded) and how the goal of the game is defined. Let a specification 
SEQ_ACTION for sequences of actions be given, analoguously to 5.3.3. 
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spec STEPS 
basedon WORLD, STATE, SEQ_ACTION, OPERATIONS 
func steps: State SeqAction 
a x i o m s 

do(s) pair(a,sl) => steps(s) -> append(a,steps(sl)), 
steps(state(banana_pos,ceilings)) empty 

end 

The search itself means an enumeration of all reductions of the term 
steps(state(monkey_pos ,floor,box_pos)) . 

The RAP system finds the (optimal) constructor term 
append(walk(box_pos), 
append(carry (banana_pos), 
append(climb(ceiling) ,empty))) 

after 0.08 CPU seconds (on the machine configuration described above, and 
using all possible optimizations). 

5.3.5 Printer Scheduling 

The last example is intended to give an impression, how nondeterministic 
specifications can be used for an abstract description of phenomena out of more 
practical fields of computer science. Below, a small sub-aspect of an operating 
system is described: the distribution of a sequence of printing jobs under a given 
number of printers (scheduling). For the sake of abstractness, any reference to a 
notion of time is avoided. 

In this example, a printer always has one out of the two possible states: free or 
busy. 

spec PRINTER_STATE 
sort Printers täte 
cons busy, free: PrinterState 
end 

A printer is called busy i f it is currently working on a printing job. At an 
arbitrary, unpredictable time the printing job is finished. At this moment the 
state of the printer changes from "busy" to "free". To capture this behaviour, 
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below an operation next_status is specified nondeterministically, which is used 
to ask for the current state of a printer. The operation gets the current (old) state 
of the printer as its argument. It has two possibilities for its result: Either it 
delivers the argument state (printer state unchanged) , or it spontaneously 
declares the printer to be free (but only i f the old state was "busy"). In this case, 
a printing job has been finished since the last query for the printer state. 

spec PRINTER 
basedon PRINTERJSTATE 
func next_status: PrinterState PrinterState 
a x i o m s 

next_status(s) s, 
next_status(s) -> free 

end 

Two rather trivial specifications describe sequences of printing jobs (represented 
by natural numbers) and sequences of events during the execution of printing 
jobs. Events in this sense are: "Job i starts on printer j " and "Job i has to wait 
for a free printer". 

spec JOB_QUEUE 
basedon NAT 
sort JobQueue 
cons empty_Job: JobQueue, 

append_Job: Nat χ JobQueue -> JobQueue 
end 

spec EXEC_QUEUE 
basedon NAT 
sort ExecQueue 
cons empty_Exec: -*· ExecQueue, 

append_Exec: Nat χ Nat χ ExecQueue -» ExecQueue, 
wait: Nat χ ExecQueue -> ExecQueue 

end 

The actual administration of the printers now is described by a specification 
which is deterministic except of its use of the nondeterministic operation 
next_status. The function scheduler transforms a sequence of jobs into a 
sequence of events. For this purpose, it uses an auxiliary operation sched, which 
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gets the actual states of two printers as its arguments (fixing here the number of 
printers to the value 2). A job can be executed only i f a free printer is ready for 
it, otherwise it has to wait: 

spec SCHEDULER 

basedon NAT, JOB_QUEUE, EXEC_QUEUE, 
PRINTER, PRINTER.STATE 

func scheduler: JobQueue ExecQueue, 
sched: JobQueue χ PrinterState χ PrinterState -* ExecQueue 

a x i o m s 
scheduler(q) -» sched(qjfreeiree), 
sched(empty_Job,sl,s2) -> empty_Exec, 
next_status(sl) -> free => 

sched(append_Job(jn,q),sl ,s2) -> append_Exec(jn,l ,sched(q,busy,s2)), 
next_status(s2) -» free 

sched(append_Job(jn,q),sl,s2) -> append_Exec(jn,2,sched(q,sl,busy)), 
next_status(sl) -> busy & next_status(s2) - * busy => 

sched(append_Job(jn ,q) ,s 1 ,s2) 
wait(jn,sched(append_Job(jn,q),sl ,s2)) 

end 

The following term describes the possible sequences of events for a sequence of 
three jobs: 

scheduler(append_Job(l ,append_Job(2,append_Job(3 ,empty_Job)))) 

I f RAP is called to reduce this term, it starts to enumerate a nonterminating list 
of event sequences; among them we find the following ones: 

append_Exec(l ,1 ,append_Exec(2,l ,append_Exec(3,l ,empty_Exec))) 
append_Exec(l ,1 ,append_Exec(2j2,append_Exec(3,l ,empty_Exec))) 
append_Exec(l ,1 ,append_Exec(2,2,wait(3 ,append_Exec(3,1 ,empty_Exec)))) 
append_Exec(l ,1 ,append_Exec(2,2,wait(wait(append_Exec(3 2,cmpty_Exec))))) 

The first sequence can be understood as a sequence of three "very short" jobs 
which are finished before the next job arrives. In the second case, two jobs are 
given to two printers for parallel processing; the first job finishes first, and 
before the third job arrives. In the last two cases the third job has to wait for a 
free printer. It is interesting that an intuitive understanding of the results is 
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easier when a time-oriented formulation is chosen. Nevertheless, the formal 
specification completely abstracts from the notion of time. 

This example also can be used to demonstrate the use of narrowing for 
nondeterministic specifications. For instance, the following equation (with 
unknown variables j , j l , e l ) can be understood as the question whether a 
sequence of events is admissible which starts with a waiting state: 

scheduler® = wait(j 1 ,el) 
RAP correctly does not find any solution (and terminates rapidly). The next 
equation asks whether it is possible that another job is printed before the first 
one in the job queue is started: 

scheduler(append_Job( 1 j ) ) = append_Exec(j 1 }p 1 ,append_Exec(l ,p2,el)) 
Two solutions are found: 

j = append_Job(l,*0), j l = 1, p i = 1 and 
j = append_Job(l,*0),jl = 1, p i =2 

(where *0 is a system-generated variable, which stands for an arbitrary natural 
number). An interpretation of this solution is: The equation can be fulfilled 
only, i f the job number of the first job is equal to the number of the second one. 
Here it can be seen, how an experiment with a software tool uncovers problems 
or mistakes within a specification: The specification above does not contain an 
axiom to exclude explicitly the multiple use of the same job number within a 
job queue. 





Chapter 6 

Partial Nondeterministic 
Specifications 

Up to this point, only nondeterministic specifications have been considered the 
models of which are total algebras. The axioms were restricted to (conditional) 
inclusion rules. An important advanced concept for classical equational 
specifications is an appropriate treatment of "undefined" situations during the 
computation of a value. In order to show that partial nondeterministic 
specifications do not evoke essential new problems, a generalization of our 
approach to partial specifications is addressed here. The treatment of partiality 
follows tightly the concepts in [Broy, Wirsing 82]. 

6.1 Partial Operations 
Partiality is a basic phenomenon in programming. Typical examples are 
algorithms which cannot terminate for all inputs (like an interpreter for a 
universal programming language) or overflow and underflow situations (for 
instance in arithmetic). 

6.1.1 Undefined "Values" 

A basic idea for the treatment of partial operations is that there are no "undefined 
values" in the sense of actual values, but that undefinedness means the non­
existence of a value. Intuitively, such a situation is imagined best as a 
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nonterminating computation. I f this point of view is taken, the actual carrier set 
of a model can contain only defined (existent) values. 

In general, the theory of partial operations presupposes all operations to be 
strict. Intuitively spoken, strictness describes the property that the non-existence 
of some argument value prohibits the computation of any result value. There 
exist generalizations of the theory to the case of non-strict operations (which 
obey some monotonicity restrictions, cf. [Möller 82], [Broy 87]). Intuitively, 
non-strict operations can compute a result in some cases from an incomplete set 
of argument values without "waiting" for some unnecessary argument. The work 
presented here does not cover such generalizations. But it can be assumed that 
even non-strict operations can be integrated well into the nondeterministic 
approach. 

In analogy to section 1.1.1, a number of alternative approaches are discussed 
first, how to model partial nondeterministic operations mathematically. 

Let f: si χ s2 -» s be a function symbol, s i , s2 and s sort symbols of some 
underlying signature. 

Within an algebra A, let si A , s 2 A and s A denote the respective carrier sets. The 
symbol ± is used within the description of the operations to denote undefined 
situations. This "pseudo value" JL is not a member of the carrier sets! For an 
arbitrary set Μ we use the abbreviation: 

M ± = d e f M U { l } 

Using the terminology of [Broy, Wirsing 81], there are a number of alternatives 
for the interactions between _L and defined values: 

(a) Erratic Nondeterminism 

Let A be a model of the given specification, 
f A : s l A χ s 2 A - * p + t f s ^ 1 ) , 

where fA is continued strictly, i.e.: 
fA(_L,e2) = { 1 } and f A ( e l ,± ) = {±} 

(where e l G s l A , e2Gs2A). 

Here 1 is treated similarly to the defined values. In some situations there can be 
a choice between J_ and a set of defined values ("choice nondeterminism"). 
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[Nipkow 86] and [Hesselink 88] use this form of partial operations. The other 
two approaches described below do not allow such a choice between "undefined" 
und "defined": 

(b) Demonic Nondeterminism 

Let Β be a model of the given specification, 
f B : s l B χ s2 B - ^ ( p + C s 6 ) ) 1 , 

where f B is continued strictly, as above. 

An informal explanation of the "demonic" approach is that an operation attempts 
to compute the whole set of all possible results. I f the computation of one of 
these results does not terminate, the whole set of results is undefined. This can 
be observed from the fact that the definition above does not admit a choice 
(during the computation) between defined results and "undefined". Demonic 
nondeterminism is often called also "backtracking" nondeterminism, since it 
appears naturally in search procedures which are described nondeterministically. 

From a model A, according to approach (a), a model B, according to approach (b) 
can be constructed by defining (for a term t): 

'{_!_} i f ± e i A [ t ] 
I^ [ t ] otherwise I B [ t ] = 

(c) Angelic Nondeterminism 

Let C be a model of the given specification, 
fC; s l C χ s 2 c -* p ( s C ) , 

where is continued strictly, and where 0 is considered as the 
representation for "undefinedness". 

The approach of angelic nondeterminism does not handle undefined values 
explicitly. It tries to avoid undefinedness wherever possible, instead. Only i f 
none of the possible computations does terminate, the situation is treated as 
"undefined", which means that the set of results is empty. Using this approach, 
there is no need for a special symbol JL. [Hansoul 83] uses this approach, 
because of its technical advantages. However, from a semantic point of view, it 
is somehow confusing that the representative value for "error" (i.e. 0 ) is 
contained within any result set (since it is contained in any set, mathematically). 
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From a model A, according to approach (a), a model C, according to approach 
(c), can be constructed by defining (for a term t): 

i c [ t ] = i A [ t ] \ { i } . 

The approach (a) is the most general one of the alternative approaches. It 
corresponds well to the idea that the nondeterministic decision is made locally 
within the operation f. Therefore, the following text develops approach (a) to 
more detail. In analogy to section 1.1.2, the erratic approach describes the input-
output behaviour of an operational unit 

x l -

x 2 -

by observations like: 

and 

" I f the input lines have the (defined) values x l and x2, then the output 
line may have the value y (as one out of all possibilities)." 

" I f the input lines have the (defined) values x l and x2, the computation 
may not terminate (as one out of all possibilities)." 

6.1.2 Partial Multi-Algebras 

In the following, the notions which have been defined for nondeterministic 
specifications are generalized to the case of partial operations. 

Definit ion 6.1 (Partial Σ - M u l t i - A l g e b r a ) 

Let Σ = (S, F) be a signature. A partial Σ-multi-algebra A is a tuple A 
= ( S A , F A ) , consisting of 

• a family S A of non-empty carrier sets 
S A = (sA) SES> s A * 0 f o r s G S 

a family F A of set-valued functions 
F A = (f A )fGF 
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such that for [f: si χ ... χ s n s] Ε F: 
f A : s i A χ ... χ s n

A -* p + t f s ^ 1 ) 

The class of all partial Σ-multi-algebras is called PAlg(I) . 
PGen(2) denotes the term-generated algebras out of PAlg(Z) (according 
to definition 2.21). φ 

In accordance with the strictness requirement for all operations, the notion of a 
environment remains unchanged. Environments do not assign a variable to the 
pseudo-value ± . 

Definition 6.2 (Interpretation in Partial Algebras) 

Let A be a Σ-algebra, β an environment of X in A. 
A A 

The interpretation Iß = (Iß s)sES is given by (where sES): 

using the inductive definition: 
(1) I f t = xandxEX s : 

I^s[t] = {ßW} 
(2) I f t = f ( t i , . . . , t n ) such that [f: si χ ... χ s n -» s] Ε F: 

Iß ? s[f(tl, · · , t n )] = { eEf A (e i , . . . ,en) I e i Q ^ ^ t t i N l } } 

U { l | 3 i E { l , . . . , n } : l a j ^ f o ] } φ 

The notion of interpretation now covers (besides the additive extension) also the 
strict extension of the operations to undefined values. 

In order to create a specification language which excludes models where all 
operations are completely undefined, an additional kind of axioms is introduced. 
The definedness predicate DEF (compare [Broy, Wirsing 82]) is used to specify 
whether the interpretation of a term is required to be defined. 

Definition 6.3 (DEF-Axiom, Validity) 

Α(Σ,Χ-) DEF-axiom is a term, written as a formula: 
DEF(t) where tEW(Z,X). 
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For AEPAlg(Z) we define: 
A 1= D E F ( t ) 

i ff for all environments ßeENV(XA): -L^Iß [t] . 

The validity of DET-axioms and inclusion rules remains as it was 
defined in definition 1.8 and 2.2, respectively. φ 

Please note that this definition implicitly made a decision for the "strong" 
interpretation of the -^-relation, in analogy to [Broy, Wirsing 82]. For instance 
i f in A we have: 

f A = { ± , a } , g A = { ± } , 
then the both formulae hold: 

A 1= f -» g and A 1= D E T ( g ) . 

Alternatively, an "existential" interpretation of —> is possible (analoguously to 
the so-called "existential equality"), which could be defined by 

A l = t l - * t 2 ο VßGENV(XA): -Lg l jh t l ] Λ l£ [ t l ] D l £ [ t 2 ] . 

The notion of an algebraic specification is extended from now on in such a way 
that DEF-axioms are admitted as axioms. The class PMod(T) is the class of all 
partial multi-algebras from PAlg(2), which are a model of the specification Τ = 
(Σ, R), i.e. where all axioms <()ER are valid. PGen(T) denotes the term-generated 
algebras in PMod(T). 

Example 6.4 

A well-known example ([Subrahmanyam 81]) for partial operations is 
constituted by the structure of finite sets over a basic sort, together 
with a nondeterministic choice operation: 

spec SET 
basedon E L E M { contains the basic sort El (for "elements") } 
sor t El , Set 
func empty: - * Set 

insert: Set χ El -» Set 
choose: Set -> El 

a x i o m s 
DEF(empty), DET(empty), 
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DEF(insert(s ,χ)) , DET(insert(s ,χ)), 
DEF(choose(insert(s ,χ))), 
insert(insert(s,x),y) -* insert(insert(s,y),x), 
insert(insert(s,x),x) insert(s,x), 
choose(insert(s,x)) -> x, 
choose(insert(s,x)) -*· choose(s) 

end 

A model S of SET is given by: 
s e t S = p f i n ( E l s ) , 

empty s = { 0 } , insert s(M,e) = { MU{e} } , 

choose s(M) = { ^ = 0 (where MCE1 S , eGEl s ) . 

A "non-standard" model of SET is NS: 
set^S = { c } (where c is an arbitrary constant), 
emp ty N S = { c } , insertN S(c,e) = { c } (for all eeEl N S), 
chooseN S(c) = E l N S . 

Both models of SET are independent of the actual choice of a model for 
ELEM. Again, we want the model NS to be excluded, since it is not 
maximally deterministic. In NS the following fact is valid: 

NS 1= choose(empty) -> t 
for an arbitrary defined term t£W(I)Ei . 0 

6.2 Partiality and Term Rewriting 
The literature on term rewriting usually does not address other models than those 
of classical equational logic (where all operations are total). A calculus for term 
rewriting with partial operations has not yet been studied explicitly. But there 
exists a method to build an equational calculus for partial operations on top of 
the classcial (total) case ([Broy, Pair, Wirsing 84]). Basically, a "call-by-value" 
evaluation is simulated within the calculus. For this purpose, at every 
application of an axiom it is taken care that the instances for variables are 
defined (similarly to the simulation of "call-time-choice" by conditions formula-
ed with DET-predicates). The following definitions follow this idea. 
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It is an obvious disadvantage of this approach that the pure term rewriting 
calculus is left. Since the original term rewriting calculus admits arbitrary terms 
as the instances of variables (including terms with an undefined interpretation), 
classical term rewriting can be used as a calculus only i f models with non-strict 
operations are admitted. This approach seems to be promising (cf. also [Broy 
87]); but it cannot be worked out within this text. 

6.2.1 A Calculus for Partial Specifications 

A suitable calculus for partial specifications can be constructed in analogy to 
definition 2.4. New ingredients are additional preconditions for the instantiation 
of variables in axioms and particular rules for the DEF-predicate (including 
strictness rules): 

Definit ion 6.5 (Term Rewri t ing Calculus wi th DEF and DET) 

Let Τ = (Σ, R) be a specification with DET- and DEF-axioms. 
A formula <tl -> t2>, <DET(t)>, or <DEF(t)>, respectively, is called 
deducible in T, symbolically written 

Τ I - t l - * t2, Τ I- DET(t), or Τ I- DEF(t), 
iff there is a deduction using the following deduction rules: 

(REFL), (TRANS), (CONG), (DET-X), (DET-D), (DET-R) 

as in definition 2.4 

(AXIOM- 1-D) 

DET(ox ι ) , . . . , DET(ax n ) , DEF(ax ι ) , . . . , DEF(ax n) 

σΐ -> ox 

i f <1 D Ε R, σ Ε SUBST(Z, X ) , 
{ x i , . . . , x n } = Vars(l)U Vars(r) 
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(AXIOM-2-D) 

DET(ax i ) , . . . , DET(ax n ) , DEF(axi ) , . . . , DEF(cx n ) 

DET(ot) 

i f <DET(t)> Ε R, σ G SUBST(Z, X ) , 
{ x i , . . . , x n } = Vars(t) 

(AXI0M-3-D) 

DET(axi) , ···> DET(ax n ) , DEF(axi ) , . . . , DEF(crxn) 

DEF(crt) 

i f <DEF(t)> Ε R, σ Ε SUBST(Z, X) , 
{ x i , . . . , x n } = Vars(t) 

(DEF-X) 
DEF(x) i f χ Ε X 

(DEF-D) DEF(tl), t l t2 

DEF(t2) i f t l , t 2 E W ( I , X ) 

(STR) DEF(f(ti,...,tn)) 

DEF(ti) 

i f i E { l , . . . , n } , 
[f: sj χ ... x s n - * s ] 6 F , 
t j E W ( I , X ) s j f o r a l l j E { l , . . . , n } φ 

Theorem 6.6 (Soundness) 

Let Τ = (Σ, R) be a specification with DET- and DEF-axioms. Then for 
t , t l , t 2 E W ( I , X ) : 

Τ I- t l t2 => PMod(T) 1= t l -* t2 
Τ I- DET(t) => PMod(T) 1= DET(t) 
Τ I - DEF(t) => PMod(T) 1= DEF(t). 
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Proof: Analoguously to theorem 2.6, see appendix A. () 

6.2.2 Partial DET-Completeness and DET-
Additivity 

In order to generalize the techniques which have been used in chapter 2, DET-
completeness and DET-additivity have to be defined for partial specifications. In 
the following, again in analogy to [Broy, Wirsing 82], the existence of a 
deterministic -^-successor term is required only for provably defined terms. The 
initial model wi l l interpret any term as undefined which cannot be reduced to a 
provably defined term. 

Definition 6.7 (Partial DET-Completeness and DET-Additivity) 

Let Τ = (Σ, R) be a specification with DEF- and DET-axioms. 

Τ is called partially DET-complete iff: 
V t e W ( I ) : TI-DEF(t) => 

3 t 'GW(I ) : Τ I-1 -> t' Λ Τ I- DET(t') . 

A term t E W ^ ) is called potentially undefined (symbolically: Τ I- f t) 
iff: 

I t ' 6 W ( I ) : Τ I-1 t* Λ Τ I- DEF(t') . 

Τ is called partially DET-additive i ff the following conditions (1) and 
(2) are fulfilled: 

(1) V [ f : si χ ... χ s n s] Ε F: 
V t i G W ( I ) s l , . . . , t n e w ( i ) S n , t e W ( Z ) s : 

Τ I- f ( t i . . , t n ) t Λ Τ I- DET(t) Λ Τ I- DEF(t) => 
3 t i ' E W ( ^ s 1 , . . . , t n

, E W ( ^ S n : 

Τ I - f ( t i \ . . . , t n ' ) - * t Λ Τ I- t i - Μ ΐ ' Λ ... A T I - t n - * t n ' Λ 
Τ I- DET(t i ' ) Λ ... Λ Τ I- DET(tn') Λ 
Τ I - DEF(ti ' ) Λ ... Λ Τ I- DEF(tn') 

(2) V [ f : si χ ... χ s n -* s] Ε F: 
V t i e W ( I ) s l , ·. ·, t n E W f f ) S n , t e W ( Z ) s : 

T l - f ( t i , . . . , t n ) - t Λ Τ I- t t => 
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a t i ' G W ( Z ) s l , . . . , t n ' G W ( Z ) S n : 

Τ I - f ( t i \ . . . , t n ' ) - Μ Λ Τ I- t i - M i ' Λ ... Λ Τ I - t n t n ' Λ 
Τ I- DET(t i ' ) Λ ... Λ Τ I- DET(t n ' ) Λ 
Τ I- DEF(ti ') Λ ... Λ Τ I- DEF(tn') 0 

The formulation of DET-additivity contains a new condition (2) which prescribes 
an additive behaviour for all operations also with respect to the pseudo-value ± . 
Analoguous syntactical criteria for DET-additivity, as they have been formulated 
in theorem 2.11, can guarantee partial DET-additivity including condition (2) 
(see section 6.3). 

In analogy to chapter 2, now a term model can be constructed (which later wil l 
turn out to be initial for a particular model class, too). In order to achieve non­
empty carrier sets, the notion of a sensible signature is used in a slightly 
modified sense: From now on, a specification Τ = (Σ, R) with signature Σ = (S, 
F) is called sensible iff for every sort there exists at least one defined term: 

Τ is sensible ^>def V sES: 3 t E W ^ ) s : Τ I- DEF(t) 

Definition 6.8 (Term Model Ρ Σ / R ) 

Let Τ = (Σ, R) be a partially DET-complete and sensible specification. 
A partial Σ-algebra ΡΣ/R is defined by: 

s p s / R = {[t] I t E W f f ) s Λ TI-DET(t) Λ TI-DEF(t)} 
for sES, 

fPZ/R. λ ν ( Σ ) 5 / « χ ... χ W f f ) S n / « -> ρ+((\Υ(Σν~μ) 
f P 2 / R ( [ t i ] , . . . , [ t n ] ) = 

{[ t ] i tew(Z) s A T i - f ( t i , . . . , t n ) - M 
Λ TI-DET(t) Λ TI-DEF(t)} 

U { ± ! 3 t : f ( t i , . . . , t n ) - t Λ f t } 
for [f: si χ ... χ s n -* s] Ε F. 

Partial DET-completeness ensures that f P 2 / R ( [ t i ] , . . . , [ t n ] ) * 0 . We 
have always s p ^ ^ * 0 , since for every sort there exists at least one 
defined term. The term equivalence from definition 2.12 is again used 
here, it is denoted by «. φ 
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Theorem 6.9 

For a partially DET-complete, partially DET-additive and sensible 
specification T=(Z,R), ΡΣ/R is a term-generated model of T. 

Proof: 
Analoguously to theorem 2.14, see appendix A. (} 

A consequence of theorem 6.9 is the following weak completeness result for 
PMod(T): 

Corollary 6.10 (Weak Completeness for Ground Terms) 

Under the preconditions of theorem 6.9 for t l , t2EW(I) the following 
holds: 

Τ I- DET(t2) Λ Τ I- DEF(t2) Λ PMod(T) 1= t l t2 
=> Τ I- t l -* t2 . 

PMod(T) 1= t l t2 
ΡΣ/R 1= t l t2 (Theorem 6.9) 
V t': I- DET(t') Λ I- DEF(t') Λ I-12 Γ => I- t l t ' 

(Lemma 6.9.1) 
Τ I- t l -* t2 (Assumptions, (REFL)). 0 

6.3 Partial Specifications with 
Constructor Basis 
At first sight, the language and calculus for partial nondeterministic 
specifications look rather clumsy and difficult to use. However, i f the theory of 
partial nondeterministic specifications is combined with constructor-based 
specifications, this language can be made not only more expressive, but also 
simpler in some sense. The simplification consists in removing the restriction 
to constructor-completeness of the axiom set, and it has already been used within 
chapter 4 (sections 4.4.1 ff.) Using the technical machinery from above, here the 
details are given which justify the simplification. 

Proof: 
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For this purpose, definition 4.13 for constructor-based specifications is extended 
as follows: 

Definition 6.11 (Partial Constructor-Based Specification) 

Definition 4.13 is extended by the following convention, in order to 
interpret a constructor-based specification as an abbreviation for a 
specification with DET- and DEF-axioms: 

(3) R does not contain DEF-axioms. A l l models of Τ implicitly must 
fulfill the following axioms: 

DEF(c(xi,. . . ,x n)) 
for all constructors cEC (where χχ, . . . , x n are pairwise distinct 
fresh variables). () 

It is a significant simplification compared to general DET- and DEF-axioms that 
the constructor terms are exactly those terms for which definedness and 
determinacy can be proven: 

V t E W ( Z ) : t 6 W ( Z c ) <*> TI-DEF(t) Λ Τ I-DET(t) (*) 

Also in comparison to total constructor-based specifications a simplification is 
achieved: Analoguously to the criterion for partial sufficient completeness from 
[Broy, Wirsing 82] (equations in "output-normal form"), for constructor-based 
specifications the check for C-completeness (complete case analysis over 
constructor terms) is unnecessary. 

Theorem 6.12 

Every partial constructor-based specification is partially DET-complete 
and partially DET-additive. 

Proof: 
The partial additivity follows from theorem 2.11 again. From the proof 
of theorem 2.11 it can be seen that the additional condition (2) in 
definition 6.7 is fulfilled, too. 
The partial DET-completeness follows from the fact that the 
definedness can be proven only for constructor terms, and (according to 
the definition) exactly for these terms the determinacy can be proven. () 
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Theorem 4.19 (on hierarchical specifications) can be generalized to the case of 
partial specifications, i f a suitable generalization of sufficient completeness to 
"partial sufficient completeness" (analoguously to [Broy, Wirsing 82]) is used. 
Under the syntactical precondition mentioned in theorem 4.19, partial 
constructor-based specifications automatically are partially sufficiently complete 
and hierarchy-consistent. 

The calculus of constructor-based term rewriting from definition 4.20 is 
obviously sound also for partial specifications, since (*) exactly gives the 
necessary preconditions to transform any application of (AXIOM-1-C) (see 
definition 4.20) into one of (AXIOM-1-D) (see definition 6.5). Al l the deduction 
rules in definition 6.5 dealing with the deduction of DET- and DEF-formulae are 
unnecessary in constructor-based specifications; they are replaced by (*). 

Combining corollary 6.10 with (*), we immediately have the weak complete­
ness result for partial constructor-based specifications: 

V t l Ε W ( I ) , t2 Ε W(2c): PMod(T) 1= t l -* t2 => Τ l-c t l - * t2. 

Constructor-based specifications are sufficiently expressive for the description of 
many nondeterministic functions which are relevant in practice (cf. chapters 5 
and 7). Despite of this power, they are semantically simple: No additional 
conditions have to be checked in order to provide a well-defined operational and 
mathematical semantics for them. As it has been shown in chapter 4, they are 
closely connected with definite logic programs. I f we compare the simple 
calculus of SLD-resolution with the calculus from definition 6.5 above, it 
becomes evident that logic programming picks a special case out of rather 
complex surroundings, which gives a good compromise between technical 
simplicity and expressive power. 

Due to the results from chapter 4, it is obvious that a translation into Prolog, or 
an implementation by graph rewriting are well-suited for experiments with 
partial constructor-based specifications. The removal of the constructor-
completeness condition, however, has the consequence that innermost rewriting 
is no longer a sound implementation technique. The following example 
illustrates a case where constructor-based term rewriting differs from innermost 
term rewriting. 
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Example 6.13 

spec STACK 
basedon N A T 
sor t Stack 
cons empty: -» Stack, 

append: Stack χ Nat -> Stack 
func first: Stack -> Nat 

rest: Stack -* Stack 
a x i o m s 

first(append(s,x)) -» x, 
rest(append(s,x)) -*> s 

end 

There are models AGPMod(STACK) such that the following holds: 
first A(empty A) = {J .} , restA(emptyA) = {1}, 
IA[rest(append(first(empty),empty))J = {J.}. 

(For an example of such a model, confer ΡΣ/STACK.) 
Constructor-based term rewriting respects this definition. So the term 

rest(append(first(empty) ,empty)) 
is in normal form with respect to l-c (i.e. it cannot be reduced to 
constructor form, it is "undefined" in ΡΣ/STACK). Innermost term 
rewriting, however, performs the following, unsound, computation: 

rest(append(first(empty),empty)) ^ J J T A C K empty . () 

At this point, the study of nondeterminism in algebraic specifications, term 
rewriting and algebraic programming has reached a stage of completeness. Partial 
nondeterministic specifications provide a rich and powerful framework, where 
classical deductive frameworks can be identified as simple special cases. 

Chapter 7 below concludes this text with a larger case study. In order to 
complete the study also from the semantical point of view, section 6.4 has been 
included, which extends the results on the structure of model classes from 
chapter 3 to the partial case. This section addresses only readers interested in 
model-theoretic semantics of algebraic specifications. For readers interested 
mainly in the deductive aspects of the framework, it is recommended to skip 
directly to chapter 7 from here. 
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6.4 Structure of the Model Classes 
This section generalizes the results on the structure of model classes from 
chapter 3 (in particular existence of initial and terminal models) to the partial 
case. This leads to a rather complex theory, which is mainly burdened with 
many slightly different notions. Below, the notions are chosen in such a way 
that the proof techniques from chapter 3 can be easily carried over. However, 
there may be various ways of fine-tuning the definitions in these respects. 

An important and not easy topic is the determination of a suitable notion of 
homomorphism for partial nondeterministic algebras. For partial deterministic 
algebras appropriate notions have been developed in [Broy, Wirsing 82]: This 
work distinguishes between weak, total and strong homomorphisms. In the 
following, this work is generalized to the case of set-valued functions. This leads 
to an even larger number of different notions, since the distinction between loose 
and tight homomorphism must be combined with all three different 
homomorphisms. Fortunately, for initiality results only some particular 
combinations are of interest. 

6.4.1 Homomorphisms 

Definition 6.14 (Σ-Homomorphisms for Partial Algebras) 

Let Σ = (S, F) be a signature, A, BEPAlgff) . 
A loose Σ-homomorphism φ from A to Β is the strict continuation of a 
family of mappings 

φ = (<Ps)ses, <Ps: sA p+tts 6 ) 1 ), 
which fulfils the following condition: 

For all [f: si χ ... χ s n s] Ε F and all e i E s i A , e n E s n

A : 
{e'E(p s (e)leEf A (ei, . . . ,e n ) Λ e*±} 

C {e 'Ef B (e i ' , . . . , e n ' ) I e i 'Eqp s l (ei) , . . . , e n ' B p S n ( e n ) } 

φ is called a tight Σ-homomorphism, i f f the stronger condition holds 
for all e i , e n : 
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( J _ < £ f A ( e i , . . . , e n ) =^ 
{ e'Ecps(e) I e E f A ( e i . . ,en) } 

- { e ' e t B ( e i ' , . . . l e n

, ) l e i , e | ) s i ( e i ) } ) 
Λ ( J _ E f A ( e i , . . . , e n ) => 

{ e'Eqps(e) I eEf A (ei, . . . ,e n ) Λ e*L } 
- { e ' E f B ( e i ' > . . . 1 e n

, ) l e i , e V s i ( e i ) Λ e '*± } ) 

φ is called elementary, i f f V eEs A : lcp(e)l = 1. 
φ is called total, as usual, i f f V eEs A : -L^cp(e). 
φ is called weak , iff for all x i , . . . , x n : 

_LEf A (ei , . . . ,e n ) 

3 e i 'Ecp s l (e i ) , e n 'Eqp S n(e n): ± E f B ( e i ' , . . . , e n ' ) . 

φ is called strong, i f f φ is total and weak. 

A partial multi-algebra A is called loosely initial in a class Κ of partial 
multi-algebras, i ff for all BEK there exists a unique total and loose Σ-
homomorphism φ: A -> B. A is called strongly initial, i f f for all BEK 
there exists a unique strong and tight Σ-homomorphism φ: A -» B. 

A partial multi-algebra A is called weakly terminal in a class Κ of 
partial multialgebras, i f f for all BEK there exists an elementary, weak 
and loose Σ-homomorphism φ: Β -> A. A is called strongly terminal, 
i f f for all B E K there exists an elementary, strong and tight Σ-homo­
morphism φ: Β Α. φ 

Similar definitions can be found in [Nipkow 86], but only for the combinations 
loose/total and tight/strong (and with different naming conventions). The notion 
of homomorphism in [Hansoul 83] is similar to tight homomorphisms, but for 
a simpler notion of a partial multi-algebra (approach (c) according to section 
6.1.1). The notion of weak terminality has been introduced here only in order to 
illustrate similarities and differences to [Broy, Wirsing 82]. 

The rather complex definition of a tight homomorphism is motivated by the fact 
that this definition leads to simpler notions when it is combined with the 
property "total" or "weak". This can be seen best for term-generated algebras. 
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Lemma 6.15 

Let Σ be a signature, Α, Β Ε Ρ β β η ( Σ ) , φ : A Β a loose Σ -
homomorphism. Then: 
(1) φ is total <t> 

V tGWGE): { e'Gcp(e) I e Q A [ t ] \ { l } } C I B [ t ] \{±} 
(2) φ is tight and total <z> 

V teW£): { e'Ecp(e) I eGI A [t]\{±}} = I B [ t ] \{±} 
Λ ( l G I B [ t ] => ± G I A [ t ] ) 

(3) φ is weak <̂> 
V teW(Z): { e'Gcp(e) I eGI A [ t ] } C I B [ t ] 

(4) φ is tight and weak <=> 
V teW(Z): { e'Gcp(e) I eGI A [ t ] } = I B [ t ] 

(5) φ is tight and strong ο 
V teW(Z): { e'G9(e) I eGI A [ t ] } - I B [ t ] 

Λ ( ± E I A [ t ] < ^ l G I B [ t ] ) 

Proof: See appendix A. 0 

6.4.2 Initial Algebras 

Under the preconditions of theorem 6.9, a loose Σ-homomorphism from ΡΣ/R 
into an arbitrary model AEPMod(T) exists (just take the continuation of the 
interpretation I A ) . Therefore we have: 

Theorem 6.16 

I f Τ = (Σ, R) is partially DET-complete, partially DET-additive and 
sensible, ΡΣ/R is loosely initial in PMod(T) and PGen(T). 

Proof: 
The proof is conducted in analogy to theorem 3.13 (see appendix A) . 
For [ t ] G s P 2 / R holds: I- DEF(t), therefore ±£ l A [ t ] . This means that the 
continuation of I A is a total Σ-homomorphism from ΡΣ/R to A. () 

In order to state connections to the notions of homomorphism used in the 
literature, a similar result to lemma 3.13 was useful. But the generalization of 
the lemma would require that for an arbitrary model AEPGen(T) the following 
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property always holds (which is not the case): 
V eEs A : 3 tEW(I ) : Τ I- DEF(t) Λ I A [ t ] = {e} 

A particular class of models is characterized by this property. 

Definition 6.17 (Minimally Defined Models) 

Let Σ be a signature, KCPAlg(Z) a class of algebras, AEPAlg(Z). 
A term tEW(Z) is called undefined in A (symbolically: A 1= ft) iff: 

I A [ t ] = {±}. 
A is called minimally defined in Κ iff: 

V teW(Z): (3 BEK: Β 1= ft) => A 1= ft. 

Lemma 6.18 

Let Τ = (Σ, R) be a partially DET-complete, partially DET-additive and 
sensible specification. 

(1) For AEPMod(T): 
A is minimally defined in PMod(T) 

( V t E W ( I ) : A 1= f t <=> Τ I- t t ) 

(2) I f a term-generated model AEPGen(T) is minimally defined in 
PMod(T),then: 

V e Ε s A : 3 tEW(I) : Τ I- DEF(t) Λ I A [ t ] = {e} 

(3) Let AEPGen(T), BEPMod(T), A minimally defined in PMod(T). 
Then all loose and total homomorphisms φ: A -* Β are 
elementary. 

Proof: See appendix A. () 

Part (1) of this lemma states that ΡΣ/R is minimally defined in PMod(T), part 
(3) therefore corresponds to lemma 3.12. As a consequence, only elementary 
homomorphisms appear in the initiality results below. 

Please note that the notion of minimal definedness from above is not identical to 
the notion with the same name in [Broy, Wirsing 82]. The reason for this is that 
in a nondeterministic framework from the proposition "t is not defined in A " 
( - ( A 1= DEF(t)) we cannot conclude that "t is undefined in A " (A 1= TO- The 
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interpretation of t in A may contain defined values and the pseudo-value 1 . It is 
perfectly adissible that for a term t we have the following: 

PZ/RI=DEF(t) Λ 3 AEPGen(T): - ( A 1= DEF(t)). 

Example 6.19 

spec SOME 
sort Nat 
func zero: Nat, 

some: -> Nat 
a x i o m s 

DET(zero), 
DEF(zero), 
some -» zero, 

end 

succ: Nat -» Nat, 

DET(succ(x)), 
DEF(succ(x)), 
some -> succ(some) 

The model ΡΣ/SOME is isomorphic to the following model P: 
N a t p = N , zero p = { 0 } , succp(n) = {n+1}, 
some p = Ν . 

Another model A is given by: 
N a t A = Ν, zeroA = {0} , succ A ( n ) = {n+1}, 
some p = NU{±} . 

In the notation of [Broy, Wirsing 82], Ρ cannot be called minimally 
defined (since Ρ 1= DEF(some), -'(AI=DEF(some))). Using the 
definition above, Ρ is minimally defined. 

Independent of this question, A lacks the property of maximal 
determinacy, since the pseudo-value J. in the interpretation of some 
represents a form of "superfluous" nondeterminism, which has no 
foundation in the specification text. () 

The example shows that the formal generalization of the notion "maximally 
deterministic" has to handle the pseudo-value J_ appropriately. The crucial point 
is here the definition of the relation "more deterministic than" for partial 
algebras. As a generalization of the definition in the total case, it is obvious 
how the sets of defined values are to be compared (for the interpretation of a 
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certain term in two algebras). In analogy to the notion of partial correctness, this 
relation is called "partially more deterministic". 

The example above shows that another, "total" notion is needed as well, which 
describes whether Ρ is more deterministic than A. The formal definition relies on 
lemma 6.15 (1) and (2). 

Definition 6.20 (Maximally Deterministic Models in the Partial 
Case) 

Let A, A ' be partial Σ-multi-algebras. 
A ' is called a refinement of A , i f f there is a loose total Σ -
homomorphism φ: A ' -* A. 
A ' is called partially more deterministic than A, iff: 

V teW(Z): ( I I A [ t ] \ { l } I * I I A ' [ t ] \ {±} I ) 
A ' is called (totally) more deterministic than A, iff: 

V teW(Z): ( I I A [ t ] \{±} I * I I A ' [ t ] \ {±} I ) 
Λ ( i e i A ' [ t ] => ± G I A [ t ] ) . 

A is called maximally deterministic, i f f A is totally more deterministic 
than any refinement of A. 

DPGen(T) denotes the class of maximally deterministic term-generated 
models of a specification T. () 

There exists a strong connection between the model class DPGen and the "two-
phase" fixpoint semantics for nondeterministic programs defined in [Broy 86]. 
The maximality constraint with respect to the relation "partially more 
deterministic" corresponds to a designation of "Egli-minimal" algebras, the 
treatment of the 1-element leads to an additional minimality constraint with 
respect to the set inclusion ordering. 

Lemma 6.21 

Let Τ be a partially DET-complete, partially DET-additive and sensible 
specification. For any AEPGen(T) the following propositions are 
equivalent: 

(1) A is maximally deterministic. 
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(2) V BEPGen(T): 
φ: B -*A is a loose and total Σ-homomorphism => 

φ is a tight Σ-homomorphism. 

(3) V tew©: 
( V e G I A [ t ] : e * ± => 3ϊΕΨ(Σ): 

Τ I-1 -> t' Λ Τ I- DET(t') Λ Τ I- DEF(t') Λ I A [ t ' ] = { e } ) Λ 
( ± E I A [ t ] = > 3 t ' E W f f ) : 

Τ I-1 —* t' Λ T l - t f Λ I A [ t ' ] = { l } ) 

Proof: See appendix A. φ 

Theorem 6.22 

Let Τ be a partially DET-complete, partially DET-additive and sensible 
specification. 
Then ΡΣ/R is strongly initial in DPGen(T). 

Proof : 
Let AEDPGen(T). According to theorem 6.16,1A is a unique loose and 
total homomorphism from ΡΣ/R to A. With lemma 6.21 (2), is a 
tight homomorphism, too. 
Let t e W ( Z ) , ± E I P 2 / R [ t ] , then 3 t': Τ I-1 -» t' Λ Τ I- f t ' (lemma 
6.9.1). I f it was the case that e E I A [ t ' ] , e*±, then Lemma 6.21 (3) 
would deliver a contradiction to Τ I - f t ' . Therefore I A [ t ' ] = { ± } , i.e. 
± E I A [ t ] . According to lemma 6.15 (5) this means that I A is a strong 
homomorphism, too. (} 

From theorem 6.22 and lemma 6.18 (1) it follows that all models in DPGen(T) 
are minimally defined in PMod(T) (in the sense of definition 6.17). 

A graphical visualization of the lattice structure of the model classes can be 
found at the end of the next section. 
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6.4.3 Terminal Algebras 

In the case of partial specifications, the existence of terminal algebras is a less 
trivial question than in the total case. From the definition of weak homo­
morphisms it can be seen directly that a (weakly or strong) terminal algebra A in 
a class of algebras Κ has to fulfil the following property ("minimal definedness" 
in [Broy, Wirsing 82]): 

V tEW(Z): (3 BEK: ± E I B [ t ] ) => l E I A [ t ] . (MD) 
This property does not hold for a trivial algebra construction (like ΖΣ from 
definition 3.6). Even one-element carrier sets and partial functions do not suffice 
in general to construct a terminal algebra, since partial specifications implicitly 
may exclude some possible identifications of elements: 

Example 6.23 

spec NT 
sor t s 
func a: -> s, b: -* s, f: s -» s, g: -» s 
a x i o m s 

DET(a), DEF(a), DET(b), DEF(b), 
DEF(f(a)), f(x) a, f(b) g 

end 

There does not exist a term-generated model of NT, in which a und b 
are identified and in which the property (MD) holds: 

Let AEPGen(NT), aEs A , a A = b A = { a } . 
Because of I-DEF(f(a)) then ±<£fA(a). 
In PI/NTEPGen(NT) we have: l E I p s / N T [ f ( b ) ] , therefore A does not 
fulfil (MD) (otherwise from a A = b A it followed t h a t l E f A ( a ) , 
contradiction). 0 

Another negative statement can be deduced from the example above: 

Theorem 6.24 

In general, within PGen(T) strong terminal algebras do not exist. 
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Proof : 
Consider the specification NT from example 6.23. Two models A and 
Β of NT are given by: 

s A = s B = { a , b } , a A = a B = { a > , b A = b B = { b } , 
f A (a) = f B(a) = { a } , f A (b ) = f B (b) = { a, ± } , 
g A = { a , l } , g B = { b , ± } . 

A and Β fulfil (MD). I f there was a model Z, as well as tight and strong 
homomorphisms φ: A -* Ζ and ψ: Β -» Ζ, then according to lemma 
6.15 (5) the following statements would be valid: 

{ φ ( Ε ) , 1 } = 8 Ζ = { ψ Ο > ) , 1 } > 

{cp(a)} = a z , { ψ ( ο ) } = ο Ζ . 
From this follows that a z = b z . As in example 6.23, Ζ does not fulfil 
(MD), so it cannot be strongly terminal in PGen(T). φ 

However, a weakly terminal model for PMod(T) can be constructed. In this 
model the operations are in general weaker defined and less deterministic than 
those in models of DPGen(T), so the weakly terminal model is not very 
interesting for nondeterministic specifications. This is the reason why weakly 
terminal models in PMod(T) are not studied here. It is a more interesting 
observation that in the most interesting model class DPGen(T) a strongly 
terminal model does exist. For the construction of this model we use a relation, 
which is defined in analogy to [Broy, Wirsing 82]. 

Def in i t ion 6.25 

On W(Z) a quasi-ordering —»is defined by (t, t ' 6W(I ) ) 

t - * f *>def 
3 A i , . . . , Ak+1EDPGen(T), t i , . . . , t k Ε W(Z): 

A i l= t t i Λ A2 l= t t2 Λ . . . Λ Ak+1 1= t' . 

denotes the equivalence relation induced by : 

t f <>aef t —* f Λ t' t . 0 

It can be seen easily that is reflexive, transitive und congruent with respect 
to the term building operations. induces an ordering on the '^-equivalence 
classes in W(Z). 
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Def in i t i on 6.26 

Let Τ = (Σ, R) be a partially DET-complete, partially DET-additive and 
sensible specification. 
An extended axiom set E(R) is defined by 

E(R) = R U { <t-*t'> 11, t ' E W ( I ) Λ 

l-DET(t) Λ l-DEF(t) Λ l-DET(t) Λ I-DEF(t) Λ t <**> t' } . 

Obviously, E(R) is partially DET-complete and DET-additive, again. 

Therefore the algebra P(I)/E(R) is well-defined. 0 

Theorem 6.27 

Under the preconditions of definition 6.26, ΡΣ/Ε(Ρ) is strongly 
terminal in DPGen(T). 

Proof: See appendix A. (} 

For the specification NT from example 6.23 the strongly initial and the strongly 
terminal algebra in DPGen(T) are isomorphic. Essentially only one algebra is 
specified here ("monomorphic specification"). 

Altogether, the structure of the model class of a partially DET-complete, 
partially DET-additive and sensible specification Τ = (Σ, R) can be visualized 
graphically as follows: 

tight and strong homomorphisms 

loose and total homomorphisms 

loose and weak homomorphisms 

PMod(T) 

DPGen(T) 





Chapter 7 

Communicating Processes: 
An Example 

In this chapter the theory developed above shall be applied to a non-trivial 
example, in order to demonstrate that the original aims are fulfilled. Moreover, 
the example leads to some ideas how the current state of development can be 
improved. 

The specification presented in this chapter has been tested (with only a few 
modifications) using the RAP system. Some of the experiments are documented 
in appendix B. 

As an example, the operational semantics of a programming language for 
communicating sequential processes is specified. This example is of particular 
interest, since one of the main motivations for the treatment of nondeterminism 
comes from the field of programming parllel and communicating processes. The 
language chosen here is a simplified variant of the language CSP ([Hoare 78]). 
Syntax and semantics have been taken from [Olderog, Hoare 86], except of 
minimal notational differences. A very similar language constitutes the basis for 
the concepts of [Broy 84] . 

7.1. Communicating Processes (CP) 
The language of Communicating Processes (CP) presupposes a given alphabet 
C of elementary actions (communication actions). 
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The syntax of CP-programs in Backus-Naur form is as follows: 

<Agent> ::= stop I 
div I 

<Action> -> <Agent> I 
<Agent> OR <Agent> I 
<Agent> [] <Agent> I 
<Agent> II {<ActionSet>} <Agent> I 
<Id> :: <Agent> I 
<Id> 

Here <Action> denotes elements from C, <ActionSet> means finite sets of 
elements from C and <Id> denotes identifiers. 

The informal meaning of agents is given by the processes they describe. A 
process basically can be understood as a sequence (or, i f parallelism is involved, 
as a partial order) of communication events, each of which is an instance of 
some action out of the set C. 

s top 
describes a process which has reached its termination already and is no 
longer able to communicate. Sometimes this situation occurs within a 
system of processes unintentionally; then it is called a deadlock. 

div 
also describes a process which is unable to further communication. But 
here this failure is due to an infinite sequence of internal computation 
steps: The process diverges. 

a-* ρ 
describes the process which is able to perform the action a and which 
afterwards behaves like the process p. An action in general means a 
communication with another process. 

pORq 
describes a process which behaves nondeterministically either like ρ or 

like q. This form of nondeterminism is called internal nondeterminism, 
since the decision is taken by the process itself, completely 
independently of its environment. 
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p [ ] q 
also describes a process which may behave nondeterministically like ρ 
or q. But here the decision can be controlled by the environment 
(which consists of other processes). The process is only allowed to 
choose such an alternative, i f its first action leads to a successful 
communication with its environment. Therefore this form of 
nondeterminism is called external. 

p l l { A } q 
is used to compose systems of parallel processes. The action set A 
describes the actions for which a synchronization of ρ and q is 
necessary (internal communication between ρ and q ). 

ρ \ a 
is used to "hide" internal actions performed by the process p. I f the 
process described by ρ performs the action a, this fact is no longer 
abservable from the outside. The "hiding" construct admits a modular 
construction of more abstract processes from primitive ones. 

χ :: ρ and χ 
(where χ is an identifier) are used to declare processes recursively. 

In the following, some approaches to a semantics of CP are specified. The 
notational difference between agents (programs) and processes (evaluations of 
programs) is handled less rigidly from now on. 

7.2. Semantics of CP 
In [Olderog, Hoare 86] a number of mathematical models for CP-processes are 
given. It was principally possible to describe those semantical models directly 
by nondeterministic specifications, since all these models use additive operations 
(besides a few problems with hiding, see below). 

But in order to stress the relationship to executable specifications and term 
rewriting, the specification below uses the operational semantics of CP as its 
starting point. It turns out that the language of nondeterministic algebraic 
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specifications suffices to abstract from unnecessary technical details, leading to a 
rather "abstract" kind of operational semantics. 

7.2.1. Transition Semantics 

The operational semantics for CP given in [Olderog, Hoare 86] uses transition 
systems (labelled term rewrite rules). A rule in this framework is of the form 

ρ Λ Ρ ' 

where ρ, ρ' are agents and χ is an action. The rules can be understood as 
follows: The process described by ρ is able to perform the action χ and then 
behaves like the process described by ρ' . The transition semantics admits here a 
particular psudo-action t ^ C in additon to the communication actions (similarly 
to the ε-transitions in nondeterministic automata). 

Transition systems are a rather general tool for the definition of operational 
semantics, as demonstrated by the "SOS"-style of semantic definition ([Plotkin 
81], [Hennessy 90]). Therefore the treatment of transition systems is interesting 
for a wider area of applications than the actual language studied here. 

For an algebraic specification of the semantics, the main problem is an 
appropriate handling of the labels used in the transition systems. Except of these 
labels, the concept of non-confluent term rewriting corresponds well to 
transition systems. In [Meseguer 92] the whole notion of rewriting has been 
extended to cover the notion of labelled rewriting; we prefer to encode the label 
associated with a rewriting step. The three basic alternatives for such an 
encoding are: 

(a) Transition rules as predicates 

The transition rule is described by a predicate with three arguments: 
OP: Agent χ Action χ Agent -> Bool 
OP(p,a,p') = true. 

This approach is used in [Broy 84]. It means to simulate nondeterminism on a 
deterministic level (similar to [Subrahmanyam 81]). The models of such a 
specification do not contain true nondeterministic operations. 
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(b) Acceptor approach 

The transition rule is described by a function 
trans: Agent χ Action -» Agent 
trans(p,a) -> p' , 

i . e. the successor state is specified for a given process and a given 
action. 

(c) Generator approach 

The transition rule is described by a function 
trans: Agent -» Action χ Agent 
trans(p) -> <a,p'>, 

i .e . the successor state and a possible action are specified for a given 
process. 

The difference between variants (b) and (c) can be seen best for an example. In 
order to compute the successor states of the agent 

(a stop) OR (b div) 
the following transition rules from [Olderog, Hoare 86] are needed: 

p O R q ^ ρ 

ρ OR q J± q , 

i . e. the transition semantics admits the following possibilities for the first step: 
(a -» stop) OR (b -* div) J± (a -* stop) 

(a stop) OR (b div) J± (b div) 

(This corresponds to the intuitive idea that a process composed by OR can 
decide "spontaneously" in favour of one of its subprocesses.) 

A model Β following approach (b) models this situation like this: 

A model C according to approach (c) however defines: 
trans^-(p) = { <x,a-»stop>, <x,b-»div> } . 

Basically both variants are acceptable models of the considered situation. But the 
second variant mirrors more precisely the intuitive idea of a "spontaneous" 
action. In approach (c) a process generates the possible τ-actions by itself, 
whereas in approach (b) the "spontaneous" actions have to be stimulated from 



1 9 2 COMMUNICATING PROCESSES: AN EXAMPLE 

the outside by supplying the process with a pseudo-action. Moreover, approach 
(c) seems to lead to a technically simpler way of modelling. These are the 
reasons why from now on approach (c) is followed. 

In order to give an appropriate semantics for CP, all the concepts developed in 
the previous chapters must be used (partial specifications, conditional axioms). 
It is sufficient, however, to consider constructor-based specifications (according 
to section 4.4). Therefore the specifications do not contain explicit DET- or 
DEF-axioms; for all constructor terms implicit DET- and DEF-axioms are 
assumed instead. It is reasonable to construct the specification in a modular 
(hierarchical) way. 

The following standard types are used: 

BOOL the truth values, containing the sort Bool and the usual operations; 

COM the basic alphabet for communication actions, containing the sort Com 
and an equality predicate equal_Com: Com χ Com -> Bool; 

ID the identifiers (strings), containing the sort Id an an equality predicate 
equaljd: Idxld -> Bool . 

Actions are described by 

spec ACTION 
basedon C O M 
sort Action 
cons tau: -> Action { invisible action } 

com: Com -» Action { communication action } 
end 

The specification for sets of communication actions is omitted here (see 
appendix B , specification COM_SET), in order to improve readability standard 
notation for sets is used here. 

The syntax of agents is easily described as an abstract syntax: 

spec AGENT 
basedon I D , COM 
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sort Agent 
cons stop: Agent 

div: -» Agent 
prefix: Com χ Agent - * Agent 
OR: Agent χ Agent -* Agent 
choice: Agent χ Agent -> Agent 
par: Agent χ SET(Com) χ Agent -» Agent 
hide: Agent χ Com Agent 
rec: Id χ Agent -> Agent 
call: Id Agent 

{ stop } , 
{ d i v } , 
{ a - p } , 
{ p O R q } , 

{ p [ ] q } , 
{ p » { A } q } , 
{ p \ a } , 
{ x : : p } , 

{ x } 
end 

Since all operations in AGENT are syntactical constructors for programs, all the 
operations are total and deterministic. This includes the nondeterministic 
constructs OR and choice! The sort Agent describes only the (deterministic and 
defined) objects of program terms. Nondeterminism or nontermination do not 
appear unless such programs are executed. 

For the definition of a transition semantics, as it was sketched above, tuples 
Action χ Agent 

are needed. Again the mathematical notation is preferred over an explicit 
specification of these tuples. (The constructor < . , . > for tuples is assumed to be 
total and deterministic.) For a more detailed version see appendix Β (specification 

The axioms of the specification below are taken directly from [Olderog, Hoare 
86], adapted only to the new notational conventions. 

spec TRANS 
basedon BOOL, ID , ACTION, COM, AGENT, SUBST 
func trans: Agent -» ΡAIR(Action,Agent) 
a x i o m s 

trans(div) <tau,div>, 
trans(prefix(i,p)) -* <com(i),p>, 
trans(OR(p,q)) <tau,p>, 
trans(OR(p,q)) -* <tau,q>, 
trans(p) <com(i),p'> trans(choice(p,q)) -*· <com(i),p'>, 
trans(q) -» <com(i),q'> => trans(choice(p,q)) -> <com(i),q'>, 
trans(p) -» <tau,p'> => trans(choice(p,q)) -> <tau,choice(p,,q)>, 

PAIR). 
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trans(q) -> <tau,q'> => trans(choice(p,q)) -> <tau,choice(p,q')>, 
iE A & trans(p) <com(i),p'> & trans(q) <com(i),p'> => 

trans(par(pA,q)) ~* ^omö^parip'A>q')>, 
ig. A & trans(p) <com(i),p'> => trans(par(p,A,q)) - > 

<com(i) ,par(p' A »q)>, 

i ^ A & trans(q) -» <com(i),q'> => trans(par(p,A,q)) 

<com(i),par(pA,q')>, 
trans(p) <tau,p'> => trans(par(p,A,q)) -*· <tau,par(p' A»q)>» 
trans(q) <tau,q'> => trans(par(pA,q)) <tau,par(pA,q')>, 
trans(p) -> <com(j),p,> & equal_Com(i j ) = true => 

trans(hide(p,i)) <tau,p\ 
trans(p) ~> <com(j),p'> & equal_Com(i j ) = false => 

trans(hide(p,i)) -> <b,p'>, 
trans(rec(x,p)) -»· <tau,p[x/rec(x,p)]> 

end 

Recursion has been treated using a substitution operator: 
_ [ _ / _ ] · Agent χ Id χ Agent Agent 

with its usual meaning (for details see appendix B, specification SUBST). 

Because of theorem 6.12, TRANS is partially DET-complete and DET-additive. 

The operation trans has been specified as a partial function. The following 
terms, for instance, are interpreted as undefined in DPGen(TRANS): 

trans(stop) 
trans(par(prefix(a,p) ,{a,b} ,prefix(b ,q))) 
trans(call(x)) 

The first both terms correspond to deadlock situations, the third one contains a 
"context error" (call of a process name which has not been declared). 

The specification TRANS is hierarchy-persistent, as can be seen from the 
generalization of theorem 4.19 to the partial case. Since TRANS does not 
introduce any non-primitive sort, an analoguous generalization of theorem 2.33 
shows that, once a model for the primitive specifications ACTION, COM, and 
AGENT has been fixed, the model class DPGen (TRANS) contains essentially 
one single model. This corresponds well to the idea of having a fixed operational 
semantics as the basis of further considerations. 
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7.2.2. Trace Semantics 

The τ-transitions used in the transition semantics are operational details, an 
abstraction from which is interesting. A sequence of actions containing only 
communication actions is called a trace. The following specification describes, 
in analogy to TRANS, the first possible state transition of a process concerning 
an action different from τ . 

spec STEPO 
basedon ACTION, COM, AGENT, TRANS 
func step: Agent -» PAIR(Com,Agent) 
a x i o m s 

trans(p) -> <com(i),p'> => step(p) -> <i,p'>, 
trans(p) -> <tau,p'> => step(p) -> step(p') 

end 

Again, STEPO has essentially one model extending its primitive parts. 

The operation step now can be defined now in a simpler way without using the 
transition semantics. (More formally: STEPO is an implementation of the 
following specification STEP.) 

spec STEP 
basedon AGENT, COM, SUBST, ID 
func step: Agent -» PAIR(Com,Agent) 
a x i o m s 

step(prefix(i,p)) -> <i,p>, 
step(OR(p,q)) -» step(p), 
step(OR(p,q)) -> step(q), 
step(choice(p,q)) -» step(p), 
step(choice(p,q)) -* step(q), 
step(p) -> <i,p'> & step(q) <i,q'> & 16ΞΑ => 

step(par(pA,q)) -* <i,par(p'A,q')>, 
step(p) -» <i,p'> & i ^ A => step(par(pA,q)) <i,par(p',A,q)>, 
step(q) -> <i,q'> & i ^ A => step(par(pA,q)) ~* <i,par(p,A,q')>, 
step(p) -*· <j,p*> & equal_Com(i j ) = true => 

step(hide(p,i)) -> step(p'), 
step(p) <j,p'> & equal_Com(i j ) = false => 

step(hide(p,i)) -> <j,p'>, 
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step(rec(x,p)) -> step(p[x/rec(x,p)]) 
end 

STEP shows in a rather simple way two typical properties of the trace 
semantics: Internal and external nondeterminism are treated identically; and no 
difference is made between stop (deadlock) and div (divergence). 

The specification TRACES is based on STEP. It describes all possible initial 
segments for all traces of a process: 

spec TRACES 
basedon COM, AGENT, STEP 
sort Trace 
cons empty: -*· Trace, 

append: -> Com χ Trace -> Trace 
func trace: Agent -> Trace 
a x i o m s 

trace(p) -* empty, 
step(p) <i,p'> => trace(p) -» append(i,trace(p')) 

end 

Please note that TRACES admits non-isomorphic models (since it defines a new 
sort). The initial model ΡΣ/TRACES for divergence-free process exactly 
corresponds to the trace model Τ in [Olderog, Hoare 86]. More abstract models 
(for instance corresponding to the counter model C) are admitted as models of 
TRACES, too. 

As it was mentioned already, in DPGen(TRACES) there is no difference between 
div and stop. A model which corresponds better to the intuitive understanding 
of the process should have the following properties (call here the model A): 

IA[traces(stop)] = { emptyA } , IA[traces(div)] = { empty A , 1} , 
IA[traces(rec(x,call(x)))] = { emptyA, 1 } . 

According to lemma 6.21 (3) in DPGen(TRACES) this is possible only, i f there 
are terms t l , t2 such that: 

TRANS I- trace(div) -* t l , TRANS I- trace(rec(x,call(x))) -* t2, 
TRANS I - T t l , TRANS I- ft2 

For this purpose, in TRACES the following addition may be made: 
func divergence: -*> Trace, 
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trace(div) -> divergence, trace(rec(x,call(x))) divergence . 

In appendix Β another distiction between div and stop is made. Since the RAP 
system does not terminate i f it tries to enumerate the traces of div and stop, in 
STEP a particular treatment for deadlock situations is introduced. The operation 
step there is no longer undefined when applied to a deadlock, but it delivers a 
special element to indicate this situation ("totalization"). This allows RAP to 
terminate for the process stop and other processes representing a deadlock. 
Divergence leads to nontermination of RAP, which corresponds well to the 
intuitive understanding of the processes. 

7.2.3. Refusal Semantics 

Within the trace semantics, internal and external nondeterminism cannot be 
distinguished: The traces of a system of processes remain the same, i f internal 
nondeterminism is exchanged with external nondeterminism and vice versa. In 
[Olderog, Hoare 86] methods for a further refinement of the models are studied, 
which also can be modelled in our specification language. Below a specification 
is given which corresponds to the failure model F in [Olderog, Hoare 86] 
(which is the most refined model there). 

A distinction between internal and external nondeterminism can be made by 
studying the set of actions which can be refused by a process (refusal sets). This 
means just a simple possibility to describe the behaviour of a process within 
various contexts (of parallel processes). For instance, the system of processes 

((a stop) [] (b -» stop)) ll{a,b} (a -» stop) 
does not lead to a deadlock under any nondeterministic choice, however in 

((a stop) OR (b -» stop)) ll{a,b} (a -» stop) 
a deadlock is possible ( if the second alternative of O R is chosen). So, the 
process 

(a stop) [] (b -» stop) 
can refuse only action sets MC(C\{a,b}), but the process 

(a stop) O R (b -> stop) 
can refuse all sets Μ where {a, b } $ M . 

This notion is made more precise by the following specification. The operation 
refuse nondeterministically enumerates for a given process all action sets which 
can be refused by the process. 
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spec REFUSE 
basedon COM, AGENT, ID 
func refuse: Agent -> SET(Com ) 
ax ioms 

refuse(stop) M , 
i ^ M => refuse(prefix(i,p)) -> M , 
refuse(OR(p,q)) -» refuse(p), 
refuse(OR(p,q)) refuse(q), 
refuse(p)-*M & refuse(q)-*M => refuse(choice(p,q))M, 
refuse(par(pA,q)) -* refuse(p)[A]refuse(q), 
{ hiding operator omitted here! } 
refuse(rec(x,p)) refuse(p[x/rec(x,p)]) 

end 

Here the notation M [ A ] N (where Μ, A, Ν are action sets) stands for the 
"majority" operator introduced in [Olderog, Hoare 86]: 

M [ A ] N = (ΜΠΑ) U (ΝΠΑ) U (ΜΠΝ). 
For a more detailed specification (see appendix B) a specification for sets of 
actions is necessary. Unfortunately such a specification cannot be described in a 
constructor-based style (because of the equalities which hold between the set 
constructors). In appendix Β an implementation of sets by sequences is used, 
which leads to the disadvantage that a single set is represented by many different 
sequences. 

Please note that the "hiding" operator has been omitted in REFUSE. The reason 
for this is that hiding cannot be easily treated within the framework of 
REFUSE. The combination of external nondeterminism and hiding is 
problematic. A close examination of the model in [Olderog, Hoare 86] shows 
that hiding in this context means a non-additive operation, and so it is basically 
outside the scope of our specification framework. In [Olderog, Hoare 86] a 
treatment can be found which is in principle transferable to our framework, but 
would lead to significant overhead. 

REFUSE again has essentially one model extending its primitive parts. 
Together with the trace semantics, it gives a description of CP, which 
corresponds for divergence free processes exactly to the failure model F in 
[Olderog, Hoare 86]. 

In a hierarchical model AEDPGen(REFUSE) the following equations hold: 
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Γ6Γ1186^[θ1ΐθία6(ρΓ6Γΐχ(Ε,8ΐθρ),ρΓ6βχ(0,8ΐθρ))] = 

{ M C C o m A I a £ M Λ b £ M } , 
refuseA{OR(prefix(a,stop) ,prefix(b,stop))] = 

{ M C C o m A I a<£M } U { M C C o m A I b&A } , 
therefore internal and external nondeterminism are now distinguishable. 

It is interesting to compare the operation refuse, when it is applied to an OR-
agent and to an agent with the topmost symbol choice. In the first case, refuse 
delivers the nondeterministic choice between the refusal sets of both subagents, 
in the second case it works deterministically. This means that the construct of 
external nondeterminism behaves nondeterministically only in the context of 
trace, not in the context of refuse. Therefore the constructor choice itself 
should not be considered as truly nondeterministic. The constructor OR for 
internal nondeterminism, however, can be called nondeterministically by itself, 
since OR-terms in all contexts show exactly the same behaviour as i f the 
following axioms were given: 

OR(p,q) p, OR(p,q) q . 

The next example illustrates the (non-obvious) reason, why refusals of action 
sets are considered (instead of the refusal of single actions): 

refuseA[OR(OR(prefix(a,stop),prefix(b,stop)),stop)] = { M C C o m A } , 
refuse A[OR(prefix(a,stop) ,prefix(b ,stop))] = 

{ M C C o m A I a(£M } U { M C C o m A I b £ M } . 
An arbitrary single action can be refused by both processes, but the set of 
actions {a,b} can be refused by the first process and cannot be refused by the 
second one. 

REFUSE moreover gives a possibility to distinguish between divergent and 
non-divergent processes. In models AEDPGen(REFUSE) the following 
equations hold: 

IA[refuse(stop)] = Com A , 
IA[refuse(div)] = { ! } , IA[refuse(rec(x,call(x)))] = { ! } . 
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7.3. Improvements and Applications 
The example CP was intended to give some orientation with respect to the 
applicability of nondeterministic algebraic specifications. 

First, it can be stated that a simple transition from the given description of CP 
to the specification is possible, and that the expressiveness of the framework is 
sufficient for modelling this non-trivial language. Necessary (or at least 
extremely useful) for this purpose were the following concepts: partial 
specifications, conditional axioms and hierarchical specifications. 

It is also an interesting observation that all specifications within this chapter are 
constructor-based. So this simple sublanguage can be used successfully for non-
trivial applications. The only problem with constructor-based specifications 
came from the question how to specify finite sets of a base set. It seems to be 
sensible to study the incorporation of equations between constructors. 

On the other hand, it is obvious that the border of the expressiveness of our 
specification language is reached when some specialized semantic concepts (like 
the refusal semantics for the hiding-operator in CP) are considered. For 
semantical studies on nondeterministic programming languages, the classical 
mathematical framework, as it was used for CP in [Olderog, Hoare 86], always 
is superior. But nondeterministic algebraic specifications also bring a new aspect 
into the study of semantics by the new flexible and abstract approach to the 
operational aspect of nondeterministic programming languages. For the example 
of CP, this is illustrated by the fact that the transition semantics can be 
described within the same formal framework as the trace and refusal semantics. 

The above-mentioned experiments are documented in the appendix B. As it was 
formulated as one of the aims of this work, term rewriting (or more precisely, 
graph rewriting, according to section 5.2) is used there as an operational 
semantics for the CP-specification. 



Chapter 8 

Concluding Remarks 

In this concluding chapter, the results of this monograph are summarized and 
briefly evaluated. In addition to that, a number of questions are put together 
which could be of particular interest for future research. 

8.1. Summary and Evaluation 
The starting idea of this work was to integrate nondeterminism into algebraic 
specifications in such a way that operations in an algebra and the interpretation 
of terms are set-valued. Formulae do no longer denote equations but selection 
decisions (or inclusion relations). It has been shown that non-confluent term 
rewriting systems are an appropriate specification language for this world of 
models, i f a basis of deterministic operations is designated and i f the other 
operations work in a particularly simple (additive) way on this deterministic 
basis. Syntactical criteria for such additive specifications have been given. It has 
been shown that for this nondeterministic specification language the most 
important results from the theory of algebraic specifications are still valid. It has 
been shown, too, that the generalization can be combined with advanced 
concepts from algebraic specifications (for instance partiality, hierarchies) as 
well as from term rewriting (narrowing, graph rewriting). The relationship with 
logic programming has been investigated, showing that logic programming can 
be seen as a particular interesting subcase of the newly developed theory. For a 
number of examples from various areas of computer science, the basic 
applicability of the language has been demonstrated. 
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The theory presented here generalizes equational algebraic specifications to 
nodeterministic operations, leading to a kind of inequational specifications. This 
language is not such an abstract specification language that it may be used for a 
mathematical discussion of for instance the semantics of nondeterministic 
programs. The language however provides an abstract programming language in 
its pure form: A logical calculus is offered, which is executable by a machine 
(within some limitations). The algebraic specifications addressed here are 
algebraic programs. 

Algebraic programs are conceptionally simple. The language is syntactically 
slim, the semantics is defined mathematically. Algebraic programs admit a direct 
approach to program verification, since a logical calculus is an elementary part 
of the underlying theoretical foundations. In principle, algebraic programs can be 
executed as fast as Prolog programs [Hanus 90]; the built-in notions of 
(deterministic and non-deterministic) functions enable implementations which 
follow very closely the mathematical semantics. These aspects designate the 
language which has been developed in this manuscript as the starting point for a 
balanced compromise between a practically usable programming language and a 
theoretically well-founded specification language. 

8.2. Future Work 
Fortunately, a number of questions, which were called "open" in earlier versions 
of this text [Hussmann 88/91], could be treated in detail in this book and in the 
recent approach [Walicki 92/93]. However, there are several possibilities to 
generalize the current results further, and to integrate it with other concepts for 
algebraic specifications. Of particular interest is here the integration of non-strict 
operations (at least non-strict constructors) (see for the problems arising here 
[Nivat 80], [Möller 82], [Broy 85], [Broy 87]). In combination with the graph 
rewriting techniques from section 5.2, a semantic basis for "call-by-need"-
computations without a confluence condition could be obtained. Not only term 
reduction techniques, but also narrowing techniques should be considered for this 
aspect. 

But also a restriction of the current approach could lead to further studies. The 
language of constructor-based nondeterministic specifications could serve as the 
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basis for a powerful abstract programming language (or executable specification 
language). For this purpose, mainly a sufficient handling (also from the 
operational aspect) of constructor equations must be found. In order to achieve a 
good integration of nonconfluent and confluent rewriting, more general results in 
the spirit of lemma 5.10 (innermost normalization with a canonical subset of 
the axioms) are useful, for rewriting as well as for narrowing. 

Another area of extension comes from the connections between the theory 
presented here and approaches which try to drop the distinction between sorts and 
objects in algebraic specifications ([Mosses 89], [Smolka 88]). Since 
nondeterministic operations are set-valued, they can be used for the description of 
sorts, too. (For instance, the operation some in example 2.20 exactly describes 
the sort Nat.) So polymorphic functions can be integrated into the framework of 
nondeterministic algebrac specifications. Such an attempt, however, wi l l need a 
few technical extensions of the framework like a second kind of variables which 
range over sets (sort variables). This idea of a second kind of variables may also 
help in integrating this work more closely with the approach of [Meseguer 92]. 

Rewriting without confluence restrictions seems to be a framework which 
generalizes many important paradigms of computing. Therefore it may form a 
good basis for studies comparing various not obviously connected approaches to 
a mathematical description of computation. 
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Appendix A: Proofs 
This section contains proofs which are too long or too technical to be placed 
into the running text. 

Proof of Lemma 1.17.1 
Proof by induction on the term structure of t. 

t = x. x E X : 

Iß [at] = {γχ I yxGIp [σχ]} = {eGT^[t] I γ χΕΙβ [σχ]}. 

t = f f t i^^tnl i 
Ip [ f (o t i , . . . ,at n)] = {eGf A (ei , . . . ,e n ) I e j Q ß [atj]} (definition 1.5) 

Δ A A 
• {eEf A ( e i , . . . ,en) I eiEI^.[ti] Λ V xEVars[t|]: γ ίχΕΙβ [σχ]} (induction hyp.) 

2 { e E f A ( e i . . , e n ) I q E I ^ t i ] Λ V xEVars[ti]: γχΕΙβ [σχ]} (*) 

= {ee^[t] I V xEVars[t]: γχΕΙ^ [σχ]} (definition 1.5) 

Line (*) holds because of Vars[t] • Vars[tj]. 

I f t is linear, tj and tj for i* j have disjoint variables: Varsft] Π Vars[tj] = 0 , 
Therefore the disjoint valuations γί can be composed to γ = γ ι U . . . ϋ γ η , so in 
line (*) the set equality holds instead of set inclusion. (Analoguous arguments 
apply in the induction hypothesis.) φ 
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Proof of Theorem 1.19: 
The proof uses a lemma which is stated below. Please note that a valuation in 
WZ/R is a substitution. Therefore, here the letter σ (where oGSUBST(Z,X)) is 
used instead of β. The usual properties for substitutions are presupposed. 

Lemma 1.19 

(1) o t e O t ] 

(2) I ^ 2 / R [ t ] C { t 'GW(S^) I Τ I - R C at - * t*} 

w y / R 
(3) t £ X = * I ™ K [ t ] = { f eW(Z,X) I Τ I - R C at -* t ' } 

Proof of the Lemma: 

Part (1): 

Induction on the term structure of t 

t = x. x E X ; 
ot = σχ Ε { σχ } = I [t] 

t = ffti U ) ; 
of ( t i , . . . , t n ) 
G { t ' l I - f(ot\,... ,σΐη) t ' } (because of (REFL)) 

ς { ΐ Ί ΐ - « η ' , . . . . ι η · ) - ι · Λ t i ' G i ^ / K [ t i ] > 

(according to ind. hypothesis) 
= { f 11' e f W 2 / R ( t i ' , . . . , t n ' ) } (definition 1.15) 

= I W 2 / R W (definition 1.5) 

Part (2): 
Induction on the term structure of t 

t = x. x E X : 
wy/R 

I™ [t] = { σχ } C { t ' 11- σχ t ' } (because of (REFL)) 
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t = f(ti t n ) : 

i ^ 2 / R [ t ] = { t ' e f W X / R ( t l . , . . . i t n . ) , t i> eTW2/R[ti]} ( d e f i n i t i o n l 5 ) 

C { t ' e f W 2 / R ( t i ' , . . . , t n ' ) 11- crti —» t j ' } (induction hypothesis) 
= { t ' 11- f ( t i t n ' ) - * t' Λ I- crtj -* t j ' } (definition 1.18) 
C { t ' 11- f (o t i , . . . ,cTtn) -» t ' } ( (CONG), (TRANS)) 

= { t ' l l - o t - » t ' } . 

Part (3): 
Here we have to show only the "•"-direction of part (2) in the case 
t £ X . So let t = f ( t i , . . . , t n ) and t 'EW(Z,X) where I- at t ' , i . e. 

l - f ( o t i , . . . , o t n ) ^ t ' . 
So t ' e { t " l l - f ( a t i , . . . , a t n ) - > r } C 

W57R 
{ t " l l - f ( t i ' , . . . ) t n ' ) - » t " A t i ' G I ^ / K [ t i ] } 

WZ/R WZ/R 
(since according to (1) crt jE^ [tj]), and therefore t ' Q ^ [ t ] . 

0 (lemma 1.19.1) 

For the proof of theorem 1.19 itself we have to show for <1 -> r>ER holds: 

I ^ 2 / R [ l ] • I ^ 2 / R [ r ] . This proof uses lemma 1.19.1: 

I™ [1] = { t' I t 'GW(I ) Λ I- σΐ -» f } (lemma 1.19.1 (3), since 1 0 0 

• { V I t ' E W ( I ) Λ I- or -+ V } (since I- σΐ -» or using (AXIOM)) 

• I ^ I / R M . (lemma 1.19.1 (2)) 0 

Proof of Theorem 2.6 
Lemma 2.6.1 

Let β be a valuation of X in the Σ-algebra Α, σ a aubstitution and YCX 
such that 

V x E Y : I Ιβ [σχ] 1 = 1 . 

Then there is a valuation βσ of X in A, defined by 
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a , , \ln [σχ] i fxeY 
βσ(χ) = ^ ß L 

[ß(x) otherwise 

and for tEW(Z,X) with Vars[t]CY we have: 

I^[a t ] = I ^ [ t ] . 

The lemma is proven by induction on the term structure of t (proof is 
omitted here). 

The proof of theorem 2.6 can be performed by induction on the (length of the) 
derivation. The deduction rules (REFL) and (TRANS) do not pose here any 
problems because of the corresponding properties of set inclusion. For the other 
rules the following arguments can be given (identifiers are as in the definition of 
the deduction rule). 

( C O N G ) : 
Let A be a model AEMod(T) and ßEENV(X,A). The premise of the deduction 
rule, together with the induction hypothesis, yields: 

Iß[ti]2Iß[ti']. 
Therefore: 

IßV(tl,..,tn)] 

= { e e f A ( e i , . . . ,e n) I ej G I A [ t j ] für 1 s j s n} 
• {eGf A ( e i , . . . ,e n) I ej G I A [ t j ] für 1 s j s n, j - i , e iGI A [ t i ]} 

= I A [ f ( t i , . . . , t i . i , t i ' , t i + i , . . . , t n ) ] 

( A X I O M - 1 ) : 

Because of the premise (using the induction hypothesis): 

I Ι Α [ σ χ ] 1=1 for all xGVars(l)UVars(r) 
So using lemma 2.6.1 and AGMod(T): 

l ^ o l ] = I ^ [ l ] 2 I ^ [ r ] = ^ [ o r ] . 

( A X I O M - 2 ) : 
Δ 

Analoguously to (AXIOM-1) using lemma 2.6.1: I I ß [crt] I = I I Q ß [ t ] 1 = 1. 

(def. 1.5) 
(premise) 

(def. 1.5) 
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( D E T - X ) : 

H ß M i = l { ß ( x ) } l = i . 

( D E T - D ) : 

Because of the premise (using the induction hypothesis): 

I ß [ t l ] 2 I ß [ t 2 ] and I Iß [ t l ] 1 = 1, 

So I Iß [t2] I s 1. Since I I^ [ t2 ] I * 0, we have 11£[t2] 1 = 1. 

( D E T - R ) : 
As in the case (DET-D) we have 

I ß [ t l ] 2 I ß [ t 2 ] and I Iß [ t l ] 1 = 1 , 

So I I ß [t2] I = 1, i . e. I o [ t l ] = l£[t2] , and therefore l£[12] 2 1 ^ [ t l ] . 0 

Proof of Theorem 2.11 
Lemma 2.11.1 

l - f ( t i , . . . , t n ) - t A - ( l -DET(f ( t i , . . . , t n ) ) ) => 

( E t i ' , . . . , t n ' : l - t j - t i ' A I - f ( t i t n ' ) - » t Λ I- DET(tj ' ) ) (a) 

ν 
(3 t i ' , . . . , t n ' : I - t j ^ t j ' Λ I- f ( t i t n ' ) - » t ) Λ - ( I - DET(f( t i ' t n ' ) ) 

(b) 

Proof of the Lemma: 

By induction on the deduction of I - f(ti , . . . , t n ) -» t (the deduction rule 

(DET-R) can be excluded here, according to the precondition). 

( R E F L ) : 
Then (b) holds trivially. 
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( A X I O M - 1 ) : 
Then ti=oli and < f ( l i , . . J n ) ^ r > e R . Because of ( A l ) we have I- DET(lj) 
and (since I - DET(ax) for xEVars[li]) also I- DET(crli). So (a) holds. 

( C O N G ) : 
Then t= f ( t i ' , . . . , t n ' ) and I- t i ->t j ' . I f I- DET(f( t i ' , . . . , t n ' ) ) , then because 
of (A2) part (a) holds. Otherwise because of - (I- DET(f(ti'» · · part 
(b) holds. 

( T R A N S ) : 
Then l - f ( t i } . . . , t n)->r, I - r->t. 
The induction hypothesis can be applied to l - f ( t i , . . . , t n ) ^ r . 

Case 1: (a)-part of the induction hypothesis holds. 
Then using (TRANS) also the (a)-part of the claim holds. 

Case 2: (b)-part of the induction hypothesis holds. 
Then r=f(n , . . . , r n ) , - (I- DET(f(q, . . . , r n )) , I- f(rι,. . . ,r n )-*t. 
The induction hypothesis can be applied to I- f(q,...,Τη) -** again. 

Case 2.1: (a)-part of the induction hypothesis holds. 
Then I- r ^ t f , I - DET(ti '), l - f ( t i ' , . . . , t n ' ) ^ t . 

Using l- t j -^r j (as presupposed for case 2) and (TRANS), then part (a) 

of the claim holds. 

Case 22: (b)-part of the induction hypothesis holds. 
Then I - r ^ t i ' , - ( I - DET(f( t i ' , . . . , t n ' ) ) , l - f ( t i ' , . . . , t n ' ) -*t . Using l - t ^ r j 

(because of case 2) and (TRANS) then part (b) of the claim holds. 

0 (lemma 2.11.1) 

Theorem 2.11 follows from the lemma: Let I- f ( t i , . . . , t n )-*t , I- DET(t). 

Case 1: I- DET(f ( t i , . . . , t n ) ) 

Then because of (A-2) the condition of DET-additivity is given. 

Case 2: - ( I - DET(f( t i , . . . , t n ) ) ) 
Then lemma 2.11.1 can be applied. The case (b) has to be excluded (contra-
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diction to I- DET(t)), so part (a) holds, which is equal to the condition of DET-
additivity. 0 

Proof of Theorem 2.14 
Valuations in ΌΣ/R are represented by substitutions. Below the notation [σ] is 
used, which means (aESUBST(Z^C)): 

[σ]: Χ -* W(E)/« and for all xEX: [σ](χ) = [σχ] and I- ϋΕΤ(σχ). 

Lemma 2.14.1 

Let tEW(I,X). Then 

l { ^ / R [ t ] = { [f] I t'EW(Z) Λ l-DET(t') Λ l -crt -M' } 

Proof of the Lemma: 

Induction on the term structure of t: 

t=x. x E X : 

I ^ W = { [σ](χ) } = { [σχ] } C { [f] I I- DET(t') Λ I- σχ - V } 

(because of (REFL)). 
The 2-direction holds, since I- ϋΕΤ(σχ) and therefore from I- σχ -> V 
by (DET-R) follows I- V σχ. So ι'Ε[σχ]. 

I ^ V t ! , . . , ^ ) ] 

= { eEf D 2 / R (e i , . . . ,en) I e iElJ^fti] } (definition 1.5) 

= { [f] I I- DET(t') Λ I- f ( t i t n ' ) ^ t ' Λ [tna£] [tj]} 

(definition 2.13) 
= { [f] 11- DET(t') Λ I- f(ti\...,tn')^t' Λ I- DET(tj') Λ |- crti—ti* } 

(induction hypothesis) 
C { [t'] 11- DET(t') Λ I- crf(ti ,...,tn)^t' } (by (CONG).(TRANS)) 
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For the-direction, let t= f ( t i , . . . , t n ) and t ' G W ( I ) such that I - DET(t') 
and I - G f ( t i , . . . , t n ) - > t \ 

Because of the DET-additivity there exist t i t n ' such that 

I- D E T ( t i ' ) , . | - a t i - t i ' , l - f ( t i ' , . . . , t n ' ) - t , i . e . t ' e i ^ / K [ t ] . 

0 (lemma 2.14.1) 

For the proof of theorem 2.14, let <DET(tl)>GR, [σ] a valuation. Then: 

I [ t l ] I = I { [ f ] I I- DET(t'} Λ I- σίΐ - ^ t ' } I (lemma 2.14.1) 

= I { [ t l ] } I (because of I- DET(crtl), rule (DET-R)) 
= 1. 

Let <tl-*t2>GR, [σ] a valuation. Then: 

I^J [ t l ] = { [ t ' ] l l-DET(t') Λ l - o t l ^ t ' } (lemma 2.14.1) 

2 { [ f ] l l-DET(t') Λ l - o t 2 - » t ' } (since I- crtl-»o"t2 by (AXIOM-1)) 

O Y / R 

= l[d\ [ t 2 ] (lemma 2.14.1). 

DZ/R is term-generated: Let [ t ] e s D 2 / R . Then I- DET(t) and therefore: 
jDE/R [ t ] _ { [ f ] ι |. DET(t') Λ I - t - * f } (lemma 2.14.1) 

= { [t] } (rules (REFL), (DET-R)).<> 

Proof of Theorem 3.13 
φ is a loose Σ-homomorphism: 

{eG9( [ t ] ) l [ t ]Ef D 2/R( [ t l ] , . . . , [ t n ] )} 

= { e G I A [ t ] 11- f ( t ] . . , t n ) - K Λ I- DET(t) (definition of φ, definition 2.13) 
C I A [ f ( t i , . . . , t n )] (theorem 2.6: A 1= f ( t i , . . . , t n ) - * t) 
= {eGf A (e i , . . . ,en) I e i Q A [ t i ] } (definition 1.5) 
= {eGf A (e i , . . . ,en) I eiGqp[ti]} (definition of φ). 

φ is unique: Let ψ be another homomorphism ψ: ΌΣ/R -> A, then we have: 
ψ(Μ) Q I A [ t ] for all t G s D 2 / R . (*) 
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Proof of the line (*) by induction on the term structure of t: 

Let t = f ( t i , . . . , t n ) . Since [ t ] E s D I / R , I - DET(t) holds. Using rule 

(REFL) this means 
[t] Ε { [ f ] I t 'GW(I) Λ l-DET(t') Λ l - t - H ' } . 

Therefore 
Ψ(Μ) C {eEuXtt'] I t 'EW(I ) Λ I- DET(t') Λ l - t - ^ t ' } 
= {eEuX[t'] I t ' E W ( I ) Λ l-DET(t') Λ I- f ( t i , . . . , t n ) - K ' } 
= {eEiptft'] I [ t ' ] E f D S / R ( [ t i ] , . . . , [ t n ] ) } (definition 2.13) 
C {eEf A (e i , . . . ,en) I ei&l)([t|])} (since ψ is homomorphism) 
C {eEf A (e i , . . . ,en) I e jEI^[t i]} (induction hypothesis) 
= l A [ f ( t l v . . , t n ) ] (def. 1.5). 

Since I- DET(t), from theorem 2.6 follows I I A [ t ] l = 1. Since ψ ( [ Φ * 0 , from (*) 
follows: 

Ψ(Μ) - I A W = φ(Μ) for all t E s D 2 / R . 0 

Proof of Lemma 3.18 
(1) => (2): 
Let A be maximally deterministic, BEGen(T), φ : Β -> A a loose 
homomorphism. Then for a tEW(2): 

I {e'E(p(e) I e E I B [ t ] } I ;> I I B [ t ] I ;> I I A [ t ] I 
(since A is maximally deterministic) and 

{ e ' E ^ e ) l e E I B [ t ] } C I A [ t ] 
(since φ loose homomorphism) So φ is a tight homomorphism. 

(2) => (3): 
Since Τ is DET-additive and DET-complete, DI/REGen(T). I A is a loose 
homomorphism from DZ/R to A. 

Due to the precondition, is a tight homomoφhism. With lemma 2.14.1: 
{ eE I A [ t ' ] 11-1 — V Λ I- DET(t') } = I A [ t ] . 

So for an eEI A [ t ] there is a term t' such that 
I-1 f Λ I- DET(t') and e E I A [ t ' ] , i . e. I A [ t ' ] = { e } . 

(3) => (1): 
Let BEGen(T), φ: Β -*· A loose homomoφhism, tEW(Z). 
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According to the precondition, for eE I A [ t ] there is a term f such that 
lA[ t»] = { e } Λ I-1 - Μ ' Λ I- DET(t'). 

So there is a e 'Es B such that 
I B [ t ' ] = { e ' } Λ e ' e B [ t ] . 

The condition for a homomorphism yields cp(e') C { e } , i . e. qp(e') = { e } . So 
there is a surjective pointwise mapping from I B [ t ] to I A [ t ] , and therefore 

I I A [ t ] l < ; I I B [ t ] l . 0 

Proof of Theorem 4.8 
The proof is performed in exact analogy to the proof of theorem 2.6, except of 
the newly added rule. Using the identifiers from the proof of theorem 2.6 and 
from definition 4.7 we have: 

( A X I O M - 1 - C O N D ) : 
Let V =def Vars(l)UVars(r)UVars(ti)U.. .UVars(t n)U Vars(ti ' )U. . .UVars(t n ')). 

Because of the premise (using the induction hypothesis) 

I Ιβ [σχ] I = 1 for all xEV 

Because of the other premises and lemma 2.6.1 

£ ß [ t i ] = Iß [oti] • Iß [crti'] = l£p[ti'] for i E { l , . . . 

Since AEMod(T): 

^ = ] ί β Π ] 2 Ι ^ [ Γ ] = Ι ^ θ Γ ] . 0 

Proof of Theorem 4.11: 
The construction of a term model is exactly analoguous to theorem 2.14, using 
a similar lemma. The only difference appears during the proof for the validity of 
conditional axioms: 

Let < t i - * t i ' & ... & t n - * t n ' => l-*r> ER, [σ] a valuation, which fulfills the 
conditions, i . e. for 1 s i s n: 

xD2/R r D D I /R 
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Because of l-COND DET(tf) (simplicity condition) and l-COND DET(ax) for 
xEX (due to the construction of DI /R) we have l-COND DET(orti'). (This needs 

a simple lemma, which can be proven by induction on the term structure.). So 
, JDI/R r , i r - J D Z / R r _ . 

m i ' e i [ a ] [ t i ' ] £ I [ ( j ] [ t i ] , i . e . : 

l-COND ati->at i ' . 

Therefore (AXIOM-l-COND) can be applied, and gives l-COND σ1-*στ, and so 
T D I / R m - ^ T D I / R r i 

\o] [ 1 ] 2 Ι [ σ ] Μ· 

The proof of 
D I / R I = t l - » t 2 ο DGen(T) I = t l - * t 2 

is completely analoguous to theorems 2.23 / 2.27. 0 

Proof of Lemma 4.26 
By induction on the length of the derivation for I - crtl t2: 

( R E F L ) : 

In this case, t2 = σ t l . Choose σ ' = ι, λ = σ, t2' = t l , V = V. Then by (REFL-
N) I - t l -N^ t l and 
(i) Vars[t2']=Vars[tl]CV\ 

Dom [λ] = Dom[a] Q V (by given preconditions), 
Vars[a'] = 0 C V \ 

(ii) σ =[V] σι = λ (trivially), 

(iii) t2 = σ t l = λ t2' (due to the special case). 

( T R A N S ) : 
In this case, there is a t3 such that 

l - a t l -* t3, I-13 t2. 
Using the induction hypothesis on the first one of these derivations, we have 
λ ΐ , a l E S U B S T ( I c ^ ) , t 3 ' E W ( I , X ) , V Q V such that 

l - t l - ^ - * σ ι t3 ' ,Vars [ t3 ' ]CVl ,Dom[Xl]CVl ,Vars [a l ]CVl , 
σ = [ γ ] λΐ σ ΐ , t3 = λ1 t3'. 

This admits the application of the induction hypothesis to the second derivation 
(for I - λΐ t3' t2), giving: λ, Ö 2 E S U B S T ( I C , X ) , t 2 ' E W ( I , X ) , V Q V 1 2 V 
such that 
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I-13' ^V-*o212\ Vars[t2 ' ]CV\Dom[X]CV\ Vars[o2]CV\ 
λ ΐ = [ ν ΐ ] λ σ 2 , ΐ 2 = λ ΐ 2 \ 

Now define σ ' = o2 al, then by (TRANS-N) I- t l - Λ ^ σ ' t2\ 

(i) The first two parts are already given by the second induction step. For 
the third part of (i), Vais[o']=Vars[o2 ol]Q Vars[ol]UVars[a2] C V \ 

(ii) We have σ = [ γ ] λ ΐ σ ΐ and λ ΐ = [ V I ] λ σ2. Since D o m [ X l ] C V l , this 
means λΐ = λ σ2, hence σ =[V] λ σ2 σ ΐ = λ σ ' . 

(iii) Given by the second induction step. 

( C O N G ) : 
For the sake of simplicity, we assume without loss of generality the typical case 
of n = 2 , i = 2, t l =f(ui ,u2) . 
So there is an T2 such that 

o t l = f(crui,cru2), t2 = f(crui,r2) and I- QU2 r2. 
By induction hypothesis there are λ, o ' G S U B S T ( Z c , X) , r 2 \ V with 

I- U2 -ΛΗ> σ ' T2\ Vars[r2 ' ]CV, Dom[X]CV\ Vars[o']CV\ 
σ = [ ν ] λσ ' ,Γ2 = λΓ2'. 

Choose now t2' = f ( a ' u i B y (CONG-N) holds 

I- t l = f (u i ,u 2 ) -tf+o' K°9*M') = t2'. 
(i) Vars[t2 ,]CVars[σ']UVars[ul]UVars[r2 ,]£V , , due to the induction step 

and V a r s [ u i ] C V a r s [ t l ] C V C V \ The other parts are given by the 
induction step. 

(ii) Given by the induction step. 
(iii) Xt2' = f (Xa 'u i , λΓ2') = f(aui ,r2) = t2, due to the induction step and 

Vars[u]]CV. 

( A X I O M ) : 
This means that there is an axiom <1 r> Ε R and a constructor substitution 
T G S U B S T ( I C , X ) such that o t l = τΐ, t2 = t r . It follows immediately that t l £ X . 
(If t l = x, xEX, then σχ contains at least the topmost symbol of 1 which is a 
non-constructor in a constructor-based system. This contradicts to 

The substitution χ can always be splitted into another substitution τ ' and a 
renaming ρ (which assigns "fresh" names to all the variables of the axiom) such 
that 

τ ' ρ = τ , Dom(x')nV = 0 , Dom(o)n(Vars(pl)UVars(pr)) = 0 , and 
Dom(x')nDom(a) = 0 . 
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Then τ ' ϋ σ is well-defined and 

( t ' U a ) t l = crtl =τ1 = τ'ρ1 = (x'Uo)(pl). 
Thus t l and pi are unifiable by the unifier ( τ ' ϋ σ ) (which is in SUBST(2c,X), 
since τ and σ are in there). Define σ ' as the most general unifier of t l and p i , 
and η as the corresponding specialization, such that: 

η σ ' = ( τ ' ϋ σ ) . 
Obviously, η and σ ' are in SUBST(Ic ,X) (as t ' U a is). Rule (AXIOM-N) 
yields now I- t l - /ν -» σ ' t 2 \ Define the remaining items as 

λ = η Ι ν , ΐ 2 ' = o'pr, V = VUVars[cr'] UVars[p]. 
(i) Since ρ renames all variables of the axiom, Vars[t2'] = Varsfö'pr] C 

Vars[o']UVars[p] C V ' . B y definition, we have Dom[X] = Donu j j l y ] 
C V andVars [o ' ]CV\ 

(ii) Since Dom(x')nV = 0 , σ = [γ ] ( τ ' ϋ σ ) = η σ ' . Since Vars [ö ' ]CV\ η σ ' 
= (ηΙν ' )σ ' = λ σ ' . 

(iii) Kt29 - (ηΙγΟσ'ρΓ = ησ'ρΓ = (x , Uö)pr = x'pr = xr = t2. 0 

Proof of Lemma 4.39: 
The following proof omits technical detail at a few points. A more general proof 
can be found in the literature ([Bosco et al. 88]). The proof of the lemma 
proceeds by induction on the derivation in the narrowing calculus. 

( R E F L - N ) : 
In this case, t l = t2 and θ = ι. It is sufficient to choose θ'=θ=ι. 

( T R A N S - N ) : 
Here we have 

I- t l -/V-*ei t 2 \ I-12' -N-*%212 and θ = Θ2 Θ1. 

Let 0[ t2 ' ] = (c2\ B2'). By induction hypothesis 
B l where σ I - B2' where ΘΓσ and 
B2' where σ ' I- B2 where Θ 2 ' σ \ 

This means by transitivity of resolution steps 
B l where σ I- B2 where θ 'σ , 

i f θ ' is defined as θ ' = Θ2' ΘΓ. Using the other parts of the induction hypothesis 
and the variable restrictions for λ ΐ , λ2: 

0 ' c l = 0 2 , e i , c l = 9 2 , c 2 , = c 2 ; 
θ ' = Θ2' ΘΓ = (Θ2 U λ2)(θ1 U λ ΐ ) = Θ2 Θ1 U λ2 λΐ = θ U λ2 λ ΐ . 
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( C O N G - N ) : 
Using a typical subcase (n=2, i=2) , we have here 

t l = f (u l , u2), t2 = f(0ul , u2'), and u2 u2'. 
Let Ofu l ] = ( d l , C I ) , Φ [ υ 2 ] = (d2, C2), Φ [ υ 2 ' ] = (d2\ C2'). By induction 
hypothesis, 

C2 where σ I - C2' where θ'σ 
and0'd2 = d2'. 

Case 1: f E C 
In this case, 

0 [ t l ] = ( f(dl,d2), C1-C2), Φ [ ί 2 ] = (f(0dl,d2'), 0C1«C2') 
(using the fact that Φ [ ι ] = (c,B) => Φ ( θ ί ) = (0c,0B), and abstracting from 
renamings into "fresh" variables). This means B l = C1*C2, B2 = 0C1»C2 ' . 
Using the induction hypothesis and (RES), 

B l where σ I - Θ ' Ο Κ Ώ ' where θ 'σ . 
The variable restrictions for λ ensure that 0'C1 = 0C1, so 

B l where σ I- B2 where θ 'σ . 
Moreover 0'cl = 0'f(dl,d2) = f(0'dl ,0'd2) = f(0'dl ,d2') = c2. 

Case 2: f £ C 
In this case, 

0 [ t l ] = (z, f(dl,d2,z>Cl»C2), 0[t2] = (z, f(0dl,d2',z) · Θ 0 1 ^ 2 ' ) 
(abstracting from renamings into "fresh" variables again). This means B l = 
f(dl ,d2,z)»Cl*C2, B2 = f(0dl,d2',z)·ΘCl·C2 ,. Using the induction hypothesis, 

B l where σ I- f ^ ' d l ^ ' ^ ' z ^ ' C K ^ ' where θ 'σ. 
Since ζ is a fresh variable, 0'z=z. The variable restrictions for λ ensure that 0 'dl 
= 0dl a n d O ' C ^ O C ^ s o 

B l where σ I - B2 where θ 'σ . 
Moreover, 0 'cl = θ'ζ = θζ = ζ = c2. 

( A X I O M N ) : 
In this case, 

t l = f (d i , . . . ,d n ) , t2 = 0r and <f(ci,... ,c n) r>ER, 
0 is a mgu. of t l and f (c i , . . . , c n ) (omitting the technicalities of the renaming p). 
Since f^C and the d| are constructor terms, Oftl] = ( z, f(di , . . . ,d n ,z)) , i.e. B l = 
f ( d i , . . . ,d n,z), c l = z. Due to the construction of Φ ( Τ ) , there is a program clause 
<f(ci, . . . ,c n ,c) :- B> where (c, Β) = Φ [ Γ ] . Define now 0* = [c / z]0, which is a 
mgu. of f(ci, . . . ,c n ,c) and f(di, . . . ,d n ,z) . Using (RES), 

B l where σ I- ΘΈ where θ 'σ . 
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We have Φ[ι2] = Φ [ Θ Γ ] = (9c, ΘΒ), i.e. B2 = ΘΒ = ΘΈ, which shows that the 
derivation from above is the needed one. Moreover, c2 = 0c = c, due to the fact 
that c contains only variables created during the flattening of r, which are not 
affected by Θ. So e ' c l = θ'ζ = c = c2. 0 

Proof of Lemma 5.10: 
Part (1): 
First we show the following proposition: 

VuEOcc[t], <l-*r>ER\D, aESUBST(Zc): (1) 

t l / u = ol => ( i™[t l ] ) /u = al . 

The proof is done by induction on the length of an arbitrary term rewriting 
sequence, which reduces t l to (D-innermost-)normal form: 

im im im im ^ . i m , . . , 
t i = t o - * D t i - > D t 2 - * D . . . - * D t n = l D [ t i ] . 

So we have to show (by induction on n): 
VuEOcc[t], <l-*r>ER\D, Ö E S U B S T ( I C ) : t l /u = σΐ => t n /u = σΐ . 

η = 0: 

Here t n /u = tQ/n = t l /u = σΐ, according to the precondition. 

η > 0: 
In this case, there are vEOcc[t n _i] , < 1 D ^ T ) > E D , C J D E S U B S T ( Z C ) such that 

tn-l/v = C J D I D , t n = t n - l [ν«-στο] . 
Let t l / u = σ ΐ , then the induction hypothesis yields t n _ i / u = σΐ . The 
nonoverlapping condition allows to exclude the case u = v. Due to the innermost 
rewriting (σ , ar j )ESUBST(Zc)) it is impossible that u is a prefix of ν or 
reversely. So u and ν are independent occurrences, and we have: 

t n / u = ( t n _i [v^oDrD]) to = σΐ . 
Due to the precondition there are fixed uEOcc[t], <l->r>ER\D, oESUBST(Zc) 
such that t l /u = σΐ. 

Part (2): 
Now we can show by an analoguous induction: 

/ , i m r i n x r , im* . i m r . r x ~ 
U D [ t l])[u«-or] - * D i D [tl[u«-or]] (2) 
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η = 0: 
im* im 

Here t n [ u ^ a r ] = to[u«-ar] = tl[u«-ar] | D [tl[u«-crr]] 

(by the definition of i™)-
η > 0: 

There are vGOcc[t n_i], <lD^q)>GD, C F D E S U B S T ( I C ) such that 
tn-l/v = O Q I D , t n = t n - l [v« -o rD] . 

From (1) follows that t n /u = σΐ. As above, ν and u are independent. So, 
according to the induction hypothesis: 

t n [ u ^ a r ] t n[v<-ODrD, u«-or] 

r ., im* . i m r = t n _i[u<-ar] - > D 1Ό [tl[u«-crr]]. 

I f we choose t2' = ( l™[tl ] ) [u«-or] , so line (1) gives the fact 

. i m , . , im T . , . im* . i m r 1 D [ t l ] t2' . Line (2) means here that t2' J D [t2], 

and because of the normal form property of J,™ follows: 

Proof of Theorem 5.17: 
The proof sketch uses the identifiers from definition 5.15. Let val3 be the given 
valuation for the graph G3. In a first step, a valuation val' for the graph G is 
constructed, together with an environment β ' , assigning values to the variables 
in the axiom (Vars[l]UVars[r]). Let nEN. We start with a valuation val, 
assigning values only to the nodes in GlrootR. 

l a b i n l E X : 
This means that xEVars[ l ]UVars[r] , n = n x . Due to the variable-
restriction xEVars[l], therefore φ(η χ ) is defined. 

x E V a r s i r l : 
Then φ ( η χ ) is reachable from root2, due to the construction of G2. 

Hence val3(<(>(nx)) is defined. In this case val(n x) =def ν ^3(Φ( ηχ))· 
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x ^ V a r s f r l : 

Then the variable χ "deletes" some term at axiom application. Let va l" 
be an arbitrary extension of valß to the nodes reachable from the φ-
images of these variables, and val(n x) =def ν ^ " ( Φ ( η χ ) ) · 

l a b ( n ) £ X : 
Since we treat here only nodes reachable from rootR, η is reachable 
from root2, and val(n) =def val3(n). 

From val, a definition of the valuation β' can be derived, by ß'(x) =def val(n x). 
A A 

Using this environment, val(rootR)EIß,[l], and therefore val(rootR)EIß,[r]. 

So there is an extension val' of val to all variables in G (including those not 
reachable from rootR) such that val'(rootL) = val'(rootR). It is an important 
consequence of the constructor-based form of the axiom that the valuation val' is 
uniquely determined for all nodes in the left hand side, except of rootL- More 
formally: 

VnEN: η reachable from rootL and n^rootL => 
valXn) = ( v a l v a l ' ' ) ( φ ( η » 

(Exact proof by induction on the structure of the graph representing the right 
hand side.) 

Using these preliminaries, the given valuation val3 can be extended to a 
valuation val2 for G2. For this purpose, we have to study the nodes nEN2\N3 
removed by garbage collection. There are two cases: 

Case 1: Parts of Go "deleted" by the rule application: 
In this case, there is an xEVars[l]\Vars[r], and η is reachable from φ(η χ ) , there is 
no other way to reach η from root2- Here val2(n) =def val"(n) (as above). 

Case 2: Parts of the pattern which are replaced: 
In this case, there is an n 'EN, such that η is reachable from rootL and φ(η') = η. 
Here val2(n) =def vaP^ ' l (n)) . This definition is admissible only i f val '^~l(n)) 
is unique. For n'*rootL, this is ensured by the above-mentioned observation 
(which relies on the constructor-based form). For rootL the definition is unique, 
since φ"*(rootL) is unique. 

We have to check now that the constructed val2 is a proper valuation of G2. For 
variable nodes, this is obvious from val2(n x ) = val3(n x ) = βχ. For a non-
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variable node η (i.e. lab(n) = f), the only problematic case is where a node nEN 
has a successor arg(n)iEN(). This is only the case i f there is a n x E N such that 
arg(n)i = φ (η χ ) . Therefore val2(arg(n)j) = val(x) = val'(x) = β'χ, which means 
that val2 takes its value for arg(n)i from a proper valuation for G. For the nodes 
"below" arg(n)i, val2 takes its values from a proper valuation of G3 ( if 
xEVars[r]) or G2l(|>(nx) (if x^Varsfr]). 

In order to validate the step from a valuation val2 for G2 to a valuation vali for 
G i , we simply define vali =def v a l 2 - The valuation vali is also a proper 
valuation for G i , since the values assigned to Φ ( Γ Ο Ο ^ ) (the node to be replaced) 
and n r (the replacement node) are equal: 

val2^(rootTj) = vaF (rootL) = val (rootR). 

Here we have two cases: 

Case 1: lab(rootR)EX: 

Then val(rootR) = val3^(rootR)) = val3(n r) = val2(n r). 

Case 2: lab(rootR)0t : 
Then val(rootR) = val3(rootR) = val3(n r) = val2(n r). 

The final step from vali tc> a valuation valo for Go is achieved by valo =def 
valilNo. 

It remains to show that valo(rooto) = val3(root3). Again there are two cases: 

Case 1: Rewriting below the root of Go: 

This means that root3ENo and rooto = root3. Then val3(root3) = val3(rooto) = 
valo(rooto) (since val3 coincides with valo o n No)-

Case 2: Rewriting at the root of Go: 
This means that root3=n r and rooto = Φ ( Γ Ο Ο ^ ) . Then val3(root3) = val3(n r) = 
val2(φ(rootL)) = val2(rooto) = valo(rooto). 0 

Proof of Theorem 5.21: 
It suffices here to show the lemma 

wf [Gl ] Λ TM[G1] = t l Λ l-c t l t2 => 
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3 G2: wf[G2] Λ TM[G2] = t2 Λ G l - * * Q R G2. 

The proof for this lemma proceeds by induction on the l-C-derivation for the 
formula t l -* t2. The case (REFL) is trivial, (TRANS) is obvious by the 
syntactical form of the lemma. The remaining cases are (CONG) and (AXIOM-
1-C), where the (CONG) case must show that the anomaly from example 5.18 
cannot happen under the given preconditions. 

( C O N G ) : 
In this case, t l = f ( t [ , t i , . . . , t n ) , t2 = f ( t ] , t j ' , t n ) . G l contains a 
subgraph Gi = Gllarg(rootl)j such that TM[Gj] = t{. By induction hypothesis, 

there is a graph Gi ' such that G\ ~^QJ^ Gi ' - There are two cases (let root] be the 

root of Gj): 

Case 1: is_shared(rj): 
Since w f [ G l ] (and therefore wf[Gi]), G] is irreducible with constructor-based 
axioms. Hence Gi ' = G\, and the claim of the lemma holds trivially. 

Case 2: -«is_shared(ri): 
In this case, none of the tj (j*i) is represented by the same graph as t[. Therefore 
the same graph context building G l from Gj can be built around Gj ' , giving G2. 
Since there is only one path from the root of G2 to the replaced parts (in Gj ' ) , 
TM[G2] = t2 and wf[G2]. 

( A X I O M - 1 - C ) 
In this case, lab(rootl) = f, f^C (due to the constructor-based form of the 
axioms), and <1 -> r>ER such that t l = σΐ. A redex for GR(<1 -> r>) in G l is 
constructed by φΟυ) = Gl /u , and by φ ( η χ ) = G l / u x , where u x is the unique 
position of the variable χ in 1 (due to left-linearity). Here we use the convention 

G/e=def root, 
G/im =def (Glarg(root)i)/u). 

The graph G2 is constructed due to definition 5.15. Since σ is a constructor-
substitution, G l l u x contains only constructor- and variable-labels. Together with 
the construction of GR(<1 —> r>) this means wf[G2]. The fact that TM[G2] = σΓ = 
t2 is obvious from the construction of GR(<1 —> r>). () 
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Proof of Theorem 6.6: 
The lemma 2.6.1 can be taken over from the proof of theorem 2.6, i f for the 
substitution σ we claim additionally: 

± £ ΐ ρ [ σ χ ] Λ I Iß [σχ] 1 = 1 . 

The premises in the deduction rules (AXIOM-1-D) and (AXIOM-2-D) allow the 
applicability of the lemma, even after this extension. Except of this, the proof 
of theorem 2.6 can be identically adapted for the rules which belong to the 
"total" calculus. For the new rules we have: 

( A X I O M - 3 - D ) : 

Using the analoguous lemma to lemma 2.6.1, with AEMod(T): 

± < ß [ t ] = I ^ [ a t ] . 

( D E F - X ) : 

Here ± ί { β(χ) } = Iß [χ], because of ß(x)*-L 

( D E F - D ) : 

Because of the premises, ±<£lß [ t l ] , Iß [ t l ] 2 I ß [t2], so ± £ l ß [t2]. 

( S T R ) : 

Due to the premise J-9=Iß [f( tι , . . . , t n ) ] . Using definition 6.2 (strictness), 

± 0 ß [ f ( t i , . . . , t n ) ] implies [t[] φ 

Proof of Theorem 6.9 
As in theorem 2.14, valuations in ΡΣ/R are represented by substitutions. 

Lemma 6.9.1 

i j j j [t] = { [t ' ] I t 'eW(X) Λ I- DET(t') Λ I- DEF(t') Λ I- crt -» t ' } 

U { 11 3 t'GW(Z): I- at — t' Λ I - t O (for t G W ( I , X)) . 
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Proof of the lemma: 

Induction on the term structure of t, analoguous to lemma 2.14.1: 

t=x. x E X : 

ig j W = { [ σ ] ( χ ) } = { [ σ χ ] } 

C { [ t ' ] l l-DET(t ') Λ l-DEF(t') Λ I- σ χ - Η ' } . 

The 2-direction holds, too, in analogy to theorem 2.14. 

t = f ( t j t n ) / C - d i r e c t i o n : 

p y / p 
Case l : 1 0 ^ / K [ f ( t i . . . . , t n ) ] 

ΡΣ/R 
The property [t']EI|- a-j [f(tχ,... , t n ) ] implies by definitions 6.2, 6.8 

and the induction hypothesis that 
3 t i ' , . . . , t n ' : 

l-DET(ti ' ) Λ l-DEF(tj') Λ l - o t j - > t i ' Λ l - f ( t i , , . . . , t n ' ) - > t ' 

Using (CONG), (TRANS), we have I - crt-*t' 

.ΡΣ/R 
l[o] 

There are again two subcases. 

Case 2: l E l ^ m , . . . ^ } 

Case 2.1: 3 i E { l , . . . , n } : 1 Ε ΐ [ σ ] [tj] 

For i we can apply the induction hypothesis, giving 
3 tO: I - ot i tO Λ I- ftO 

Using (CONG), we have 
I- f (ot ι , . . . ,oti , . . . , c t n ) f(otι,... ,t0,... ,<jtn) 

I f there was a term t l such that 
I- f(crti,...,tO,...,crt n) -* t l and I- DEF(tl), 

then, because of the partial DET-completeness and the DET-additivity 
there had to be terms t i t 0 \ . . . , t n ' such that 

I - f ( t i t O ' , . . . , t n ' ) - t l 

and (besides other facts) 
I- tO -* tO' Λ I- DEF(tO') Λ I- DET(tO'), 



236 APPENDIX A: PROOFS 

which contradicts to the definition of I- ftO. So I- f f(oti , . . . , tO,. . . ,at n ). 

Using (TRANS), this yields the claim. 

Case 2.2: 
I f the condition for case 2.1 is not fulfilled, the undefined result value 
must come from the semantics of the function symbol f: 
3 t f t n ' : 

P57R 
I - DET(tj') Λ I- DEF(ti') Λ I- a t i - t i ' Λ 1 G I ^ / R [ f ( t l ^ . . . , t n , ) ] 

From definition 2.8 follows 
3 tO: I- f ( t i t n ' ) - * tO Λ I- t tO, 

which gives using (TRANS), (CONG):l- f(crti, . . . ,at n) tO. 

t = f(t\ t n ) / 3 -Direc t ion: 

P Y / P 
Case I : ± i l ^ / K [ f ( t i , . . . , t n ) ] 

Let t 'EW(Z) such that 
I- DET(t') Λ I- DEF(t') Λ l-f(mi,...,CFtn) t' . 

Because of the partial DET-additivity (1) there exist terms t j t n ' 
such that 

l-DET(ti ' ) Λ l-DEF(ti') Λ l - a t i - ^ t i ' Λ l - f ( t i ' , . . . , t n ' ) - ^ t ' , 

that is t ' E l g p t ] . 

p y / p 

Case 2: l G I ^ j [ f ( t i , . . . , t n ) ] 
Let t 'GW(I) such that 

l - f ( t i , . . . , t n ) - t ' Λ l -T t ' . 
Because of the partial DET-additivity (2), there exist terms t i t n ' 

ΡΣ/R 
such that I - f ( t i t n ' ) t \ that is - L Q [ a ] [ t ] . 0 (lemma 6.9.1) 

For the proof of theorem 6.9, we proceed differently according to the three types 
of formulas. 

Let <DET(t)>ER, [σ] a valuation. Then, using lemma 6.9.1: 

T(t') Λ I- DEF(t') Λ I- ot-

U { ± l 3 t ' : l - a t - > t ' Λ I - f t ' } 

py/p 
[t] = { [ f ] I I - DET(t') Λ I- DEF(t') Λ I- o t ^ t ' } 
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p y / P PT7R 

I f l ( £ l ^ [ t ] , we have as in theorem 2.14: I [t] 1 = 1. 

ΡΣ/R 
I f ±GI [ (~j [t] , the rules (AXIOM-2-D) and (DET-R) give 

I- DET(crt), I -1 ' -» at. 
I f there was now a term t " such that 

I- DET(t") , I - DEF(t") and I- at -» t " , 
this would lead to a contradiction to ft' (because of (TRANS)). 

So I ^ / R [ t ] = a } , i . e . l ^ / R [ t ] l = l . 

Let <DEF(t)>ER, [σ] a valuation. Then with (AXIOM-3-D) l-DEF(ot). I f now 
ΡΣ/R 

we had - L ^ - Q J Μ » l -
 e - according to lemma 4.9.1 

3 f : I- at t ' , I - T t \ 
then using (DEF-D) we could deduce I - DEF(t'), in contradiction to the 

p y rn 
definition of ft'. So 1 0 Λ [ t ] . 

Let <tl t2>ER, [σ] a valuation. Then analoguously to theorem 2.14: 
r \ y / p ΌΣ/R 

[ f ] G i f j ] [t2] [ f ] G [ t l ] and 

By lemma 6.9.1 this gives 
at': otl^V Λ I - | t ' 

and by (AXIOM-1-D), (TRANS) I- a t l t ' . Using lemma 6.9.1 again: 
, „ D Z / R . 1 Ί 

i e i [ o ] [ti] 

Proof of Lemma 6.15: 
By induction on the term structure of t it can be shown that: 

φ is a loose homomorphism 
<*> V t E W £ ) : {e'E(p(e) I e E I A [ t ] \ { l } } C I B [ t ] . (**) 

For the proof of the lemma we use the fact (**) from above. 

(1 ) : I f φ is total, then l£{e'Ecp(e) I e E I A [ t ] \ { l } } , So "=>" holds because of 
(**). The inverse direction holds because of AEPGenff). 
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(2) : I f l G I A [ t ] , the claim can be shown easily by induction on the term 
structure of t. 
So let ± £ l A [ t ] , i . e. I A [ t ] \ { ± } = I A [ t ] . From the definition of a tight 
homomorphism follows that 1 0 B [ t ] , since φ is total. So I B [ t ] \ {±} = 
I B [ t ] . This means ± E I B [ t ] => ± E I A [ t ] . The same chain of arguments 
holds also in inverse direction. 

(3) : For e E I A [ t ] , e^J. because of (**) there is to nothing to show. I f 
± E I A [ t ] and φ is weak, from (**) follows that {e'Eqp(e) I e E I A [ t ] } C 
I B [ t ] . Inversely, from this proposition follows the weakness of φ, too. 

(4) : I f ± £ l A [ t ] , there is nothing to show. 
So let ± E I A [ t ] . Since φ is strict, the definition of a tight homomor­
phism yields: 
{e'Ecp(e) I eEI A [ t ]} = {e'Eq)(e) I eQ A [ t ] \ { l}}U{±} = ( I B [ t ] \ { J L } ) U { ± } . 
This last term is equal to I B [ t ] i f f J_EI B [t] , i . e. i f φ is weak. 

(5) : Follows from (2) and (4). 0 

Proof of Lemma 6.18: 
(1) : For tEW(Z), AEPMod(T) we have: A 1= f t => Τ I- f t . 

(If there was a term t' such that I - t -* t ' , I - DET(t'), I - DEF(t'), then 
according to theorem 6.6. we had I A [ t ] * {1} , in contradiction to A 1= 
Tt.) 
So we still have to show that for a minimally defined A holds: I - ft => 
A 1= | t . According to theorem 6.9 PZ/REPMod(T). From I - Tt 
follows ΡΣ/R 1= ft, so (since A is minimally defined) A 1= ft. 

(2) : Let eEs A . Since A is term-generated, there is a term ί 'Ελν(Σ) such that 
I A [ t ' ] = {e} . So ->(A 1= ft'). According to part (1) of the lemma follows 
- ( Τ I - f t ) ' . This means by definition 6.7: 3 t: I - t ' - * t Λ I- DEF(t). 
Using theorem 6.6 follows I A [ t ] = {e} . 

(3) : Let eEs A . According to part (2) of the lemma there is a ιΕ\¥(Σ) with Τ 
I- DEF(t) Λ I A [ t ] = {e} . Because of the partial DET-completenenss of 
Τ there is now a f with I - t -*t ' Λ I - DET(t') Λ I- DEF(t'). According 
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to theorem 6.6 follows I A [ t ' ] = {e} . The rest of the proof is in 
complete analogy to lemma 3.12. φ 

Proof of Lemma 6.21: 

(1) => (2): 
Let A be partially maximally deterministic, BEPGen(T), φ: Β -» A loose and 
total. Then for tEW(Z) we have the following facts (since A is partially more 
deterministic than B): 

l{e'e<p(e) I eEI B[t]\{±}}l a I I B [ t ] \{±} I a I I A [ t ] \{±} 1. 
Using lemma 6.15 (1): 

{e'Ecp(e) I eeiB[t]\{±}} C I A [ t ] \{±} , and so 
{e'Ecp(e) I eQ B [ t ] \ {±}} = I A [ t ] \{±} . 

Since A is totally more deterministic than B, we have i e i A [ t ] = > ± e i B [ t ] . S o 
from lemma 6.15 (2) it follows that φ is tight. 

(2) => (3): 
The continuation φ of I A is a loose total homomorphism from ΡΣ/R to A. 
According to the precondition, φ is tight, i . e. with lemma 6.15 (2) : 

{ e E I A [ t ' ] 11- t-*t ' Λ I- DEF(t') Λ I- DET(t') } = I A [ t ] \{±} . 
So for any e E I A [ t ] , e*_L, there is a term t' such that 

I- t -*t ' Λ I - DEF(t') Λ I- DET(t') . 
Here I I A [ t ' ] I = 1 and (because of theorem 6.6) e E I A [ t ' ] , i . e. I A [ t ' ] = { e } . 
I f _LEI A [ t ] , according to lemma 6.15 (2): ± E I P I / R [ t ] , i . e. 

3 t ': 1-1 —t* Λ I - t t \ 
Since φ is a tight homomoφhism, we have: 

{ e E I A [ t " ] 11- t ' - * f Λ I- DEF(t") Λ I- DET(t") } = I A [ t ' ] \ { l } = 0 
(the last equation because of I- f t ' ) . So I A [ t ' ] = { ! } . 

(3) (1): 
Let Β be a refinement of A, i . e. BEPGen(T), φ: Β -> A a total loose homomor­
phism, t e W ( I ) . 
For e E I A [ t ] \ { l } , according to the precondition, there is a term t' such that 

Ι Α [ ι Ί = { e } Λ I- t-*t ' Λ I- DEF(t') Λ I- DET(t'). 
So there is an e'Es B with 

I B [ t ' ] = { e ' } Λ e V l Λ e 'EI B [ t ] . 
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The homomorphism condition gives cp(e') = {e} . So φ is a surjective pointwise 
mapping from I B [ t ] \{±} to I A [ t ] \ {±} , i . e. I I B [ t ] \ { l } l ;> IIA[t]\{±}l. 

Moreover, due to the precondition 
±EI A [ t ] => 3 t ' : I-1 t ' Λ I- f f Λ I A [ t ' ] = { ! } . 

The homomorphism condition for t' gives: 
{e'Eq>(e) I eEI B [ t ' ] \{_L}} C I A [ t ' ] \ { J L } = 0 . 

This is only possible (since I B [ t ' ] * 0 ) , i f I B [ t ' ] = { ! } . So ±EI B [ t ] . φ 

Proof of Theorem 6.27: 
Let AEDPGen(T). The proof uses the following lemma: 

Lemma 6.27.1 

E(R) I - t l t2 Λ R I-t2 — t3 Λ I - DET(t3) Λ I- DEF(t3) => 
3 e E I A [ t l ] , t ' E W ( I ) : 

I A [ t ' ] = {e} Λ f » t3 Λ I- DET(t') Λ I- DEF(t') 

Proof of the lemma: 

By induction on the deduction of E(R) I - t l -» t2. 

( R E F L ) : 

In this case we have t l = t2. Choose t' = t3 and accordingly I A [ t 3 ] = {e} . 

( T R A N S ) : 

There is a tO with E(R) I - t l -> tO and E(R) I- tO - M 2 . 

According to the induction hypothesis there are e0EI A [ t0] , tO' with tO' t3, 

I- DEF(tO'), I- DET(tO'). By lemma 6.21 (3) there is a tO" such that 

R I- tO -» tO" Λ I- DEF(tO") Λ I- DET(tO") Λ I A [ t 0 " ] = { e 0 } . 

Using definition 6.25 we have now tO' < ^ tO". 

According to the induction hypothesis there are e E I A [ t l ] , t' with 

I A | y ] = { e } , t' tO", I- DET(t'), I- DEF(t'). 

The transitivity of +*> gives t' t3. 
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( C O N G ) : 
Let t l = f ( t i , . . . , t i , . . . , t n ) , t2 = f ( t i , . . . , t i ' , . . . , t n ) , E(R) I - t i - M f . Since Τ is 
partially DET-additive, there are t\'',... , t j " , . . . , t n ' ' with 

I- DET(tj") , l- DEF(tj"), 

R I- t i - t i " , R I- t i ' - ^ t i " , R l - t n - * t n \ R I - f ( t i " , . . . , t n " ) - t 3 . 

So the induction hypothesis can be applied. Therefore there are e ' E I A [ t j ] , t " 

with I A [ t " ] = { e ' } , t " ^ t i " , I- DEF(t"), I- DET(t"). 

Because of R I - f ( t i " , t n t3 and t " « t i " there are B i , 

Bk +lEDPGen(T) where 

B i l = f ( t i " , . . . , t " , . . . , t n " ) - u i , . . . , B k + i l = u k - t 3 . 

By lemma 6.21 (3) we have 

R l - u k -*t3 , . . . , R I - f ( t i " , . . . , t " , . . . , t n " ) - * t 3 . 

Let now t' = t3. Then, trivially, 

t' ^ t3 , l - DET(t ' ) , l - DEF(t'). 
Moreover 

I A [ t 3 ] C l A f ( t j t " , . . . e t n " ) 
(because of R I- f ( t ι " , . . . , t " , . . . , t n ")-*t3) and for i*j I A [ t j " ] C IA[tj](because of 
R I - t j - * t p and I A [ t " ] Q A [ t i ] (consequence of the induction hypothesis). Using 

the additivity of f A : 
I A [ t 3 ] C l A [ f ( t l v . . , t n ) ] . 

( A X I O M - I D ) : 
We distinguish according to the axiom applied. 

Case 1: Application of an axiom <l->r>ER 
Then R I- t l -* t2 , and so we can choose t' = t3. 

Case 2: Application of an axiom <l->r>EE(R)\R 

Then t l « t2, i . e. I - DET(tl) , I- DET(t2), and therefore t2 t3. We can 

choose t' = t2, and e such that I A [ t 2 ]={e} . 0 (lemma 6.27.1) 

For the proof of theorem 6.27, we define the needed homomorphism by 
cp(e) = {[t]} such that I A [ t ] = {e} Λ I-DEF(t) Λ I-DET(e) . 

The existence of such a t follows from the partial DET-completeness and from 
the fact that A is term-generated. The uniqueness follows from the definition of 
E(R): 

I A [ t ' ] = {e} Λ l-DEF(t') Λ l-DET(t') 
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=> E(R) I - t - * f 

=> [t] = [ t ' ] . 

By theorem 6.22 we have: 
±GI A [ t ] 

<J*> 3 t ' : R l - t - * f Λ R l - f t ' 

ο 3 t ': E(R) I- t -*t ' Λ E(R) I- Tf (since R I- DEF(t) <=> E(R) I- DEF(t)) 
Ä 1 Q P 2 y E ( R ) [ t ] e 

For the condition of a strong homomorphism in lemma 6.15 (5) we have to 
show: 

{[f]ep(e) I eGI A [t]\{±}} = Ι Ρ Σ / Ε ( * \ { ± } . 

Let [t']Ecp(e), i . e. I A [ t ' ] = {e} and eGI A [ t ] . According to lemma 6.21 (3) there 
is a t ' ' such that I A [ t " ] = {e} and R I- t " , so because of the definition of 
E(R): E(R) I- t " ^ t and E(R) I- t-*t". So [ t " ] G I P 2 / E ( R ) [ t ] . 

Let [ t ' ] e i p 2 / E ( R ) [ t ] , i . e. E(R) I- t - » t \ I - DEF(t'), I - DET(t'). By lemma 6.27.1 
there are eGI A [ t ] , t ' ' such that I A [ t " ] = {e} and [ f ' ] = [ t ' ] , i . e. [t']G(p(e). 0 



Appendix Β: Experiments with RAP 
This appendix shows how the example specification from chapter 7 can be used 
to obtain directly a running (but not very efficient) interpreter for CP. 

B. l . General Remarks 
The experiments reported here have been performed with RAP Version 3.0 on a 
SUN SPARCstation 10 computer with 32 MByte RAM. 

The syntax of RAP specifications (types) is very similar to the syntax used in 
this book. In order to improve the readability of terms, RAP is able to display 
terms in a so-called mixfix-notation. For instance for the operation prefix the 
notation: 

_ -> _: (Com,Agent)Agent 
can be used instead of 

prefix: Com χ Agent Agent . 
The term 

prefix(a,prefix(b ,stop)) 
in this case is shown as like 

a -> b -> stop. 
Also the empty string can be used to represent an operation (see for instance the 
operation generating an empty set in COM_SET). 

Texts printed in a t y p e w r i t e r font are original in- or output of the RAP 
system (except of some brackets which have been inserted at a few places by 
hand to improve the readability). 

In general, all specifications have been formulated in a constructor-oriented style, 
since RAP supports the notion of a constructor. As it was shown above, RAP 
then automatically respects the DET-axioms for the constructor operations (and 
DET-axioms then are superfluous). 



244 APPENDIX Β: EXPERIMENTS WITH RAP 

Β .2. Specifications (types) 
The specification COM is restricted to three elementary communication actions, 
in order to keep the search space small: 

type COM 
basedon BOOL 

s o r t Com 
cons a: Com, b: Com, c: Com 
func _ == _: (Com,Com)Bool 

axioms a l l ( i : Com) 

(1) i == i -> true, 
(3) a == c -> f a l s e , 
(5) b == c -> f a l s e , 
(7) c == b -> f a l s e 

endoftype 

COM_SET specifies finite sets of communication actions. Sets are here 
implemented by sequences, since axioms for commutativity, associativity or 
idempotence (for insert) would violate the restrictions of constructor-based 
specifications. The operation _ [ _ ] _ describes the "majori ty"-operator for sets 
which is needed later on. 

type COM_SET 
basedon COM,BOOL 

s o r t ComSet 
cons : ComSet, {empty s e t as empty symbol} 

: (ComSet,Com)ComSet 

func _ IN _: (Com,ComSet)Bool, 

_ [ _ ] _ : (ComSet,ComSet,ComSet)ComSet 

axioms a l l ( i , j : Com, s, s i , s2: ComSet) 

(1) i IN -> f a l s e , 
(2) i IN s j -> i == j or ( i IN s ) , 
(3) [ ] s -> , 
(4) j IN s2 -> t r u e => s i j [ ] s2 -> s l [ ] s 2 j , 
(5) j IN s2 -> f a l s e => s i j [ ] s2 -> s l [ ] s 2 , 
(6) j IN s i -> t r u e => s l [ s j ] s 2 -> s l [ s ] s 2 j , 
(7) j IN s2 -> t r u e => s l [ s j ] s 2 -> s l [ s ] s 2 j , 

(2) a == b -> f a l s e , 
(4) b == a -> f a l s e , 
(6) c == a -> f a l s e , 
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(8) j IN s i -> f a l s e & j IN s2 = f a l s e => 
s l [ s j ] s 2 -> s l [ s ] s 2 

endoftype 

The specification AGENT is identical to the version in chapter 7: 

type AGENT 
basedon ID,COM,COM_SET 

s o r t Agent 
cons STOP: Agent, DIV: Agent, 

_ -> _: (Com,Agent)Agent, 
(_ OR _ ) : (Agent,Agent)Agent, 
(_ [] _ ) : (Agent,Agent)Agent, 
(_ I I {_} _) : (Agent,ComSet,Agent)Agent, 
(_ :: _ ) : (Id,Agent)Agent, 
_: (Id)Agent 

endoftype 

The specification PAIR basically introduces a Cartesian product between Action 
and Agent. Moreover it admits a special element (LOCK), which is used below 
in STEP for the totalization with respect to deadlock: 

type PAIR 
basedon COM,AGENT 

s o r t P a i r 

cons <_,_>: (Com,Agent)Pair, LOCK: P a i r 

endoftype 
The auxiliary specification SUBST provides a syntactical substitution operation 
on the sort Agent: 

type SUBST 
basedon ID,COM,BOOL,AGENT,COM_SET 

func _ [ _ / _ ] : (Agent,Id,Agent)Agent 

axioms a l l ( i , j : I d , p, q, q l , q2: Agent, 
A: ComSet, x: Com) 

(1) STOP[i/p] -> STOP, 
(2) D I V [ i / p ] -> DIV, 
(3) (x -> q [ i / p ] ) -> (x -> q [ i / p ] ) , 
(4) ( q l OR q 2 ) [ i / p ] -> ( q l [ i / p ] 0 R q 2 [ i / p ] ) , 



246 APPENDIX Β: EXPERIMENTS WITH RAP 

(5) ( q l [] q 2 ) [ i / p ] -> ( q l [ i / p ] [] q 2 [ i / p ] ) 
(6) ( q l I I {A} q2) [ i / p ] -> 

( q l [ i / p ] I I{A} q 2 [ i / p ] ) , 
(7) ( i == j ) -> t r u e => j [ i / p ] -> p, 
(8) ( i == j ) -> f a l s e => j [ i / p ] -> j , 
(9) ( i == j ) -> t r u e => 

( j : : q) [ i / p ] -> ( j : : q) , 
(10) ( i == j ) -> f a l s e => 

( j :: q ) [ i / p ] -> ( j :: q [ i / p ] ) 

endoftype 

STEP contains, compared to chapter 7, additional axioms for the totalization in 
the case of deadlock: 

type STEP 
basedon AGENT,COM,COM_SET/PAIR,SUBST,BOOL,ID 

func s t e p ( _ ) : (Agent)Pair 

axioms a l l ( i , j : Com, p, p i , q, q l : Agent, 
A: ComSet, x: Id) 

(STOP) step(STOP) -> LOCK, 
(PREFIX) s t e p ( i -> p) -> <i,p>, 
(OR1) s t e p ( ( p OR q)) -> s t e p ( p ) , 
(OR2) s t e p ( ( p OR q)) -> s t e p ( q ) , 
(CHC1) s t e p ( ( p [] q)) -> s t e p ( p ) , 
(CHC2) s t e p ( ( p [] q)) -> s t e p ( q ) , 
(PARI) step(p) -> <i,pl> & step(q) -> <j, q l > & 

( i IN A) -> tr u e & i == j -> t r u e => 
s t e p ( ( p I I{A} q)) -> <i, ( p i | |{A} q l ) > , 

(PAR2) step(p) -> <i,pl> & step(q) -> <j , q l > & 
( i IN A) -> tr u e & ( j IN A) -> t r u e & 
i == j -> f a l s e => 

s t e p ( ( p I I{A} q)) -> LOCK, 
(PAR3) step(p) -> <i,pl> & ( i IN A) -> f a l s e => 

s t e p ( ( p I I{A} q)) -> < i , ( p l | |{A} q)>, 
(PAR4) step(q) -> <i,ql> & ( i IN A) -> f a l s e => 

s t e p ( ( p I I{A} q)) -> <i, (ρ | | {A} q l ) > , 
(REC) s t e p ( ( x :: p)) -> s t e p ( p [ x / ( x :: p ) ] ) 

endoftype 

The trace and refusal semantics now can be defined like in chapter 7. 
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type TRACE 
basedon COM,AGENT,PAIR,STEP 

s o r t Trace 
cons <>: Trace, 

(Com,Trace)Trace 

func t r a c e ( _ ) : (Agent)Trace 

axioms a l l (p, p i : Agent, i : Com) 

(TRC1) t r a c e ( p ) -> <>, 
(TRC2) s t e p ( p ) -> <i,pl> => 

t r a c e ( p ) -> i . t r a c e ( p i ) 

endoftype 

type REFUSE 
basedon COM,COM_SET,AGENT,SUBST,ID,BOOL 

func r e f u s e ( _ ) : (Agent)ComSet 

axioms a l l (p, q: Agent, i : Com, A, M: ComSet, 
x: Id) 

(REF_STOP) refuse(STOP) -> M, 
(REF_PREFIX) i IN Μ -> f a l s e => 

r e f u s e ( i -> ρ) -> M, 
(REF_0R1) r e f u s e ( ( p OR q)) -> r e f u s e ( p ) , 
(REF_OR2) r e f u s e ( ( p OR q)) -> r e f u s e ( q ) , 
(REF_CHC) refuse(ρ) -> Μ & r e f u s e ( q ) -> Μ 

refuse((ρ [] q)) -> M, 
(REF_PAR) refuse((ρ ||{A} q)) -> 

r e f u s e ( p ) [ A ] r e f u s e ( q ) , 
(REF_REC) r e f u s e ( ( x :: p)) -> 

r e f u s e ( p [ x / ( x :: p ) ] ) 

endoftype 

B.3. Experiments (tasks) 
The RAP system is able to enumerate solutions for a system of equations based 
on a given specification. This mechanism can be used to simulate processes in 
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CP. Below for each experiment the equation to be solved is given (x is the 
unknown variable); then the solutions found by RAP are reported, giving also 
the approximative CPU time needed. 

The first agent consists of two (sequential) parts which run in parallel, without 
any synchronization. The traces consist here in all so-called interleavings of both 
processes. 

trace((a->b->STOP | | { } b->a->STOP)) = χ 

13 s o l u t i o n s found. 

[x = <>] 
[x = a.<>] 
[x = b . o ] 
[x = a . b . o ] 
[x = b . a . o ] 
[x = a.b.b.o] 
[x = a.b.a.o] 
[x = b.a.b.o] 
[x = b . a . a . o ] 
[x = a.b.b.a.o] 
[x = a.b.a.b.o] 
[x = b.a.b.a.o] 
[x = b.a.a.b.o] 

CPU time: 0.3 8 sees 

The subprocesses from above can be forced to synchronize in one particular 
action (for instance the action a). Then the whole system behaves sequentially: 

trace((a->b->STOP | | { a} b->a->STOP)) = χ 

4 s o l u t i o n s found. 

[x = <>] 
[x = b . o ] 
[x = b . a . o ] 
[x = b.a.b.o] 

CPU time: 0.12 sees 

I f synchronization in both actions is required, only the trivial trace exists 
(deadlock): 
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t r a c e ( ( a ->b->STOP ||{ a b } b->a->STOP)) = χ 

1 s o l u t i o n found, 

[x = <>] 

CPU time: 0.05 sees 

The following examples address the distiction between internal and external 
nondeterminism. First, an example for the traces of a system of processes which 
uses OR: 

trace(((a->STOP OR b->STOP) ||{ a b } a->STOP)) = χ 

2 s o l u t i o n s found. 

[x = <>] 
[x = a.<>] 

CPU time: 0.08 sees 

The same system using [ ] : As expected, the same set of traces is computed: 

trace(((a->STOP [] b->STOP) ||{ a b } a->STOP)) = χ 

2 s o l u t i o n s found. 

[x = <>] 
[x = a.<>] 

CPU time: 0.10 sees 

The refusal remantics can distinguish between the processes. Below the refusal 
sets for both variants of the example (using OR and choice, respectively) are 
given, as they are computed by RAP. Both enumerations do not terminate (and 
have been terminated by user interaction). Please remember that the set of 
communication actions has been fixed to { a, b, c }: 

refuse((a->STOP OR b-> TOP)) = χ 

33 s o l u t i o n s found. 

[x = ] [x = b] 
[x = a] [x = b b] 
[x = b c] [x = c c] 
[x = c a] [x = a c] 

[x = c] 
[x = c b] 
[x = a a] 
[x = b b b] 
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[χ = C b b] [x = b c b] [x = C c b] 
[χ = b b c] [x = c b c] [x = b c c] 
[χ = C c c] [x = a a a] [x = c a a] 
[χ = a c a] [χ = c c a] [x = a a c] 
[χ = c a c] [X = a c c] [X = b b b b] 
[χ = c b b b] [χ = b c b b] [χ = c c b b] 
[χ = b b c b] [X = c b c b] [X = b c c b] 

CPU time: 0.50 sees 

refuse((a->STOP [] b->STOP)) = χ 

5 s o l u t i o n s found. 

[x = ] 
[x = c] 
[x = c c] 
[x = c c c] 
[x = c c c c] 

CPU time: 0.83 sees 

This example clearly shows a disadvantage of the set implementation (by 
sequences) used here: The same set is printed many times using various 
equivalent representations. 

The following examples demonstrate that the trace semantics (with the artificial 
totalization with respect to deadlock) can distinguish between stop and div: The 
enumeration of the traces of div does not terminate. But also the refusal 
semantics is able to distinguish between both processes: 

trace(STOP) = χ 

1 s o l u t i o n found, 

[x = <>] 

CPU time: 0.02 sees 

t r a c e ( D I V ) = χ 
1 s o l u t i o n found. 
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[x = <>] 

A b o r t e d b y t i m e l i m i t , (i.e. non termination) 

r e f u s e(STOP) = χ 

1 s o l u t i o n f o u n d , 

[x = *0] 

CPU t i m e : 0 .02 sees 

r e f u s e(DIV) = χ 

No s o l u t i o n s f o u n d . 

CPU t i m e : 0 .02 sees 

The term *0 in the output above is a system-generated variable which stands for 
an arbitrary set of communication actions. 

Concludingly, the results of a larger example shall be presented, in order to give 
an impression of the current state of (in-)efficiency of the RAP-generated 
interpreter for CP. We give a CP process for the famous problem of the "Dining 
Philosophers" by E. W. Dijkstra. For the sake of simplicity, only two 
philosophers are considered here, which sit at the opposite sides of a table. There 
are only two forks for the philosophers to eat their meals. The philosophers are 
called below PI and P2, the forks F l and F2. Possible actions are here (leading 
to a suitable type COM): 

pic(Pi,Fj) Philosopher i picks up fork j 
put(Pi ,Fj) Philosopher i puts back fork j . 

The following equation contains recursive processes for the philosophers and for 
the forks. Each of the forks is represented by a recursive process (with labels ' f 1 
and T2); each of the philosophers is represented by another recursive process 
(with labels ' p i and 'ρ2). The two fork processes run in parallel without any 
synchronization, giving a compund fork process. The two philosopher processes 
run in parrallel without any synchronization, giving a compund philosopher 
process. The compund fork and the compund philosopher process run in parallel, 
synchronized by all possible pic- and put-actions. 
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t r a c e ( 
( 

( ( ' f l : : ( p i c ( P l , F l ) - > p u t ( P l , F l ) ->'f1 
[] p i c ( P 2 / F l ) - > p u t ( P 2 / F l ) - > ' f l ) ) 

I I o 
( ' f 2 : : ( p i c ( P l / F 2 ) - > p u t ( P l , F 2 ) ->'f2 

[] pic(P2,F2)->put(P2,F2) ->'f2)) 
) 

I I { p i c ( P l , F l ) p i c ( P l , F 2 ) p i c ( P 2 , F l ) p i c ( P 2 , F 2 ) 
p u t ( P I , F l ) p u t ( P l , F 2 ) p u t ( P 2 , F l ) put(P2,F2)} 
( ( ' p i : : p i c ( P l / F l ) - > p i c ( P l / F 2 ) - > 

p u t ( P I , F l ) - > p u t ( P i , F 2 ) - > ' p i ) 
I I {} ('p2: : p i c ( P 2 , F 2 ) - > p i c ( P 2 , F l ) - > 

put(P2,F2)->put(P2,Fl)->'p2) 
) 

)) = x 

The set of traces computed by RAP is infinite; the enumeration has been 
stopped again by user interaction. Please note that there are some finite traces 
(for instance 

p i c ( P l , F l ) .pic(P2,F2) .<>), 
which are not "continued", i.e., which do no not appear as a non-trivial prefix of 
any other trace. These traces correspond to the situations where the philosophers 
die of starvation. 

23 s o l u t i o n s found. 

[x = <>] 
[x = p i c ( P l , F l ) . < > ] 
[x = pi c ( P 2 / F 2 ) . < > ] 
[x = p i c ( P l , F l ) . p i c ( P l , F 2 ) . < > ] 
[x = p i c ( P 2 / F 2 ) . p i c ( P 2 , F l ) . < > ] 
[x = p i c ( P l , F l ) . p i c ( P 2 , F 2 ) . < > ] 
[x = p i c ( P 2 , F 2 ) . p i c ( P l , F l ) . < > ] 
[x = p i c ( P l , F l ) . p i c ( P l , F 2 ) . p u t ( P I , F l ) . < > ] 
[χ = p i c ( P 2 , F 2 ) . p i c ( P 2 , F l ) . p u t ( P 2 , F 2 ) . < > ] 
[x = p i c ( P l , F l ) . p i c ( P l , F 2 ) . p u t ( P I , F l ) . p u t ( P l , F 2 ) . < > ] 
[x = p i c ( P 2 , F 2 ) . p i c ( P 2 , F l ) . p u t ( P 2 , F 2 ) . p u t ( P 2 , F 1 ) . < > ] 
[x = p i c ( P l , F l ) . p i c ( P l , F 2 ) . p u t ( P I , F l ) . p u t ( P 1 , F 2 ) . 

p i c ( P l , F l ) . < > ] 
[x = p i c ( P l , F l ) . p i c ( P l , F 2 ) . p u t ( P I , F l ) . p u t ( P l , F 2 ) . 

pic(P2,F2).<>] 
[x = p i c ( P 2 , F 2 ) . p i c ( P 2 , F l ) . p u t ( P 2 , F 2 ) . p u t ( P 2 , F 1 ) . 

p i c ( P l , F l ) . < > ] 
[x = p i c ( P 2 , F 2 ) . p i c ( P 2 , F l ) . p u t ( P 2 , F 2 ) . p u t ( P 2 , F 1 ) . 

pic(P2,F2).<>] 



APPENDIX Β: EXPERIMENTS WITH RAP 253 

[χ = p i c ( P l , F l ) . p i c ( P l , F 2 ) . p u t ( P I , F l ) . p u t ( P l , F 2 ) . 
p i c ( P I , F l ) . 

p i c ( P l , F 2 ) . < > ] 
[x = p i c ( P l , F l ) . p i c ( P l , F 2 ) . p u t ( P I , F l ) . p u t ( P 1 , F 2 ) . 

p i c ( P 2 , F 2 ) . p i c ( P 2 , F l ) . < > ] 
[x = p i c ( P 2 , F 2 ) . p i c ( P 2 , F l ) . p u t ( P 2 , F 2 ) . p u t ( P 2 , F l ) . 

p i c ( P l , F l ) . p i c ( P l , F 2 ) . < > ] 
[x = p i c ( P 2 , F 2 ) . p i c ( P 2 , F l ) . p u t ( P 2 , F 2 ) . p u t ( P 2 , F l ) . 

p i c ( P 2 , F 2 ) . p i c ( P 2 , F l ) . < > ] 
[x = p i c ( P l , F l ) . p i c ( P l , F 2 ) . p u t ( P I , F l ) . p u t ( P l , F 2 ) . 

p i c ( P l , F l ) . p i c ( P 2 , F 2 ) . < > ] 
[x = p i c ( P l , F l ) . p i c ( P l , F 2 ) . p u t ( P I , F l ) . p u t ( P 1 , F 2 ) . 

p i c ( P 2 , F 2 ) . p i c ( P l , F l ) . < > ] 
fx = p i c ( P 2 , F 2 ) . p i c ( P 2 , F l ) . p u t ( P 2 , F 2 ) . p u t ( P 2 , F 1 ) . 

p i c ( P l , F l ) . p i c ( P 2 , F 2 ) . < > ] 
[x = p i c ( P 2 , F 2 ) . p i c ( P 2 , F l ) . p u t ( P 2 , F 2 ) . p u t ( P 2 , F l ) . 

p i c ( P 2 , F 2 ) . p i c ( P l , F l ) . < > ] 

CPU time: 20.33 sees 

It is worth noting that the same experiment in 1988 (with RAP 2.1 on a SUN 
3/160 computer) needed more than 500 seconds of CPU time. It is obvious that 
this gain in performance will help in the process of bringing "very high level 
programming languages" like RAP into practice. 
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