
Progress in Theoretical Computer Science

Editor

Ronald V. Book, University of California

Editorial Board
Erwin Engeler, ΕΤΗ Zentrum, Zurich, Switzerland
G6rard Huet, INRIA, L e Chesnay, France
Jean-Pierre Jouannaud, Universit6 de Paris-Sud, Orsay, France
Robin Milner, University of Edinburgh, Edinburgh, Scotland
Maurice Nivat, Universite de Paris V I I , Paris, France
Martin Wirsing, Universität Passau, Passau, Germany

Heinrich Hussmann

Nondeterminism in
Algebraic Specifications
and Algebraic Programs

Birkhäuser
Boston · Basel · Berlin

Heinrich Hussmann
Technische Universität München
Institut für Informatik
D-8000 München 2
Germany

Library of Congress Cataloging-in-Publication Data

Hussmann, Heinrich, 1959-
Nondeterminism in algebraic specification and algebraic programs /

Heinrich Hussmann.
p. cm. -- (Progress in theoretical computer science)

Includes bibliographical references,
ISBN 0-8176-3700-1 (alk. paper)
1. Computer science—Mathematics. I . Title. I I . Series.

QA76.9.M35H87 1993 93-9340
005.13'l~dc20 CIP

Printed on acid-free paper.

© Birkhäuser Boston 1993.

Copyright is not claimed for works of U.S. Government employees.
All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical, photo­
copying, recording, or otherwise, without prior permission of the copyright owner.

Permission to photocopy for internal or personal use of specific clients is granted by
Birkhäuser Boston for libraries and other users registered with the Copyright Clearance
Center (CCC), provided that the base fee of $6.00 per copy, plus $0.20 per page is paid
directly to CCC, 21 Congress Street, Salem, MA 01970, U.S.A. Special requests should
be addressed directly to Birkhäuser Boston, 675 Massachusetts Avenue, Cambridge, MA
02139, U.S.A.

ISBN 0-8176-3700-1
ISBN 3-7643-3700-1
Typset copy prepared by the Author.
Printed and bound by Quinn-Woodbine, Woodbine, NJ.
Printed in the U.S.A.

9 8 7 6 5 4 3 2 1

Table of Contents

Chapter 0: Introduction 1
0.1 Preview 3
0.2 Historical Background 9
0.3 Basic Notions 10

Chapter 1: Nondeterministic Algebraic Specifications 17
1.1 Nondeterministic Algebras 17

1.1.1 A Discussion of Alternative Approaches 18
1.1.2 The Principle of Extensionality 22
1.1.3 The Notion of an Algebra 24

1.2 Inclusion Rules as a Specification Language 28
1.2.1 Axioms and their Semantics 28
1.2.2 The Calculus of Term Rewriting 31
1.2.3 Soundness: A Negative Result 34
1.2.4 Right-Linearity: A Special Case 38

Chapter 2: Specifications with a Deterministic Basis 43
2.1 Deterministic Basis 44

2.1.1 Soundness and Deterministic Basis 45
2.1.2 Determinacy Predicate 46
2.1.3 Completeness: A Negative Result 49

2.2 Additive Specifications 53
2.2.1 DET-Completeness and DET-Additi vity 54
2.2.2 Term Models and Completeness 57

2.3 Junk-Free Models 60
2.3.1 "Junk" in Nondeterministic Models 60
2.3.2 Breadth Induction 63
2.3.4 DET-Generated Models 66
2.3.5 Term-Generated Models 67

2.4 Hierarchical Specifications 71

Chapter 3: Structure of the Model Classes 75
3.1 Homomorphisms and Extremal Algebras 76
3.2 Initial Models 80
3.3 Initial Models with Deterministic Basis 83

Chapter 4: Nondeterministic Specifications as a General Framework 89
4.1 Equational Logic 89
4.2 Term Rewriting 91

vi CONTENTS

4.3 Conditional Axioms 93
4.4 Algebraic Programming 99

4.4.1 Constructor-Based Specifications 99
4.4.2. Narrowing without Confluence 107

4.5 Logic Programming 113
4.5.1. Narrowing Simulates Logic Programming 114
4.5.2. Logic Programming Simulates Narrowing 119

Chapter 5: Implementation and Examples 125
5.1 Term Rewriting 125

5.1.1 Innermost Rewriting 126
5.1.2 Search Strategies 131
5.1.3 Optimizations 132

5.2 Graph Rewriting 136
5.2.1 Representation of Terms by Graphs 137
5.2.2 Rewriting of Term Graphs 139
5.2.3 Soundness and Completeness 142

5.3 Examples 147
5.3.1 Nondeterministic Finite State Automata 147
5.3.2 Petri Nets 150
5.3.3 The Eight Queens Problem 152
5.3.4 The Monkey-Banana Problem 154
5.3.5 Printer Scheduling 156

Chapter 6: Partial Nondeterministic Specifications 161
6.1 Partial Operations 161

6.1.1 Undefined "Values" 161
6.1.2 Partial Multi-Algebras 164

6.2 Partiality and Term Rewriting 167
6.2.1 A Calculus for Partial Specifications 168
6.2.2 Partial DET-Completeness and DET-Additivity 170

6.3 Partial Specifications with Constructor Basis 172
6.4 Structure of the Model Classes 176

6.4.1 Homomorphisms 176
6.4.2 Initial Algebras 178
6.4.3 Terminal Algebras 183

CONTENTS vii

Chapter 7: Communicating Processes: An Example 187
7.1. Communicating Processes (CP) 187
7.2. Semantics of CP 189

7.2.1. Transition Semantics 190
7.2.2. Trace Semantics 195
7.2.3. Refusal Semantics 197

7.3. Improvements and Applications 200

Chapter 8: Concluding Remarks 201
8.1. Summary and Evaluation 201
8.2. Future Work 202

References 205

Appendix A: Proofs 215

Appendix B: Experiments with RAP 243

Preface
Algebraic specification, nondeterminism and term rewriting are three active
research areas aiming at concepts for the abstract description of software
systems: Algebraic specifications are well-suited for describing data structures
and sequential software systems in an abstract way. Term rewriting methods are
used in many prototyping systems and form the basis for executing specifi­
cations. Nondeterminism plays a major role in formal language theory; in
programming it serves for delaying design decisions in program development and
occurs in a "natural" way in formalisations of distributed processes.

Heinrich Hussmann presents an elegant extension of equational specification and
term rewriting to include nondeterminism. Based on a clean modeltheoretic
semantics he considers term rewriting systems without confluence restrictions as
a specification language and shows that fundamental properties such as the
existence of initial models or the soundness and completeness of narrowing, the
basic mechanism for executing equational specifications, can be extended to
nondeterministic computations.

The work of Heinrich Hussmann is an excellent contribution to Algebraic
Programming; it gives a framework that admits a direct approach to program
verification, is suitable for describing concurrent and distributed processes, and it
can be executed as fast as Prolog.

Munich, January 1993 Martin Wirsing

Preface by the Author
This monograph is based on a Ph. D. thesis with the title „Nichtdetermini­
stische Algebraische Spezifikationen" (in German), which was accepted by the
University of Passau in the winter term 1988/1989. The text has been
thoroughly revised and substantially extended in the meantime. The original
thesis was primarily aimed at the "core" theme of generalizing algebraic
specifications to nondeterminism. The monograph version now contains a
comparison with the established field of logic programming, a new chapter on
narrowing for nondeterministic specifications and a more detailed treatment of
graph rewriting techniques. I hope that the revision will extend the readership of
this book from specialists in algebraic specification to everybody who is
interested in the relationship between logic programming, term rewriting and
formal specification.

I would like to thank Prof. Broy for finding the topic of the thesis and for his
manyfold support, in particular for many fruitful discussions and for reading a
preliminary version. Many thanks also to Prof. Wirsing, for reading a draft, for
valuable remarks and for proposing the publication within this series of books.
The anonymous referee has given very helpful suggestions for the revision of
the manuscript, many thanks also to him or her.

Many collegues have contributed to this work by discussions and remarks; for
their particular interest I would like to thank Thomas Beizner, Alfons Geser,
Jürgen Knopp, Bernhard Möller, Peter Mosses, Tobias Nipkow, Gert Smolka
and Michal Walicki.

Gabi Kohlmaier, now Gabi Hussmann, is entitled to special warm thanks for
moral support.

Finally, I would like to thank the staff of Birkhäuser for their excellent support
in the technical production of the book.

Munich, December 22, 1992 Heinrich Hussmann

Chapter Ο

Introduction

This monograph presents a generalization of the theory of equational algebraic
specifications, where the equational axioms are replaced by directed rewrite rules.
A model-theoretic semantics for such specifications is given, which provides a
rather general framework for studying
• the integration of nondeterminism into algebraic specifications, and
• model-oriented semantics for general (non-confluent) term rewriting.

The study of this central topic leads to interesting side results in the fields of
• relationships between algebraic and logic programming, and
• relationships between term rewriting and graph rewriting.

The starting point for this work is the observation that the available formal
specification languages for software are very much influenced by the concepts of
traditional mathematical logic. In particular, the notion of equality (which is a
symmetric operation) plays a central role in algebraic specifications. This
emphasis on symmetry does not correspond well to the fact that software
belongs to a computational paradigm, which is always directed. Every execution
of an algorithm consists in a directed evaluation of its formal descripton
(therefore leading to such problems as the question of termination). This kind of
directed evaluation transforms syntactical objects into semantically equal ones.
Classical (deterministic) evaluation gives a close connection between a non-
symmetric relation between objects (the operational evaluation) and a symmetric
one (the semantical denotation). The theory of term rewriting is an ideal
framework for studying such connections.

2 INTRODUCTION

The central step during an evaluation using a term rewrite system needs two
decisions: which rewrite rule to apply and at which position (redex) of the actual
target term. This obviously is a situation of nondeterminism. (Nondeterminism
means here that the next step within the computation is not uniquely
determined.) The whole well-developed theory of canonical term rewrite systems
is concerned with conditions which ensure that this implicit nondeterminism
does not affect the computation of the actual result. In other words it uses the
directed relation operationally, but simultaneously keeps the symmetrical
relation between objects on the semantical level.

The basic idea of the approach presented here is to make positive use of the
powerful framework of term rewriting, as a tool to specify nondeterministic
computations. It is a rather special (and, admittedly, important) subcase where a
nondeterministic computation is determined to give one fixed result. However,
there are many situations in computing where nondeterminism is explicitly
present or even needed. The most typical occurrences of nondeterminism are:
• Distributed systems, using concurrency and communication. Here, the

actual result of a computation depends on various parameters (including
messages from other components), which are not completely predictable.
So it is necessary to classify a set of possible results of a particular
computation.

• Stepwise program development. In an abstract description of a program, it
is often useful to keep a whole range of implementations open using a
nondeterministic choice like "Choose an arbitrary element of the set M " .

These are also the reasons why much of the research even in the early days of
computer science was invested into the investigation of nondeterminism.

So the general goal for this text is to employ the formalism for nondeterministic
computations, which is given by (non-canonical) term rewriting, as a
specification language. In difference to classical term rewriting, the interpretation
of a rewriting step is no longer the (symmetric) semantic equivalence but a
directed notion. It is quite obvious that the appropriate directed notion on the
semantical level is set inclusion, since every state of a nondeterministic
computation in fact describes a set of possible results, and every step of
computation can make a choice, which further restricts the set of possible
results. The concept of a multi-algebra, that is an algebra where the operations
are interpreted by set-valued functions, gives the appropriate semantical
background for such an interpretation.

INTRODUCTION 3

These considerations give a clear technical working plan for this book:

(1) Give a detailed technical definition for the "set-valued" interpretation
sketched above.

(2) Investigate soundness and completeness of term rewriting with respect to
the semantics given in step (1).

(3) Demonstrate that equational algebraic specifications form a subcase of the
new approach.

(4) Investigate the integration of the new approach with advanced concepts of
algebraic specification and term rewriting, like conditional rules, partial
algebraic specifications, or theory-unification procedures.

(5) Compare the new approach with other frameworks, like logic
programming.

From the traditional theory of algebraic specifications, another point comes onto
the working plan, which is somehow related to (2):

(2a) Investigate the structure of model classes, in particular the existence of
initial models.

The text provides results for all the steps of the working plan. However, at
various stages, the syntax of specifications and also the rewriting calculus have
to be enriched and adapted in order to get sensible results.

Before going into the technical details, the next section gives a sketchy overview
of the main stream of argumentation, and puts together the main results
presented in this monograph.

0.1 Preview
The notion of equational algebraic specifications is generalized to
nondeterministic specifications. As usual, a specification consists of a signature
(defining sort and function symbols) and a set of axioms. Syntactically, the
main difference to classical specifications is that the axioms now contain the
directed symbol " - » " instead of the symmetric symbol "=".

4 INTRODUCTION

Semantically, a class of multi-algebras is associated with a given specification.
Within a multi-algebra A, a function symbol

f: si -> s2
is interpreted by a set-valued function

f A : s l A p + (s 2 A) ,
which delivers a finite and non-empty subset of s 2 A as its result. It is important
to note that for the interpretation of a term, the set-valued functions are put
together in an additive way. For instance (let I A [t] denote the interpretation of
term t in multi-algebra A):

I A [f (g)] = { e 6 f A (e ') l e ' G g A } .
This gives an interpretation of terms by sets of elements from the carrier sets.
The interpretation is easily extended to terms with variables, using an
environment β which provides actual values for the variables.

The validity of a (directed) axiom is now given by set inclusion: An axiom
t l - > t2

is valid in a multialgebra A, iff for all environments β we have

Iß [t l] 2 I ß [t2].

This concludes (apart from technical details) the step (1) of the working plan.

For step (2), soundness and completeness of standard term rewriting have to be
investigated with respect to the new semantics. This leads to a negative result:
standard term rewriting is unsound in this sense. The reason for this is closely
related to procedure call conventions in programming languages. The term
rewriting approach uses a technique similar to "call-by-name", whereas the
multi-algebras have a clear "call-by-value" semantics. (In the detailed exposition,
the more precise terms "run-time choice" and "call-time choice" wil l be used.)
This makes a difference for rewrite rules where a variable occurs several times in
the right hand side, like in:

double(x) -> add(x,x)
I f the variable χ is substituted by a nondeterministic term, then term rewriting
generates two independent copies of the term in the right hand side which can be
evaluated separately to different values. However, in the interpretation of the
axioms for a model, the interpretation of the variable χ is a single value, which
is the same for all occurrences of x. So the term rewriting process deduces
consequences from the axioms which are not semantically valid in all models.
This is a first (negative) result:

INTRODUCTION 5

Standard term rewriting and multi-algebras rely on different semantic
concepts.

One way to overcome this difficulty is to introduce a second kind of axioms
which gives a syntactic way to state that a term must be interpreted deterministi-
cally. Such axioms (determinacy axioms) are written like

DET(t)
which means: "The interpretation of t in every model must be a one-element
set."
The term rewriting calculus now can be adapted to this concept. It is now only
allowed to substitute a term for a variable of an axiom, i f the substituted term
has been proven to be deterministic. This gives the calculus a much more "call-
by-value" flavour (and differs from standard term rewriting). We call this new
calculus "DET-rewriting" here, for short. It turns out that DET-rewriting is
sound, but unfortunately it can be shown now to be incomplete. This is a
second (negative) result:

The introduction of determinacy rules into specifications and calculus
achieves soundness, but does not suffice to ensure completeness of the
calculus.

The reason for the problem can be understood best when looking at an attempt
to constuct a term model for a specification (which is the usual technique to
prove completeness). A specification may contain the following axioms:

f (g) - a , g - b , f (a) - b , f (b) - b ,
DET(a), DET(b).

A term model should basically interpret every term by the set of deterministic
terms it can be reduced to within the calculus. I f the interpretation of the term
f(g) in such a term model is built up piecewise from the operations, the set { b }
is the natural result (since g can be reduced to b only). However, the axioms
require the interpretation of f(g) to contain a, too.

The problem with axioms like <f(g) a> above is that they do not admit an
additive construction of a term model. So they are excluded by a syntactical
condition for axioms, which is called DET-additivity. DET-additivity is a rather
complex condition, which fortunately can be ensured by simple syntactical
criteria. A simple and useful criterion is that in the left hand side of an axiom
only the topmost symbol is allowed to be a nondeterministic operation.

6 INTRODUCTION

Under the precondition of DET-additivity, soundness and completeness results
hold. In general, only weak ground completeness can be shown, which means
that every logically valid inclusion <tl t2> is deducible in the case, where t l
and t2 do not contain variables and t2 is a deterministic term. This is a (positive)
result:

Under the precondition of DET-additivity, DET-rewriting is sound and
weakly ground complete.

The book contains more detailed investigations how to achieve more general
completeness results, which are not reflected here. An interesting side effect of
the completeness proof is that the constructed term model turns out to be an
initial one.

Under the precondition of DET-additivity, initial models always exist.

Stepping to item (3) of the working plan from above, it can be easily shown
that classical equational specifications are a subcase of the new approach (by
simply declaring all terms as deterministic).

Equational specifications are a special case of nondeterministic
specifications.

Step (4) of the working plan contains several, mainly unrelated pieces, most of
which do not uncover unexpected effects. One topic which causes rather diffcult
technicalities is the integration of partial functions. The combination of
nondeterminism with partiality is slightly problematic, but an approach can be
found which generalizes the results in a satisfactory manner to partiality.

The main results can be carried over to the case of partial functions.

In order to investigate some questions related to the steps (4) and (5), an
interesting and important subclass of nondeterministic algebraic specifications is
identified, which are called construe tor-based. This is inspired by a very popular
style of algebraic specfications. Basically, a subset of the function symbols is
designated as the so-called constructors, and the left hand sides of the rules are
restricted to terms of the shape

f (c i , . . . , c n)

INTRODUCTION 7

where f is a non-constructor function symbol, and the q consist only of
constructor symbols and variables. In contrast to classical algebraic
specifications, we do not require here any conditions besides this syntactic one.
In particular, the "principle of definition , , is not assumed (which for instance
would require a complete case analysis over all constructors for any non-
constructor symbol to be given). I f constructors are assumed to be deterministic
(and always defined), then such specifications are automatically DET-additive.

Constructor-based specifications are characterized only syntactically. All
results hold for constructor-based specifications without any additional
precondition.

For this special class of specifications, also the extension to a unification
algorithm can be given successfully. There is a complete narrowing procedure
for such nondeterministic specifications. This completeness holds independently
of confluence or termination of the rule system, giving an interesting
generalization of results in the literature.

For constructor-based nondeterministic specifications, narrowing is
complete without any confluence or termination conditions.

This result builds the bridge to step (5) of the working plan, which examines the
connections to logic programming. The special case of constructor-based
nondeterministic specifications can be shown to be one-to-one related to logic
programming for definite clauses. This also generalizes results known from the
literature, which needed the restriction to canonical rewrite systems.

For constructor-based nondeterministic specifications, there is a one-to-
one correspondence between narrowing and logic programming.

Finally, a new point (6) appears on the working plan, which has not been
mentioned above. Since the DET-rewriting calculus differs from standard term
rewriting, it is questionable, whether existing implementations of term rewriting
can be used for the new approach. Fortunately, for the subcase of constructor-
based specifications a positive result can be found. I f an implementation of term
rewriting is used which represents terms by directed acyclic graphs with "variable
sharing", the implementation is sound and complete with respect to the DET-
rewriting calculus. A particularly interesting observation is that the "sharing" of
subterms used in such implementations takes care of the soundness with respect

8 INTRODUCTION

to multiple occurrences of variables. So an arbitrary redex selection strategy
again is admissible, as in standard term rewriting.

For constructor-based nondeterministic specifications, any implementa­
tion of term rewriting using shared term structures is sound and
complete with respect to the multi-algebra semantics.

Thus, for the special case of constructor-based specifications, the original aims
are reached completely, despite of the discouraging negative results during the
first steps of the study.

The book is structured as follows: The second section of this introductory
chapter (chapter zero) gives an overview of the historical background of this
work, a third section introduces some basic notions. The subsequent first chapter
already contains the elementary framework for nondeterministic algebraic
specifications (the notion of a model and the calculus of term rewriting). Within
this chapter, emphasis is put on a detailed motivation for the design decisions.
The definition of the calculus leads to complications which can be resolved in a
second version of the theory, presented in the second chapter. In the third
chapter, the particular question of a lattice structure of the model classes is dealt
with, a topic which may be skipped by the reader not interested in semantic
investigations. At this point the theory has gained some kind of completeness,
so the fourth chapter gives a detailed view of the relationships between the new
approach presented here and other approaches such as equational logic, term
rewriting, and logic programming. The fifth chapter concerns itself with more
practical consequences: In its first part it deals with implementation issues from
a rather abstract point of view; in its second part the application to a number of
simple examples is demonstrated, taken from various areas of computer science.
The sixth chapter again treats theoretical questions, and that is to integrate the
new approach with a treatment of partial functions, as proposed in [Broy,
Wirsing 82]. The concluding (seventh) chapter shows the application of
nondeterministic algebraic specifications to a non-trivial example: the language
of communicating sequential processes.

INTRODUCTION 9

0.2 Historical Background
The technique of algebraic specifications, established in the years 1975-80
([ADJ78], [Guttag 75]), is an attempt to use results of Universal Algebra
([Birkhoff35]) for the mathematical description of data structures ("abstract data
types"). The basic idea of this approach is to describe a data domain together
with its characteristic operations. An algebraic specification has a precise
mathematical semantics, given by its models (which are so-called heterogeneous
algebras, consisting of data sets and operations on them). The specification
restricts the class of models by a number of axioms in a logic language. So
there is a corresponding calculus which admits to derive further properties of a
specification. Of particular interest is the evaluation of expressions over the
specification which is an abstract form of operational semantics. These basic
ideas have been refined in various ways, for instance by concepts for modulari­
sation and the treatment of partial functions ([Wirsinget.al. 83]). Altogether, a
specification language arose which combined the expressive power of a
programming language with a formal treatment of data types.

Even earlier, about 1970-75, nondeterminism has been recognized as important
for the abstract description of programs ([Floyd 67], [Manna70], [Dijkstra76]).
Up to now it is an open question whether nondeterminism is useful for practical
programming. But as it was argued above, a demand of abstractness within
descriptions often leads to nondeterminism. Although abstractness was the aim
of algebraic spefication, there have been only a few attempts to connect
nondeterminism and algebraic specifications. [Subrahmanyam81] and [Broy,
Wirsing81] should be mentioned here, which show essentially how to simulate
nondeterministic structures by (relatively complex) algebraic specifications of
the classical type.

Within the last years there have been attempts to integrate nondeterminism as a
basic concept into algebraic specifications ([Nipkow86], [Hesselink88]).
These approaches consider operations of algebras as relations, i . e. as set-valued.
The notion of a so-called multi-algebra ([Pickett67]) could be used there, as
well as first similar ideas in [Kapur 80]. Both papers [Nipkow86] and
[Hesselink88] treat nondeterministic algebras and basic relations between
algebras, but they exclude the question of a well-suited specification language. A
nondeterministic specification language is presented in [Kaplan 88], but this
approach is based on the classical notion of a model and the classical calculus,

10 INTRODUCTION

extended by "built-in" mechanisms for handling sets of data objects. The paper at
hands extends the existing work by giving a specification language for the
multi-algebra approach.

In a very recent paper [Meseguer 92], the basic idea of using term rewriting as a
general framework for computing, without taking care of an equational
interpretation, has been covered in detail. In its motivation, these results are very
closely related to the work presented here. However, in [Meseguer 92] the
semantics are adjusted in such a way that standard term rewriting is sound and
complete, leading to a "call-by-name" approach (which is unsound for multi-
algebra semantics). The semantics there are mainly oriented towards an initial
algebra approach, using category-theoretic tools. In contrast, here the semantics
are given by a loose class of multi-algebras in a classical set-theoretic
framework, which induces a "call-by-value"-like interpretation. This principle is
carried over to the calculus, leading to a calculus which differs from standard
term rewriting on the level of deduction systems. Interestingly, the frequently
used implementation by graph rewriting turns out to be adequate for our
approach, but not completely adequate for standard term rewriting (see section
5.2, example 5.18)!

Another even more recent approach is [Walicki 92/93], where a rather general
calculus is introduced for an algebraic treatment of nondeterminism. This work
is partially based on earlier versions of our approach. It defines a specification
language as well as a sound and complete calculus. However, the syntactical
framework used there is much richer than the simple term-rewriting-style of the
calculi presented here. It is shown in [Walicki 92/93] that our approach can be
seen as a true subcase within the more general framework. The main
distinguishing property of our subcase is that we are interested in a
programming oriented style of specification, which keeps close connections with
term rewriting and admits a direct application of prototyping tools.

0.3 Basic Notions
This section introduces some technical notations which will be used within this
book frequently. It may be convenient to skip this section on first reading.

INTRODUCTION 11

In order to deal with set-valued functions, it is often necessary to construct the
power set of a given set. The following notation will be used (M is an arbitrary
set):

p (M) = { N ! N C M }
p+(M) = { N I N C M Λ N * 0 }
Pfin(M) = { N I N C M Λ Ν finite}

Another concept from set theory is the comparison of two arbitrary sets (finite
or infinite) with respect to cardinality:

I Μ I & I Ν I <=>def 3 f: M - * N and f is surjective.

Similarly, sometimes the set of finite sequences over an arbitrary set Μ is
needed, which is denoted by N * . The empty sequence is written as ε, a non­
empty sequence is given as a list of its elements, enclosed within angle brackets
(<>). The sequence concatenation operator is an infix operator ·, which is defined
inductively by the following equations (where s, s' Ε Μ*, e Ε Μ):

ε · s = s,
(<e> · s) · s' = <e> · (s · s').

A l l other notions are common either in the field of algebraic specification or
term rewriting. The used notation is similar to [Wirsingetal.83] and [Huet,
Oppen80], respectively.

Definition 0.1 (Signature)

A signature is a tuple Σ = (S, F), where S is a set of sort symbols and
F is a set of function symbols. Every function symbol fEF has a fixed
finite sequence of sort symbols (its argument sorts) and a sort symbol
(its result sort).
The notation [f: si χ ... χ s n -> s]EF is used to denote a function
symbol fEF with argument sorts s i , s n and result sort s (si, sES).

ο
The symbol X always means a given countably infinite set of variable symbols,
where again each xEX has a fixed sort. More precisely, X is a family of sets of
variable symbols:

X = (Xs)sES.

12 INTRODUCTION

Definition 0.2 (Term)

Let Σ be a signature, X a variable set as above. The set \ν(Σ, X) s of the
Σ, X-terms of sort s is the smallest set which fulfils the following
conditions:

• Every x E X s is contained in λ¥(Σ, X) s

• I f [f: s i χ ... χ s n -> s] Ε F and ti is contained in \ν(Σ, X) s - (for

1 έ i £ n), then f (t i , . . . , t n) is contained in \ν(Σ, X) s .

The set ν/(Σ, 0) s of the ground terms of sort s is denoted by \ν(Σ) δ. I f
the sort index of a set of terms (s) is obvious from the context, it is
omitted frequently. 0

For the sake of simplicity, all signatures Σ have to be sensible as defined in
[Huet, Oppen 80], that is for every sort there has to exist at least one ground
term.

Definition 0.3 (Subterm, Occurrence)

The mapping Occ computes the set of occurrences (or tree addresses)
within a term. It is standard to describe such occurrences by finite
sequences of natural numbers:

Occ: W (Z , X) - * p + (N *)

Occ is defined recursively by:
Occ[x] = { e } ifxEXs
Occ[f(ti, . . . , t n)] = {ε} U{ i*u I i E { l , . . . , n } Λ uEOcc[ti] }

i f [f: si χ ... χ s n s] Ε F, 1{ΕΨ(Σ, Χ) 8 · .

t/u denotes the subterm of a given term t at the occurrence u Ε Occ[t]:
t / ε = t
f (t i , . . . , t n) / i - u = t i / u

t [u*- t '] denotes the term which results from replacing within t the
subterm t/u (u Ε Occ[t]) by the term t':

t [e«-f] = V
f(t ι,.. , t n)[i-u«-f] = f (t i , . . . ,tj[u«-t'],... t n) 0

INTRODUCTION 13

Varsft] denotes the set of all variables occurring within a term t:
Varsft] = { x E X I 3 u e O c c [t] : t/u = χ }

Definition 0.4 (Substitution)

A substitution σ is a family of mappings σ = (a s) s^s where
σ 8 : X s - W (Z , X) s

such that only for a finite number of xEX, σ is different from the
identity (σ(χ) * χ). Again, the sort index (s) is omitted frequently.

A substitution can be easily extended to an endomorphism on \¥(Σ, X):
a(f(t i , . . . , t n)) = f(at i , . . . ,a t n)

The domain of a substitution σ is denoted by
Domfa] = { xEX I σχ * χ } .

The set of all variables occurring within the substitution terms is
denoted by Vars[o]:

Varsfo] = Vars[ti]U...UVars[t n],
where { t i , . . . , t n } = { σχ I σχ * χ } .

A substitution ρ is called a renaming, iff ρ is injective and
VxEX: pxEX.

For two substitutions σ and τ , a composed substitution στ is given by
the usual functional composition. The union oUx of two substitutions
σ and τ is only defined, i f Dom(o)nDom(x) = 0; it means to combine
σ and τ into a substitution with the domain Dom(o)UDom(x).

S U B S T (Z , X) is the set of all substitutions σ: X — \ ¥ (Σ , X) ,
SUBST(Z) is the set of all ground substitutions σ: X — W (I) . 0

A substitution σ, which replaces xEX by the term t l and yEX by the term t2
(and nothing else), is denoted in an explicit notation by: σ = [t l /x , t2/y]. ι is the
identity substitution (i.e. VxEX: i(x) = x).

Given two terms t l and t2, a substitution σ is called a unifier of terms t l and t2
iff σ t l = σ t2. I f t l and t2 are unifiable, there is always a most general unifier
(mgu) μ. This means that for every unifier σ for t l and t2, there is a substitution

14 INTRODUCTION

λ such that σ = λμ . The most general unifier of two terms can be computed
efficiently (see for instance [Corbin, Bidoit 83]).

The following sketch of the theory of (equational) algebraic specifications has
the only purpose to introduce the notation, for details see [Wirsingetal.83].

A specification Τ = (Σ, Ε) is a tuple, where Σ is a signature and Ε is a set of
equations between Σ , X-terms (of the same sort). The central notion for the
semantics of such a specification is the notion of a Σ-algebra:

Definition 0.5 (Σ-AIgebra)

Let Σ = (S, F) be a signature. A Σ-Algebra is a tuple A = (S A , F A) ,
which consists of:

• a family of non-empty carrier sets

S A = (s A) s eS . s A * 0 for sES

• a family of functions:
F A = (f A) fEF

such that for [f: si χ ... χ s n -> s] Ε F:
f A : s i A χ ... χ s n

A s A .

The class of all Σ-algebras is called Alg(Z). ()

Within a Σ-algebra A , now the interpretation of a term t can be defined. For the
interpretation of a non-ground term t, all variables from X occurring in t must
be bound to values in A. This is done by a valuation β:

ß = (ßs)sES> ß s : X s - s A

The interpretation

I ß = d ß) S) s G S , l £ s : W (Z , X) s ^ s A

can be defined easily as an extension of the algebra operations. An equation <tl =
t2> is called valid in A (A 1= t l = t2), iff for all valuations β holds:

I ß [t l] = I ß [t 2] .

The Σ-algebra A is called a model of the specification Τ = (Σ,Ε), i f f all
equations in Ε are valid in A. EqMod(T) denotes the class of all models of the
equational specification T.

INTRODUCTION 15

The calculus of equational logic explains how new equations can be deduced
from the equations in E. It can be seen as a definition for the following relation
on terms:

t l = E t2 <*>def 3 uEOccftl], oESUBST(I, X) , <1 = r> Ε Ε:

t l / u = al Λ t2 = t l [u « - o r]
By = E * we denote the reflexive-transitive-symmetric closure of =£.

The most important result for equations and equational logic as a specification
framework is

Birkhoff's theorem:
11 = E * t2 EqMod(T) 1= (t l = t2) (if Τ = (Σ, Ε))

According to this theorem, it is ensured that the calculus can be used only to
derive equations which hold in all models of the specification (soundness).
Moreover, an equation which is valid in all models is deducible with the calculus
(completeness).

Chapter 1

Nondeterministic Algebraic
Specifications

This chapter wil l show precisely how to generalize the model classes and the
specification language for algebraic specifications to the case of nondeterminism.
Particular emphasis is laid on a motivation for the design decisions and on a
comparison to other approaches.

1.1 Nondeterministic Algebras
An algorithm is called nondeterministic, i f there are computation states of the
algorithm, where the further computation steps are not determined, i .e. where a
free choice between different alternatives is admitted. I f the final result of the
computation is fixed, indepently of the choices, the result is called determinate.
Here we will study the more general case of nondetermism where even the final
result is non-determinate. This means that the algorithm may deliver different
results when started under equal environment conditions. In a more abstract
view, the result of the algorithm is a set of possible results (called "breadth" in
[CIP 85]).

18 NONDETERMINISTIC ALGEBRAIC SPECIFICATIONS

Nondeterministic programs have been considered already in rather early papers
([McCarthyol] , [Floyd 67], [Manna70], [Dijkstra76]). Here the main
motivations were:

• The programmer should be freed of unnecessary details at design time
([Dijkstra76]). The design should fix what is the function of the program;
if there are different ways how to realize this function in detail, the decision
between them can and should remain open. (A typical example for such a
single step with a non-determinate result is: "Choose an arbitrary number
between 0 and N".)

• Nondeterminism often is an adequate form of description for a system
which depends on unknown parameters. A typical example is an operating
system, the behaviour of which depends on the number of users, on the
activity of ressources etc. I f all these parameters were known, the
behaviour of the system would be deterministic. But it is realistic and
useful to treat the system without knowing all parameters, consequently to
deal with a nondeterministic algorithm ([Hennessy80]).

Both arguments use nondeterminism as a means of abstraction for the
description of complex systems. This results in a good motivation for
integrating nondeterminism into an abstract specification language for the
description of algorithms.

For models of algebraic specifications, nondeterminism means that the result of
the interpretation of a given function, applied to a given argument, is not fixed
uniquely. Below a number of alternative approaches are discussed which try to
model this situation mathematically.

1.1.1 A Discussion of Alternative Approaches

Let [f: s -> s'] be a function symbol, s and s' sorts of a given signature.

A first variant of nondeterminism is already present within classical algebraic
specifications:

NONDETERMINISTIC ALGEBRAIC SPECIFICATIONS 19

(a) Nondeterminism on model level

Let A l and A2 be two different models of a given specification where:
f A l : s A l _ > s . A l f

fA2. SA2-+ S ' A 2 ?

Then for e Ε sA^ Π s A 2 we may have:
f A 1 (e) = e l , f A 2 (e) = e2 and el * e2.

This example presupposes a so-called loose semantics which has been proposed
e. g. by [Bauer, Wössner 81], [Wirsing et al. 83]: As the semantics of a
specification, a class of models is taken. The result of an operation is not fixed
uniquely, since it may differ in different models.

This form of nondeterminism is useful for the description of early phases of a
design where design decisions shall be kept open [McCarthy 61]. Within a
single model, however, all computations are deterministic.

But sometimes explicitly non-determinate (and therefore nondeterministic)
computations are to be described. Abstract specification of programs on
operating system level leads to such descriptions, as in the theory of
communicating processes. Here the approach described above is no longer
adequate, a notion of a model is needed, which admits nondeterministic
computations within a single model.

A first option to achieve this aim is the interpretation of a function symbol by a
set of functions:

(b) Nondeterminism on operation level

Let Β be a model of a given specification:
f B = { f l , f 2 } ,
f l : s B - s ' B

f2: s B - s ' B .
Then for e Ε s B we may have:

f l B (e) = e l , f2 B(e) = e2 where el * e2.

This approach describes precisely the concept of (local) nondeterminism within a
functional computation. When a function is applied to given arguments, one out
of several prescriptions is chosen to compute the resulting value.

20 NONDETERMINISTIC ALGEBRAIC SPECIFICATIONS

The theory of algebraic specifications stresses the function application as the
most important operation on functions. It only considers the input-output
behaviour of a function. Therefore, an abstraction of the approach (b) also
provides an appropriate notion for a model, which uses set-valued functions.

(c) Nondeterminism on result level

Let C be a model of a given specification:
f 0 : s C ^ p (s ' C) .

Then for e G s ^ we may have:
fCfc) = { e l , e2 } where el * e2.

It is obvious, how for an algebra Β corresponding to approach (b) an algebra C
corresponding to (c) can be found: Define

f C(e) = { g (e) l g G f B }

This is a true abstraction, i . e. algebras corresponding to (c) contain less
information about the structure than in approach (b). Consider the following
example:

Let B l and B2 be algebras according to (b) where:

s B l = s ' B 1 = s B2 = s>B2 = { 0) L } j

f B 1 = { not, id } , f B 2 = { true , false } ,

not, id, true, false: { 0 , L } - * { 0 , L } ,

not(O) = L , not(L) = O,
id(0) = 0 , id(L) = L ,
true(O) = L , true(L) = L ,
false(0) = 0 , false(L) = 0 .

The following algebra C is an abstraction of Β1 as well as of B2:

s c = s ' C = { 0 , L } ,
f C : { 0 , L } - p ({ 0 , L }) ,
fC(O) = { Ο , L } , fC(L) = { Ο , L } .

NONDETERMINISTIC ALGEBRAIC SPECIFICATIONS 21

I f we restrict our attention to the input-output behaviour of functions, the
function f has the same behaviour in B l and B2, The function f, applied to an
element out of the set { O, L } delivers nondeterministically either Ο or L .

As long as functions are not considered as objects (like in "higher order"
specifications) , (c) is equivalent to (b). Since (c) fits well to the abstract style
found in algebraic specifications, (c) seems to be better suited for the definition
of nondeterministic models. I t is interesting to note that exactly the
generalization of Σ-algebras described as (c) has already been studied in the
Sixties under the name of a multi-algebra. As an early source, confer
[Pickett67], where for the origin of the notion "multi-algebra" P. Brunovsky
(1958) is referred. Below, only the multi-algebra approach wi l l be followed,
which forms the basis for the work of [Nipkow86] and [Hesselink88], too.
But two other possibilities for introducing nondeterminism should be mentioned
before.

(d) Nondeterminism on the level of sorts

Let D be a model of the given specification:
f D : p (s D) - » p (s ' D) .

Then for e E s ^ w e m a y have:
fD({ e }) = { e l , e2 } where el * e2.

This approach arises as a generalization of (c), by switching from set-valued
functions to functions operating on sets. Nevertheless, the specific properties of
nondeterministic operations are lost: Simple heterogeneous algebras are
considered here, with powersets as its carriers, even non-additive and non-
monotone operations are admitted. In [Kaplan 88] this approach is chosen for the
description of nondeterminism, but some additional restrictions (in particular the
U-distributivity af all functions) essentially lead back to the power of the
approach numbered (c) here.

A completely different approach, finally, is characterized by a simulation of
nondeterminism by deterministic operations:

22 NONDETERMINISM ALGEBRAIC SPECIFICATIONS

(e) Nondeterminism by deterministic predicates

Let Ε be a model of the given specification. Let Ε contain relations
instead of functions:

f E C s E χ s ' E

The well-known relational product then defines a structure which is
comparable to approach (c).

On the model level, it is a matter of taste, whether a functional or relational
description is preferred. For instance in [Nipkow86] a relational description for
multi-algebras is used; however, an appropriate specification language is not
dealt with there. In [Subrahmanyam81], axioms containing nondeterministic
operations are translated into axioms for the corresponding predicates; however,
the direct relationship between terms and values (interpretation) is lost there. It
could be considered an advantage of relational specifications that Prolog-like
Horn clauses, i f chosen as a specification language, may admit Prolog-like
resolution calculi. This idea is investigated in more depth below in chapter 4.

Relationally described nondeterministic specifications obviously are an
equivalent, interesting alternative. But for the purposes followed here, this
approach has too few similarities with the functional viewpoint of algebraic
specifications. In particular, we are interested here in a formal framework which
explicitly shows the principle of uni-directionality (for instance from input to
output) which is central to most programming paradigms. This is the reason
why we prefer here the set-valued approach listed above as (c).

Below we wi l l define calculi which correspond directly to specifications of
approach (c), and which enable, by term rewriting, a syntactical simulation of
computations, too. In this case the uni-directional evaluation by term rewriting
corresponds to a choice out of a set of possibilities.

1.1.2 The Principle of Extensionality

The principle of extensionality is a basic paradigm for applicative and data-flow
oriented programming. It means: The identity of a function is determined by its
input-output behaviour. Functions with the same input-output-behaviour are
considered as equal. This way, we can abstract from the concrete realization, how
the function value is computed. A function becomes a "black box" which is

NONDETERMINISTIC ALGEBRAIC SPECIFICATIONS 23

observed from the outside only. This point of view has advantages for the
modular construction of large systems ("information hiding"). This section wil l
try to motivate the multi-algebra approach again, from the input-output point of
view.

In the case of nondeterminism, the interpretation of a function symbol
f: s s'

in an algebra A can be seen as a computation unit with input and output
channels:

In order to keep with the modularity paradigm, we presuppose that nondeter­
ministic decisions are made locally .

In a given nondeterministic computation there is only one value on the input
channel. Nondeterministic decisions are made within the computation unit and
thus deliver just one value on the output channel.

Experiments with the "black box" f A consequently may lead only to
observations of the shape:

" I f χ is an input value, y ι , y n are possible output values."

Approach (c) of the section above exactly mirrors this kind of input-output
behaviour.

Approach (b), transferred to our visualisation, would admit additional
observations about the way of computation which is chosen by the unit:

" I f f A chooses computation description f i , then the input value χ

delivers the output value y."

Approach (d), in contrast, assumes a computation unit f \ which takes a set of
values as its input, and which delivers a set of output values, dependent on the
input set:

24 NONDETERMINISTIC ALGEBRAIC SPECMCATIONS

" I f the possible input values are χ ι , x n , the possible output values

a r e y i , . . . , y m "

Note that the preference for approach (c) (instead of (b) or (d)) can be motivated
only by pragmatic arguments, what is seen as a "realistic" or "interesting"
notion for the input-output behaviour.

As a consequence of the choice of approach (c), it is clear now how to define the
composition of functions: Just take the input-output behaviour of f g , i . e.:

Given an input value x, possible results of the entire system are exactly the
possible results of g A under input y, where y is a possible output of f A under x:

(f A -g A)(e) = { e2 I e2 Ε g A (e l) Λ el Ε f A (e) }
This means, the additive extension of f A to sets is used. This choice corresponds
to the classical relational product and to the usual definitions for multi-algebras.

I f these design decisions are compared with those of [Meseguer 92], it is obvious
that Meseguer puts more emphasis on fixing the deduction calculus to classical
term rewriting. The semantic constructions are adjusted to fit this calculus,
whereas here the priority has been set the other way round: We fix the semantic
model first, and then adapt the calculus. In fact, the semantics in [Meseguer 92],
following an initial algebra approach, are defined in terms of deductions within
the rewriting calculus. Further below, the technical differences wi l l be stated
more precisely.

1.1.3 The Notion of an Algebra

Using the arguments above, we fix the following generalization of the notion of
a heterogeneous Σ-algebra:

Definition 1.1 (Total Σ -Mult i -Algebra)

Let Σ = (S, F) be a signature. A (total) Σ-multi-algebra is a tuple A =
(S A , F A) , which consists of

a family of non-empty carrier sets
S A = (sA)sGS> s A * 0 for s Ε S

NONHDETERMINISTlC ALGEBRAIC SPECMCATONS 25

• a family of set-valued functions where the result is always non­
empty:

F A = (f A)fGF
such that for [f: si χ ... χ s n -> s] Ε F:

f A : s i A χ ... χ s n

A - * p + (s A) .

The class of all Σ-multi-algebras is denoted by M A l g (I) . φ

Below we also use the word "algebra" for a multi-algebra, where no confusion is
possible.

It is not completely obvious, why the functions are restricted to deliver only
non-empty result sets. For instance in [Hansoul 83], also empty result sets are
admitted in multi-algebras. The main argument for exclusion of the empty set is
that it somehow represents the non-existence of a result, which is equivalent to
undefinedness. It is well known from the theory of algebraic specifications that
an adequate integration of partial functions leads to a number of serious
problems. So the question of partiality is postponed to chapter 6, and functions
are restricted here to "total" ones, which always deliver at least one result.

Example 1.2

Let Σ = (S, F) be the following signature:

sort Nat

func zero: Nat, succ: Nat Nat,
add: Nat χ Nat -* Nat, or: Nat χ Nat Nat,
some: -> Nat

The algebra A then is a Σ-multi-algebra, where
N a t A = N ,
zeroA: ρ + (N) , zeroA = { 0 } ,
succA: Ν -* p + (N) , succA(n) = { n+1 } ,
add A : Ν χ p + (N) , addA(n,m) = { n+m } ,
o r A : Ν χ Ν -» p + (N) , or A(n,m) = { η , m } ,
someA: -> p + (N) , someA = Ν

(where m, nEN).

26 NONDETERMINISTIC ALGEBRAIC SPECIFICATIONS

Another Σ-multi-algebra is B, given by
Nat B = { Z , N } ,
zeroB = { Ζ } , succB(e) = { Ν } ,
addB(Z,e) = { e } , addB(N,e) = { Ν } ,
o r B (e l ,e2) = { e l , e2 } , someB = { Ζ, Ν }

(w h e r e e , e l , e 2 E { Z , N » φ

In the algebra A of this example, the operations o r A and someA are called (truly)
nondeterministic, since they actually do deliver a choice between different
results. The other operations are single-valued functions and therefore called
deterministic.

The operation someA in the example above shows that multi-algebras in general
admit infinite result sets (indicating a choice out of infinitely many values,
which is sometimes called unbounded nondeterminism). Please note that the
choice of names in the example above shows a close correspondence to the
semantics assigned to them by the multi-algebra A. However, the formal
specification (which is only a signature up to now) does not resemble these
informal ideas at all. It is easy to give a multi-algebra for the same signature
where some is a deterministic operation and zero a nondeterministic one!

The set of ground terms can be made into a multi-algebra (since every Σ-algebra
is a Σ-multi-algebra with singleton result sets, too). This is a very particular
algebra, where every operation is deterministic.

Example 1.3

For an arbitrary signature Σ, a Σ-multi-algebra ΨΣ (the term algebra) is
given by:

8 \ΥΣ = W (2) s f o r s G Σ

f W 2 (t l , . . . , t n) = { f (t i , . . . , t n) } f o r f E F . 0

In order to define the interpretation of terms in a multi-algebra, the operations of
the algebra just have to be composed as the structure of the term indicates.
However, for giving a meaning also to terms containing variables, we need a
notion of an environment which binds variables. A term with variables can be
interpreted only i f the environment defines fixed values for the variables. It is
consequent to admit here as values to be assigned to variables only single values
out of the carrier set (no set-valued environments). The reason for this is that a

NONDETERMINISTIC ALGEBRAIC SPECIFICATIONS 27

computation within a given algebra contains only single values as intermediate
results. Within the informal description of section 1.2 above, set-valued
environments would correspond to observations under a fixed set of possible
input values. I t is clear that such observations can be composed out of
observations with single-valued environments, by additive extension.

Definition 1.4 (Environment)

Let A = (S A , F A) be a Σ-multi-algebra.
An environment β of X in A is a family

ß = (ß s)sGS
of mappings

ß s : X s - s A .

ENV(X, A) denotes the set of all environments of X in A. φ

The definition of interpretation composes the operation provided by the algebra,
using an additive extension, when applying a function to a set of values:

Definition 1.5 (Interpretation)

Let A Ε MAlg f f) , β Ε ENV(X, A) .

The interpretation Iß is a family of mappings

Iß = (I ß s)sES, I β > s : W (I , X) s - Ρ + (s A) for sES.

I R is defined inductively as follows: p,s

(1) I f t = xandxGX s :

I ß s [t] = { ß (x) }

(2) I f t = f (t i , t n) where [f: sj χ ... χ s n -* s] Ε F
(t i £ W (Z , X) s i f o r a I I i e { l , . . . , n}):

l £ s [t] = { e G f A (e i , . . . , e n) I ej G i j ^ . [tj] , 1 s i s η }

Δ A
I f t is a ground term (out of W^) s) ,we write also I A instead of I n § . 0

28 NONDETERMINISTIC ALGEBRAIC SPECIFICATIONS

Example 1.6

In the multi-algebra A from example 1.2 the following propositions
hold:

I A [zero] = { 0 }
I A [add(or(zero,succ(zero)),or(zero,succ(zero)))] = { 0 ,1 ,2 }

I f β is an environment with β(χ) = 0, ß(y) = 1, then we have:

lp[add(x,or(x,y))] = { 0 , l } .

In the multi-algebra Β the following holds:
I B [zero] = { Ζ }
I B [add(or(zero,succ(zero)),or(zero,succ(zero)))] = { Ζ , Ν } (}

1.2 Inclusion Rules as a Specification
Language
The semantics of a classical algebraic specification is given by a class of
algebras which are characterized by a set of axioms. Basically, algebraic
specifications may use arbitrary first-order formulas as axioms ([Wirsing et. al.
83]), where the atomic formulas are equations.

Particular interest has been paid to specifications where the axioms are only
equations or conditional equations (positive conditionals) with universally
quantified variables. On the one hand, the model class always has a nice lattice
structure in this case; on the other hand, the equational calculus is particularly
simple and therefore well-suited for support by software tools. These tools
usually are based on term rewriting (rewriting engine, Knuth-Bendix-completion,
Ε-unification by narrowing).

1.2.1 Axioms and their Semantics

When switching to the nondeterministic case, we first have to find an
appropriate notion replacing the equations. The purpose of these atomic
formulas is to describe the nondeterministic choice out of several possibilities.

N O N D E T E R M I N I S T I C A L G E B R A I C S P E C I F I C A T I O N S 29

Such a process of decision does not preserve the information contained in a term,
but may reduce the amount of information. Therefore, we use unsymmetric
(oriented) atomic formulas. Below, "inequations" play the role which equations
have in the classical case. An inequation between two terms t l and t2 is denoted

t l — t2.
It is to be understood informally as:

"Every (nondeterministic) possibility for the evaluation of t2 is a
(nondeterministic) possibility for the evaluation of t l , too."

With respect to the intended interpretation, we call the inequations from now on
inclusion rules. The notation for inclusion rules is the same as it is standard for
rewrite rules, because below a tight correspondence to term rewriting wi l l be
developed.

Definition 1.7 (Inclusion Rule)

An (atomic) (Σ, X-)inclusion rule is a pair of terms of equal sort, which
is denoted as a formula

t l -> t2
where t l , t2 Ε W (I , E) s , s Ε S. 0

Variables occuring in inclusion rules are implicitely understood as universally
quantified (like in equational specifications).

The validity of an inclusion rule has to take care of the orientation. In contrast
to equational logic, which centers around the notion of equality, our objects are
decision processes, and this leads to set inclusion.

Definition 1.8 (Validity)

Let A be a Σ-multi-algebra. An inclusion rule t l -> t2 is called valid
in A , written:

A 1= t l -> t2
i f f for all environments β Ε ENV(X, A):

Iß [t l] 2 I ß [t2]. 0

30 NONDETERMINISTIC ALGEBRAIC SPEOFICATIONS

Note that this definition of validity relies on the definition of an environment: A
variable within an axiom always means a (determinate) object, and not a
nondeterministic expression.

Example 1.9

Within the multi-algebras Α und Β of example 1.2 the following
inclusion rules are valid:

add(zero,x) x, add(succ(x),y) -> succ(add(x,y))
or(x,y) -> x, or(x,y) -» y
some -> zero, some -> succ(some) ()

Now we can define nondeterministic algebraic specifications in analogy to the
standard approach.

Definition 1.10 (Nondeterministic Algebraic Specification)

A (nondeterministic) (algebraic) specification is a tuple Τ = (Σ, R),
which consists of a signature Σ and a finite set R of Σ , X-inclusion
rules, which are called the axioms of the specification. φ

Definition 1.11 (Model)

A nondeterministic Σ-algebra A is called a model of the nondeterminis­
tic specification Τ = (Σ, R), iff for all inclusion rules O E R : A 1= Φ.
Mod(T) denotes the class of all models of the specification Τ . ()

Example 1.12

This first example of a specification combines the signature from
example 1.1 with the inclusion rules from example 1.9. We use a
notation similar to many standard specification languages (for instance
OBJ, PLUSS):

spec NAT
sort Nat
func zero: Nat, succ: Nat -> Nat,

add: Nat χ Nat -» Nat, or: Nat χ Nat -> Nat

NONDETERMINISTIC ALGEBRAIC SPECIFICATIONS 31

axioms
add(zeroX) x, add(succ(x),y) -* succ(add(x,y)),
or(x,y) x, or(x,y) -» y
some -» zero, some succ(some)

end

The algebra A from example 1.2 now is a model of NAT. ()

1.2.2 The Calculus of Term Rewriting

As already indicated above, the axioms of a nondeterministic specification shall
be used for a calculus for the derivation of further properties, which hold within
the model class of a specification. The tight relationship to the formalism of
term rewriting wi l l lead to a situation, where this calculus can be seen as an
operational interpretation of the specification as well.

The well-founded theory of term rewriting (see [Huet, Oppen 80]) offers an
"oriented" analogon to equational logic (see also [Meseguer 92]). The
orientation of the rules admits a much more efficient way to carry out deductions
in comparison to equational logic. This is the reason why term rewriting forms
the basis for most of the software tools available for equational specifications
now (e. g. OBJ, ASSPEGIQUE, AXIS, OBSCURE, RAP).

The classical theory of term rewriting also assumes a finite set R of inclusion
rules, but as an additional restriction for all axioms <tl-» t2> Ε R it is required
that the variable condition holds:

Vars[t l]2Vars[t2] .

This requirement can be omitted in our approach, since it aims mainly at the
notion of confluence, a condition which is always violated by non-trivial
nondeterministic specifications (if considered as a system of rewrite rules). See
below for a formal definition of confluence.

The term rewriting relation — > R (for a given axiom set R) is a binary relation
between terms of the same sort:

t l ->R t2 *>def
3 u Ε Occ[t l] , σ Ε SUBST(Z, X) , <1 -* r> Ε R:

t l / u = σΐ Λ t2 = t l [u <- or]

32 NONDETERMINISTIC ALGEBRAIC SPECIFICATIONS

The symbol - * R * means the reflexive-transitive closure of - * R .

This notion exactly describes the "oriented" generalization of the relation = £

known from equational logic.

The theory of term rewriting becomes useful for equational logic by means of
the property of confluence:

A term rewriting system R is called confluent i f f
V t l , t2, t3: (t l - * R * t2 Λ t l - ^ R * t3)

=> 3 t4: (t 2 - ^ R * t4 Λ t3 - > R * t4) .
In words, the result of every rewriting sequence has to be determined
independently of the actual choice of the rewriting steps.

The theorem below connects equational logic with term rewriting:

Confluence Theorem:
I f R is confluent, then:

t l = R * t2 o (3 t3: t l - ^ R * t3 Λ t2 - * R * t3)

It is obvious that in the case of nondeterminism the confluence condition wi l l
not hold: Here we are interested explicitly in deriving several different results for
a given term.

Below we wi l l try to circumvent the confluence theorem. We aim at a result
similar to Birkhoffs theorem for general, non-confluent term rewriting. Ideally
we would try to prove:

t l - * R * t2 <*> M o d (R) 1= (t l t2)

The proposition above does not hold in general, but it holds under specific
preconditions which wi l l be explained later. The driving idea of this and the next
chapter wi l l be to isolate particular circumstances under which a usable variant
of this proposition does hold.

First we wi l l give an alternative formulation of - * R * , then the =>-part of the
proposition above (soundness) w i l l be studied, followed by the <=-part
(completeness). This development cycle wi l l be repeated three times until a
sufficient solution is reached.

NONDETERMINISTIC ALGEBRAIC SPECIFICATIONS 33

The term rewriting relation can be represented also by a calculus which
can be used to derive formulas of the shape t l -> t2 from the given set of
inclusion rules. This form of description (which is used consequently for
instance in [Padawitz 88]) is easier to handle within proofs.

Definition 1.13 (Calculus of Term Rewriting)

Let Τ = (Σ, R) be a nondeterministic algebraic specification. Then a
formula t l -> t2 is called deducible in T, written as

Τ l-RC t l t2,
i f f there is a formal derivation for t l -» t2 using the following
deduction rules:

(REFL)
t - * t i f t e w (z , x)

(TRANS) t l t2 , t2 -* t3

t l t3 i f t l , t 2 , t 3 Ε λΥ(Σ,Χ)

(CONG) t] -> t i '

f (t i , t i - i , t i , t i + i , . . . , t n) f (t i , t i - i . t i ' . t i + i , t n)

i f [f: si χ ... χ s n —> s] Ε F,
tj Ε W (I , X) s j where j Ε { 1 , . . . , η} , t i ' Ε W(Z, X) s i

(AXIOM)
σΐ - * or i f <l->r> Ε R , σ Ε SUBST^, Χ)

(i . e . o : X — W (Z , X)) φ

The notation I - R C (rewriting calculus) has been used in order to distinguish the
calculus from similar calculi which wi l l be introduced below. In the following,
sometimes R I - R C is written which is meant as a synonym for Τ I - R C (T =
(Σ ^) a specification). I f it is clear from the context which specification is
meant, the notation is further simplified by omitting Τ or R, respectively. (The
same notational convention wi l l be applied for all other calculi introduced
below.)

34 NONDETERMINISTIC ALGEBRAIC SPECIFICATIONS

1.2.3 Soundness: A Negative Result

When a logical calculus is analysed, the most important (and therefore first)
question is whether it is sound with respect to the underlying semantics.
Soundness means that the calculus allows us only to derive statements which are
semantically valid.

It is this question which already leads into problems for the calculus above. But
the difficulties appearing here are well-known from the semantics of
nondeterministic programming languages. In [Bauer, Wössner 81], for instance,
the following example is mentioned.

Let a function declaration (in a classical algorithmic language) be given
funct double = (nat n)nat: η + η

which computes for a natural number the double of its numerical value.

It is now interesting to consider a call of this function with a nondeterministic
expression as its argument, e. g.

double(zero_or_one)
where zero_or_one means the nondeterministic choice between the values 0 and
1. Basically, two points of view can be thought of, which are known as "call-
time-choice" and "run-time-choice" ([Hennessy 80], [Benson79]).

"Call-time-choice" assumes that the function gets only deterministic objects, and
not nondeterministic expressions, as its arguments. The call above therefore is
equivalent to one of the both calls

double(O) or double(l) ,
thus the possible results are described by the set { 0,2 } .

"Run-time-choice", however, treats the call as equivalent to
zero_or_one + zero_or_one,

which is similar to the "copy rule" of ALGOL 60: The nondeterministic
expression is copied into the function body. Now the values out of { 0, 1 , 2 }
are admissible results. The value 1 is legal, since both "copies" of zero_or_one
may choose the result value independently one of the other.

The semantics introduced in the sections 1.1 and 1.2 correspond to call-time-
choice. Unfortunately, the term rewriting calculus corresponds to run-time-
choice (copy rule), as it can be seen from the following example:

NONDETERMINISTIC ALGEBRAIC SPECIFICATIONS 35

Example 1.14

spec DOUBLE
sort Nat
func zero: -* Nat, succ: Nat -» Nat,

add: Nat χ Nat Nat, double: Nat -* Nat,
zero_or_one: -> Nat

axioms
add(zero,x) - » x ,
add(succ(x),y) succ(add(x,y)),
double(x) -* add(x,x),
zero_or_one -» zero,
zero_or_one -> succ(zero)

end

A model of DOUBLE is e. g. the algebra Ν below:

N a t N = N ,

zeroN = { 0 } , succN(n) = { n+1 } ,
addN(n,m) = { n+m } , doubleN(n) = { 2n } ,
zero_or_oneN = { 0 , 1 }

A derivation within the term rewriting calculus is:

(1) I-RC zero_or_one -»zero (AXIOM)
(2) I-RC zero_or_one -> succ(zero) (AXIOM)
(?) I-RC add(zero_or_one,zero_or_one) -> add(zero,zero_or_pne)

(CONG),(l)
(4) l-RC add(zero,zero_or_pne) add(zero,succ(zero))

(CONG), (2)
(5) I-RC add(zero_or_one,zero_or_pne) -> add(zero,succ(zero))

(TRANS), (3), (4)
(6) I-RC add(zero,succ(zero)) -> succ(zero) (AXIOM)
0) I-RC add(zero_or_one,zero_or_one) -» succ(zero)

(TRANS), (5), (6)
(8) I-RC double(zero_or_one) add(zero_or_one,zero_or_one)

(AXIOM)
(9) I - R C double(zero_or_one) -» succ(zero) (TRANS), (7), (8)

36 NONDETERMINISTIC ALGEBRAIC SPECIFICATIONS

But in Ν the following inclusion does not hold:
double(zero_or_one) succ(zero)

(since I^[double(zero_or_one)] = { 0 , 2 }) . φ

The example shows that (AXIOM) does not treat the inclusion rule
double(x) -*> add(x^c)

in a sound way, because both "copies" of the term which is substituted for χ
(zero_or_one in the example), can be evaluated independently.

It must be decided now whether the semantic concepts from above (in particular
the interpretation of a term) should be revised, or whether the calculus should be
modified. There are good reasons why the given semantical framework has been
chosen. The basic assumption that a variable always stands for a single value
comes from the intention to model a somehow "realistic" scenario for
nondeterministic computation, where only single data items are transmitted
between computational units. Therefore the deductions have to to be adapted to
the semantic framework.

It is an interesting observation that the soundness problem does not appear in
[Meseguer 92]. There the semantics are adjusted in such a way that the rewriting
calculus RC is sound and complete. This excludes models like Ν above, but it
contradicts to our basic paradigm that a function gets only single values as its
input, and therefore variables always stand for single values. To put it simply,
[Meseguer 92] uses a "run-time-choice" strategy, in difference to the "call-time-
choice" which is preferred here.

There are various possibilities to refine the calculus in such a way that it
becomes sound with respect to the multi-algebra semantics studied here.
Basically, two approaches are most promising:

(1) The rewriting calculus can be changed in such a way that it truly reflects a
"call-time-choice" strategy. For this purpose there must be some
syntactical possibility to recognize whether a term is determinate, that is
whether it is always interpreted by a singleton set.

(2) The application of an axiom can be adapted in such a way that it keeps the
information about which term is a physical copy of another one. This is a
step towards rewriting on graph-like structures.

NONDETERMINISTIC ALGEBRAIC SPECIFICATIONS 37

Both approaches will be worked out in more detail in later chapters (approach (1)
in chapter 2, approach (2) in chapter 5, section 5.2). Another example is very
helpful for deciding which way to go for the adaptation of the calculus now.

Example 1.15

The algebra NN below is another model of the specification DOUBLE
defined in the preceding example 1.14:

zero_or_oneN N = { 0 , 1 , 2 }

The model NN shows that even the most simple application of the
axiom for double is unsound. In NN we have:

(N N 1= double(zero) -> zero),
since

This example shows that there is a rather general problem in treating inclusion
rules with multiple variable occurrences on the right hand side. In fact it even
shows that the expressivity of the specification language is still too low, since
intuitively we would expect the inclusion double(zero) -> zero to hold in all
models of DOUBLE. But this expectation implicitly uses the assumption that
zero is a deterministic function, which is not the case in this counterexample.

Considering approach (2), it does not suffice to extend the term rewriting
calculus by a notion of rewriting on terms with sharing of subterms. We use the
notation

let χ = zero in add(x,x)
to denote a term which contains two shared occurrences of the subterm zero. It is
not difficult to extend the interpretation to such terms with sharing in a way
which ensures that both copies of the shared term (zero) always are evaluated to
the same elementary value. So the interpretation of the let-term from above in

N a t N N = N
z e r o N N = { 0 , l } ,
add^Cn^m) = { n+m } ,

succ N N (n) = { n+1 } ,
d o u b l e 1 ^) = { 2n } ,

iNNfdoubleizero)] = { 0 , 2 } , I ^ z e r o] = { 0 , 1 } .

So any calculus which allows us to deduce
double(zero) zero

is not sound.

38 NONDETERMINISTIC ALGEBRAIC SPECIFICATIONS

NN is intended to be { 0 , 2 } . The calculus can be extended in such a way that it
allows us to derive the inclusions

I- double(zero) let χ = zero in add(x,x)
I- add(zero,zero) -» zero.

However, the inclusion let χ = zero in add(x,x) -> add(zero,zero) again does not
hold in NN (the first term has the interpretation { 0 , 2 } , the second one means
{0 , 1, 2}.) So also a sound graph-rewriting calculus should not admit the
application of the add-rule to the term containing the shared subterm zero.
Unfortunately, standard graph rewriting, as it is defined for instance in
[Barendregt et al. 87], would perfectly admit the application of the add-rule. See
chapter 5 (section 5.2) for a re-examination of this idea in a more detailed
framework.

However, approach (2) can be dealt with nicely within the new framework of
[Walicki 92/93]. This work leads to a richer syntax, where deductions are made
in a context consisting of variable bindings. We use here the notation "xEt" to
express that χ is bound to some value out of the interpretation of term t; and
implication to prefix an inclusion with such a binding context. From this
notation, it should be obvious how the semantics can be extended. Within such
a calculus, we can derive the formula

χ Ε zero => double(x) -> add(x,x),
which is the most refined statement about double(zero) which can be deduced
soundly. However, this approach uses the deduction of conditional statements
which is a significant step beyond standard (and even conditional) term-rewriting.

The next chapter addresses an extension of the specification language following
the approach number (1). On a first reading, it is recommended to skip directly
to this chapter 2 from here. The section 1.2.4, which follows immediately
below, just studies an interesting special case for which classical term rewriting
is sound and complete. Unfortunately, this special case excludes almost all
realistic software specifications, so it is interesting only from the theoretical
point of view.

1.2.4 Right-Linearity: A Special Case

It is quite obvious that all the difficulties discussed in the section above came
from axioms which contained multiple occurrences of a variable within their
right hand sides. The idea of this section is to exclude such multiple occurrences

N O N D E T E R M I N I S T I C A L G E B R A I C S P E C I F I C A T I O N S 39

syntactically. I t turns out that for this special case a general soundness and
completeness result holds.

A term which contains exactly one occurrence for every one of its variables is
called linear. The next definition carries this definition over to systems of
inclusion rules.

Defini t ion 1.16 (Linear i ty)

A term t Ε W(Z, X) is called linear iff there are no multiple occurrences
of a variable within it, i . e.:

V xEX: V u l , u2E0cc(t): (t/ul = χ) Λ (t/u2 = x) => (ul = u2).

An inclusion rule <1 -> r> is called right-linear i ff the term r is linear.
A set R of inclusion rules is called right-linear iff all axioms in in R
are right-linear. ()

The following theorem shows that a restriction to right-linearity entails
soundness of classical term rewriting under nondeterministic interpretations.

Theorem 1.17 (Soundness)

Let Τ = (Σ , R) be a nondeterministic algebraic specification where R is
right-linear. Then for t l , t2 Ε W (I , X) holds:

Τ I-RC t l t2 => Mod(T) 1= t l -* t2 .

Proof:
The proof of soundness is done by induction on the (length of the)
derivation. When in this proof the deduction rule (AXIOM) is
considered, the condition of right-linearity is necessary for the
application of the following lemma:
Lemma 1.17.1
Let A Ε Mod(T), β Ε ENV(X, Α), σ Ε SUBST(I, X) .
Then for t Ε W (I , X) holds: (*)

Iß [at] • {e Ε I ^ [t] I γ Ε ENV(X, Α) Λ Vx Ε Vars[t]: γχ Ε Iß [σχ]}

I f t is linear, within the proposition (*) set equality holds.

The proof of lemma 1.17.1 is given in appendix A.

40 NONDETERMINISTIC ALGEBRAIC SPECIFICATIONS

In order to prove also the completeness of term rewriting, a term model is
constructed now, similar to classical equational logic. However, the construction
follows the idea of an ideal completion (confer [Möller 82]) instead of forming a
quotient of the set of terms.

Definition 1.18 (Term Algebra W Z / R)

For a given signature Σ and a set of axioms R, a Σ-Algebra λΥΣ/R is
constructed by:

s W 2 / R = WCS, S) s for s G S
f W I / R (t l f t n) = { tGWff, X) I R I-RC f (t i , . · . , t n) -> t }

for f E F .

s WZ/R^0 holds, i f for all sorts there is at least one variable. According
to (REFL) then f W 2 / R (t i , . . . , t„) * 0 . 0

Theorem 1.19

Let Τ = (Σ, R) be a specification where 1 Ε X for all <1 -> r> Ε R.
Then WΣ/R is a model of T.

Proof: See appendix A. 0

Example 1.20

Within the term model WΣ/DOUBLE for example 1.14 we have:

I W ^ D O U B L E r d o u b l e (z e r o _ o r _ o n e)] =

{ double(zero_or_one), add(zero_or_one,zero_or_one),
add(zero_or_one, zero), add(zero,zero_or_one),
add(zero,succ(zero)), add(succ(zero),zero),
add(succ(zero),succ(zero)), succ(add(zero,zero)),
succ(add(zero ̂ ucc(zero))), succ(succ(add(zero ,zero))),
succ(succ(zero)), succ(zero), zero } ,

I w ^ O U B L E [s u c c (z e r o)] = { succ(zero) } ,
i.e.: WΣ/DOUBLE1= double(zero_or_one) -* succ(zero) 0

NONDETERMINISTIC ALGEBRAIC SPECIFICATIONS 41

A small example may illustrate why the precondition
l g X für <1 r> Ε R

is necessary to ensure that the term model in fact is a model of the specification.

Example 1.21

spec LD
sort s
func a: -> s, b: -» s
axioms

χ -> a
end

The algebra WZ/LD is not a model of LD, as can easily be seen. Let β
be an environment assigning a term to the variable x. Then according
to definition 1.5:

Iß Μ = { ßx }·

I f the environment β is specialized to assign the term b to the variable
x, this means:

Iß W = { ß } S { a } = I ß [a],

so the single inclusion rule of LD does not hold in WZ/LD. ()

Example 1.21 also illustrates that the condition " l ^ X " (which is sometimes
called lefi-definiteness) is a necessary prerequisite for completeness. Without it
completeness is lost.

Example 1.22

Consider again the specification LD from example 1.21.

The axiom χ -*· a forces the interpretation of a and b to be equal
within all models of LD :
Let A be a model of LD , eD Ε I A [b] .
Using the environment ß(x) = eD, the axiom has to hold, thus:

{ e b } 3 I A [a] .
This means (because of I A [a]*0):

e b £ I A [a] .

42 N O N D E T E R M I N I S T I C A L G E B R A I C S P E C I F I C A T I O N S

Therefore holds:
I A [a] 2 I A [b] .

Thus: Mod(LD) 1= a -> b, although this inclusion is not deducible. ()

With the appropriate preconditions, however, there is a completeness result.
Please remember that this completeness does only make sense for right-linear
specifications, because this is the case for which the soundness of the term
rewriting calculus RC has been proven.

Theorem 1.23 (Completeness)

Let Τ = (Σ, R) be a nondeterministic algebraic specification where \0i
holds for all <1 -> r> Ε R. Then for t l , t2 Ε W (I , X) holds:

Mod(T) 1= t l t2 => Τ I - R C t l t2.

Proof:
Completeness follows from the existence of the term model WΣ/R.
(For the lemma 1.19.1, see appendix A.)

Mod(T) 1= t l t2 (Thm. 1.16)
WΣ/R1= t l -* t2 => (Defn. 1.8)

I W S / R [t l] 2 j ^ / R [t 2] ^ (Lemma 1.19.1)

{ 11 R I - R C t l -> t } • { 11 R l - R C t2 -> t } =>
(since I-12 -* t2)

R I-RC t l — t2 0

Unfortunately, the restriction to right-linear specifications is too strong to be
acceptable for a practical specification technique. For instance, the standard
description for the multiplication of natural numbers already contains non-right-
linear inclusion rules. Example 1.14 above also shows that even quite "natural"
specifications violate the right-linearity condition. Chapter 2 therefore discusses
ways for the construction of a more general calculus which still remains very
similar to term rewriting.

Chapter 2

Specifications
Deterministic

with a
Basis

The conclusions from chapter 1 are:
(1) Classical term rewriting is unsound for nondeterministic specifications.
(2) I f the axioms are restricted to right-linear inclusion rules, classical term

rewriting is sound and complete, however this restriction is not satisfactory
for practical applications.

Moreover, chapter 1 gave indications that the specification language of inclusion
rules itself is too simple to designate an appropriate model class. In particular, it
does not provide any way to express that some term is deterministic, this is that
it must always be interpreted by a single value.

In this chapter, the language is extended by a particular kind of formulae which
state explicitly for a term that it must have a one-element interpretation. This
restricted language admits a sound calculus, which is very close to classical term
rewriting. Under reasonable preconditions, also completeness can be shown.

The essential idea for the refinement is to designate a "basis" part of a
specification which is called deterministic, because it must always be interpreted
determinately.

44 SPECIFICATIONS WITH A DETERMINISTIC BASIS

2.1 Deterministic Basis
As good starting point for the development of a sound calculus, example 2.1
recalls examples 1.14 und 1.15, which showed that term rewriting is not sound
in general.

Example 2.1

The algebra NN below was defined in example 1.15:

zero_or_oneN N = { 0 , 1 , 2 }

The model NN fulfils the axioms from example 1.14:
add(zero,x) x>
add(succ(x),y) -> succ(add(x,y)),
double(x) -> add(x,x),
zero_or_one -> zero,
zero_or_one -> succ(zero),

but not the inclusions listed below (which are nevertheless deducible by
term rewriting):

double(zero_or_one) -* add(zero_or_one,zero_or_one),
double(zero) -* add(zero ,zero). φ

Obviously, the "mistake" comes from the application of the non-right-linear
rule. However, with an intuitive idea of the specification in mind, one would
expect that at least the inclusion
(*) double(zero) -» add(zero,zero)
does hold in all models. This intutitive interpretation always assumes the well-
known symbol "zero" to be interpreted as the singleton set { 0 } . Here the model
semantics contradicts intuition.

The other inclusion
(**) double(zero_or_one) add(zero_or_one,zero_or_one)
is not an intuitive consequence of the axioms (since "zero_or_one" is obviously
a nondeterministic function symbol). Here the deduction semantics given by
term rewriting is counterintuitive.

NatNN = N
z e r o N N = { 0 , l } ,
addNN(n,m) = { n+m } ,

succ N N (n) = { n+1 } ,
double N N(n) = { 2 n } ,

SPECIFICATIONS WITH A DETERMINISTIC BASIS 45

To capture this idea, the fact must be formalized that zero is a deterministic
operation for all models. This leads to an exclusion of the "non-standard" model
NN (where zero is interpreted by a choice between two values). The calculus
then must be adapted in such a way that it admits the deduction of (*), but not
of (**).

2.1.1 Soundness and Deterministic Basis

The specification language has to be enriched by a means to state whether the
result of a function application is determinate or not. So the specification gains
a deterministic basis part, enriched by possibly nondeterministic extensions.
This concept coincides with the basic design decision for our theory which
studies nondeterministic functions working on a set of (deterministic) objects.
The deterministic basis corresponds to a specification of our basic objects.
Therefore, also the term rewriting calculus has to be adapted to respect the
decision that variables range only over single values. So only deterministic
terms can be substituted for a variable.

A first approach in the direction of a deterministic base could be to designate a
subset of the operation symbols as the "basic operations". This idea is sufficient
for many applications (and wi l l be studied below in more detail), however it is a
special case of a simpler approach. The idea is generally to fix a subset D of the
terms which are "deterministic terms". I f all terms in D are interpreted as
singleton sets, we have a compatibility property with the inclusion rules:

I f tED and Τ 1= t -* t ' , then t 'ED .

The terms contained in D can be marked by writing down an axiom
DET(t) (read: "t is deterministic").

Then the compatibility property can be made into a deduction rule for such
formulas. The set D then is described indirectly by

D = { t E W (I , Χ) I Τ I- DET(t)}.

There is a close analogy between this idea and the extension of algebraic
specifications to partial functions as it is explained in ([Broy,Wirsing82])
using a definedness predicate. Interested readers can find more detailed material
on this topic in chapter 6.

46 SPECIFICATIONS WITH A DETERMINISTIC BASIS

2.1.2 Determinacy Predicate

The following definition just formalizes the concepts which were explained
above informally.

Definition 2.2 (DET-Axiom, Validity)

Α(Σ,Χ-) DET-axiom is a term, which is denoted as a formula using
the so-called determinacy predicate or DET-predicate :

DET(t)
where tEW(Z,X).

A DET-axiom <DET(t)> is valid in a Σ-Algebra A (A 1= DET(t)) i f f
for all valuations ßEENV(X, A) the interpretation is determinate:

I Iß W 1=1.

The notions "algebraic specification" and "model" from now on are
meant to admit DET-axioms within the axiom set, too. 0

Example 2.3

Let the specification DOUBLE from example 1.14 be extended to a new
specification DOUBLE' which contains the following additional
axioms:

DET(zero), DET(succ(x))

The algebra Ν from example 1.14 is a model of DOUBLE', too.

NN from example 1.15 is not a model of DOUBLE', since

I I N N [z e r o] I = I { 0 , 1 } I = 2.
Moreover, in Ν the following formulae hold (which are not axioms):

Ν1= DET(add(x,y)) Ν1= DET(double(x)) φ
The term rewriting calculus now is extended by deduction rules for DET-axioms.
The deduction rule (AXIOM) is modified, in order to ensure soundness: Variables
now can be instantiated only with such terms which are proven to be
deterministic.

S P E C I F I C A T I O N S W I T H A D E T E R M I N I S T I C B A S I S 47

The calculus defined below is the most frequently used calculus in this text.
Therefore deductions within this calculus are written without a special index, in
difference to deductions within all other calculi (like I-RC).

Definition 2.4 (Term Rewriting with D E T)

Let Τ = (Σ, R) be a nondeterministic algebraic specification (with DET-
axioms). A formula <tl -> t2> or <DET(t)>, respectively, is deducible
in T, written symbolically:

Τ !- t l - * t2 or Τ I- DET(t), respectively,
iff there is a deduction for the formula using the following deduction
rules:

(REFL) i f t e W (Z , X)

(TRANS) t l t2, t2 - * t3
i f t l , t 2 , t 3 6 W (Z , X)

t l -> t3

(CONG)

f (t i , . . . , t i _ i , t i , t i + i , t n) f (t i , . . . , t j . i , t j \ t i + i , . . . , t n)

i f [f: si χ ... χ s n -> s] Ε F,
tjGWCS,X) s j where J E { 1 , n } , t i ' E W f f , X) s i

(AXIOM-1) DET(axi) , . . . ,DET(ax n)

σΐ -» or

i f <1 r> Ε R, σ Ε S U B S ^ , X) ,
{ x i , . . . , x n } = Vars(l)UVars(r)

(AXIOM-2) DET(axi) , . . . , DET(ax n)

DET(crt)

i f <DET(t)> Ε R, σ Ε S U B S ^ , X) ,
{ x i , . . . , x n } = V a r s (t)

48 SPEOFICATIONS WITH A DETERMINISTIC BASIS

(DET-X) i f x G X
DET(x)

(DET-D) D E T (t l) , t l t2
i f t l , t 2 G W (I , X)

DET(t2)

(DET-R) D E T (t l) , t l — t2
if t l , t2 e W(Z, X)

t2 — t l 0

Example 2.5

Examples for deductions in the specification DOUBLE' of example 2.3:

DOUBLE' I- double(zero) zero :

(1) I- DET(zero) (AXIOM-2)
(2) I- double(zero) -> add(zero^ero) (AXIOM-1), (1)
(3) I- add(zero,zero) zero (AXIOM-1), (1)
(4) I- double(zero) zero (TRANS), (2), (3)

DOUBLE' I- double(zero_or_one) -> succ(succ(zero)):

(1) l-DET(zero) (AXIOM-2)
(2) I-DET(succ(zero)) (AXIOM-2), (1)
(3) I- add(succ(zero),succ(zero)) -> succ(add(zero,succ(zero)))

(AXIOM-l) ,(l) , (2)
(4) I- add(zero ,succ(zero)) -» succ(zero) (AXIOM-1), (2)
(5) I- succ(add(zero,succ(zero))) -> succ(succ(zero))

(CONG), (4)
(6) I- add(succ(zero),succ(zero)) succ(succ(zero)) (TRANS), (3), (5)
(7) I- double(succ(zero)) add(succ(zero),succ(zero))

(AXIOM-l),(2)
(8) I- double(succ(zero)) succ(succ(zero)) (TRANS), (7), (6)
(9) I- zero_or_one succ(zero) (AXIOM-1)
(10) I- double(zero_or_one) -> double(succ(zero)) (CONG), (9)
(11) I- double(zero_or_one) succ(succ(zero)) (TRANS), (10), (8)

SPECIFICATIONS WITH A DETERMINISTIC BASIS 49

The "wrong" deduction from example 1.14 is not allowed here:
^(DOUBLE' I- double(zero_or_one) succ(zero)) φ

Theorem 2.6 (Soundness)

Let Τ = (Σ, R) be a nondeterministic algebraic specification on a
deterministic basis. Then for t, t l , t2 e W (I , X):

Τ I - t l t2 => Mod(T) 1= t l t2
Τ I- DET(t) => Mod(T) 1= DET(t)

Proof: By induction on the derivation, see appendix Α. φ

The calculus above is slightly more restricted than it was necessary for
soundness: The premises of deduction rule (AXIOM-1) are needed only for
variables which have multiple occurrences in the right hand side of the axiom.
This is a simple consequence of theorem 1.19. Therefore, the following
deduction rule is sound, too:

(AXIOM-1-RLIN) DET(axi) , . . . ,DET(ax n)

σΐ -> or

i f <1 -* r> Ε R, σ e SUBSTff, X) ,
{ χ] , . . . ,Xn) = { xEVars[r] I 3 u l , u2EOcc[r]: ul*u2 Λ r/ul=x Λ r/u2=x }

The results given below can be obtained also using the calculus of definition
2.4, which is simpler in its structure. This is one reason why the calculus of
definition 2.4 is preferred within this manuscript. The other reason is that there
is no significant gain in completeness i f the more complex rule (AXIOM-1-
RLIN) is used. The next section studies completeness issues in more detail.

2.1.3 Completeness: A Negative Result

It is the obvious next question whether the calulus introduced above in
Definition 2.4 is complete in some sense. Unfortunately, there exist
counterexamples which demonstrate the incompleteness of the calculus.

50 SPECIFICATIONS WITH A DETERMINISTIC BASIS

For a restricted specification language (right-linear rules), in chapter 1 a
completeness proof was given (theorem 1.23). However, the proof technique
used there cannot be applied in the same way to specifications on a deterministic
basis. I f the deduction rule (AXIOM-1) is used to prove the validity of the
axioms within a term model, then the carrier set of the term model contains
provably deterministic terms. On the other hand, i f we want to derive from
Mod(T) 1= t l -> t2 a proof of the formula t l - * t 2 within the calculus, then the
interpretation of the term t l (within the term model) must contain the term t2
itself. This means, this idea leads at most to a proof for the following property:
(*) V t l , t 2 G W (I , X) :

Mod(T) 1= t l t2 Λ Τ I- DET(t2) => Τ I- t l - * t2.
This property (*) is called weak completeness below.

Weak completeness still is an interesting result i f looked at from the
programmer's viewpoint. It states that for every pair of terms, denoting a
nondeterministic expression and a value, the calculus provides a satisfactory
method to check whether the value is a possible outcome of the nondeterministic
expression within all models. Unfortunately, the following counterexample
shows that even weak completeness does not hold in general.

Example 2.7

Consider the following nondeterministic specification INC:

spec INC
sort s
func a: -> s, b: -» s,

f: s -> s,
h: s χ s -» s,

g: s,
k: s -» s

axioms
DET(a),
f(g) -> a,
g - b ,

DET(b),
f (a) ^ b ,
h(x,a) -» a,

f (b) - b ,
h(x,b) b,

k (x) -h (x , f (x))
end

We show now that
INC 1= k(g) - a,

i.e. that this inclusion holds in every model of the specification INC.

SPECIFICATIONS WITH A DETERMINISTIC BASIS 51

Let A be a model of INC. Then the interpretations of the terms a and b
must be singleton sets; therefore we use the convention I A [a] = { a } ,
I A [b] = { b } .
The axiom

f (g) - a
means that

I A [f (g)] = { eGfA(e') I e'G g A } D { a } .
Therefore there is an element e()Eg A such that aEfA(eo). Using this
element eo, the
following chain of inclusions holds:

I A [k (g)]
• k^ieo) (since eoEgA, and because of Defn. 1.5)
• hA(eo,fA(eo)) (axiom <k(x) -> h(x,f(x))>)
• hA(eo,a) (because of aEfA(eo))
• { a } (axiom <h(x,a) a>).

Using deductions within the calculus of Definition 2.4, this inclusion
cannot be proven. The only way to reduce a term starting with a "k" is
by applying the axiom <k(x) -* h(x,f(x))>. This axiom can be applied
only, i f a provably deterministic term is substituted for the variable χ
(for soundness reasons). The only provably deterministic terms are a
and b, therefore we can deduce:

INC I- k(a) h(a,f(a)), INC I- k(b) -* h(b,f(b)).
Only the second one of these inclusions can be connected with the term
k(g) by the axiom <g -> b>. Using (TRANS), we have:

INC l-k(g)-*h(b,f(b)).
Unfortunately, the only way to reduce the right hand side of this
inclusion further is by deducing:

INC I- k(g) -* b (axiom <h(x,b) b>).
There is no way to reach the term a by such a deduction:

^ (I N C I - k (g) - a) . 0

The example 2.7 does not only show that the calculus is incomplete; it even
shows that weak completeness does not hold. This follows simply from the fact
that the inclusion used to demonstrate the incompleteness had a deterministic
term on its right hand side. This example works as a counterexample also for
another popular way of weakening the notion of completeness: the so-called

52 SPECIFICATIONS WITH A DETERMINISTIC BASIS

ground completeness, where attention is restricted to inclusions between ground
terms. (The terms k(g) and a used in the example are ground.)

Another interesting observation is that a relaxation of the calculus as indicated
above, using the rule (AXIOM-1-RLIN), does not avoid the completeness
problem. In this modified calculus it is also forbidden to instantiate the variable
χ in <k(x) -» h(x,f(x))> to the term g.

At this point, again a decision must be made where to attack the deficiencies
which were exposed by the example. There are two options: to change the
calculus again or to restrict the syntactic form of the axioms (but not as severely
as to right-linearity).

A closer inspection of the example above gives some hints how to decide. The
problem in the example comes from the fact that the semantic argumentation
mainly relies on the axiom

f(g) -> a,
which cannot be used in the deduction (since the term f(g) cannot be generated).
Generally, this axiom has a somewhat spurious meaning. The following
argumentation (which sloppily mixes syntax and semantics) tries to isolate the
problem: The axiom says something about the meaning of f applied to g, but it
does not explain the consequences for both single functions f and g. The only
property of g directly stated in the axioms is

g - b ,
but this value of b for g apparently does not lead to a value of a for f(g) (since
f(b) seems only to have the value b). Even i f g had additionally the value of a,
nothing would change here. So the axioms implicitly contain the assumption
that there is another "third" basic object, let us call it c. This element c is
distinct from a and b, c is a value of g and f applied to c delivers the value of a.
This complex argumentation obviously does not fit into the simple framework
of a rewriting-like calculus.

The framework of [Walicki 92/93] showed recently, how the semantic arguments
can be transferred into a calculus. The main idea there is to introduce a "binding
context" for variables. So the sentence "There is an element e()Eg A such that
aEfA(eo)" from the proof above is formalized as a deduction rule (binding
introduction) which can derive the formula

χ Ε g => f(x) a.

SPECIFICATIONS WITH A DETERMINISTIC BASIS 53

The variable χ in this formula still denotes a single value; the Ε-s ign and the
implication are to be interpreted with their usual mathematical semantics. Based
on this formula, the other axioms can be applied leading to

χ Ε g => k(x) -> a.
A final deduction (binding elimination) now can remove the binding, since the
bound variable occurs only once within the term:

k(g) - a.
In [Walicki 92/93], soundness and completeness of this more complex calculus
is shown. This paper also contains a detailed comparison with our work. For the
purposes of the text at hands, however, we wil l concentrate on rewriting-oriented
and tool-supported calculi like the one from definition 2.4. In order to achieve
completeness for this kind of calculi, we have to exclude the anomalies shown
by example 2.7.

In the next sections we wil l restrict the axioms syntactically in such a way that
the calculus directly can handle it. This does not necessarily mean to exclude
axioms like <f(g) -> a>, where a nondeterministic function is applied to another
one within the left hand side. But the restriction wil l ensure that such an axiom
is consistent with some other deduction which shows how the computation can
be led applying only functions to deterministic terms.

From a methodical point of view, it is important to state that specifications like
INC above are not simply "bad". Such a specification must be seen as a rather
abstract and sketchy formulation which just does not fix all details how the
functions work together. The restrictions defined in the next section describe a
smaller class of specifications which is suitable for a term rewriting style of
deduction. This can be seen as a step from abstract specification towards
programming.

2.2 Additive Specifications
This section shows how the specification language can be adapted more closely
to the needs of a deterministic basis, such that a completeness result for the
calculus from above holds.

54 SPECIFICATIONS WITH A DETERMINISTIC BASIS

It is a good starting point for this section to think about the way how a general
term model for a specification with a deterministic basis can be constructed.
From the idea underlying the notion of a deterministic basis, it is obvious that
the carrier sets of such a term model must be formed by provably deterministic
terms. The natural interpretation for a given nondeterministic term then is the
set of all deterministic terms it can be reduced to. In order to ensure the well-
definedness of such a model, two properties must be fulfilled:
• For every nondeterministic term there must be a deterministic term it can

be reduced to. This ensures that the interpretation of every term is a
nonempty set. This property is called DET-completeness below.

• The effect which was present in the example 2.7 from above must be
avoided. This property is called DET-additivity below.

2.2.1 DET-Completeness and DET-Additivity

The first and rather simple condition for the construction of a term model is
DET-completeness. Formally, it means:

Vt :3 t ' : T l - t - ^ t ' Λ Τ I- DET(t').

DET-completeness is very similar to the so-called sufficient completeness
known from the classical theory of algebraic specifications [Guttag 75]. This
similarity helps to make precise the ranges of the quantifiers which have been
omitted in the formula above. It is reasonable to restrict the range for t and t' to
ground terms. Otherwise, for every term containing variables (like add(x,y)) there
must be a deterministic term it can be reduced to! This would definitely be a too
strong restriction for practical specifications. At this point, it becomes obvious
that the term model wi l l be constructed also from ground deterministic terms
only, and therefore wi l l only help to ensure ground completeness.

Please note that due to the similarity of the notions, the existing methods for
testing sufficient completeness can be carried over for testing DET-
completeness, too (see also sections 2.4 and 4.4.1).

Definition 2.8 (DET-Completeness)

A specification Τ = (Σ, R) over a deterministic basis is called DET-
complete i ff

VtGW(Z): 3 t ' e W (I) : Τ I-1 -> t ' Λ Τ I- DET(t'). 0

S P E C I F I C A T I O N S W I T H A D E T E R M I N I S T I C B A S I S 55

The second, more complex notion to be defined is DET-additivity. It is

understood best by looking again at the problematic axiom from example 2.7:

f(g) -» a.

This is an inclusion which is deducible (since it is an axiom), but which is not
consistent with the inclusions holding in a term model. Within a term model D
constructed from deterministic terms, the interpretation of f(g) is defined
additively:

I D [f (g)] = { t e f D (t ') l t ' Q D [g] } .

Using the axioms of specification I N C , and the convention that a term is
interpreted by the deterministic terms it can be reduced to, the interpretation of g
must be:

I D [g] = { b } .
Again, using the axioms of I N C , it is not possible to reduce the term f(b) to a.
So the deterministic term a wil l not be contained within f^(b), and also not in

i D [f (g)] .

This means that the axiom <f(g) a> states a non-additive property, which
cannot be derived by first looking at the interpretation of the arguments and then
at the operation applied to them. The property which is necessary for an additive
axiom system is, for this example:

3 t: I- DET(t) Λ I - g -* t Λ I- f(t) a.
Obviously, I N C does not fulfil this property. A generalization to terms with
arbitrary many arguments gives the formal definition of DET-additivity.

Definition 2.9 (DET-Additivity)

A specification Τ = (Σ JR) over a deterministic basis is called DET-
additive iff

V[f: si χ ... χ s n -> s] Ε F:
v t i e w (i) s l , . . . , t n e w (Z) S n , t e w © s :

T l - f (t i , . . . , t n) - t Λ TI-DET(t)
3 t i ' E W f f) s l , . . . , t n ' E W £) S n :

T l - f (t i \ . . . , t n ') - t Λ

Τ I- ti - * t i ' Λ ... Λ Τ I- t n - » t n ' Λ

Τ I- DET(ti') Λ ... Λ Τ I- DET(tn') 0

56 SPECIFICATIONS WITH A DETERMINISTIC BASIS

DET-additivity means that the term rewriting relation is an additive extension of
rewriting on deterministic terms. In other words, the specification must be
equivalent to a set R ' of inclusion axioms

f (t i ' , . . . , t n ') - > t '
where t i t n ' , t' are deterministic terms.

Example 2.10
The specification INC from example 2.7 is DET-complete, but not
DET-additive. It can be made DET-additive by adding the axiom

f(b) - a.
There are many other ways to achieve DET-completeness, among them
an extension of the signature by a new constant c: -> s, with the new
axioms:

DET(c), g - c , f (c) ^ a . 0

In a more abstract view, the DET-additivity of a specification means that non­
determinism is specified in a local manner, that is as a number of alternatives for
the behaviour of a single function. The specification INC, however, contains a
kind of "global" nondeterminism which does not belong to either the function f
or g (but to the collaboration of both). This sort of effect is called "non context-
free nondeterminism" in [Kaplan 88]. Similar to our approach, [Kaplan 88]
excludes the unwanted form of nondeterminism by a restriction to so-called
regular specifications. The main advantage of DET-additivity, as it is defined
here, over regularity is that DET-additivity immediately ensures a kind of
completeness for the rewriting calculus. In regular specifications, a particular
kind of confluence is needed again for completeness of term rewriting. For the
DET-additivity of a specification there is a rather simple criterion which can be
used in many practical examples:

Theorem 2.11

I f a specification Τ = (Σ, R) fulfils the conditions A l and A2 below,
then Τ is DET-additive:

(Al) For all axioms <1 -» r>ER, the term 1 does not consist of a
single variable, i.e. 1 = f (t i , . . . , t n) .
Moreover, for all i E { l , . . . , η}: Τ I - DET(ti).

S P E C I F I C A T I O N S W I T H A D E T E R M I N I S T I C B A S I S 57

(A2) For all deterministic terms t (i.e. Τ I- DET(t)), where t does
not consist of a single variable (i.e. t = f (t i , t n)) , the
subterms must be deterministic again, i.e. for all i E { l , n}:
Τ I- DET(ti).

Proof: See appendix Α. φ

The specification DOUBLE' from example 2.3 can be proven to be DET-
additive using theorem 2.11. Chapters 5 and 7 contain larger examples which
show the practical application of the criterion.

2.2.2 Term Models and Completeness

Now the construction of the term model can be given in detail, which was the
main motivation for introducing the notions of DET-completeness and DET-
additivity. The following notion is a preliminary for the model construction:

Definition 2.12 (Induced Equivalence of Terms)

A nondeterministic algebraic specification Τ = (Σ, R) induces a relation
» on W(Z) as follows

t l - t2 <*>def Τ I- t l -> t2 Λ Τ I-12 -> t l

(where t l , t 2 e W (I)) .

The deduction rules of the calculus (Definition 2.4) ensure that « is an
equivalence relation as well as a congruence with respect to the term-
constructing operations, [t] denotes the equivalence class of the term t
with respect to «. φ

The construction of a term model now uses equivalence classes with respect to «
as its carriers.

Definition 2.13 (Term Model ΟΣ/R)

Let Τ = (Σ, R) be a DET-complete specification. The algebra ϋΣ/R is
defined by:

s D 2 / R = {[t] I t e W (Z) Λ Τ I- DET(t) } where sES

58 SPECIFICATIONS WITH A DETERMINISTIC BASIS

f D Z / R . W (I) s l / « χ . . . χ W(Z) S n/« - p + (W (I V «)

f D 2 / R ([t i] , . . . , [t n]) =

{[t] I t e W (I) A T I - DET(t) Λ Τ I - f (t i , . . . , t n) - * t }
where [f: si χ .. . χ s n -» s] Ε F.

The DET-completeness ensures that f ^ ^ ^ ([t i] , . . . , [t n]) * 0 and

g D Z / R ^ (s i n c e £ j s presupposed to be sensible). The well-definedness

of D I / R follows from the fact that » is a congruence. ()

This algebra corresponds well to the intuitive understanding of a nondeterminis­
tic specification. The algebra DI /DOUBLE' according to example 2.3, for
instance, is isomorphic to the model Ν from example 1.14. However, the
algebra D I / I N C according to example 2.7 is not a model of INC. In order to
ensure that the term algebra really belongs to the model class, the property of
DET-additivity is needed.

Theorem 2.14

Given a DET-complete und DET-additive specification Τ = (Σ, R), the
algebra ΌΣ/R according to definition 2.13 is a model of T.

Proof: See appendix Α. φ

The main reason for the construction of the term model was to prove a
completeness result. This result is formulated within the corollary below. The
term model is needed also for another sort of results, which refer to initiality.
For such results, see chapter 3.

The kind of completeness which follows from the term model construction is
restricted in two ways:
• It refers only to inclusions between ground terms, since the term model

uses ground terms for its carrier sets. (This is due to the fact that we did
not want to impose a too strong version of the DET-completeness property
on the specifications.)

• It refers only to inclusions which have a deterministic term as their right
hand side. This was called weak completeness above, and is a consequence
of the fact that the model uses only deterministic terms for its carrier sets.
(This is the price which has to be paid for the soundness of the calculus.)

SPECIFICATIONS WITH A DETERMINISTIC BASIS 59

Corollary 2.15 (Weak Ground Completeness)

Let Τ = (Σ, R) be a DET-complete and DET-additive specification,
AEMod(T). Then for t l , t2GW(I):

Mod(T) 1= t l -* t2 Λ Τ I- DET(t2) => Τ I- t l -» t2

Proof:
Mod(T) 1= t l t2

=> ΏΣ/R 1= t l -> t2 (Theorem 2.14)
=> (V t ' : Τ I- DET(t') Λ Τ I-12 ^ t' => Τ I- t l t ')

(Lemma 2.14.1, see appendix A)
=> Τ I- t l t2 (because of Τ I- DET(t2), using (REFL)) φ

The following counterexample illustrates the fact that only ground weak
completeness has been achieved. It shows that in general ground completeness
does not hold even for DET-complete and DET-additive specifications.

Example 2.16

spec GIC
sort s
func a: -> s, b: s,

g: -> s, f: s -> s, h: s χ s -» s
axioms

DET(a), DET(b),
g -> a, f(x) h(x,x), h(x,x) -* χ

end

For an arbitrary AEMod(IC), semantic arguments show that
A l = f (g) - * g :

e E g A

where ß(x) = e (Definition 1.5) >eEIß[x]

>eEIß[h(x^)]

•eEIß[f(x)]

>eE{kEf A (l)HElp[x]}

(because of h(x,x) ~* x)

(because of f(x) -* h(x,x))

(Definition 1.5)

60 SPECIFICATIONS WITH A DETERMINISTIC BASIS

=>eefA(e)

=^ee{kEfA(l)llGIß[g]}

=>ea6f(g)]

(Ax] = {e»

(because of eEg A)

(Definition 1.5).

But this inclusion is not deducible, since DET(g) is not deducible in
IC. Even i f the calculus is extended by the deduction rule (AXIOM-1-
RLIN), the inclusion f(g) -* g cannot be deduced from the axioms of

The next section aims at a situation where a true (non-weak) ground
completeness result can be shown. This leads to a final refinement of the
concepts, concerning the calculus as well as the model classes.

This section concludes the investigation of completeness results by showing
how the restriction to "weak" completeness can be removed. It is shown that
this can be achieved by similar techniques as they are used for the treatment of
term-generated models in the classical case.

2.3.1 "Junk" in Nondeterministic Models

The notion of "junk" is well known from the theory of equational specifications.
There it is used to denote elelents within the carrier set of a model which are not
an image of the interpretation of some term. Such elements cannot be
constructed by the provided operations, and they cannot be controlled by
deductions using terms over the given signature. However, propositions
containing free variables always have a semantics where the variables also range
over junk elements. It is widely accepted that a practically usable specification
language has to concentrate on models which do not contain junk. In particular,
for junk-free models it is sound to use an induction principle on the structure of
terms, which is one of the most important proof techniques in the field of

GIC. 0

2.3 Junk-Free Models

S P E C I F I C A T I O N S W I T H A D E T E R M I N I S T I C B A S I S 61

program and data structure verification. The semantical investigations in this
manuscript also aim at junk-free models.

I t is an interesting observation that nondeterminism introduces a second source
of junk besides the classical problem concerning the range of free variables. In
nondeterministic specifications, there exists also a dimension which is called the
breadth of a nondeterministic expression. The breadth is the range of possible
outcomes for a nondeterministic computation. Some observations clearly
indicate a similarity between "non-standard elements" in the classical junk
priciple and "non-standard outcomes of a nondeterministic expression". As an
illustration, the example 2.16 is revisited.

Example 2.17

In example 2.16, the following specification has been defined:

spec GIC
sort s
func a: s, b: -> s,

g: -> s, f: s -> s, h: s χ s -» s
axioms

DET(a), DET(b),
g a, f(x) -> h(x,x), h(x,x) -* χ

end

The term model DI/GIC uses the following interpretation:
I D 2 / R [g] = { [a] } , I D 2 / R [a] = { [a] } ,
I D 2 / R [f (g)] = { f D 2 / R (a) } = { [a] } .

Therefore in DI/GIC the following inclusions are valid:
ΌΣΙΚ 1= f(g) g, DZ/R 1= a -* g.

A different model Μ of GIC is given by
s M = { a , b } , a M = { a } , b M = { b } , g M = { a , b } ,
f M (e) = { e } , h M (el ,e2) = { e l } fo re ,e l , e2G {a,b } .

The model Μ uses the following interpretation:
I M [g] = { a , b } , I D 2 / R [a] = { a } ,

I M [f (g)] = { a , b } .

62 SPECIFICATIONS WITH A DETERMINISTIC BASIS

Therefore in Μ the inclusion <f(g) ~> g> is valid (M 1= f(g) -> g),
but <a -> g> is not valid (Μ 1= a -» g)). ()

From this example, some observations can be made:

(a) Within the model DI /R , a number of inclusions (even ground inclusions)
hold, which cannot be deduced by the calculus of Definition 2.4. As an
example, consider the inclusion <f(g) g> which does hold in DZ/GIC,
but which is not deducible.

(b) Within the model DZ/R, a number of inclusions (even ground inclusions)
hold, which do not hold in all models. As an example, consider the
inclusion <a -* g> which does hold in DI /GIC, but not in M .

(c) The phenomena described above appear only for inclusions the right hand
side of which is not provably deterministic. (For other inclusions,
Corollary 2.15 can be applied.)

This situation is quite similar to the situation in classical equational logic where
a ground term model can be constructed also (the so-called initial model). The
analogy is obvious:

(a') Within the initial model, some equations hold, which cannot be deduced by
equational reasoning. These equations are called "inductive consequences".

(b') Within the initial model, some equations hold, which do not hold in all
models. This also refers to the "inductive consequences", which do hold
only for the so-called term-generated (junk-free) models.

(c') The phenomena described above appear only for equations which contain
free variables (non-ground equations).

Within nondeterministic specifications, both difficulties arise. The sort of
difficulty described by (a) to (c) exists even for ground inclusions. This is due to
unexpected elements in the breadth of a nondeterministic expression (like b in
I ^ [g]) - Obviously, the difficulty concerning non-ground inclusions (as in (a') to
(c')) is present within nondeterministic specifications, independently of that.

SPECIFICATIONS WITH A DETERMINISTIC BASIS 63

In the following, the techniques known from the classical theory for the
treatment of junk are carried over to treat the problem of junk in the
nondeterministic breadth of a term (see (a) to (c) from above). For this purpose,
(1) The calculus is extended to a kind of "inductive" calculus which describes

exactly those inclusions which are valid in the term model DI /R;
(2) The model class is restricted to junk-free models in such a way that the

extended calculus is sound and model Μ from the example above is
excluded.

2.3.2 Breadth Induction

Within the theory of equational specifications, there is a calculus for the
deduction of so-called "inductive" consequences which are valid only for junk-free
models. The basic idea of the calculus is to describe exactly the equalities within
the initial model. Due to Gödel's results, such a calculus is either incomplete or
it is different from a true formal system (since the theory of Peano arithmetics
can be described by initial models). A rather well-known technique for such a
calculus is the use of a semi-formal system. This means that deduction rules are
used which have an infinite number of premises. For practical proofs, the
infinite premise is covered by a kind of induction proofs (for instance on the
term structure). Below an extension of the calculus from definition 2.4 is given
which also contains semi-formal rules.

Definition 2.18 (Breadth Induction Calculus)

The calculus given by definition 2.4 is extended by the following semi-
formal rules:

(IND-R) V tSW(Z): I - DET(t) Λ I- t2 -» t => I- t l t

l-IND t l - t2

if t l , t 2 G W(Z)

64 SPECIHCATIONS WITH A DETERMINISTIC BASIS

(IND-D)
V t l , t2EW(I) : I-1 t l Λ I - DET(tl) Λ I-1 -* t2 Λ I - DET(t2)

=> I - t l - * t2

l-INDDET(t)

iftEW(Z)

The calculus is called "inductive", and its derivations are denoted using the
symbol I-IND> since in many cases the premises of the rules can be proven only
using an induction principle. This is the case as soon as the number of
deterministic terms a given term can be reduced to is infinite (so-called
unbounded nondeterminism). Please note that for specifications containing only
bounded nondeterminism, the "inductive" calculus remains a formal system.

The following theorem shows that breadth induction for ground inclusions
exactly deduces the inclusions valid in the term model DZ/R.

Theorem 2.19 (Correspondence with the Term Model)

Let Τ = (Σ, R) be a DET-complete and DET-additive specification.
Then for ground terms t, t l , t2 Ε W (I) :

Τ 1-iND t l -> t2 <=> D I / R 1= t l -> t2
TI-iNDDET(t) ο D I / R 1= DET(t) .

Proof:
ΌΣ/R \= t l - * t 2

^ r D Z / R [t l] 3 i D I / R [t 2] (s i n c e D S / R m o d e i Q f T)

^ V t E W (I) : l-DET(t) Λ I- t2-*t => I- t l — (l e m m a 2.14.1)

ο 1-iND t l -*t2 (rule aND-R))

ΌΣ/R 1= DET(t)
I I D 2 / R [t] I = 1 (since ΌΣ/R model of T)

ο I { [f] I I-t-»t* Λ I- DET(t') } I = 1 (lemma 2.14.1)
ο V t l , t2EW(Z) :

l - t ^ t l Λ l -DET(t l) Λ l - t - * t 2 Λ l-DET(t2) => I - t l -» t2
<=> 1-iND DET(t) (rule (IND-D)) 0

SPECIFICATIONS WITH A DETERMINISTIC BASIS 65

The example below shows a case where induction is used for proving the
premise of a semi-formal rule:

Example 2.20

spec I N A T
sort Nat
func zero: -» Nat, succ: Nat -» Nat,

double: Nat -> Nat, some: Nat
ax ioms

DET(zero), DET(succ(x)),
double(zero) -> zero,
double(succ(x)) -» succ(succ(double(x)))
some -> zero,
some -> succ(some)

end

We want to prove: MGen(T) 1= some -» double(some). For this
purpose, it can be proven (using structural induction) that for an
arbitrary ground term tGW(I) fulfilling I- DET(t):

I- some -» t

t = zero:

(1) I- some -* zero

t = succ(tl):

(1) I- some -* t l
(2) I- succ(some) succ(tl)
(3) I- some -» succ(some)
(4) I- some -> succ(tl)

Therefore:
V tEW(I) : I- double(some)
and, using (IND-R):

1-IND some double(some).

(AXIOM-1)

(Induction hypothesis)
(CONG)
(AXIOM-1)
(TRANS), (3), (2)

t Λ l-DET(t) => l-some-*t

The calculus achieved so far is sound only for the standard term model, but it is
not sound for arbitrary models, as can be seen from example 2.17. Breadth

66 SPECIFICATIONS WITH A DETERMINISTIC BASIS

induction allows us to deduce the formula GIC 1-IND DET(g), which does not
hold in the model M . The next section excludes Μ as a model containing
(breadth-)junk.

2.3.4 DET-Generated Models

In this section, a characterization for a class of models is given which obey a no-
junk principle for the breadth of a nondeterministic term. This characterization
mainly says that every possible deterministic outcome of a nondeterministic
term must be due to a deduction within the specification. This leads to a
formulation which may look a bit strange from the logical point of view,
because it somehow mixes semantic and syntactic arguments. In section 3, a
purely semantical characterization of junk-free models for nondeterministic
specifications wil l be given.

Definition 2.21 (Term-Generation, DET-Generation)

A Σ-multi-algebra A is called term-generated, iff for all s Ε S:
V e Ε s A : 3 t Ε W (I) S : I A [t] = { e }

Gen(Z) denotes the class of the term-generated Σ-multi-algebras. The
class of all term-generated models of a specification Τ is called Gen(T).

Let Τ = (Σ, R) be a nondeterministic specification. A model A Ε
Mod(T) is called DET-generated, iff for all s Ε S:

V t G W (I) s : V e E I A [t] :
3 t ' G W (I) s : T I - t - M ' Λ TI -DET(t ') Λ I A [t '] = { e } .

The class of all DET-generated models of Τ is called DMod(T). 0

Example 2.22

By definition, the model ΌΣ/R for any DET-complete and DET-additive
specification is DET-generated.

The model Μ from example 2.17 is not DET-generated, since b e i M [g] ,
but this cannot be motivated by a deduction: -> (GIC I- g -» b) . φ

S P E C I F I C A T I O N S W I T H A D E T E R M I N I S T I C B A S I S 67

The following theorem shows that the DET-generated models are exactly those
models for which the extended calculus is sound and correct.

Theorem 2.23

Let Τ = (Σ, R) be a DET-complete and DET-additive specification.
Then for t , t l , t 2 G W (Z) :

ΌΣ/R \= t l — t2 <=> DMod(T) 1= t l t2,
ΌΣ/R 1= DET(t) <*> DMod(T) 1= DET(t).

Proof:
The "<="-direction follows from ΌΣ/R Ε DModT).
The first line of the "=>"-direction can be seen as follows. Let A Ε
DMod(T).

e Ε I A [t 2]
=> 3 t ': I-12 t' Λ I- DET(t') Λ I A [t '] = { e } (A Ε DMod(T))
= > t ' G I D I / R [t 2] (Lemma 2.14.1)
=> t ' E iDS/Rft γ] (D 2 / R E Mod(T))
= > l - t l — t ' Λ l-DET(t') Λ I A [t '] = { e } (Lemma 2.14.1)
= > e E I A [t l] (Theorem 2.6)
Therefore, A 1= t l -> t2. Analoguous arguments apply for DET(t). ()

As already indicated, ground soundness and completeness now follows as a
simple combination of the two last theorems.

Corollary 2.24 (Ground Soundness and Completeness)

Let Τ = (Σ, R) be a DET-complete and DET-additive specification.

Then for ground terms t, t l , t2 Ε W(2, X):
Τ 1-iND t l - M 2 ο DMod(T) 1= t l t2,
Τ 1-iND DET(t) <̂> DMod(T) != DET(t).

Proof: Combination of theorems 2.19 and 2.23. 6

2.3.5 Term-Generated Models

Before proceeding further, let us summarize what has been achieved so far:

68 SPECIFICATIONS WITH A DETERMINISTIC BASIS

• Weak Ground Soundness and Completeness (Corollary 2.15) for the
calculus from defintion 2.4 and the class of all models;

• General Ground Soundness and Completeness (Corollary 2.24) for the
calculus from definition 2.18 and the class of DET-generated models.

These results deal with the first source of junk (breadth-junk) in nondeterministic
algebras. However, the standard model ΌΣ/R is term-generated, too, and so is
junk-free also with respect to the scond source. As an illustration, consider the
following example:

Example 2.25

spec NTG
sort s
func a: s, b: s, f: s -> s

A model J for this specification is given by:
ŝ = { a, b, c } ,
fJ(a) = { a } , f J (b) = {a} , f J (c) = { c } .

This model J is DET-generated but not term-generated.
The inclusion

f (x) - a
does hold in ϋΣ/NTG and in all term-generated models, but not within
the model J (which contains the junk element c). φ

This example demonstrates clearly what the model class is which coincides best
with the standard model D I / R . It is the class of term-generated and DET-
generated models.

Def in i t ion 2.26
Let Τ = (Σ, R) be a nondeterministic specification. The class of all
DET-generated and term-generated models of Τ is called DGen(T). (}

axioms
DET(a),
f(a) - a,

DET(b),
f (b) - a

end

One important observation is that the ground completeness results from above
easily are carried over to the model class DGen(T).

SPECIFICATIONS WITH A DETERMINISTIC BASIS 69

Corol lary 2.27 (Ground Completeness)

Let Τ = (Σ, R) be a DET-complete and DET-additive specification.

Then for ground terms t, t l , t2 Ε W(Z, X):
DGen(T) 1= t l t2 => Τ I - I N D t l t2,
DGen(T) 1= DET(t) => Τ I - I N D DET(t) .

Proof: Consequence of the fact that ΌΣ/R Ε DGen(T) and theorem 2.19. 0

Another slightly more general result shows that within the model ΌΣ/R exactly
those non-ground inclusions hold which hold in the class DGen(T). But please
note that we did not give a calculus for generally deducing the non-ground
inclusions which hold in DZ/R. Such deductions may involve structural
induction.

Theorem 2.28

Let Τ = (Σ, R) be a DET-complete and DET-additive specification.

Then for t , t l , t 2 G W (I , X) :
ΌΣ/R 1= t l - * t2 <=> DGen(T) 1= t l -> t2,
ΌΣ/R 1= DET(t) DGen(T) 1= DET(t).

Proof :
The "<="-direction follows from ΌΣ/R Ε DGen(T).

For the "^"-direction, let β be a valuation in A Ε DGen(T). Since A is
term-generated and Τ is DET-complete, there is a substitution σ Ε
SUBST(Z) where: β(χ) = Ι Α [σ χ] and I-DET(ax) for χ E X .

Then Iß [t] = I A [o t] for t Ε W (I , X) , hence:

e Ε Iß [t2] => e Ε I A [ö t 2] = » e G I A [a t l] (as in theorem 2.23)

= > e G l £ [t l] .

Therefore, A 1= t l —> t2. Analoguous arguments apply for DET(t). ()

70 SPECIFICATIONS WITH A DETERMINISTIC BASIS

In some sense, with the class DGen(T) now a satisfactory semantics for
nondeterministic specifications has been reached. The models of this class
coincide in their important properties with the "standard" model άΣ/R. We have a
simple weakly ground-complete calculus as well as a more complex ground-
complete calculus available.

Therefore we turn now to the question, how the developed framework can be
compared and integrated with other existing formalisms. This leads to several
blocks of material which may be of varying interest for various readers. Only for
readers which are interested in semantic considerations and generalizations of the
field of algebraic specifications it is recommended just to follow the thread of the
text. For readers interested in deduction- and programming-oriented aspects it
may be a good idea to move on directly to chapter 4.

The following short section 2.4 gives a sketch how modularization techniques,
as they have been developed in the field of algebraic specificaions, can be
integrated with the nondeterministic framework.

Chapter 3 then presents a number of results on the model-theoretic semantics of
nondeterministic specifications. These results are connected with the material
from above mainly by two aspects:

• It is shown that the term model D I / R is an initial model within the class
DGen(T). This can be seen as an additional argument showing that the
"right" design decisions have been made.

• A more semantical characterization for the class DGen(T) is given, which
avoids the "mixture" between syntactic and semantic notions used in
definition 2.21.

Chapter 4 covers more general aspects by comparing nondeterministic
specifications with common concepts like equational logic and logic
programming.

S P E C I F I C A T I O N S W I T H A D E T E R M I N I S T I C B A S I S 71

2.4 Hierarchical Specifications
I f a specification language is applied practically for the description of a larger
system, means for structuring the whole text become very important. It is an
advantage of algebraic specifications that there are criteria available which
distinguish "good" modularizations. A "good" modular structure means here a
structure where parts can be easily exchanged or refined without affecting other
parts of the system. [Wirsing et al. 83] gives a detailed study of so-called
hierarchical algebraic specifications. Below a short sketch is given, how the
most important definitions and results concerning hierarchies can be transferred
to the nondeterministic case.

Definition 2.29 (Hierarchical Specification)

A nondeterministic algebraic specification Τ = (Σ , R) is called
hierarchical, iff a subspecification TO of Τ (i.e. TO = (Σ0, RO), Σ0ΟΣ,
ROCR) is designated, which is called the primitive part of T.
A model A Ε DGen(T) is called hierarchical, iff the ΣΟ-reduct of A is in
DGen(T0).

The specification Τ is called
• hierarchy-preserving, iff every model of A is hierarchical,
• hierarchy-faithful, iff every model AOEDGen(TO) can be extended

to a model AEDGen(T) such that the ΣΟ-reduct of A is AO.
• hierarchy-persistent, i f f Τ is both hierarchy-preserving and

hierarchy-faithful. 0

As a syntactical representation of hierarchical specifications, we use a notation
which is similar to [CIP85]. I f the body of a specification contains a statement
of the form

basedon P\, P n ,
the union of P i , . . . , P n is meant to be the primitive part TO of Τ.

The hierarchy-persistency of a specification in practice means that the primitive
part and the non-primitive part can be developed independently, therefore it
constitutes an important modularity condition. However, in order to check these
conditions, we need more syntactical formulations. The following definition
transfers the modularity conditions to the level of deductions.

72 SPECIFICATIONS WITH A DETERMINISTIC BASIS

Definition 2.30 (Hierarchy Conditions)

A hierarchical specification Τ = (Σ, R) over a deterministic basis
containing the primitive part TO = (Σ0, R0), Σ0 = (SO, F0) is called
sufficiently complete, iff:
V t G W (Z) s :

Τ I- DET(t) Λ sESO => 3 t ' G W (I 0) : Τ I-1 f .
Τ is called hierarchy-consistent (sometimes also called hier ere hy-
conservative), iff:
V t , t ' e W (I 0) :

Τ I-1 - * t' Λ Τ I- DET(t') => TO I-1 - Μ ' Λ TO I- DET(t').<>

The following theorem shows (in analogy to a similar result in [Wirsing et al.
83] that these deductive properties ensure the semantic condition of hierarchy-
persistency.

Theorem 2.31

Let Τ = (Σ, R) be a hierarchical specification over a deterministic
basis containing the primitive part TO = (Σ0, RO), Σ0 = (SO, FO).
I f Τ is sufficiently complete and hierarchy-consistent, then Τ is
hierarchy-preserving.

Proof:
As a first step, we show that Τ is hierarchy-preserving. Let
AEDGen(T). It is obvious that the ΣΟ-reduct of A also fulfils the
axioms, so we have to show that the reduct is term- and DET-generated.
For any element eEsOA of a primitive carrier set (sOESO), there is a
term tEW(Z) such that I A [t] = { e } (term generation of A) . Because of
the DET-generation of A, there is also a t ' G W (I) such that Τ I -
DET(t'), Τ I-1 —> t ' , and I A [t '] = { e } . The sufficient completeness of
Τ gives a term f ' E W ^ O) such that Τ I- t ' - » t " ; obviously also Τ I -
DET(t") and I A [t "] = { e } . So term-generation of the reduct holds.
Using (TRANS), we also have Τ I- t -> t " and Τ I - DET(t") , so by
hierarchy-consistency of Τ also TO I- t - * t " and TO I- DET(t") , i.e.
DET-generation holds, too. 0

It is an interesting observation that this result needs a slightly stronger
precondition than the corresponding proposition 4 of [Wirsing et al. 83].

S P E C I F I C A T I O N S W I T H A D E T E R M I N I S T I C B A S I S 73

Sufficient completeness alone ensures only the term-generation of the reduct, for
DET-generation also the hierarchy-consistency is needed. In the classical case,
only term-generation is considered, therefore sufficient completeness alone
suffices for the corresponding theorem.

Theorem 2.32

Let Τ = (Σ, R) be a DET-additive and DET-complete hierarchical
specification over a deterministic basis containing the primitive part TO
= (I0 ,R0) ,Z0 = (S0,Fö).
I f Τ is sufficiently complete and hierarchy-consistent, then Τ is
hierarchy-faithful.

Proof :
Let AOEDGen(TO). We construct the model A extending AO
analoguously to the construction ΌΣ/R. The carrier sets of the model A
consist of a mixture between terms and values in the carriers of AO,
replacing every primitive term by its value in AO. Formally, for a term
teW(I) with Τ I- DET(t), we call this mixed term t A 0 , defined by:

t A 0 e ? where I A [t] = { e } (e is unique, since Τ I- DET(t));
t A 0 =def f(t 1 · · , t n) A iff t = f (t i A 0 , . . , t n

A O) £ W £ 0) .
The hierarchy-consistency ensures that Τ I- DET(t) ο TO I - DET(t) for
tEW^O) , so Τ is "additive" with respect also to the deterministic Σ0-
terms, and we can use the construction used for ϋΣ/R, giving a model
A such that (for tGW(Z)):

I A [t] = { [t , A 0] I t 'EW(I) Λ Τ I-1 V Λ Τ I- DET(t') } .
Consider now a term tOEW^O). In this case, for every tO 'EW^) with
Τ I- DET(tO'), sufficient completeness of Τ gives us a tO"eW(Z0) such
that Τ I - DET(tO") and tO* « tO". Therefore I A [t O] = { [t O ' A O] I
tO'eW(ZO) Λ Τ I- tO -* tO' Λ Τ I- DET(tO') } = { [t O ' A O] I tO'EW^O)
Λ TO I- tO -* tO' Λ TO I - DET(tO') } (because of hierarchy-consistency).
According to the definiton of t O ' A O , this means that I A [tO] C I A O [t O] .
The reverse inclusion I A [tO] 2 I A O [t O] is a consequence of the DET-
generation of AO. 0

In section 4.4, a class of specifications wi l l be defined, for which sufficient
completeness and hierarchy-consistency can be checked by rather simple
syntactical criteria.

74 SPECIFICATIONS WITH A DETERMINISTIC BASIS

The last result of this section illustrates to which extent the preconditions of
theorem 2.32 already determine the admitted models of a given specification. In
fact, there is only one model (up to isomorphism), as long as the non-primitive
part does not introduce any new sorts ("functional enrichment").

Theorem 2.33

Assume the preconditions of theorem 2.32, where Τ does not introduce
new sorts, i.e. S = SO.
Let AOEDGen(TO) be given, and let A ' be an arbitrary model such that
the ΣΟ-reduct of A ' is AO.
Then A ' is isomorphic to the model A constructed in the proof of
theorem 2.32.

Proof:
Since S = SO, the reduct-condition means that the carrier sets of A ' and
AO are identical. We show first that also in the carrier sets of A
(according to theorem 2.32) only values from AO appear.
For an arbitrary term t E W ^) , we have

I A [t] = { [t ' A 0] I t 'EWff) Λ Τ I-1 -> t' Λ Τ I- DET(t') } .
Since S = SO, the term t is of primitive sort, and so is t ' . Therefore,
sufficient completeness gives for any t' a term tO'EW^O) such that t'
« tO'. Since t O , A O E I A O [t O '] , I A [t] contains only values from the
carriers of AO.
It remains to show that the identity mapping is a homomorphism with
respect to the operations in Σ\Σ0. This follows from the chain of
equivalences

eEf A (ej , . . . ,en) (e, ei in the carriers of AO)
^ eEI A [f (t i , . . . , t n)]
(with appropriate tj Ε W^0)such that I A [t i] = {e j} , due to term-
generation).
Due to DET-generation, we can assume Τ I - DET(tj), and due to
sufficient completeness (and S = SO) also t i E W ^ O) . Equivalences
continued:
ο 5 t 'GW(I) : Τ I- f (t i , . . . , t n) V Λ Τ I- DET(t') Λ I A [t '] = { e }
Again we can assume t 'EW^O), so e = t ' A ^ . Equivalences continued:
<*> eEf A ' (ei , . . . ,e n)
(definition of the extension A' as in theorem 2.32.) ()

Chapter 3

Structure of the
Model Classes

This chapter is dedicated to a study of results concerning the relationship
between various models of a nondeterministic specification. In particular, the
notion of a Σ-homomorphism for multi-algebras is dealt with in the following
sections.

The significance of this whole theoretical approach using homomorphisms and
extremal models (initial and terminal ones) is estimated very differently by
various researchers. It is obvious that any serious generalization of the classical
notions of algebraic specifications has to address this topic, and this is the
motivation for this chapter. However, readers may skip this whole chapter, i f
they are not interested in the material presented here.

In this chapter, the notion of a homomorphism for multi-algebras is defined.
The presence of nondeterminism leads to the introduction of two different
notions of homomorphism, which are used both in the theory of extremal
models.

In a first pass, the general theory of multi-algebras is revisited from the
structural point of view. A counterexample shows that in the general model
class from above, an initial model does not always exist. A terminal model,
however, can be constructed for every specification.

In a second pass, extremal models for specifications over a deterministic basis
are investigated. It is shown that the term model DZ/R, which was defined in the

76 STRUCTURE OF THE MODEL CLASSES

last chapter, is initial in some sense. A semantical characterization for the model
class DGen(T) from the last chapter is given, and it is shown that the term
model is initial within this model class in another, stronger sense.

3.1 Homomorphisms and Extremal
Algebras
In order to compare two multi-algebras, the central notion is that of a
homomorphism. A homomorphism can be established between two multi-
algebras A and B, i f Β can be seen as an abstraction of A. An algebra Β is here
called an abstraction of A, i f the structure of Β can be completely described by
the structure of A, where elements of the carriers of A are identified, possibly.

Definition 3.1 (Σ-Homomorphism)

Let Σ = (S, F) be a signature, Α, Β Ε M A l g (I) . A (tight) Σ-
homomorphism φ from A to Β is a family of mappings

Ψ = (<Ps)sES> 9s- s A -> & + (s B) ,
which fulfils the following condition:

For all [f: si χ ... χ s n -» s] Ε F and all e i E s i A , e n E s n

A :
{e* E c p s (e) l e E f A (e i , . . . , e n) }

= { e ' G f B (e i ' , . . . , e n ') I e i ' E q> s l(ei),.. . , e n ' Ε cp S n(e n) }

φ is called a loose Σ-homomorphism, i f the following, less restrictive,
condition holds:

{ e ' E c p s (e) l e E f A (e i , . . . , e n) }
C { e ' E f B (e i \ . . . ,e n ') I e f E q p s l (e i) , e n ' Ε cp S n(e n) }

φ is called element-valued, iff for all s Ε S : V e Ε s A: lqp(e)I = 1. 0

The notion of a homomorphism, as it is defined above, is a bit more general
than the definitions found in the literature. Homomorphisms for multi-algebras
have been defined already in [Pickert 50] and later in [Pickett67], [Hansoul83],
[Nipkow86] and [Hesselink88]. These papers always consider only element-
valued homomorphisms instead of the set-valued definition from above. The

STRUCTURE OF THE MODEL CLASSES 77

definition above contains the element-valued homomorphism as a special case.
The main reason why the generalization has been chosen is that it subsumes the
interpretation of a term as a special case of a homomorphism. This question wi l l
be studied in more detail below.

A l l the definitions in literature contain a distinction between loose and tight
homomorphisms. Unfortunately, the names vary from paper to paper. Loose
homomorphisms enable sensible results, as it is shown below. A dual
generalization (using " • " instead of "C") does not make any sense, since such a
"homomorphism" can be always established between two arbitrary Σ-multi-
algebras. (Simply choose cps(e) = s B .)

Below a few examples for simple homomorphisms are given.

Example 3.2

Let AEMAlg(Z), WZ the algebra of ground terms according to example
1.3. Then the interpretation mapping I A

l A : W I A, i f : W (I) S - p + (s A)

is a tight Σ-homomorphism:

{ e G I A [t] l t G f W 2 (t i , . . . , t n) }
= { e e i A [t] l t e { f (t i , . . . , t n) } }

= I A [f (t i , . . . , tn)] (Example 1.3)
= {e e f A (e i , . . . ,en) I q G I A [t j] } (Definition 1.5) 0

Example 3.3

Let AGMAlg(Z). The mapping id = (i d s) s e s
i d s : s A -*· s A , id s(e) = { e } für eGsA

is a tight Σ-homomorphism:

{ e ' G i d (e) l e e f A (e i , . . . , e n) }
= f A (ei , . . . ,e n)
= { e ' G f A (e i e n ') I ei 'Gid(ei)} 0

78 STRUCTURE OF THE MODEL CLASSES

Theorem 3.4

Let A , B , C G MAlg(Z) and φ\: A B, cp2: Β -* C tight Σ -

homomorphisms.

Then φ2*Φ1' A C is a tight Σ-homomorphism, again.

An analoguous result holds for loose Σ-homomorphisms.

Proof:
{k e (<p2'<Pl)(e) I e G f A (e i , . . . ,e n)}

= {k G φ2(1) 11 G cpi(e) Λ e G f\e\..,en)} (Definition <p2'<Pl)
= {k G φ 2(1) 11 G f B (l i , . . . , l n) Λ Ii G cpi(ei)}

(φΐ is a homomorphism)
= {k G fC(k i , . . . ,k n) I ki G φ200 Λ Ii G <pi(q)}

(φ2 is a homomoφhism)
= {k G f ° (k i , . . . , k n) I kj G (cp2*<Pl)(ei)} (Definition qp2*qpl)
Analoguously for loose homomoφhisms. 0

Within the model class of a given specification, the most extreme models are of
particular interest. These are the maximally refined and the maximally abstract
model which are admitted by the specification.

Definition 3.5 (Initial and Terminal Algebra)

Let Κ be a class of Σ-algebras. An algebra IGK is called (tightly) initial
in K , i f f for every algebra AG Κ there exists exactly one Σ -
homomorphism from I to A. TGK is called terminal, iff for every AGK
there exists at least one (tight) element-valued Σ-homomorphism from
A to T.
A is called loosely initial, i ff the definition of initiality is fulfilled,
where tight homomorphisms are replaced by loose ones. φ

The definition of terminality above uses only element-valued homomorphisms;
therefore it is consistent with the notions in the literature. For most of the
initiality results, which are given below, it turns out that also only element-
valued homomorphisms are involved.

Exactly like in the deterministic case, a rather trivial terminal algebra can be
constructed easily:

STRUCTURE OF THE MODEL CLASSES 79

Def in i t ion 3.6

For a given signature Σ = (S, F), let an algebra ΖΣ be defined by
s Z 2 = { s } for sGS
f Z 2 (s i , . . , s n) = { s } for[f : si χ ... χ s n s] Ε F 0

Theorem 3.7

ΖΣ is terminal in Mod(T) for a given specification Τ = (Σ, R).

P roof :
By induction on the term structure of t for an arbitrary valuation β in
ΖΣ the following fact can be shown:

7Σ

VtGW(Z) s : Iß [t] = { s } .

Therefore, for an axiom < 1 - > D G R , where 1 and r are of the same sort:

ΐ β Σ [ΐ] = { 8 } = ΐ β Σ Μ .

This means that ZΣEMod(T).

For AEMod(T) the mapping

φ: A ΖΣ, cps(e) = { s } fur eEs A

is a tight Σ-homomorphism:
{ e ' E 9 s (e) l e E f A (e i , . . . , e n) } = { s }
{ e ' E f Z 2 (e l , . . . , e n) l e i ' E 9 S i (e i) } φ

The fact that there is a unique (up to isomorphism) terminal algebra is due to the
definition of terminality which refers to element-valued homomorphisms only.
I f the notion of a terminal algebra was formulated with abitrary (set-valued)
homomorphisms, an infinite number of non-isomorphic terminal models would
be admitted. For a similar reason, "loosely terminal" models are not studied here.

The algebra \ΥΣ of ground terms (from example 1.3) can be shown to be initial
within all multi-algebras of a given signature, as in the classical case. This is
only possible since the notion of non-element-valued homomorphisms has been
introduced here.

80 STRUCTURE OF THE MODEL CLASSES

Theorem 3.8

ΨΣ is tightly initial in M A l g (I) .

Proof :
The existence of a homomorphism φ: λ¥Σ -> A can be shown
analoguously to example 1.22, its uniqueness can be shown by
induction on the term structure, like in [ADJ 78]. ()

3.2 Initial Models
The result above was about initiality in the general class of all algebras of a
given signature. This section now addresses the question of initiality within the
class of all models of a nondeterministic specification. In a first approach, the
general notion of a nondeterministic specification is presupposed, as it was used
in chapter 1. Please note that this means in some sense a step backwards
compared with the material of chapter 2! In order to keep this exposition as short
as possible, we restrict ourselves here to the simplest case of ground
specifications, where the axioms do not contain free variables. Despite of this
restriction, it can be shown that also in general initial algebras do not exist.

For this result, the notion of a term-generated model, as it was defined in
definition 2.21, is needed again. A model A of a specification is called term-
generated, i f for every object e in the algebra there is a ground term t which
describes the object: I ^ [t] = { e } .

Theorem 3.9

Let Τ = (Σ, R) be a ground nondeterministic specification.
I f a multi-algebra CEMod(T) is loosely initial in Mod(T), then C is
term-generated (i.e. CEGen^)).

Proof :
For a ground specification T, it is easy to construct a ground term
model W which fulfils for every ground term tEW(Z):

I W [t] = { t ' E W (^ I T I - R C t - t ' }

STRUCTURE OF THE MODEL CLASSES 81

(The details of this construction are as in theorem 1.19, but for ground
terms only.)
Since C is loosely initial, there is a homomorphism ψ from C to the
ground term model W.
The interpretation 1 -̂ of ground terms gives a homomorphism from the
algebra W to the algebra C. This is due to the fact that the rewriting
calculus is sound for ground specifications (theorem 1.17), which
means that

{e Ε I c [t] I Τ I - R C f (t i , . . . , t n) - t } C l C [f (t l . . , t n)] .
Now Ι^-'ψ: C-*C is a homomorphism from C to C (theorem 3.4)
According to example 3.3, another homomorphism from C to C is
given by the identity (id). Initiality means that the homomorphism
from C to C is unique, therefore for a given eEs^ holds

(I c ^) (e) = {e} , i.e. {e' Ε I c [t] 1 1 Ε ψ(χ)} C {e}.
This means I ^ [t] = { e } for all tEi|)(e). Since ψ(β) * 0 , there is a
tEW(I) such that I c [t] = {e} . 0

The following example is used for the demonstration that in Mod(T) loosely
initial algebras do not always exist.

Example 3.10

spec ΝI
sort s
func a: -> s, b: s,

g: -» s, f: s -> s
axioms

g - * a , f (a) -*b ,
f (b) - a , f (g) - a

end

Two non-isomorphic models A and Β for NI are defined by:

s A = s

B = { a , b } ,

aA = a B = { a } , b A = b B = { b } ,
g A = { a } , g B = { a , b } ,
f A (a) = { a , b } , f B(a) = { b } ,
f A (b) = { a } , f B (b) = { a } .

82 STRUCTURE OF THE MODEL CLASSES

The specification N I is similar to INC from example 2.7 (which was used as a
counterexample for general incompleteness of rewriting). It has been chosen in
such a way that in all models the inclusion

f (g) - a
has to hold. But it is in no way clear whether this is a restriction which applies
to the functions f or g. In the first case, a more precise axiom is

f (a) - a
the latter case can be described also by

g - b .
The models A and Β realise these both choices. These choices cannot be both
represented within a (term-generated) initial model.

Theorem 3.11

Let Τ = (Σ, R) be a nondeterministic specification.
In general, in Mod(T) loosely initial multi-algebras do not exist.

Proof :
Consider the class Mod(NI) of all models of N I , as it was defined in
example 3.10, together with the two models A and B. Without loss of
generality, let a * b for the elements of the carrier sets of A and B.
Let C be a loosely initial algebra in this class. Initiality means that
there are homomorphisms

qpA' C A and φ β : C B.
From the homomorphism condition for φΑ, applied to the functions a
and b, the following propositions follow:
(1) 9 A (e) = { a } foralleEaC, qpß(e) = { a } foralleEa^
(2) q>A(e) = { b } fo ra l l eEb C , cpß(e) = { b } f o r a l l e E b c

From the homomorphism condition for φ A and function g follows:
(3) {^cpA(e) l eEgC}CgA = { a }

Let eDEbC. Assume that eDEgC; then from (3) and (2) follows { b }

C { a } , which contradicts to a * b. Therefore:
(4) V eEb c : e £ g c

Let eaEaC- From the homomorphism condition for φ β and function f

follows:

(5) {e'Eq)ß(e) I eEf^ea)} C { e 'Ef^ei) I eiEqpB(ea) }
Using (1), this means:
(6) {e 'E9B(e) leEf c (e a)}C { b }

STRUCTURE OF THE MODEL CLASSES 83

Assume now that e a Gf^(e a) ; from (6) and (1) follows { a } C { b } ,

which contradicts to a * b. Therefore:
(7) V eGa c: egf^e)
In model C, the inclusion <f(g) -» a> has to hold. Therefore:
(8) 3 e a Ga c , e()Gg c: eaGf^ieo)
Since model C is term-generated (theorem 3.9), there must be a ground
term to the interpretation of which is e(): I^[to] = { eo } . The axioms
of N I ensure that every ground term can be reduced either to a or b.
Applied to to, this means that { eo } • or { eo } • b ^ . Slightly
rephrased, this is:
(9) eoGâ - ν eoGb^
From (7) and (8) follows that eo^a^. From (4) and (8) follows that
eo^b^. This is a contradiction to (9).

To summarize, an appropriate algebra C does not exist. φ

This concludes the discussion of initial models for the general case. The theorem
above may be seen as an additional argument why the extension to specifications
on a deterministic basis, as it has been introduced in chapter 2, is useful. So let
us now turn to the case of specifications with a deterministic basis.

3.3 Initial Models with Deterministic
Basis
The aim of this section is to show that the term model ΌΣ/R for DET-complete
and DET-additive specifications, as it has been defined in definition 2.13, is an
initial model. This model is term-generated. Therefore, the following lemma is
useful which states the consequences of these conditions onto homomorphisms
from the initial model to an arbitrary model. As far as DET-complete
specifications and term-generated models are concerned, the set-valued notion of
homomorphism coincides with the classical notion of homomorphism. As long
as initial models in Mod(T) are term-generated, as it is suggested by theorem
3.9, this shows the consistency between the notion of homomorphism as it is
used here and the literature on homomorphisms and initiality.

84 STRUCTURE OF THE MODEL CLASSES

Lemma 3.12

Let Τ be a DET-complete specification, AGGen(T), BEMod(T). Then
every loose homomorphism φ: A Β is element-valued (i.e. it
assigns only singleton sets).

Proof:
Let eEs A . Since A is term-generated, there is a tEW(I) such that I A [t]
= {e} . Since Τ is DET-complete, there is a t' such that I - DET(t') and I-
t - * t \ so I A [t '] = {e} . The definition of a homomorphism gives cp(e) C
I B [f] . Because of I- DET(t') we have lcp(e)l =s 1. 0

Now the expected initiality result for ΌΣ/R can be shown.

Theorem 3.13

Given a DET-complete and DET-additive specification Τ = (Σ, R),
ΌΣ/R is loosely initial in Mod(T).

Proof:
Let AEMod(T). Define the mapping

φ: ΌΣ/R -* A
as the extension of the interpretation I A to the carriers of ΌΣ/R :

φ(Μ) = I A [t] where t E s D 2 / R .
The well-definedness of φ is a consequence of theorem 2.6 and
definition 2.12.
For the remaining parts of the proof see appendix Α. φ

ΌΣ/R is loosely initial in M o d ^) , but not tightly initial. This is demonstrated
by the following example.

Example 3.14

spec NPI
sort s
func a: -> s, b: -» s, g: s, f: s s
axioms

DET(a), DET(b), g -> a, f(x) - » χ
end

STRUCTURE OF THE MODEL CLASSES 85

A model A of NPI is given by
s A = { a , b } , a A = { a } , b A = { b } , g A = { a , b } ,
f A (e) = { e } f o r e , e l , e 2 G { a , b } .

Within ΟΣ/ΝΡΙ, the loosely initial model, we have:
g D I / N P I = { [a] } .

Therefore, the condition of a loose homomorphism
{ e G 9 ([t]) l [t] E g D 2 / N p i } = { a } C { a , b } = g A

holds, but not the condition of a tight homomorphism (which involves
set equality instead of subset relation). ()

Obviously, the model class has to be restricted, in order to show a tight
initiality result. Example 3.14 shows also that the restriction to term-generated
models is not sufficient for this purpose. A good candidate for an appropriate
model class is the class DGen(T) of term-generated and DET-generated models,
as it has been introduced in the last chapter (definition 2.26). (As a reminder:
The models in DGen(T) are those where the interpretation of a nondeterministic
term contains only elements which can be reached by a deterministic term, and
where this inclusion can be derived on the level of terms within the calculus.)

Before showing an initiality result, we address the general question of how to
characterize this model class DGen(T). I t turns out that the notion of
homomorphism can be used to give a more "semantic" characterization, which
does not involve any reference to deduction.

The basic idea is the observation that the models in DGen(T) are "maximally
deterministic" in the sense that they do not contain any "superfluous" non­
determinism which is not explicitly mentioned in the specification. In order to
speak about degrees of determinacy, the notion of a "descendant" (analoguously
to [McCarthy 61]) is used.

Definition 3.15 (Descendant)

Let Τ = (Σ, R) be a specification, AEGen(T). Another model
A'EGen(T) is called a descendant of A, iff:

V tEWff) : I A [t] 3 I A , [t] .

86 STRUCTURE OF THE MODEL CLASSES

A ' is called a proper descendant of A, i f f A ' is a descendant of A and if
the additional condition holds:

3 t E W (Z) : I A [t] * I A ' [t] . 0

I f an algebra has proper descendants, it must not be called maximally
deterministic. Unfortunately, this does not suffice to characterize maximally
deterministic algebras. There are more complex cases of "superfluous"
nondeterminism, as the following example shows.

Example 3.16

There is a proper descendant of the algebra A from example 3.14 above:
s A ' = { a , b } ,
a A ' = { a } , b A ' = { b } , g A ' = { a } ,
f A ' (e) = { e } where e, e l , e2 Ε { a, b } .

There is a loose homomorphism φ: A* -* A, defined by
cp(a) = { a } , cp(b) = { b } .

The new algebra A ' does not have any proper descendants.

A more complex case is the following one:

spec N M D
sort s
func a: s,
axioms

DET(a),
f (a) - a ,

end

with the model Β:
s B = { a , c } ,
a B = { a } , b B = { a } ,
f B (x) = { a , c } , f B (c) = { c } .

Β does not have any proper descendants. But i f Β is "refined" (extending
its carrier set), a "less deterministic" model can be constructed, which is
called B':

b: -> s, c: s, f: s -> s

DET(b), DET(c),
f (b) - c , f (c) -»c

c B = { c } ,

STRUCTURE OF THE MODEL CLASSES 87

s B ' = { a l , a 2 , c } ,
a B ' = { al } , b B ' = { a2 } , c B ' = { c } ,
f B ' (a l) = { al } , f B '(a2) = { c } , f ß , (c) = { c } .

Again there is a loose homomorphism ψ: B ' B:
tp(al) = { a } , op(a2) = { a } , T|>(C) = { C } . 0

The term model DZ/NMD gives a deterministic inteφretation for the operation
f, therefore a maximally deterministic model should interpret f also as
deterministic. The example gives a hint, how this property can be formulated in
terms of models: An algebra A is maximally deterministic iff it does not have a
more deterministic refinement:

Definition 3.17 (Maximally Deterministic)

Let A, A ' be term-generated Σ-algebras.
A ' is called a refinement of A, i f f there is a loose Σ-homomorphism φ:
A ' -> A.
A ' is called more deterministic than A, iff:

VteW (I) : I I A [t] l * I I A ' [t] l .
A is called maximally deterministic, iff A is more deterministic than
every refinement of A. Q

The next lemma shows that the semantic characterization of maximal
determinacy coincides with the model class DGen(T). Moreover, it shows a
useful property about homomorphisms, which leads to the immediate
consequence that a loosely initial model in DGen(T) is also a tightly initial one.

Lemma 3.18

Let Τ = (Σ, R) be a DET-complete and DET-additive specification,
AEGen(T). Then the following three propositions are equivalent:

(1) A is maximally deterministic.

(2) V Β Ε Gen(T):
φ: B->A is a loose Σ-homomorphism =>
φ is a tight Σ-homomorphism.

(3) AEDGen(T).

88 STRUCTURE OF THE MODEL CLASSES

Proof: See appendix A. ()

Please note that lemma 3.18 assumes the specification to be DET-additive. The
results cannot be generalized easily to non-additive specifications.

A consequence of lemma 3.18 (3) is the fact that DZ/R is maximally deter­
ministic. From this fact an initiality result follows:

Theorem 3.19

Let Τ = (Σ, R) be a DET-complete and DET-additive specification.
Then DZ/R is tightly initial in DGen(T).

Proof :
Consequence of theorem 3.13 and lemma 3.18 (2), since
DZ/REDGen(T). 0

We conclude this chapter with a graphical sketch of the lattice structure
connecting the models of a specification Τ = (Σ, R).

- Ο — loose homomorphism

tight homomorphism

EEB DGen(T)

Mod(T)

Chapter 4

Nondeterministic
Specifications as a
General Framework

At this point, the presented theory has reached a stage, where it is interesting to
investigate the relationship to classical concepts like the theory of term
rewriting and equational logic as well as logic programming. It wi l l turn out
that equational logic and (confluent) term rewriting can be seen as special cases
of the new theory. It also wi l l be shown that a special variant of the theory has
very close connections to algebraic and logic programming.

The general observation is that nondeterministic specifications form a rather
general framework which is well-suited for integrating and comparing various
approaches from denotational and operational semantics. Even beyond the
examples mentioned above, in [Meseguer 92] a whole catalogue of concepts
from computer science can be found, which can be subsumed by a variant of
rewriting, i f the confluence restrictions are left out.

4.1 Equational Logic
Equational logic can be easily integrated into our new framework. The basic idea
is that a given equation is simulated by two rewrite rules, which differ only in
exchanged left and right hand sides. This way, the symmetry deduction rule can
be simulated within term rewriting.

90 N O N D E T E R M I N I S T I C S P E C I F I C A T I O N S A S A G E N E R A L F R A M E W O R K

In the framework of specifications over a deterministic basis, this effect can be
achieved in an even simpler way.

Definition 4.1

For a given equational specification
Τ = (Σ ,Ε) , I = (S,F),

a nondeterministic specification NDEQ(T)
NDEQ(T) = (Σ, R)

can be constructed using:
R = { <1 r> I <1 = r>EE} U { <DET(f(xi,...,x n)> I fEF }

(where χ ι,..., x n are pairwise disjoint variables). (}

The DET-axioms are chosen in such a way that all operations are deterministic.
The simulation of the symmetry deduction rule is now achieved by the deduction
rule (DET-R).

Theorem 4.2 (Simulation of Equational Reasoning)

Within the nondeterministic specification NDEQ(T) = (Σ, R) associated
to an equational specification T, the following holds:
(1) V t E W ^ , X) : RI-DET(t)
(2) V t l , t 2 E W ^ , X): t l = E t2 <=> R I - t l t2.

Proof:
(1) can be easily shown by structural induction on the number of
function symbols in t. Either there is no function symbol in t (then we
can use (DET-X)), or we can apply (AXIOM-2) using one of the DET-
axioms contained in R.

(2) is shown by induction on the length of the derivation for t l = E t2
within the classical equational calculus. The cases of reflexivity,
transitivity and congruence (with respect to term building operations)
can be directly covered using (REFL), (TRANS), (CONG). The
remaining cases are:
Application of an equation:

Here t l = σΐ, t2 = ar, <1 = r>EE. Due to (1), we have
V xEX: R I- DET(cx).
Therefore, (AXIOM-1) can be applied to show R I- t l - * t2.

NONDETERMINISTIC SPECIFICATIONS AS A GENERAL FRAMEWORK 91

Symmetry:
Here t2 = £ t l . By induction hypothesis, R I-12 -* t l .
Due to (1), we have R I- DET(t2), so (DET-R) gives:
R I - t 2 - M l . 0

In other words, the calculus of definition 2.4 in this case exactly agrees with the
equational calculus. Morever, theorem 4.2 (1) ensures that the interpretation of
every term in any model of NDEQ(T) is a singleton set. Therefore, all models of
NDEQ(T) correspond exactly to classical Σ-algebras.

4.2 Term Rewriting
In difference to the above results on equational logic, classical term rewriting
cannot be subsumed by the rewriting relation as it has been axiomatized in
definition 2.4. It was one of the main results of section 1 that classical term
rewriting is unsound for the semantic framework of heterogeneuous multi-
algebras. This is also the main point where the approach studied here differs
from the work of Meseguer ([Meseguer 92]).

However, one would expect confluent axiom systems to show some particular
semantical properties. Please note that the notion of confluence here refers to the
rewriting relation between terms as it is established by the calculus of deinition
2.4. Moreover, we restrict our attention to so-called ground confluence. A set of
inclusion rules is called ground confluent, iff the rewriting relation generated by
the calculus of definition 2.4 is confluent on ground terms.

Theorem 4.3

I f R is ground confluent, then in A E D G e n (I , R) all operations are
deterministic.

Proof :
Let e l , e 2 E I A [t] , t E W (I) . Since A is DET-generated (see definition
2.21), there are t l , t2EW(I) such that

I- DET(tl) , I - DET(t2), I-1 -* t l , I-1 -> t2,
I A [t l] = { e l } , I A [t 2] = { e 2 } .

Ground confluence ensures that there is a t' such that

92 NONDETERMINISTIC SPECMCATIONS AS Α GENERAL FRAMEWORK

I- t l t \ l - t2-»t\
Using (DET-R), we have I - t ' t2, using (TRANS) I - t l t2.
Therefore, using theorem 2.6: { el } 2 {e2}, i.e. el = e2. Hence

ι i A [t] 1 = 1. 0

Ground confluence forces all terms to be deterministic. Using the breadth-
induction calculus from definition 2.18, we can even deduce for every ground
term t the formula DET(t). A difference to equational deduction is that there
determinacy is ensured for all models and even for non-ground terms. In the case
of non-confluent (nondeterministic) rewriting, the more refined notion of the
model class DGen(T) is used, and only for these models and for ground terms the
determinacy is enforced. These observations correspond closely to the various
levels of abstraction described by [Meseguer 92] (for a summary see Fig. 5 in
[Meseguer 92]).

Another nice property of ground confluence is that it automatically ensures
DET-additivity.

Theorem 4.4

I f R is ground confluent and DET-complete, then R is DET-additive,
too.

Proof:
Let I- f (t i , . . . , t n) -» t, I - DET(t). Because of DET-completeness, there
are t\\ t n ' where I - DET(tj ') , I - tj —> t j \ With (CONG) and
(TRANS): l - f (t i , . . . , t n) - > f (t i ' , t n ') . According to ground
confluence, there is a t' such that l - f (t i ' , . . . , t n ') -» t ' , I-1 -> t ' . Using
(DET-R), it follows that I - t ' -> t, therefore (using (TRANS)) I -
f (t i t n ') - t . 0

In many cases, also DET-completeness can be guaranteed automatically. For this
purpose, it is necessary that every term has a normal form with respect to and
that the -^-terminal terms can be enumerated. Then a ground confluent set R of
term rewrite rules over the signature Σ is transformed into the nondeterministic
specification

Τ = (Σ, R U {<DET(t)> 11 is -»-terminal }).
According to theorem 4.3, the DET-axioms hold within DGen^,R). This means
that they can be added without changing the semantics. The DET-axioms ensure

NONDETERMINISTIC SPECIFICATIONS AS A GENERAL FRAMEWORK 93

the DET-completeness and theorem 4.4 gives the DET-additivity. In this case,
the semantics given by DGen corresponds exactly to equational logic. The
advantage of the confluent rewriting system is that there are less DET-axioms
needed, and that the automatic search of deductions is considerably easier, due to
the fact that the rule (DET-R) is avoided. As in the classical case, deduction here
can be restricted to uni-directional application of the axioms.

Another aspect of non-confluent term rewriting can be quite interesting in some
applications, where the confluence of a term rewriting system is yet unknown.
The ideas from above give a semantics for term rewriting, independently of the
confluence of the axiom system. I f ground confluence (for the rewriting relation
from definition 2.4) holds, this semantics automatically coincides with the usual
semantics.

43 Conditional Axioms
A generalization of algebraic specifications to conditional axioms is interesting,
mostly for the reason that here the central results still hold and the
correspondence to term rewriting and equational logic is kept. The results for
equational logic can be carried over to conditional-equational axioms (see for
instance [Broy, Wirsing 82]); conditional term rewriting systems ([Kaplan 84],
[Bergstra, Klop 86]) give an operational semantics for such specifications with
conditional axioms. Below follows a sketch of the way how conditional axioms
can be integrated into the framework presented here.

It is quite obvious how the syntax and semantics of conditional inclusion rules
is to be defined. This differs from the situation in conditional term rewriting,
where at least three variants of conditional axioms are distinguished. The three
variants correspond to the following schemes of axioms:

(a) t l t2 => l - * R r
(b) t l J R t 2 => l ^ R r
(c) t l - R * t 2 => 1 - R r

Variant (a) admits conditions of the form " t l is equivalent to t2", which can be
proven by arbitrary applications of the axioms (including "backward"
applications). In variant (b), the condition can be only fulfilled i f both terms (t l

94 NONDETERMINISTIC SPECIFICATIONS AS A GENERAL FRAMEWORK

and t2) have a common successor within the term rewriting relation (- » R) .
Variant (c) ist the simplest one: Conditions can be fulfilled there only i f an
(oriented) rewriting relation between the two terms can be proven.

For non-confluent rewriting, variant (b) is not very interesting, since the relation
t l i R t2 carries useful information only in the case of confluent rewriting (then
it is equivalent to t l «^R* t2).

For similar reasons, variant (a) can be excluded. The relation t l * * R t2 is
useful for non-confluent specifications (it was called « above). But, i f only
conditions of this kind were admitted, the language would be more restrictive
than necessary. In general, the most interesting type of conditions is (c), where
the application of a certain axiom is dependent of the question whether a term t l
can be brought into the shape of t2 (by nondeterministic rewriting). Note that
axioms of the type (b) can be simulated within this approach by

t l — t2 & t2 t l 1 r.

Definition 4.5 (Conditional Inclusion Rule)

A conditional (Σ, X-) inclusion rule is a pair, consisting of a finite
sequence of Σ, X-inclusion rules (the condition) and an atomic Σ, X-
inclusion rule (conclusion). In formula notation this is written:

t i -* t i ' & ... & t n -* t n ' => 1 -> r
where for i G { l , . . . , n } : t j , q 'EWff , X) s i , siES, 1, r€W(Z, X) s , sES. φ

Definition 4.6 (Validity for Conditional Rules)

Let A be a Σ-multi-algebra. A conditional inclusion rule is called valid
in A , symbolically

A 1= t i -> t f & ... & t n — t n ' => 1 -* r,

i f f the following proposition holds:
Every valuation ßEENV(X,A) which fulfils the following
condition:

V i E { l , . . . , n } : l£[tj] D l f a] ,

also fulfils

I ß [l] 2 I ß [r] . 0

NONDETERMINISM SPECIFICATIONS AS A GENERAL FRAMEWORK 95

The notion of a model is obvious. The next definition defines a suitable calculus
for nondeterministic specifications with conditional axioms.

Definition 4.7 (Term Rewriting Calculus with D E T and
Conditional Rules)

Let Τ = (Σ, R) be a nondeterministic specification containing DET-
axioms and conditional inclusion rules. Then a formula <tl-*t2> or
<DET(t)>, respectively, is called deducible in T, written

Τ l-COND t l -* tl or Τ l-COND DET(t), respectively,
i f f there is a derivation for this formula using the following deduction
rules:

(REFL), (T R A N S) , (CONG), (AXIOM - 2) ,

(DET-X), (DET-D), (DET-R) (as in definition 2.4)

(AXIOM- l -COND)

D E T (a x i) , D E T (a x n) , a t i -> c r t i ' , o t n σ ι η '

σΐ - * or

i f < t i - > t i ' & ... & t n - * t n ' => l - » r > G R , a e S U B S T ^ , X) ,
{ x i , . . . , x m } =Vars(l)UVars(r)UVars(ti)U.. .UVars(t n)U

Vars(ti ,)U...UVars(tn 5)

(AXIOM-1) is now a special case of (A X I O M - 1 -COND). 0

The following theorem shows the soundness of this calculus.

Theorem 4.8 (Soundness)

Using the preconditions of definition 4.7, for t, t l , t2 Ε \ ¥ (Σ , X) the
following implications hold:

Τ l-COND t l t2 => Mod(T) 1= t l - * t2
Τ l-COND DET(t) Mod(T) 1= DET(t)

Proof: By induction on the length of the derivation, see appendix A . ()

The example below illustrates a new problem which arises now for the
completeness of the calculus.

96 NONDETERMINISTIC SPECIFICATIONS AS Α GENERAL FRAMEWORK

Example 4.9

spec CIC
sort s
func a: -» s, b: -» s,

f: -* s, g: -> s
axioms

DET(a), DET(b),
f -> a, f b, g a,
f - > g => a -> b

end

In DGen(CIC), independently of the condition, the following inclusion
is valid (see the breadth-induction rule (IND-R)):

DGen(CIC) 1= f -* g .
Therefore (using the conditional axiom):

DGen(CIC) 1= a -> b .
But, according to definition 4.7:

- (CIC I-COND f — g) and - (CIC I-COND a -> b) 0

The example shows that the calculus for conditional axioms is incomplete, even
if, like in the unconditional case, only derivations for formulas of the shape

'-COND t t* where I-COND DET(t')
are considered. Conditional deductions of such formulas can lead recursively to
the deduction of other formulas which do not have the special shape. There are
two ways to obtain a completeness result:

(1) The calculus can be augmented by the breadth-induction rules (IND-R) and
(IND-D). In this case, a rather complex calculus is the result. The
deduction rule (AXIOM-1-COND) contains a premise which may lead to an
inductive proof which in turn makes use of conditional deductions. In the
unconditional case (definition 2.18), this kind of mutual recursion could be
excluded.

(2) The conditional axioms can be restricted syntactically. A simple case is
achieved, i f the preconditions of all conditional axioms have the shape

t -* t' where I-COND DET(t') .
Then the arguments of the unconditional case can be carried over to the
conditional case.

NONDETERMINISTIC SPECIFICATIONS AS Α GENERAL FRAMEWORK 97

The second variant is technically easier and it is sufficient for an interesting
range of applications. Therefore it is studied in more detail.

Definition 4.10 (Simple Conditional Rules)

A conditional Σ, X-inclusion rule
< t i - * t i ' & . . . & t n - * t n ' => h r > G R

is called simple, iff:

The notions of DET-completeness and DET-additivity are extended in analogy to
definition 2.8/2.9 (using the new calculus, I-COND)-

For DET-complete and DET-additive specifications containing only simple
rules, again an initial model can be constructed.

Theorem 4.11

Let Τ = (Σ, R) be a DET-complete and DET-additive specification
which contains only simple conditional rules. Analoguously to
definition 2.12, a model ΌΣ/R is constructed, where for tEW(Z) the
interpretation is given by:

I D 2 / R [t] = { [V] I Τ I-COND DET(t') Λ Τ l - C OND t -> f } .
ΌΣ/R is initial in MGen(T), and for t l , ι2Ε\Υ(Σ) the proposition
holds:

ΌΣ/R 1= t l - M 2 <*> MGen(T) 1= t l — t2 .

Conditional rewriting leads to a number of interesting theoretical problems even
in the classical case. A detailed explanation of the underlying theory for the
classical case has been given for instance in [Wechler 91].

A final example demonstrates the practical use of conditional axioms:

Example 4.12

A standard example from logic programming is the splitting of a
sequence of data objects. The given sequence is splitted into two parts
the concatenation of which results in the given sequence again.

V i E { l , . . . , n } : Τ I-COND DET(ti'). 0

Proof: See appendix A.

98 NONDETERMINISTIC SPECIHCATIONS AS Α GENERAL FRAMEWORK

Obviously, there is a (nondeterministic) choice, where to split the
sequence. A corresponding specification is:

spec SPLIT
sort Elem, Seq, Pair
func { Operations for the sort Elem are omitted here }

empty: -> Seq
append: Seq χ Elem -> Seq
cone: Seq χ Seq -» Seq
pair: Seq χ Seq -» Pair { Pairs of sequences }
split: Seq -> Pair

axioms
DET(empty), DET(append(s,x)), DET(pair(sl ,s2)),
conc(s,empty) -* s,
conc(append(sl,x),s2) -* append(conc(sl,s2),x),
conc(sl,s2) -» s => split(s) -> pair(sl,s2)

end

SPLIT is DET-complete and DET-additive, the conditional axiom in
SPLIT is simple.

Below follows a deduction for
split(append(append(empty ,b) ,a))

pair(append(empty ,a) ,append(empty ,b)),
where a,b G Elem such that l-DET(a), l-DET(b):
(1) l-COND DET(empty) (AXIOM-2)
(2) l-COND DET(append(empty,a)) (AXIOM-2), (1)
(3) l-COND DET(append(empty,b)) (AXIOM-2), (1)
(4) l-COND DET(append(append(empty ,b) ,a)) (AXIOM-2), (3)
(5) l-COND conc(empty,append(empty,b)) -»· append(empty,b)

(AXIOM-1), (3)
(6) l-COND append(conc(empty,append(empty,b)),a)

append(append(empty ,b) ,a) (CONG), (5)
(7) '-COND conc(append(empty,a),append(empty,b))

-* append(conc(empty ,append(empty ,b)) ,a)
(AXIOM-1), (1),(3)

(8) l-COND conc(append(empty,a),append(empty,b))
append(append(empty,b),a) (TRANS), (6), (7)

NONDETERMESflSTO SPECIFICATIONS AS A GENERAL FRAMEWORK 99

(9) I-COND split(append(append(empty,b),a))
-> pair(append(empty ,a) ,append(empty ,b))

(AXIOM-1-COND), (4), (2), (3), (8) 0

For the sake of simplicity, from now on the scope of this text is restricted again
to unconditional specifications only. However, all results can be transferred to
conditional axioms in a similar way as it was sketched above.

4.4 Algebraic Programming
Under the notion of "Algebraic Programming", we summarize a growing
collection of programming systems which try to integrate paradigms from term
rewriting, functional programming and logic programming. Typical examples of
such systems are SLOG ([Fribourg 85a]), BABEL ([Moreno, Rodriguez 88], or
ALF ([Hanus 90]). A common feature of these systems is the use of narrowing
as a mechanism for adapting the concept of a logical variable for functional
programs. In order to achieve an effective algorithm, these languages restrict the
syntactical form of the rewrite rules by a so-called constructor discipline.

In this section, we do not build up a direct relationship to one of the above-
mentioned languages. Instead, it is shown how a restriction to constructor
discipline can be combined with non-confluent rewriting. These so-called
constructor-based specifications are of particular interest for this study, since
they admit powerful mechanical checking of properties like DET-completeness
and DET-additivity. In the framework of constructor-based specifications, an
adaptation of the narrowing algorithm is studied, which forms the basis for
algebraic programming techniques. The narrowing mechanism is also used in a
later section for comparing nonconfluent rewriting with logic programming.

4,4.1 Constructor-Based Specifications

The so-called constructor-based specifications are of interest, because a large part
of specifications used in practice fits into this class. A first remark in this
direction was given in [Guttag 75], case studies with larger specifications also
demonstrate this fact. Examples of such cases studies are [Geser 86],
[Hussmann/ Rank 89], there are many others documented in the literature. The

100 NONDETERMINISTIC SPECIHCATIONS AS A GENERAL FRAMEWORK

approach taken here allows us to omit a number of restrictions which are
sometimes presupposed in the literature on algebraic programming: left-
linearity, non-overlapping property, confluence. Termination of all rewriting
sequences, however, is very useful (but not always necessary) for a successful
algorithmic treatment. Even for specifications which are not DET-complete
(constructor-complete, respectively), a sensible semantics can be given in this
framework.

The starting point of the definition is the observation that there is a close
relationship between DET-completeness and the notion of sufficient
completeness at is was coined in [Guttag 75]. An even closer relationship exists
between DET-completeness and the notion of constructor-completeness, as it
was defined in [Huet, Hullot 82]:

Let C C F be a subset of the function symbols of Σ = (S, F). Function
symbols in C are called constructors. An equational specification Τ =
(Σ, Ε) is called constructor-complete, iff:

V tEW(Z): 3 t 'EW^c) : t =E* f
where Σ ο =def(S,Q.

The notion of constructor-completeness can be easily adapted for nondeterminis­
tic specifications. For this purpose, the DET-axioms must be restricted in such a
way that they designate a set of (deterministic) constructor operations. In the
following, we assume that within Σ = (S, F) a subset CCF of constructors is
designated. As a notation, constructors are marked by the keyword cons (instead
of func) .

Note that nondeterministic constructors are excluded here. They are not necessary
in general, since in multi-algebras some kind of "constructor" for nondeterminis­
tic sets of values always is available (by the set-building operations).

Within a constructor-based specification, it is not necessary to give explicit
DET-axioms, i f all constructors are understood implicitly as deterministic. For
the inclusion rules, a particular syntactical shape is assumed (like in [Huet,
Hullot 82]) which guarantees that the term algebra of constructor terms is free.

The syntactical restriction described in the next definition has been shown to be
an acceptable compromise between an abstract description of a system and some
kind of efficiency. Rather complex specifications can be written down within

NONDETERMIMSTIC SPECIFICATIONS AS Α GENERAL FRAMEWORK 101

this restricted language. On the other hand, there exist experimental compilers
(for the case of a confluent rule set), which generate relatively efficient code from
such specifications, for instance [Geser, Hussmann, Mück 88], [Hanus 90].

Definition 4.13 (Constructor-Based Specification)

A specification Τ = (Σ, R), Σ = (S, F), where CCF is the set of
constructor operations, is called constructor-based, iff:

(1) A l l axioms in R are of the form
f (t i , . . . , t n) - * t

where fgC, MEW^c , X) for 1 <; i <; n.

(2) R does not contain DET-axioms. A l l models of Τ implicitly must
fulfil the following axioms:

DET(c(xi,...^n))
for all constructors cEC (where x j , x n are pairwise disjoint

variables). 0

Example 4.14

The specification DOUBLE' (example 2.3) can be written as a
constructor-based specification:

spec C_DOUBLE
sort Nat
cons zero: -» Nat, succ: Nat Nat
func add: Nat χ Nat -> Nat,

zero_or_one: Nat
double: Nat -» Nat,

axi oms
add(zero,x) ->x ,
double(x) -» add(x,x),

add(succ(x),y) -> succ(add(x,y)),

zero_or_one -» zero, zero_or_one -» succ(zero)

end

In a constructor-based specification, we have:
ΐ Ε λ ν (Σ ο , Χ) ο TI -DET(t) .

Therefore, a term can be tested for determinacy by a simple syntactical test.

102 NONDETERMINISTIC SPECIFICATIONS AS A GENERAL FRAMEWORK

From condition (1) it follows that the set of constructors is free, i.e.:
I - DET(tl) Λ I- t l - * t2 => t l = t2.

As a consequence of this fact, the deduction rules (DET-D) and (DET-R) are no
longer needed for derivations.

The property of DET-additivity is automatically given for constructor-based
specifications:

Corollary 4.15

Every constructor-based specification is DET-additive (with respect to
the implicit DET-axioms).

Proof: Consequence of theorem 2.11 and definition 4.13. ()

The test for DET-completeness is particularly simple for constructor-based
specifications. Well-known methods for testing constructor-completeness can be
adapted for this purpose.

Definition 4.16 (C-completeness)

A constructor-based specification Τ = (Σ , R) (Σ = (S, F)) with
constructors CQF is called C-complete, iff:

V [f: si χ ... χ s n s] e F\C:
V t i e W (Z c) s i , . . . , t n e W f f c) s n :

3 <f (t i ' , . . . , t n ') t> Ε R, σ G S U B S T f f c , X):
a (f (t i ' , . . . , t n ')) = f (t i , . . . , t n) ,

i.e. i ff for any function symbol all potential arguments (seen as tuples
of constructor terms) are covered by the argument pattern of some
axiom. ()

Algorithms for a test of C-completeness have been described for instance in
[Huet, Hullot 82], [Padawitz 83], [Kounalis 85].

In order to derive DET-completeness from C-completeness, an additional
property is needed, which ensures that for any term at least one rewriting
sequence terminates. The following specification, for instance:

N O N D E T E R M I N I S T I C S P E C I F I C A T I O N S A S A G E N E R A L F R A M E W O R K 103

spec NT
sort s
cons a: -» s, c: s -*· s
func f: -> s
axioms

f - c (f)
end

is constructor-based and C-complete, but it is not DET-complete.

Definition 4.17 (Termination)

Let -> be a reflexive and transitive relation on Σ-terms which forms a
semi-congruence with respect to to the term-building operations
(i . e . t - > f = » f (. . . , t , . . .) - f (. . . , t \ . . .)) .

A term t is called -»--terminal, iff there is no proper -^-descendant of f,
i.e.

V t ' G W (I) : t -» t' => t' - t.

The relation -* is called weakly terminating, iff for every term t there
is at least one terminal -^-descendant of t, i.e.

V t e W (I) : 5 t 'GW(I) : t t* Λ t' -^-terminal.

The relation -» is called (strongly) terminating, i f f for all tEW(Z):
There is no infinite sequence of terms (ti)iQ^j where

t to, tj -* t | + i and ti * t with i E N .

Strong termination implies weak termination. ()

For testing the strong termination of a term rewriting relation there exist a
number of powerful criteria (see [Huet, Oppen 80], [Dershowitz 87] for an
overview). Criteria for weak termination can be derived from these methods (by
considering subsets of the rewrite rules). In general, no algorithm can exist,
which decides the termination of an arbitrary term rewriting relation (even in the
restricted case of constructor-based specifications).

104 NONDETERM1MSTIC SPECIFICATIONS AS A GENERAL FRAMEWORK

Theorem 4.18

I f a constructor-based specification Τ is C-complete and i f the term
rewriting relation generated by Τ (with the calculus according to
definition 2.4) is weakly terminating, then Τ is DET-complete.

Proof:
Because of the weak termination property for every ground term t there
is a -»-terminal term t* such that Τ I-1 -> t ' .

For this term holds: t ' E W (I c) . I f otherwise there was a function
symbol from F\C contained in t ' , then there would exist also a subterm
of t' which has the form

f (U, . . . , t n)
with tjEW(Zc) for i E { l , . . . , n } . Because of the C-completeness then an
axiom could be applied to t \ in contradiction to the -»-terminality of
the term t ' . 0

For hierarchical constructor-based specifications, as they were defined in section
2.4, even the modularity properties can be easily checked by a syntactical
condition: Every constructor should be specified within the specification where
its target sort is introduced.

Theorem 4.19

Let Τ = (Σ, R) be a hierarchical specification with constructor basis C.
Let TO = (Σ0, R0), Σ0 = (SO, F0) be the primitive part of Τ with
constructor basis CO C F0.
If

V [c: si χ ... χ sn—*· s]EC: sESO =s> cECO ,

then Τ is sufficiently complete and hierarchy-consistent.

Proof:
Let t E W ^ c) s » sESO. By induction on the term structure of t, the
condition on the declaration of constructors yields ίΕ\¥(Σ0).
Let t, t 'EWffO), Τ I-1 -> t \ Because of definition 4.13 (1) no axiom
out of R\R0 can be applied to t. By induction on the derivation we have
T 0 l - t - > t \ 0

N O N D E T E R M I N I S T I C S P E C M C A T I O N S A S A G E N E R A L F R A M E W O R K 105

It is quite obvious, how the calculus for rewriting with DET (definition 2.4) can
be specialized to the case of constructor based specifications: The precondition of
determinacy can be tested just by the syntactical criterion whether a term is built
from the constructor symbols and variable symbols only.

Definition 4.20 (Constructor-Based Term Rewriting)

Given a specification Τ = (Σ,R) with constructor basis C, a special case
of the calculus from definition 2.4 is defined by:

(REFL), (TRANS), (CONG) as in definition 2.4

(AXIOM-1-C)

σΐ - * ar i f <1 - * r> Ε R, σ Ε S U B S T f f c , χ) .

Here Σ £ denotes the constructor-subsignature of Σ (Σς; = (S,C)).
Derivations within this calculus are denoted by the symbol l-c · 0

The following theorem establishes the connection between chapter 2 and the
above-mentioned calculus.

Theorem 4.21

In a specification Τ = (Σ, R) with constructor basis C, the following
proposition holds for t l , t2 Ε \Υ(Σ, Χ):

Τ I- t l t2 <*> Τ l-c t l -* t2.

Proof:
The "<="-case (soundness) is a consequence of the fact that l-c is a
special case of the calculus from definition 2.4 except of (AXIOM-1-
C). Wherever (AXIOM-1-C) is applied, the condition: V xEX: I -
D E T (Ö X) holds because of the implicit DET-axioms, therefore
(AXIOM-1-C) can be replaced by an application of the original
deduction rule (AXIOM-1).

"=>"-case (completeness):
The proof is conducted by induction on the derivation. The following
deduction rules can be excluded here: (DET-D) and (DET-R) (since no

106 NONDETERMINISTIC SPECIFICATIONS AS A GENERAL FRAMEWORK

rewrite rule can be applied to a pure constructor term, due to the form
of the left hand sides). This means that deductions for formulas of the
kind I- DET(t) can use only (DET-X) and (AXIOM-2). For both these
rules tEW(Ic, X) holds. Therefore all deductions for DET-formulas can
be omitted; applications of (AXIOM-1) can be replaced by (AXIOM-1-
C). The remaining deduction rules (REFL), (TRANS), and (CONG) are
common to both calculi. ()

Please note that this establishes a soundness result for constructor-based
rewriting, which holds independently of the C-completeness of the specification.
In fact, a specification which does not possess the property of C-completeness
can be given a reasonable semantics by regarding the missing cases as
"undefined". This idea is followed in more depth below in chapter 6 on partiality
in nondeterministic specifications. Chapter 6 below also contains a special
section on constructor-based specifications (section 6.3). Let us state the main
results from section 6.3 shortly in advance:

• There is a well-defined semantics for constructor-based specifications even
without the condition of C-completeness ("partial constructor-based
specifications").

• The appropriate deduction calculus for partial constructor-based
specifications coincides with the calculus of constructor-based rewriting
(definition 4.20). Soundness and weak completeness results hold.

• This leads to a sublanguage of nondeterministic specifications which does
not need any checks for DET-completeness and DET-additivity (DET-
completeness is avoided by partiality; DET-additivity is ensured by the
constructor discipline).

For the detailed machinery behind these results, see chapter 6. The results have
been reported already here, since they are useful for a comparison of constructor-
based nondeterministic specifications with algebraic and logic programming.

To summarize this section: Constructor-discipline can be easily integrated into
nondeterministic specifications. The resulting term rewriting calculus differs
from classical term rewriting (by the restriction to constructor matchings in a
rewrite step). However, this restriction is necessary to ensure soundness in the

N O N D E T E R M I N I S T I C S P E C I F I C A T I O N S A S A G E N E R A L F R A M E W O R K 107

nondeterministic case; and it additionally covers an elegant treatment of partiality
without any further modification of the calculus.

4.4.2. Narrowing without Confluence

The catch-word "narrowing" denotes an algorithm, which tries to solve a system
of equations within a theory described by equational axioms. A standard
assumption in this field of research is that the set of axioms form a confluent
and terminating term rewriting system. The idea of narrowing goes back to
[Slagle 74] and [Lankford 75], a first formulation of the algorithm is due to [Fay
79]. Like most literature on narrowing, the exposition given here is based on the
description in [Hullot 80].

It is interesting that the narrowing relation (even for a confluent term rewriting
system) may be non-confluent. This leads to the idea to use implementations of
narrowing to get machine support for nonconfluent term rewriting. See chapter 5
on more details about this approach. Another important observation is that the
correctness and completeness proofs for narrowing do not make any use of the
confluence property of a term rewriting system. This means that narrowing can
be carried over to non-confluent rewriting systems, at least for those cases,
where the rewriting relation is sufficiently similar to the classical case. Below,
we study narrowing in the framework of (partial) constructor-based nondeter­
ministic specifications.

Narrowing adds to term rewriting systems an algorithm similar to Prolog's
resolution method which computes an answer substitution for queries. Given a
constructor-based term rewrite system, a query consists again of inclusion rules
of the form:

t l -> t2,
where free variables can occur in t l and t2. (More complex queries consisting of
a sequence of such rules are omitted here, they can be treated analoguously.) The
algorithm now has to look for constructor-substitutions σ such that

R 1= a t l -> oil.
Such a substitution is called a solution. A good algorithm should be able to
enumerate all such solutions. In order to use the rewriting techniques developed
above, the narrowing method tries to find instead a constructor-substitution σ
such that

R l-c a t l -* Gt2.

108 NONDETERMINISTIC SPECIFICATIONS AS A GENERAL FRAMEWORK

The connection to actual solutions then is given by soundness and completeness
of constructor-based term rewriting. Since there is only a weak completeness
result available for rewriting, we can only expect narrowing to be weakly
complete (that is for t2 being a constructor term).

In fact, the narrowing process is very tightly coupled with rewriting. It uses a
relation which can be deduced in a similar way to the rewriting relation.
Basically, the matching process in the rewriting algorithm is replaced by
syntactical unification; and out of the unification process a partial approximation
to the answer substitution is computed and stored. Rewriting sequences can be
"lifted" into narrowing sequences, without any regard to confluence or
termination assumptions.

For describing the narrowing process, a new kind of formula is used:

Definition 4.22 (Narrowing Rule)

A narrowing rule is a triple consisting of two terms t l , t2EW(Z, X) of
the same sort and a substitution aESUBST(Ic, X); it is denoted by

Definition 4.23 (Narrowing)

A narrowing rule t l - Ν - » σ t2 is called deducible using a constructor-
based rewrite system R (denoted by R I - t l -/V-»<j t2) i f f there is a
deduction for t l -N-*o *2 according to the following deduction system:

t l -N^o t2. 0

(REFL-N) i f t e w (i , x)

t - t f - n t

(TRANS-N) t l t2, t2 ~N^X t3

tl Ö
i f t l , t 2 , t 3 E W (Z , X) ,
a ,xESUBST (Zc ,X)

(CONG-N)
t i -W-cjt i '

f (t i , t j . i , t i , t i + i , t n) -N^o
f (o t i , . . . , a t i _ i , t i \ a t i + i , . . . , o t n)

N O N D E T E R M I N I S T I C S P E C I F I C A T I O N S A S A G E N E R A L F R A M E W O R K 109

i f f Ε F with rank f: si χ ... χ s n -* s, tj Ε W(Z, X) s j ,
t i ' Ε W(Z, X)si, σ Ε SUBST(Ic, X)

(AXIOM-N)
t -N-^a apr

i f t Ε W (I , X) , t Ε X , <1 ^ r> Ε R,
ρ is a renaming such that Vars(p)nVars(t) = 0 ,
σ Ε SUBST(Ic, X) where σ is a mgu of t and pi . 0

This calculus formally defines the notion of narrowing and is consistent with the
usual definitions. The only difference to the standard notion is that narrowing is
restricted here to the generation of constructor-substitutions. Thus an
implementation enumerating all derivations within this calculus can be gained
from a classical narrowing implementation by a small modification. For
constructor-based systems, the calculus describes only innermost narrowing
steps. Moreover, for C-complete systems, the calculus coincides exactly with
innermost narrowing, as it has been defined for instance in [Fribourg 85].

Example 4.24

Consider the following specification of sequences over an arbitrary data
sort (we do not give any function symbols for this sort here), together
with a "choice" operation:

spec SC
sor t Data,Seq
cons empty: Seq, insert: Set χ Data -» Seq
func choose: Seq -> Data
ax ioms

choose(insert(s,x)) -> x,
choose(insert(s,x)) -> choose(s)

end

Please note that this is a partial constructor-based specification; it treats
choose(empty) as undefined.

We have for instance the following narrowing derivations starting from
the term

110 NONDETERMINISTIC SPECMCATIONS AS A GENERAL FRAMEWORK

choose(U)
(The variable U is a free variable to be considered as "unknown" in a
query.)
I- choose(U) -W-*<j χ where σ (U) = insert(s,x)
I- choose(U) -N-^i y wheret(U) = insert(insert(s,y),x). ()

Correctness of the narrowing method above means that all narrowing sequences
are just "liftings" of rewrite sequences.

Lemma 4.25

Let Τ = (Σ, R) be a constructor-based specification, t l , t2EW(Z, X) ,
o G S U B S T f f c , X) such that

Τ I- t l -/ν-* σ t2.

Then the following rewriting derivation exists:
Τ l-c ö t l -> t2.

Proof: By induction on the length of the derivation for I- t l -N-*0 tl. ()

The following (rather technical) lemma shows that narrowing as defined above
describes all "liftings" of a sequence of rewriting steps. This means, i f there is a
solution to a query (in the sense mentioned above), then it can be found with the
narrowing method.

Lemma 4.26

Let Τ = (Σ, R) be a constructor-based specification, t l , ί2Ε\¥(Σ, X) ,
VCX a set of "protected variables" with Vars[tl]CV, a G S U B S T f f c ,
X) such that Dom[a]CV and

Τ l-c a t l t2.
Then there are substitutions λ, a 'GSUBST^c, X) , a term t 2 ' E W ^ ,
X) and a set of Variables V with VCV'CX such that:

Τ I- t l -^ -» σ > t2' and

(i) Vars[t2']CV Λ Dom[X]CV Λ Vars[ö ']CV\
(ii) σ =[γ] λ σ ' , and

(iii) Ι2 = λΐ2\

NONDETERMINISTIC SPECIFICATIONS AS A GENERAL FRAMEWORK 111

Proof :
The proof of this lemma (and the lemma itself) follows closely the
ideas of [Hullot 80], which are described more extensively for instance
in [Snyder 91].
For the details of the proof see appendix A. ()

In order to get an algorithm for solving queries, liftings of rewriting sequences
are enumerated in such a way that a special case of every solution is reached. As
it was remarked above, the weak completeness result entails that this works only
well for queries t l -»· t2, where q is a constructor term. The algorithm for
solving a query is then very similar to the classical narrowing algorithm: Its
main part is an enumeration of all possible narrowing sequences starting from
the left hand side of the query:

Algor i thm 4.27 (Sketch)
Input: R (a constructor-based rewrite system), <tl - * t2> (a query)
Output: all possible solutions for the query
Me thod :
Search for all terms t2' and substitutions τ such that R I- t l -Ν-*χ XT
holds.
For all such terms and substitutions do:

I f the term t2' is unifiable with the term t t2 (with mgu. μ),
then output μτ as a solution. 0

Note that a classical implementation of narrowing exactly performs the required
algorithm, i f the query is reformulated as " t l = t2". I f t2 is a constructor term,
no narrowing steps can take place within it . So the only way to solve the
equation is by narrowing steps on t l and by unification of the left and right hand
sides of the query.

Example 4.28

Given the specification SC from example 4.24 and the query
choose(U) -» zero , the algorithm above wil l compute the following
solutions:

[insert(s,zero) / U]
[insert(insert(s,zero),x) / U]
[insert(insert(insert(s,zero),x),y) / U]

and many other solutions (in fact an infinite enumeration). ()

112 NONDETERMINISTIC SPECIFICATIONS AS Α GENERAL FRAMEWORK

The correctness of the algorithm is an easy consequence of lemma 4.25, the
completeness of the algorithm is formulated by the following theorem:

Theorem 4.29

Let Τ = (Σ, R) be a constructor-based specification, Q = [t l -> t2] a
given query where t2EWffc, X) .
I f a substitution Ö E S U B S T ^ C , X) is a solution of Q , then there are
substitutions λ , a ' E S U B S T ^ c , X) such that σ ' is computed by
algorithm 4.27 and σ =[V] λ σ ' , where V =d e f Vars[tl]UVars[t2].

σ is a solution of Q (aESUBST^c, X))
R 1= o t l -> σι2
R l-c a t l -* ot2 (Thms. 4.21, 2.6)
R I- t l t 2 \ σ =[V] λ ' τ and oil = X't2'

(Lemma 4.26)
R I- t l - Λ ^ χ t2' and X'xtl = λ ' ι 2 ' (Vars[t2]CV)
R I- t l -Ν-** tT and t2' is unifiable with t t2

(let μ be the mgu.)
The algorithm considers t2' and τ and computes the solution
σ ' = μτ where λ ' = λμ
σ =[V] λ ' τ = λμτ = λ σ ' . φ

To summarize, the concept of narrowing can be adapted for constructor-based
nondeterministic specifications. Since the calculus of constructor-based term
rewriting is sound and weakly complete for partial constructor-based
specifications as well, also narrowing can be carried over to this special
sublanguage.

The main advantages of partial constructor-based specifications are the presence
of relatively powerful deduction techniques and the absence of any other than
purely syntactical conditions - just the syntactic shape of constructor-based left
hand sides of the axioms is sufficient. This interesting language has already been
studied and used in a diffreent syntactical shape, within the framework of logic
programming. The next section wil l show that we have reached now essentially
a functional reformulation of classical logic programming.

Proof:

N O N D E T E R M I N I S M S P E C I F I C A T I O N S A S A G E N E R A L F R A M E W O R K 113

4.5 Logic Programming
Logic Programming is a very successful paradigm of programming, in particular
in applications of symbolic computation. The language Prolog is the most
famous representative of logic programming. For our purposes, we wi l l restrict
ourselves to a small kernel of "pure Prolog" below.

The idea of logic programming is to use a purely logical framework for
programming. This leads to an approach which can be located in between a true
programming language and a specification language, sometimes also called
"declarative programming". Logic programming to a large extent has been
developed independently of the research in algebraic specification and term
rewriting; for an overview of the theoretical background see [Lloyd 84]. However
there exist very close relationships between these different worlds, which have
been described for instance by [Deransart 83] and [Bosco et al. 88]. In this
section, we wil l show a one-to-one correspondence between partial constructor-
based nondeterministic specifications and classical definite logic programs. The
results about narrowing in the nondeterministic framework above are needed
here, as a functional equivalent to the concepts of logical variables and queries in
logic programming.

The following definition summarizes a few of the most basic concepts of logic
programming, which are needed for this section.

Definition 4.30 (Logic Program, SLD-Resolution)

A (definite) logic program is built from terms over a signature Σ which
contains two sorts, which are called here Data and Bool. There are only
two kinds of operation symbols allowed: The predicate symbols and the
function symbols, which are called constructors here. A predicate
symbol ρ of arity η has the functionality

p: Data χ ... χ Data -> Bool,
a constructor c has the functionality

c: Data χ ... χ Data -*> Data.
The terms of sort Bool (W (I , X)ßool) a r e called atoms.
A logic program consists of a finite set of program clauses, which are
formulae of the shape

H : - or H : - B i , . . . , B n

114 N O N D E T E R M I N I S M S P E C I F I C A T I O N S A S A G E N E R A L F R A M E W O R K

where H , B\, B n are atoms. Η is called the head of the program
clause, the (possibly empty) sequence Β ι , . . . , B n is called its body.
A query is a nonempty sequence of atoms:

:- C i , C n

where C i , . . . , C n are atoms.

A goal is a (possibly empty) sequence of atoms together with a
substitution aGSUBST(I, X) , it is here written as

C ι , . . . , C n where σ
The empty sequence of atoms in a goal is denoted as [] .
Given a program, a goal can be transformed into another goal by the
following (SLD-)resolution rule:

(RES) A i , A m , Afc where σ

ΘΑ ι , . . . , 9 A m - 1 , ΘΒ ι , . . . , Θ Β φ 0 A m + 1 , . . . , 0Ak where θσ

if <A :- Β ι , . . . , Bq> is a program clause,
θ is a mgu of A and A m .

Remarks: This rule also can be used to replace an atom by an empty
body, which shortens the goal. We did omit the technicalities of
creating a variant of a program clause, which can be treated by applying
a renaming (like in the narrowing calculus).

Given a query Q, a substitution σ is called an answer, iff, using this
calculus

Q where ι I- [] where σ
can be deduced. ()

4.5.1. Narrowing Simulates Logic Programming

As a first interesting correspondence, we wil l show that logic programming (in
the simplistic sense of definition 4.30) can be simulated by narrowing. We use
the framework developed above; however, the given simulation is independent of
the extension to nondeterminism.

The idea is simply to encode a logic program as a set of rewrite rules working
on the sort Bool. The "comma" operator is replaced by a logical "and".

N O M 3 E T E R M I N I S T I C S P E C M C A T I O N S A S A G E N E R A L F R A M E W O R K 1 1 5

Definition 4.31 (Translation of Logic Program)

Given a logic program P, a partial constructor-based specification Γ(Ρ)
is associated to P, which is defined as follows.

The signature of Γ(Ρ) consists of the sorts
sort Data, Bool
and the function symbols
cons true, false: -* Bool,

c: Data χ ... χ Data Bool
func and: Bool χ Bool -» Bool,

p: Data χ ... χ Data -> Bool

The axioms of Γ(Ρ) are the following:
and(true,true) true,
and(false,x) false,
and(x,false) —> false,
H^and(Bi ,and(. . . , B n))

for every program clause < Η :- Β ι , . . . , B n >,
Η -> true for every program clause < H:- >.

A query Q = :- <Ci , . . . , Cn> is translated into

r(Q)=defand(Ci,and(...,C n)).
This is extended to empty sequences of atoms by

r([])=deftrue. 0

Example 4.32

The following logic program is used to reverse lists. In difference to
standard Prolog notation, we use the functions empty and cons to
construct lists:

empty: -> Data, cons: Data χ Data -> Data.
The program clauses are:

rev(L,R):- rev 1 (L,empty,R)
rev 1 (empty ,R JR.)
revl(cons(H,T),M,R):- revl(T,cons(HM),R).

The corresponding specification is:

for every constructor c in P,

for every predicate ρ in P.

116 NONDETERMINISTIC SPECIFICATIONS AS A GENERAL FRAMEWORK

spec R E V
sort Data, Bool
cons true, false: -> Bool,

empty: -> Data, cons: Data χ Data Data,
func and: Bool χ Bool -» Bool,

rev: Data χ Data -» Bool,
revl: Data χ Data χ Data -> Bool,

axioms
and(true,true) true,
and(false,x) -> false,
and(x,false) -> false,
rev(LJR.) -> rev 1 (L,empty ,R),
revl (empty ,R,R) -> true,
revl(cons(H,T),M,R) revl(T,cons(HJvl),R)

end

Please note that this specification is truly partial: E .g. the term
rev 1 (empty ,empty ,cons(1,2))

cannot be reduced to a Boolean constructor term. {)

The following lemma makes the obvious relationship between resolution in Ρ
and narrowing in Γ(Ρ) explicit.

A purely technical remark: The lemma needs a more flexible use of the operator
Γ, which transforms a sequence of atoms into a nested and-term. For the
purposes of the proof, we consider such translations only modulo associativity
of "and". Please note that this associativity is not added as an axiom to the
specification Γ(Ρ), but is kept implicit within the proof. This is possible, since
the structure of the and-term does not play any role in the narrowing
computation; it is destroyed as soon as all the literals within it have been
narrowed into "true".

Lemma 4.33

Let Ρ be a definite logic program, Γ(Ρ) the associated specification.
Then for any deduction by resolution from Ρ holds:
If Q where σ I- Q' where θ σ
then Γ(Ρ) I- T(Q) W-*0 HQ ') .

NONDETERMINISTIC SPECULATIONS AS Α GENERAL FRAMEWORK 117

Proof:
For the case, where (RES) is applied, let Q = < A i , . . . , A m , . . . , Afc>.
Then T(Q) = and(Ai ,and(..., and(Am , . . . Ak)))«
According to (RES) there are a program clause < A :- Β ι , . . . , Bq> and a
most general unifier θ of A and A m .
In T(Q) there is an axiom <A -> and(Bi,and(Bq))>. Using
(AXIOM-N),we have

Γ (Ρ) I- A m -N-*Q and(0Bι ,and(..., 9B q)).

Using (CONG-N) several times, we get
Γ (Ρ) I - and(Ai ,and(..., and(Am , . . . A k »)
and(0Ai ,and(..., and(and(8Bι,and(..., 9B q)), . . .Mk)))>

which modulo associativity of "and" means
Γ (Ρ) l - r (Q) ^ e r (Q ') .

There are two other cases to consider, which are implicitly contained in
the resolution calculus (since it is described as a deduction system).
They correspond to the reflexive and transitive closure. In fact this
means a proof by induction on the length of the derivation.
The "reflexive" case (induction basis) is

Q where σ I - Q where , i.e. Q' = Q, θ = t.
Using (REFL-N), we get

Γ(Ρ) l - r (Q) W - L r (Q) .

The "transitive" case (induction step) is
Q where σ I - Q" where θ ' σ I - Q'where θ " θ ' σ ,

i.e.e = 0 " 6 \
By induction hypothesis, we have

r(P) ι- r (Q) -N-*Q> r (Q -) , Γ (Ρ) I - r (Q ") - Λ Η 3 » r « n .

Using (TRANS-N), we get
r (P) l - r (Q) ^ > 9 " r (Q ') . φ

Theorem 4.34

Given a definite logic program Ρ and a query Q, any answer
substitution σ , which is computed by SLD-resolution, is also a
solution to the query r(Q)->true in the specification Γ(Ρ), and σ is
computed by the narrowing algorithm 4.27.

Proof:
I f σ is an answer to Q in the logic program P, there is a deduction

118 NONDETERMINISTIC SPECIFICATIONS AS A GENERAL FRAMEWORK

Q where ι I - [] where σ
Using lemma 4.34, then

Γ(Ρ) I- T(Q) -/V— σ Γ([]), and therefore
Γ(Ρ) I - T(Q) -N^a true.

This means that algorithm 4.27 wi l l consider the subsitution σ, when
working on the input <T(Q) -» true>. Since true is trivially unifiable
with true using i , the substitution σ wil l be output as a solution. ()

Example 4.35

Consider the logic program from example 4.32. Using SLD-resolution,
the query

:- rev(X,cons(l,cons(2,empty)))
is treated as follows (we show here only the relevant parts of the
where-terms):

rev(X,cons(l,cons(2,empty))) where ι
I- revl(X,empty,cons(l ,cons(2,empty))) where ι
I- rev 1 (T1 ,cons(H 1 ,empty) ,cons(1 ,cons(2 ,empty)))

where [cons(Hl,Tl)/X]
I- revl(T2,cons(H2,cons(Hl ,empty)),cons(l ,cons(2, empty)))

where [cons(Hl,cons(H2,T2))/X]
I- [] where [cons(2,cons(l ,T2))/X].

The corresponding narrowing sequences are:
rev(X,cons(l ,cons(2,empty)))

•N-*i rev 1(X,empty ,cons(l ,cons(2,empty)))

-A^[cons(Hl,Tl)/X]
rev 1 (Τ 1 ,cons(H 1 ,empty) ,cons(1 ,cons(2 ,empty)))

-A^[cons(H2,T2)/X]
revl(T2,cons(H2,cons(Hl ,empty)),cons(l ,cons(2,empty)))

-A^[2/H1,1/H2] true. φ

The theorem and the example show that SLD-resolution can be simulated by
constructor-based narrowing in all operational details. Even the apparent
difference that SLD-resolution has a more direct representation of the solution
(as in the example above), comes only from different representation in the
respectively calculi. Any implementation of narrowing wil l keep an analoguous
"where-part", as it was shown above for SLD-resolution.

N O N D E T E R M I N I S T C S P E C I F I C A T I O N S A S Α G E N E R A L F R A M E W O R K 119

To summarize, SLD-resolution can be simulated by constructor-based
narrowing. The translation has been proven sound for definite programs, but the
possibility to specify also the result "false" for a predicate gives access to a
simulation of the more general "normal programs" (in the sense of [Lloyd 84]).
The next section shows that also SLD-resolution can be used to simulate
constructor-based narrowing. Altogether this means that both mechanisms are
essentially equivalent.

4.5.2. Logic Programming Simulates Narrowing

In this section another close correspondence between narrowing within
constructor-based specifications and logic programming is studied. A technique
is described which simulates the narrowing calculus from above using SLD-
resolution. This can be used to construct a simple implementation of narrowing
for nondeterministic specifications, in the partial constructor-based subcase.

The basic idea is here to translate every non-constructor operation into a
predicate symbol. Nested occurrences of non-constructors are "flattened", using
auxiliary variables, in order to achieve the syntactical form of definite Horn
clauses. This technique has been studied in several variations. A good overview
using a rather general approach can be found in [Bosco et al. 88]. The first usage
of the technique was, according to this paper, in [Brand 74]. In the framework of
logic programming with equality, the flattening technique has been studied in
[Deransart 83], [Tamaki 84], [Barbuti et al. 85], [van Emden, Yukawa 87], and
others.

Below the technique is sketched in a variant which is tailored to the particular
subcase which is of interest here.

Def in i t ion 4.36 (Flattening)

Given a constructor-based specification Τ = (Σ, R), Σ = (S, F), where
CCF is the set of constructor operations, the flattened signature Φ(Σ) is
defined as

Φ(Σ) = (SU{Bool}, CU{0(f) I fEF\C}),
where for [f: s i χ ... s n s]EF:

Φ(ί) = [f: si χ ... s n χ s-» Bool].

120 NOMDETERMINISTIC SPECMCATIONS AS Α GENERAL FRAMEWORK

Terms from \ ν (Φ (Σ) , X) can be used to construct atoms of a logic
program.
The flattening of a term gives a constructor term together with a
sequence of atoms:

Φ : W(Z, X) W (I C , X) x (\ ν (Φ (Σ) , X))*,

Φ [χ] = (χ , ε) i f x E X ,
<£[f(U ,... , t n)] = (f (c i . . , c n) , Β ι · . . . · Β η) i f f e e ,
0 [f (t l , . . , t n)] = (z , f (c i , . . . £ η , ζ) ·Βι· . . . · Β η) i f fEF\C,

where (q , B i) = Φ[ίί] (i = 1,..., n), zEX a "fresh" variable..
Using these operations, a logic program Φ (Τ) can be derived from the
specification, i f all sorts except of Bool are identified with Data, the
predicate and constructor symbols are taken from Φ (Σ) , and every
axiom <l^r>ER is transformed into a program clause Φ[1 -»Γ] according
to:

Off(ci , . . . ,c n)-*r] = <f(ci,... ,c n ,c):- B>,

where (c , B) = Φ [Γ] . 0

Example 4.37

The logic program Φ (0 _ ϋ θ υ Β Ε Ε) associated to the constructor-based

version of the "double"-specification (see example 4.14) is:

add(zeropc^)
add(succ(x),y^ucc(z])):- add(x,y^i)

double(x^2) :~ add(x,x,z2)
zero_or_one(zero) :-
zero_or_one(succ(zero)):-.

The deduction of
double(zero_or_one) -> succ(succ(zero))

from example 2.5 can now be transformed into a resolution sequence
within the logic program. We indicate the corresponding lines from
example 2.7 in a separate column on the right side.

:- double(z3,X), zero_or_one(z3)

: - double(succ(zero) X) (9)
:- add(succ(zero),succ(zero),X) (7)
:- add(zero^ucc(zero)^3) where [succ(z3)/X] (3)

:- [] where [succ(succ(zero))/X] (4)
However, there are also various other deductions admitted by the logic
program. The standard strategy of a Prolog system would lead to:

N O N D E T E R M I N I S T I C S P E C I F I C A T I O N S A S A G E N E R A L F R A M E W O R K 1 2 1

:- double(z4,X), zero_or_one(z4)
:- add(z4,z4,X), zero_or_one(z4)

:- add(z5,succ(z5)^6), zero_or_one(succ(z5)) where [succ(z6)/X]

:- zero_or_one(succ(zero)) where [succ(succ(zero))/X]

>[] 0
It is an interesting observation that logic programming can expand the definition
of double first, before expanding the definition of zero_or_one. This effect is due
to the use of auxiliary variables, which lead to "structure sharing". For instance,
the intermediate goal

:- add(z4,z4,X), zero_or_one(z4)
cannot be represented within a term rewriting framework, since it involves a
"sharing" of the result of zero_or_one. See section 5.2 for another aproach to
structure sharing.

The soundness of the translation with respect to the intended semantics is almost
obvious. To show the soundness, we adapt the interpretation of Horn clauses
from logic programming (for instance :- is interpreted as reverse implication).

Theorem 4.38

Given a constructor-based specification Τ = (Σ, R) and a model
AEPMod(T) 1 , let the interpretation of a predicate symbol <E>(f) (for
fEF) be defined by

0 (f) A (e i , . . . , e n , e) e Ε f A (e i , . . . , e n)

(where e i , . . . , e n , e are elements out of the respective carrier sets).

Then the axioms of Φ(Τ) are logically valid within A, i.e. A 1= O(R).

Proof :
I f the interpretation of a pair (c, Β ι · . . . · Β η) , as it appears in the

definition of Φ, is defined by

Ifl[(c,Βι·...·Β η)] = { e Ε l £ [c] I ΐ£[Βι] Λ ... Λ l £ [B n] } ,

1 PMod(T) denotes the class of models of Τ which admits partial and strict
functions as interpretations of the functions. For a precise definition of PMod(T)
see chapter 6 below.

122 N O N D E T E R M I N I S T O S P E O H C A T I O N S A S Α G E N E R A L F R A M E W O R K

then by induction on the structure of t, for an environment β the
following can be shown:

Ιβ[ΦΜ]=ΙβΜ.

For an inclusion rule < f (c i , c n) - > r > in R, and (c, Β) = Φ [Γ] , this

means

e Ε Iß [r] e Ε I ß [Φ [Γ]] ^ e Ε Iß[c] Λ Iß[B] (*)

Since A is a model of T, we have

(V e : e E I ß [r] = > e E I ß [f (c i , . . . , c n)])

Therefore, using (*)

(Ve: e Ε Iß [c] Λ Iß [Β] Λ ej Ε Iß fa] => e Ε f A (e i , . . . ,en))

which implies (due to the definition of Φ (ί) Α)

(Ve: Iß[B]=>Iß[O(0(ci , . . . ,c n ,c)]]) .

This last line is exactly the semantical meaning of O[f(ci,...,c n)-*r].0

The completeness of the implementation of narrowing by flattened SLD-
resolution can be shown directly in terms of the deductions (as the first
derivation in the example above indicates). Detailed proofs for this can be found
in the literature. The following lemma shows the idea for such a proof, adapted
to the special case studied here.

Lemma 4.39

Under the preconditions of definition 4.36, let t l , t 2 E W (I , X) ,
0ESUBST(I, X) . Let the flattenings of t l and t2 be given by Φ[ί\] =
(c l , B l) , 0 (t 2) = (c2,B2).
Then the following implication connects derivations in Τ and Φ (Τ) :

Τ I - t l - J V - * 0 t2

V Ö E S U B S T (Z , X) : B l where σ I- B2 where θ ' σ
where O'ESUBSTff, X) such that 6 'cl = c2, θ' = θ υ λ , and ϋοπι[λ]
contains only the variables introduced during the flattening of t l .

NONDETERMINISTIC SPECIFICATIONS AS Α GENERAL FRAMEWORK 123

Proof: See appendix Α. φ

Lemma 4.39 provides the main argument for the following theorem, which
shows the close correspondence between constructor-based narrowing and SLD-
resolution.

Theorem 4.40

Let Τ = (Σ, R) be a constructor-based specification, Q = [t l -> t2] a
given query where t 2 E W ^ £ , X).
Every solution aESUBST^c , X) , which is computed by algorithm

4.27, is an answer of the logic program
0(T)U{ eq (X ,X) : -}

(where eq is a predicate symbol not used in Φ(Τ))
to the query

:- eq(cl ,t2)*Bl where (c l , B l) = 0 [t l] .

Proof:
I f σ is computed by the algorithm, there is a term t2' such that Τ I- t l
-Ν-*ϊ t2 ' , σ = μσ and μ is a mgu. of τ t2 and t2'. Since t2' must be a
constructor term, Φ[ι2'] = (t2 \ ε). Using lemma 4.39, in Φ(Τ) exists
the resolution sequence B l where σ I- [] where τ ' σ . This means for
the query from above:

eq(cl,t2) eBl where ι I- eq(x'cl,T't2) whereτ'
According to lemma 4.39, x ' c l = t2' and x\2 = τ t2. So we have

eq(cl,t2>Bl where ι
I- eq(t2\xt2) where τ '
I- [] where μτ '

(using (RES) on the program clause for eq).
This means that σ is an answer substitution. 0

As an example for an implementation of non-confluent rewriting on top of
Prolog, see the LOG(F) system [Narain 88].

This completes the comparison between algebraic programming in nondeter-
ministic specifications and logic programming. An almost one-to-one
correspondence could be found in the subcase of partial constructor-based
specifications.

124 NONDETERMINISTIC SPECIFICATIONS AS Α GENERAL FRAMEWORK

From the logic programming viewpoint, this result can be understood as a way
to subsume an important subcase of nondeterministic specifications. However, it
should be kept in mind that the general case of nondeterministic specifications
(and in particular partial ones, as studied below in chapter 6) provides a richer
language than the simple sublanguage which can be translated to Prolog. For
instance, it admits the definition of a deterministic basis which is different from
a true subsignature, also reductions (equations) between terms of the
deterministic basis are legal in the general case.

From the algebraic specification viewpoint, the result above leads to a simple
implementation of deductions within nondeterministic specifications, for the
above-mentioned sublanguage. The task of computing for a ground term t l all
ground constructor terms which fulfil Τ 1= t l -> t2, is accomplished by the
query [t l X] , where X is a "fresh" variable. However, in the Prolog
implementation it is not easy to take advantage of the situation, where a subpart
of a specification is given using a canonical system of rules. In term rewriting
(and narrowing) implementations, it is easy to normalize intermediate terms and
goals using a canonical subsystem (see lemma 5.10 below). As an alternative,
the techniques described in [Cheong, Fribourg 91] are interesting, where
"simplification" of intermediate goals in logic programming is studied.

Chapter 5

Implementation and
Examples

For the practical use of a specification language, algorithmic support is
essential. Software tools can be used for instance to test a given specification
against informal requirements, to generate test data for an implementation, or to
generate (semi-)automatically formal proofs for propositions over a
specification. Below it is shown that existing tools for term rewriting can be
used for experiments with nondeterministic specifications.

5.1 Term Rewriting
Most of the currently available interpreters for algebraic specifications provide an
algorithm which reduces a term to normal form. In the following it is explained,
how such algorithms can be generalized to non-confluent rewriting systems. It
wi l l turn out that there are basically two ways to do so: Using classical term
rewriting with a particular strategy, or using graph rewriting techniques.

The question which has to be answered by a reduction algorithm is, for given
ground terms t l and t2, whether

Τ 1= t l t2.
As it was shown above in section 2.2, a complete deduction system for this task
can be constructed only using semi-formal rules (for instance breadth-induction)
or by a conditional calculus in the sense of [Walicki 92/92]. So we restrict our
attention here to the case where a simple rewriting-like calculus has been shown

126 I M P L E M E N T A T O N A N D E X A M P L E S

to be sound and complete. This is the case for Τ I- DET(t2). Together with the
weak completeness result, we are looking for ground terms t2 such that

Τ I- t l t2 where Τ I- DET(t2).

The calculus under discussion has been defined in definition 2.4 and is quite
similar to term rewriting, except of one important point (which is necessary to
achieve soundness in the nondeterministic case). The only difference between the
classical term rewriting calculus and the calculus of definition 2.4 comes from
the use of the DET-predicate and the corresponding deduction rules (DET-X,
DET-D, DET-R, AXIOM-1 , AXIOM-2). The deduction rules (DET-X), (DET-
D), (DET-R) and (AXIOM-2) serve only for deducing DET-axioms, so the main
difference is in (AXIOM-1), where a rewrite rule can be applied only i f for all
terms of the matching substitution determinacy has been proven (using the
DET-predicate). The classical term rewriting mechanism must be modified in
such a way that it respects this built-in restriction for substituting only
determinate terms.

A first idea for avoiding the "built-in" predicate DET can be found in the
analoguous situation for partial equational specifications (using a DEF-
predicate). [Broy, Pair, Wirsing 84] propose to simulate the DEF-predicate by an
operation with a Boolean result. Unfortunately, this technique cannot be
transferred to inclusion rules and the DET-predicate. For instance, consider the
following axioms:

DET_OP(a) true, DET_OP(b) true, f -> a, f b.
In such a framework, with the rules (CONG) and (TRANS) the formula

I- DET_OP(f) true
can be deduced, which obviously is not always correct.

5.1.1 Innermost Rewriting

A better suited approach for a number of cases is the innermost-strategy for
replacement which is well known from the operational semantics of applicative
programming languages. Innermost-replacement means to apply a rewrite rule to
a term t only, i f no axiom can be applied to any subterm of t. [O'Donnell 77]
explains that innermost-rewriting corresponds to a "call-by-value" semantics (cf.
also [Bauer, Wössner 81]). Similarly, innermost-rewriting is appropriate for the
"call-time-choice"-semantics, which is under consideration here. I f the
specification Τ is DET-complete, then for every ground term t the following

I M P L E M E N T Α Ή Ο Ν A N D E X A M P L E S 127

inclusion holds:
No axiom can be applied to any subterm of t 1 => Τ I- DET(t).

This means soundness of innermost rewriting with respect to definition 2.4.
This idea is followed now in detail.

In the theory of term rewriting the following notions are known [O'Donnell 77]:

Defini t ion 5.1 (Redex)

Let R be a term rewriting system.
An occurrence uEOccft] within a term t is called a redex, iff there exists
an axiom <1 -» r>ER and a substitution aESUBST(2, X) such that t/u
= σΐ. A redex uEOcc[t] is called innermost, iff there is no further redex
located in t below u, i.e. i f f for all vEN*, ν*ε:

u evEOcc[t] => u ev is not a redex in t.
A term rewriting step t l - > R t2 is called innermost, i f f an axiom of R
is applied at an innermost redex in t l . The restriction of the term
rewriting relation to innermost rewriting is denoted by " ^ j ^ 1 , its

im*
transitive closure by , respectively. ()

The relationship between innermost rewriting and nondeterministic rewriting
over a deterministic basis can be made more precise (for ground terms) as
follows.

Theorem 5.2

Let Τ = (Σ, R) be a DET-complete specification. Then for all t l , t2 Ε
λ¥(Σ):

t l - * ™ * t2 => Τ I- t l -* t2.

Proof :
As it was already mentioned, for every -^-terminal term t we have Τ I -
DET(t). (Because of DET-completeness, there must be a t' such that Τ
I-1 -» t ' and I - DET(t'). Since t is terminal, the only possibility for
this is the case using (REFL), where t = t'.)

Such terms have been called terminal wrt. -» above in definition 4.17.

128 IMPLEMENTΑΠΟΝ AND EXAMPLES

In an innermost rewriting step using the matching substitution σ, the
terms σχ are terminal. Therefore Τ I - DET(ax), which fulfils the
additional condition of the deduction rule (AXIOM-1). (}

The following counterexample shows that the reverse direction does not hold:

Example 5.3

spec FDT
sor t s
func a: -» s, g: -> s, f: s -» s
ax ioms

DET(a), DET(g),
f(g) -> a, g -+ a

end

The specification FDT is DET-complete and DET-additive. We have
FDT I- f(g) -> a,

but there is no innermost term rewriting sequence using the inclusion
rules of FDT such that

f(g)4m*a- 0

The example above shows that additional syntactical restrictions for the
specifications are necessary to ensure not only soundness but also completeness
of innermost term rewriting. A very simple but usable sublass of specifications
is given by the constructor-based specifications, as defined in section 4.1.1. So
the further argumentation in this section only refers to constructor-based
specifications. For C-complete constructor-based specifications, the theorem
above can be sharpened.

Theorem 5.4

Let Τ = (Σ, R) be a C-complete constructor-based specification. Then
for all t l , t 2 G W(Z):

im*
Τ I - t l —* t2 <*> t l -*" t2.

I M P L E M E N T Α Ή Ο Ν A N D E X A M P L E S 1 2 9

Proof:
Theorem 4.21 gives the result Τ I- t l t2 <=> Τ l-c t l -> t2. So we
can restrict our attention to constructor-based deductions (see definition
4.20 for l-c).
The "=>"-case is a consequence of the syntactic form of the axioms: A l l
proper subterms of a l-c-redex are automatically constructor terms;
therefore no redices can be contained within them.
The "<="-case follows from theorem 5.2. φ

These results can be reformulated immediately in the form of an algorithm. (We
use here an informal notation, which should be self-explaining.)

Algorithm 5.5

Let Τ = (Σ , R) be a C-complete specification with constructor basis C.

input: a ground term ίΕΨ(Σ)

output: a ground term t ' E W f f c) , such that: Τ l-c t -» t'

funct reduce = (terms t) terms:
if Ξ uEOcc[tl]: t/u = f(t i , . . . , t n) Λ fgC

then terrn^ t i ' = reduce(tj);...; terms t n ' = reduce(tn);
Choose nondeterministically an axiom <1 —> D E R
and oeSUBST(Ic), such that σΐ = f (t i \ . . . , t n ') ;
reduce(t[u<-or])

else t
fi ο

Here the innermost reduction is realized by the control flow: Al l subterms of the
given term are normalized (transformed into a constructor form) before the
application of an axiom. The C-completeness guarantees that there always exists
an appropriate axiom at occurrence u. Note that the algorithms works nondeter­
ministically with a non-determinate result. It computes an arbitrary t 'EW(Zc)
such that the condition l-c t -* t' is fulfilled. For many cases, it wi l l be a more
realistic implementation to compute the set of all appropriate t ' . (Then it is easy
to determine whether a given t' occurs within this set.) The algorithm reduce is
correct (i.e. all the possible results t ' fulfil l-c t -> t ') and complete (i.e. for
each t' such that I-1 t ' there exists a possible computation of reduce(t) with

130 IMPLEMENTΑΠΟΝ AND EXAMPLES

result V). The correctness and completeness with respect to the semantical
concepts of chapter 2 follows from the theorems 5.4,2.6 and 2.15.

I f considered as an algorithm for the computation of a result set, reduce is a
terminating algorithm only, i f the given axiom set generates a terminating term
rewriting relation. For a non-terminating axiom set reduce can be considered as a
semi-algorithm, which tries to generate the correct (infinite) result set. Such an
enumeration obviously cannot terminate. (For implementation questions in this
context see section 5.1.2 below.)

Given a terminating rewriting relation, reduce is a true (terminating) algorithm.
In this case for any ground term t there exist only finitely many t ' E W (I c) such
that I-1 -> t \ As a consequence, then the -^-relation for arbitrary ground terms
t l and t2 is decidable, by a comparison of the (finite) sets of constructor normal
forms:

Algorithm 5.6

Let Τ = (Σ, R) be a C-complete specification with constructor base C
where the corresponding rewrite relation is terminating.

input: Two ground terms t l , t2 E W (I)
output: Boolean value, indicating whether Τ l-c t l -» t2

funct decide_-» = (term^ t l , termor t2)bool:
V terms t ': t ' Ε Results(reduce(t2))

=> t' EResults(reduce(tl)) 0

The correctness and completeness of algorithm 5.6 relies on the theorems 2.19
and 5.4.

In the general case of possibly nonterminating rewriting sequences (see example
2.20), a breadth-induction proof can be necessary, in order to answer the question
whether t l - * t2 holds (even for ground terms t l , t2).

In the following two subsections, two essential issues wil l be adressed, in which
an implementation for nonconfluent rewriting differs from usual implementation
techniques for term rewriting. It turns out that the new problems are basically
the same as they appear in an implementation of narrowing.

I M P L E M E N T Α Ή Ο Ν A N D EXAMPLES 131

5.1.2 Search Strategies

The main difference between a classical interpreter for term rewriting systems
and algorithm 5.5 comes from the fact that within a nondeterministic
specification all admissible results are of interest, using arbitrary (nondeterminis­
tic) choices during the evaluation. For confluent rewriting, it is sufficient to
study an arbitrary evaluation, since the final result here is independent of any
actual choices during evaluation.

Example 5.7

The following reductions refer to the specification NAT from example 1.12
(which is made constructor-based by defining C={zero,succ}). We try to reduce
the term add(some,some).

add(some,some)

add(zero,some) add(succ(some) ,some)

add(zero,zero) add (zero ,succ(some))

zero add(zero,succ(zero)) add(zero,succ^succ(some))

succ(zero)

I f a classical term rewriting interpreter (for confluent axiom sets) was applied to
this example, it would deliver only one result. Whether this result is "zero" or
"succ n(zero)" (for an arbitrary n) or even nontermination (that is no result,
actually), depends on the chosen evaluation strategy. An interpreter for
nondeterministic specifications, however, should enumerate all the possible
results (even i f this is a nonterminating enumeration). Therefore the interpreter
needs a tree-like organisation of rewriting sequences, as in the figure above; the
corresponding tree search is similar to an interpreter for Prolog. In order to cope
with nonterminating enumerations, a facility is needed to stop the interpreter
after a finite number of results.

132 I M P L E M E N T A T I O N A N D E X A M P L E S

The example moreover demonstrates that an implementation of the tree search
by backtracking {depth-first search) like in Prolog is not always appropriate. I f
the axioms are applied in a "strange" order, a depth-first search may follow an
infinite path, without ever reaching one of the results. For such cases a breadth-
first search seems to be more promising. A "breadth-first"-interpreter is
guaranteed to deliver every result after a finite amount of time (nevertheless it
may go into a nonterminating computation). For efficiency reasons, in many
cases a "depth-first"-organisation wil l be preferred, maybe with a preset limit on
the depth. This means that the user should have a choice between alternative
search strategies. Another interesting approach is to use an appropriate multi­
processor architecture for the evaluation of independent rewriting sequences in
parallel. (First attempts in this direction have been described for instance in
[Pinegger 87], similar ideas are followed in [Dershowitz, Lindenstrauss 90].)

It is clear that the nondeterministic rewriting algorithm is basically of
exponential complexity. Therefore those optimizations are particularly useful
which help to reduce the search space.

5.1.3 Optimizations

An essential step towards a smaller search space is achieved already by a special
innermost strategy. I f the alternatives of one step are restricted to one singular
redex, for instance the leftmost one {leftmost-innermost), then the search space
from example 5.7 can be reduced to the following:

add(some,some)

add(zero ,some) add(succ(some) ,some)

Please note that at every redex still the full range of applicable axioms is
considered. In this example, there exist two alternative axioms for every redex
(in comparison to 2*(number of redices) alternatives above). Again a similarity
to Prolog's SLD-resolution technique can be observed here: The selection of one
single clause from a goal is analoguous to the technique described here.

I M P L E M E N T A T I O N A N D E X A M P L E S 133

The optimization preserves correctness and completeness of the algorithm (since
the replacements for various innermost redices can be considered independently).

Another important optimization refers to confluence. It should be ensured that an
interpreter for nondeterministic specifications works well in the special case of
confluent axioms. In this case it should achieve roughly the same efficiency as a
classical interpreter. Unfortunately, the situation is more complicated, since the
interpreter has to handle mixed forms of confluent and non-confluent rewriting.
An extreme example is the following variant of the specification NAT:

Example 5.8

Let the axioms of a specification (intended for natural numbers) be:
add(zero ,χ) -* χ, add(x ,zero)->x,
add(succ(x),y) -* succ(add(x,y)), add(x,succ(y)) -> succ(add(x,y)),
zero_or_one -» zero, zero_or_one -» succ(zero).

A tree of possible innermost rewritings then is given by:

add(zero_or_one ,succ(zero))

add(zero ,succ(zero)) add(succ(zero) ,succ(zero))

succ(zero) succ(add(zero ,zero))

succ(zero)

succ(add(zero ,succ(zero)))

succ(zero)

In this example, almost the full search effort goes into the inspection of
superfluous paths, which are all equivalent to one out of two single paths. It
should be sufficient to investigate these two paths. This idea goes into the
direction of a remark in [O'Donnell 85] where an implementation of term
rewriting is described (which does not yet support nondeterminism): "The ideal
facility would allow equational definitions with multiple normal forms, but
recognise special cases where uniqueness is guaranteed." (p. 135)

The obvious idea for the example above is to normalize the terms occuring in
the tree with the subset of axioms which is terminating and confluent. In the
example, the rules for the operation add can be used for normalization:

134 I M P L E M E N T A T I O N A N D E X A M P L E S

add(zero_or_pne ,succ(zero))

add(zero ,succ(zero)) add(succ(zero) ,succ(zero))

succ(zero) succ(add(zero,succ(zero)))

succ(succ(zero))

For the correctness of this optimization it is quite important that only those
terms are normalized which contain deterministic operations only.

The correctness of such an optimization is obvious, as long as the principle of
innermost rewriting is kept. For a proof of completeness, it has to be shown
that the subset of axioms used for normalization cooperates with the rest of the
axioms. More precisely: Let D C R be a set of "deterministic" axioms, which
shall be used for normalization, and therefore are terminating and confluent.
Normalization induces an equivalence relation on ground terms:

t « D t' <=>def the D-normal forms of t and t' are equal.

Then we have to show the following "sub-commutativity property" :

U ^ R Y D T 2 A
 t r ~ D t l => 3 t2': t l ' ^ J J J D t2' Λ t 2 - D t 2 * .

The lemma below shows that this property holds under appropriate
preconditions. We use here the following notion of an innermost-normal form:

Definition 5.9 (Innermost Normal Form)

im*

Let D be a term rewriting system such that is terminating and

confluent.
The innermost-normal form i ^ [t] of a term t E W (X) is defined
inductively by:

1 D M=def<

i™[t[u«-or]] if3uGOcc[t],<l—r>ED,

a G S U B S T (I c) : t / u = a l

. t otherwise.

I M P L E M E N T Α Ή Ο Ν A N D E X A M P L E S 135

Lemma 5.10

Let Τ = (Σ, R) be a constructor-based specification, DCR a subset of
the axioms such that the following conditions are satisfied:

im*
• is terminating and confluent.

• D is non-overlapping with R\D, i.e. there does not exist any term
t such that <lD-*rD>ED, <l-»r>GR, a e S U B S T ^ c) and σΐο = t
= σ1 .

In this case, for t l , t2 e W(Z):

3 t2 ' : l j J l [t l] - ^ ^ D t 2 » Λ i ™ [t 2] = i ™ [t 2 ']

Proof: See appendix A.

This lemma shows that the efficiency of confluent rewriting is not lost, when
nonconfluent reduction is allowed. In order to designate a well-suited subset D,
the following facts are to be observed:

* . . . im* .
• is terminating => is terminating

* im *
• is confluent =j> is confluent

Therefore, termination can be tested with one of the usual methods (see
[Dershowitz 87]). The confluence of D-innermost-term rewriting does not follow
directly from the confluence of D, but the classical method from [Knuth, Bendix
70] can be easily adapted to this case. (The critical pairs just have to computed
with respect to innermost rewriting.)

Example 5.8 demonstrates that there is an important gain of efficiency by
normalization i f there are overlaps of the left hand sides of axioms within D. But
even i f this not is the case, and the number of terms is not reduced, the
normalization optimization can still improve the efficieny. Since it is more

136 IMPLEMENTATION AND EXAMPLES

expensive to represent a branching node ("choice point") of the proof tree on a
real machine, memory space and time (for copying terms) can be saved.

5.2 Graph Rewriting
This section gives a discussion of a concept which is useful for the
implementation of term rewriting in general, but in particular for non-confluent
rewriting. The basic idea for this concept has been studied already in [Astesiano,
Costa 79] for the semantics of nondeterministic processes ("Sharing in
Nondeterminism"), but it can be generalized to arbitrary term rewriting systems.
Term rewriting is performed here on terms which explicitly share some
subterms. The term structure is enriched by information recording which pairs of
equal subterms are identical. In [Hesselink 88], the combinator-like notation of
terms ("accumulated arrows") leads to a similar effect.

From a completely independent aspect, term rewriting with sharing has been
studied as an efficient implementation technique for (confluent) term rewriting.
Starting from techniques for the implementation of the lambda-calculus
(Wadsworth 1971), various approaches have been developed by Staples (1980),
Raoult (1984), Barendregt et al. (1987), Hofmann and Plump (1988). In
[Corbin, Bidoit 83], it is recommended to represent terms by DAGs (directed
acyclic graphs), to achieve a simple and efficient implementation of unification
and substitution algorithms on terms. In many implementations of term
rewriting (among them RAP [Hussmann 85/87]) these ideas have been used
successfully.

Unfortunately, the exact description of rewriting on graph-like structures leads to
a significant technical overhead, i f compared with term rewriting. Below, we
reproduce some of the most important notions from [Barendregt et al. 87] and
demonstrate the particularities of non-confluent rewriting in this context. In
order to use the terminology of [Barendregt et al. 87] with only slight
adaptations, the following arguments only apply to the case which is studied
there. Therefore we assume here tha axioms to be left-linear and not to contain
"extra variables" (which occur in the right hand side of a axiom, but not in the
left hand side). The results can be generalized to remove these restrictions; but
this generalization is not covered here.

IMPLEMENT ΑΉΟΝ AND EXAMPLES 137

5.2.1 Representation of Terms by Graphs

The following definition is almost literally taken from [Barendregt et al. 87].

Defini t ion 5.11 (Graph)

Let Σ = (S, F) be a signature, X = (Xs)sES a sorted set of variable
names.

A (labelled directed) graph (over Σ) is a triple
G = (N,lab,arg),

where Ν is set of nodes, lab: Ν -> FUX is the labelling function, and
arg: Ν -*· Ν* is the argument (or successor) function. The i-th
component of arg(n) is denoted by arg(n)j.
Th graph G is called well-sorted, i f f there is a function sort: Ν -> S
such that for all nEN:

lab(n) = χ Λ x E X s

=> sort(n) = s,
lab(n) = f Λ [f: si χ ... χ sfc -» s] Ε F

=> sort(n) = s Λ sort(arg(n)0 = s[

(for all i E { 1....Jk} , i.e. Iarg(n)l = k).
For two nodes n, n 'EN the node n' is said to be reachable from n, iff
either n ' = η or there is a n " E N , such that arg(n)j = n " and n' is

reachable from n " .
The graph G is called acyclic iff every node is reachable from itself only
through the trivial case in this definition.
A rooted graph is a quadruple G' = (N, lab, arg, root), where rootEN
and all nodes in Ν are reachable from root.
The subgraph of G at a node nEN is defined as the graph Gin = (N n ,
lab n , arg n) with node set N n ={mEN I m is reachable from n} , lab n =
lablN n and arg n = arglN n. 0

For the purposes of term representation, we use rooted directed acyclic graphs
(DAGs). It is obvious that a term is a subcase of such graphs. However, it is
important to use only representations which share variable occurrences.

138 IMPLEMENTATON AND EXAMPLES

Definition 5.12 (Graph Representation of Terms)

Given a term tEW(Z, X) , a directed acyclic graph GR[t] = (N, lab, arg,
root) representing t can be constructed as follows (where n < j n c i e x > is
used as a name for a unique object out of some basic set of nodes).

Ν = { n u I uEOcc[t] Λ t/ugX } U { n x I xGVars[t] } ;
lab: Ν -> FUX such that

xEX => lab(n x) = x,
t/u = f (t i , . . . , t k) =>lab(n u) = f;

arg: Ν -» Ν* such that
xEX=*>arg(n x) = e,
t/u = f (t i , . . . ,tk) => larg(nu)l = k Λ arg(n u)j = n u . i for

i E { l , . . . , k } ;
root = η ε Ε Ν.

Please note that for any variable x, there is only a single node in Ν
labelled with x, which is called n x . 0

Example 5.13

The graphical notation for a graph is in most cases easier to understand
and conceive than the formal notation from above.

The term add(x,x) is represented by the graph depicted at
the right margin. Please note that the variable χ is
shared. The upper node is called η ε in the formalism
above, the lower one is called n x .

The graph at the right represents the
term add(zero_or_one, zero_or_one).
Please note that the arguments of add
are not shared here. The upper node is
called η ε in the formalism above, the
lower ones are called n<i> and n<2>,
respectively 0

The following definition adds semantic interpretation to the notions of
[Barendregt et al. 87]. The basic idea is here that every node of the graph is
assigned to a single value (by a so-called valuation function). The nondeter­
ministic breadth of interpretations is given by the range of such valuation

(a d d)

> ~ \
feero_or_one) (zero_or_one)

I M P L E M E N T Α Ή Ο Ν A N D E X A M P L E S 139

functions for the graph. This is needed to achieve a sensible interpretation of
graphs which share other subterms than just variables.

Definition 5.14

Given a model AEMod(T) and an environment ß E E N V (X , A) , the

interpretation Iß [G] of a (rooted directed acyclic) graph G = (N, lab, arg,

root) is defined by

Iß [G] = { val(root) I valEVALß [G] }

where VALß [G] denotes the set of admitted valuation functions. To be

precise, it is a family of sets of functions, indexed by a sort. Again the
sort is omitted for better readability.

VALß[G] =

{ val: Ν s A I
VnEN: (lab(n) = χ Λ X E X => val(n) = βχ) Λ

(lab(n) = f Λ f: s] χ ... χ sfc -> s] Ε F =>
val(n) Ε ffyvaKargin)!),..., val(arg(n)k)) } .

The well-definedness follows from the fact that G is acyclic.
A A

It is obvious that lR [GR[t]] = I f t [t] . 0

5.2.2 Rewriting of Term Graphs

The definition of a graph replacement rule again is mainly taken from
[Barendregt et al. 87] (with correction of a minor error). Additionally, a formal
translation of inclusion (or term rewrite) rules into graph rewrite rules is given.

Definition 5.15

A graph rewrite rule (over Σ) is a triple (G, rootL, rootR) where G is a
graph and rootL and rootR are nodes of G such that every node of G
is reachable from either rootL or rootR.

Given an inclusion rule <1 r> over Σ and X , a graph rewrite rule
GR[<1 -> r>] = (G, rootL, rootR) is defined by:

I M P L E M E N T A T I O N A N D E X A M P L E S

G = (N, lab, arg),
Ν = { l u I uGOcc[l] Λ l/u(£X } U { r u I uEOccfl] Λ r/u<£X }

U { n x I xGVars[l]UVars[r] } ;

lab: Ν FUX such that
xEX=>lab(n x) = x,
l/u = f (t i , . . . , t k) => lab(l u) = f,

r/u = f(t i , . . . , tk) =>lab(r u) = f;
arg: Ν -» Ν* in analogy to definition 5.12;
rootL = 1ε £ Ν; rootR = r B E N .

The application of a graph rewrite rule (G, rootL, rootR) to some target
graph Go = (No, labo, ^gO* rooty) is defined as follows.
A redex for the rule in Go is a graph homomorphism φ: GlrootL -*·
Go, i.e. a function φ: Ν - * No, such that for all nEN, which are
reachable from rootL holds: lab(n)^X => laboWn)) = lab(n) and
argoWn)) = φ*(arg(n)), where φ* is the elementwise extension of φ to
sequences of nodes.
Given such a redex, the application of the rule proceeds in three phases:
(i) build phase: We assume that nodes and variables of G and Go are
disjoint. Then the right hand side of G is added to Go, instantiating
variables according to φ. This gives a new graph G] = (Νχ, labj, argj,
rooti), formally:

N i =

No U {nEN I η reachable from rootR and not from rootL }»

l a b K m) ^ , 1 3 ^) i f ™ e N 0 , f o r n G N l ;
1 Llab(m) otherwise,

rargo(m)i i fmENo,
argl(m)i = \ a r g (m) i i f m , a r g (m) j E N n N i ,

U(arg(m)i) i f mENHN 1 ,arg(m)j£ ΝΠΝ ι ,

rootj = rooto.
The root for the instantiated right hand side is now nfEN], where

{ φ(rootR) ifrootRreachablefromrootL,
rootR otherwise.

(ii) redirection phase: A l l references to Φ (Γ Ο Ο ^) are replaced by

references to n r . This gives a new graph G2 = (N2, Iab2, arg2),

formally:
N 2 = N i ,
lab2(m) = labi(m),

I M P L E M E N T Α Ή Ο Ν A N D E X A M P L E S 141

» i W m V - / " r ifargi(m)iH>(rootL),
a r g 2 ^ m ; i ~ \ a r g i (m) i otherwise,

f n r i f root j^(rootL) ,
2 "~ \ r o o t j otherwise.

(iii) garbage collection phase: Nodes which are not accessible from
root2 are removed. Formally this gives a graph G3 = G2lroot2-

A graph rewriting step is denoted by G Q ~ * G R G3. 0

Example 5.16

In this example, the rule
add(zero, x) -» χ

is applied to the graph Go, which contains a shared
occurrence of the function symbol zero.

The rule is represented by the graph G.
This is a special case, since the right hand
side does not contain any non-variable
nodes.

The result of the pattern matching of G onto Go is represented by the

graph homomorphism φ:

The graph G i does not differ much from the
original graph Go, since there is no node added.
However, the nodes Φ(ΓΟΟΙΤ^) and n r indicate the
nodes to be raplaced.

Gi add (Φ Ο Ό Ο ^)

(zero) n_

file:///rootj

142 IMPLEMENTATON AND EXAMPLES

After the replacement, n r becomes the root of
the graph G2 (which does not differ from G\ in
other respects). After garbage collection, G3
contains one single node.

Using the algebra NN from example 1.15, where the interpretation of
the function symbols is: zero i N r s = {0 , 1}, a d d N N (e l , e2) = {el+e2},
we have the following interpretations for the graphs:

I N N [G 0] = I N N [G i] = { 0 , 2 } ,

l N N [G 2] = I N N [G 3] = { 0 , l } . 0

5.2.3 Soundness and Completeness

Example 5.16 shows clearly that the standard graph rewriting techniques are not
sound in the general case for nondeterministic interpretations. This is due to the
non-injective mapping φ, which does not ensure that all the rule nodes which are
mapped onto a single target node, are always interpreted equally.

Again, the restriction to constructor-based specifications helps to overcome the
problem. In this case all the nodes mapped by φ are interpreted deterministically
(except of the root), and therefore graph rewriting is sound for this subcase. The
following theorem formulates soundness of graph rewriting in this sense.

Theorem 5.17

Let Τ = (Σ, R) be a constructor-based specification, where all axioms
are left-linear and where in each axiom the variables in the right hand
side form a subset of the variables in the left hand side.
Let Go be a rooted acyclic graph over Σ . Let G3 be a graph constructed
out of Go using the graph representation GR[<1 -» r>] of a rule <1 —*
r>ER, according to definition 5.15.
Given a model A and an environment β, we have

A A
V val3EVALß [G3]: Ξ valoEVALß [Go]: valo(rooto) = val3(root3).

Proof:
The proof is technically rather complex. In appendix A, a sketch is
given which covers the essential arguments. 0

I M P L E M E N T Α Ή Ο Ν A N D E X A M P L E S 143

Please remember that the restrictions which were put onto the form of the
axioms are only due to the use of the framework of [Barendregt et al 87]; they
can be removed by extending this framework.

In [Barendregt et al. 87], it is shown moreover that also the completeness of
graph rewriting with respect to term rewriting is not obvious. In general, there
are term rewriting sequences which cannot be simulated by graph rewriting. This
is illustrated by the following example.

Example 5.18 (Example 5.4 from [Barendregt et al. 87])

spec CGR
sor t s
func a: -> s,

f: s χ s s,
ax ioms

f(a,b) -> c,
g(x) -> f(x,x)

end

There is a term rewriting sequence
g (a) - f (a , a) - f (a , b) - c;

but there is no graph rewriting sequence starting from any graph
representation of g(a) and leading to a graph representation of c. The
reason is that the first rule (f(a,b) -> c) can never be applied, due to the
sharing of the subterms instantiated for χ. φ

This counterexample has close similarities to the running example of this text
(using the "double" operation). In fact, we can construct a model which shows
that classical term rewriting is unsound for this example, under nondeterministic
interpretations. This means that it is no longer a counterexample in the
framework of this text.

Example 5.19

A nondeterministic model C for the specification CGR from example
5.18 is given by:
s c = { a l , a2, c } ,
a c = b c = { a l , a 2 } , c C = { c } ,

b: -* s, c: -> s,
g: s -> s

a b, b -* a,

144 IMPLEMENTΑΠΟΝ AND EXAMPLES

fCfcl , a l) = { al } , fC(al, a2) = { c } , f ^ a l , c) = { c } ,
f 0 ^ , al) = { c } , f>(z2, a2) = { a2 } , f 0 ^ , C) = { c } ,
^ (c , al) = { c } , f ^ c , a2) = { c } , f ^ c , c) = { c } ,
g c (a l) = { al } , g c(a2) = { a2 } , g c (c) = { c } .

Within the model C, the inclusion <g(a) -» c> does not hold:
I C [g(a)] = { a l , a 2 } , l C [c] = { c } . 0

This demonstrates that the counterexample cannot be carried over to the
nondeterministic case. Even better, under the preconditions of the above
soundness result, also completeness holds with respect to constructor-based term
rewriting. In order to state this result formally, the notion of "unravelling"
([Barendregt et al. 87]) a graph into a term is needed.

Definition 5.20

Let G = (N, lab, arg, root) be an acyclic and finite graph over a
signature Σ and variable names X.
The operation T M constructs a term Τ Μ | Ό] Ε λ ν (Σ , X) out of G,
according to the following definition:

lab(root)EX => TM[G] = x,
where lab(root) = x;

lab(root)0C => TM[G] = f (TM[Gi] , . . . ,TM[G n]) ,
where lab(root) = f, [f: si χ ... χ s n -> s] Ε F,
Gi = Glarg(root)i for i E { 1,... ,n}. φ

Theorem 5.21

Let Τ = (Σ, R) be a constructor-based specification, where all axioms
are left-linear and where in each axiom the variables in the right hand
side form a subset of the variables in the left hand side.

Then for any two terms t l , t2EW(Z, X) holds:
Τ l-c t l -* t2 =>

3 graph G2: G R [t l] - > ^ R G 2 Λ TM[G2] = t2,

where graph replacement refers to the rules {GR[<1 -»· r>] I <1 D E R}.

I M P L E M E N T Α Ή Ο Ν A N D E X A M P L E S

Proof:
The proof mainly relies on the fact that the graph representation GR[t l]
and subsequent rewriting steps always produce graphs in which all
shared subgraphs are irreducible (with respect to graph rewriting). This
is formalized by the following two predicates.
Let G = (N, lab, arg), nEN. Then
is_shared[n] ^ d e f

3 n l , n2EN, i , j E N : nl*n2 Λ arg(nl)j = η = arg(n2)j,

wf[G] <^def
V n, n 'EN: is_shared[n] Λ n' reachable from η =>

lab(n')ECUX.
Using the predicate wf, the following lemma can be shown for an
arbitrary acyclic and finite graph G l over Σ and X:

wf [Gl] Λ TM[G1] = t l Λ l-c t l -* t2 =>

3 G2: wf[G2] Λ TM[G2] = t2 Λ G l — ^ R G2.

The theorem then follows from the simple facts that wf[GR[t l]] and
T M [G R [t l]] = t l .
In the appendix A, a sketch for the proof of the lemma is given. (}

To summarize, we have shown that an implementation by graph rewriting is
sound for constructor-based specifications, and that it is able to reproduce all the
derivations which are admitted in constructor-based rewriting. It should be
mentioned that graph rewriting does even admit a greater number of sound
derivations than constructor-based rewriting or the innermost strategy for
classical term rewriting (see section 5.1). Since graph rewriting is sound for
constructor-based nondeterministic specifications (theorem 5.17), an arbitrary
redex selection strategy can be used. An outermost replacement sequence
corresponding to example 1.12 is, for instance, the following one. Please note
that this reduction sequence is not deducible using constructor-based rewriting.

(double)

Ί

fcero_or_one)

146 IMPLEMENTATON AND EXAMPLES

using the rule: double(x) add(x,x)

using the rule: zero_or_one -> succ(zero)

using the rule: add(succ(x),y) -* succ(add(x,y))

using the rule: add(zero,x) -» x.

An implementation of terms by directed acyclic graphs admits another
optimization. I f a subterm is changed (for instance by normalization), these
changes may concern simultaneously many copies of the subterm. This
behaviour is similar to the D-evaluation rule invented by Vuillemin (see [Bauer,
Wössner 81]). Efficient implementations of graph reduction techniques are
described for instance in [Johnsson 84].

It is also interesting to compare the implementation by graph rewriting with an
implementation based on logic programming, as it was used for instance for
example 4.37 above or in the LOG(F) system ([Narain 88]). Using the technique
of translation to logic programs, a form of subterm sharing is present "for free",
by Prolog's built-in variable sharing. This is the reason, why the logic

I M P L E M E N T A T I O N A N D E X A M P L E S 147

programming and graph rewriting approach both show more flexibility in the
reduction strategy than constructor-based rewriting.

To summarize, existing software tools can be used to perform deductions within
nondeterministic algebraic specifications, if
• only constructor-based specifications are studied, and
• the implementation admits either

• innermost term rewriting and a constructor-completeness test, or
• representation of terms by graphs with variable-sharing.

The system RAP [Hussmann 85/87], although designed independently of the
nondeterministic framework, fulfils the requirements from above (since it uses a
graph representation for terms), so it can be used for computer experiments based
on nondeterministic specifications.

5.3 Examples
This section shows the application of nondeterministic specifications to a few
typical examples. The examples are taken from different areas of computer
science; in order to keep the length of the examples within a reasonable size,
only the basic ideas are sketched here. The first two examples are from
theoretical computer science, then two classical examples for nondeterministic
algorithms are given, and finally it is sketched how nondeterminism can be used
to specify abstractly some concrete sequences of events within an operating
system.

5.3.1 Nondeterministic Finite State Automata

Automata theory frequently uses nondeterministic machine models. The
following example shows that this classical nondeterministic framework can be
specified easily by algebraic methods.

In the following, a nondeterministic finite automaton is considered, which
appears during the systematic construction of an algorithm for string pattern
matching (cf. also [Knuth, Morris, Pratt 77]). The idea is here, to follow
nondeterministically ("simultaneously") all possible patterns during the read

148 I M P L E M E N T A T O N A N D E X A M P L E S

process. The following simple automaton comes out of the task of checking
whether one of the patterns or <LO> appears within a sequence of binary
digits ({ 0 « *) :

The symbol ε here denotes a so-called "spontaneous" transition. Please note that
the automaton is constructed easily from the pattern matching task: For every
pattern, a sequence of states and transitions is built, and from every state a
spontaneous return into the start state is added. States s3 and s4 are "final
states": Once one of these states has been entered by the automaton, the state
cannot be changed furthermore, regardless of the input.

The corresponding (constructor-based) specification contains sorts for the states
and for the input symbols. The automaton is coded into axioms for the one-step
transition relation. This relation is described by the operation trans, which
computes a follow state out of a state and an input symbol, trans* models the
transitive closure of this transition relation. For the description of trans*,
sequences of input symbols have to be considered, too.

spec NFA
sor t Input, State, Seq
cons O, L: Input,

empty: -» Seq, append: Seq χ Input -> Seq,
sO, s i , s2, s3, s4: -* State

func trans: State χ Input State,
trans*: State χ Seq State

Start

ε

IMPLEMENTΑΉΟΝ AND EXAMPLES 149

ax i o m s
trans(s0,O) s i , trans(sO,L) -* s2,
trans(sl,L) -» s3,
trans(s2,0) -> s4,
trans(s3,0) s3, trans(s3,L) -» s3,
trans(s4,0) -» s4, trans(s4,L) -> s4,
trans(slpc) trans(sO,x), { ε-transitions }
trans(s2,x) trans(sO,x),
trans(s3,x) -> trans(sO,x),
trans(s4,x) -> trans(sO,x),
trans*(s,empty) -» s,
trans*(s,append(t,x)) ->trans* (trans(s,x),t)

end

The first block of axioms describes the transitions of the automaton which
process an input symbol, the second one gives the spontaneous transitions. The
third block of axioms (which is not specific for this particular automaton) serves
for the derivation of the transitive closure of the transition relation.

The C-completeness of trans* is obvious, for trans the C-completeness can be
seen from the fact that the following formulae are deducible:

trans(s0,O) — si trans(sO,L) —> s2
trans(s 1,0) -> s 1 trans(s 1 ,L) -* s3
trans(s2,0) s4 trans(s2,L) s2
trans(s3,0) -> s3 trans(s3J^) -> s3
trans(s4,0) -> s4 trans(s4,L) -»· s4

The axioms of NFA are terminating, since there is no way to derive a cyclic
sequence of ε-steps.

As an example for computations within NFA, consider the term
trans* (sO ,append(append(append(append(empty JL) ,0) JL))

which specifies the set of automaton states after processing the input <LOL>
(with start state sO). In a computer experiment, RAP computes the following
set of states as a set of possible simplifications of this term:

{ s2 , s3 , s4 }

150 I M P L E M E N T A T I O N A N D E X A M P L E S

This can be interpreted as follows: After having processed the input, the
automaton is in one of the states s2, s3 or s4. The appearance of s3 and s4
shows that the (overlapping) occurrences of both patterns (and <LO>) in the
input have been recognised.

This example clearly illustrates the purpose of a nondeterministic specification
language: I t does not help for the development of an efficient implementation
(for this purpose, the automaton should be transformed into a deterministic one
by the well-known methods), but it allows us to describe an inherently nondeter­
ministic problem in a rather abstract and problem-oriented way.

5.3.2 Petri Nets

In order to demonstrate that also classical models of nondeterministic and
distributed computing can be modelled using nondeterministic algebraic
specifications, we give here a method for encoding Petri nets. In chapter 7, a
more complex study of distributed computing (aiming at the language CSP) can
be found. Here, we use a rather simplistic way of encoding Petri nets by a sort
describing explicitly the state of the net. Other (mainly equivalent) ways of
description from the literature ([Kaplan 88], [Meseguer 92]) also could be
transferred to this framework.

We use the following Petri net taken from [Kaplan 88] to demonstrate the
encoding. The Boolean Petri net shows a variant of the famous "producer-
consumer" problem.

cons

One possible idea of the encoding is to define a sort with a single constructor
(net) keeping the information which of the places of the net is occupied by a
token. Each transition is translated into an axiom which transforms such net
states according to the firing rules for Boolean Petri nets. Each input place for

I M P L E M E N T A T I O N A N D E X A M P L E S 151

the transition must contain a token, each output place must be free. The result
state has tokens in all output places, and the tokens from the input places are
removed.

spec PN
sor t Token, Net
cons Y , N : Token,

net: Token χ Token χ Token χ Token χ Token -» Net
{ i-th argument of net corresponds to place i in the net }

func trans: Net -> Net, trans*: Net -* Net
a x i o m s

trans(net(N, Y, p3, p4, p5)) net(Y, N , p3, p4, p5), {prod}
trans(net(Y, Ν, N , p4, p5)) net(N, Υ, Y, p4, p5), {send}
trans(net(pl, p2, Υ, Υ, Ν)) net(pl, p2, Ν, Ν, Y) , {rec}
trans(net(pl, p2, p3, Ν, Y)) -> net(pl, p2, p3, Υ, N), {cons}
trans*(n) -* n, trans*(n) -> trans*(trans(n))

end

Every state of the net reachable from the start configuration shown in the picture
can be computed by reducing the term

trans*(net(N, Υ , Ν , Υ , Ν))

An example is:
trans*(net(N, Υ , Ν , Υ , Ν))
trans*(net(Y, Ν, Ν, Υ, N)) {prod}

-> trans*(net(N, Υ, Υ, Υ, N)) {send}
trans*(net(N, Υ, Ν, Ν, Y)) {rec}
trans*(net(N, Υ , Ν , Υ , Ν)) {cons}
net(N, Υ , Ν , Υ , Ν) .

Please note that the specification contains two sources of nondeterminism. The
first one is the function trans*, which nondeterministically computes every
reachable state from a given configuration. The other one is the function trans
itself, which is specified in a non-confluent way:

net(Y, Ν, Υ, Υ, Ν) trans(net(N, Υ, Υ, Υ, Ν) net(N, Υ, Ν, Ν, Y)

Generally, nondeterministic specifications allow us to express concurrency
directly, avoiding the technicalities of interleaving sequences, as it was observed
in [Meseguer 92].

152 IMPLEMENTΑΠΟΝ AND EXAMPLES

5.3.3 The Eight Queens Problem

It is a classical programming problem to place 8 queens on a checker board such
that all of them are safe, such that no queen can be attacked by another one. The
problem has been mentioned in [Manna 70] as a typical example for a nondeter­
ministic program. Nondeterminism in this problem means, to find some
position of the pieces which fulfils the safety condition.

The specification of the Eight Queens problem gives an example for the modular
construction of nondeterministic specifications by hierachies as well as for the
use of conditional rules. Basically, the specification follows the ideas proposed
in [Manna 70].

Let BOOL and INT be given specifications for the truth values and for the
integer numbers. These specifications are deterministic (in the sense that in
every maximally deterministic model all operations have to be deterministic).
Based on INT, finite sequences of integer numbers can be described by

spec SEQJNT
basedon INT
sort Seqlnt
cons empty: -> Seqlnt, app: Seqlnt χ Int -> Seqlnt
func length: -» Seqlnt
a x i o m s

length(empty) -+ zero, length(app(s,x)) -> succ(length(s))
end

A configuration of the chess pieces on a nxn-board are described as a sequence of
η natural numbers (the specification uses integer numbers), where the i-th
number denotes, in which row the queen for column i is placed. The
specification TEST defines the condition which is necessary for an extension of
a correct configuration on a nxn-board to a correct configuration on the
(n+l)x(n+l)-board: The queen placed in column n+1 must not be on a row or a
diagonal which is already "occupied" by another queen. The specification uses
the fact that a diagonal is characterized by a fixed value for the sum or difference
of the row and column indices:

spec TEST
basedon INT, BOOL, SEQJNT

I M P L E M E N T Α Ή Ο Ν A N D E X A M P L E S 153

func ok: Seqlnt χ Nat -> Bool ,
samerow, samediagl, samediag2: Seqlnt χ Int -*· Bool

ax i oms
samerow(empty^) -> false,
samerow(app(s,rl),r2) or(equal(rl,r2),samerow(s,r2)),

samediagl (empty ,d) false,
samediag 1 (app(s ,r) ,d)

-» or(equal(add(r ,succ(length(s))) ,d) ,samediag 1 (s ,d)),

samediag2(empty,d) -> false,
samediag2(app(s j) ,d)

-> or(equal(sub(r ,succ(length(s))) ,d) ,samediag2(s ,d)),

ok(s,r) -> and(not(samerow(s,r)),
and(not(samediag 1 (s ,add(r ,succ(length(s))))),

not(samediag2(s,sub(r,succ(length(s)))))))
end

The Boolean term ok(s,r) is true i f f r is a safe position for the n+l-th queen,
where the configuration of the first η queens is given by s.

The nondeterministic specification itself now is rather simple: We look for a
sequence of length 8 which has been constructed step by step according to the
criterion above and which contains only numbers between 1 and 8:

spec QUEENS
basedon TEST, SEQJNT, INT, BOOL
func queens: -^Seqlnt, qu: Seqlnt -> Seqlnt
a x i oms

queens qu(empty),
less_equal(length(q),8) false => qu(q) q,
less_equal(length(q),8) -> true & less_equal(0,r) -*· true &
less_equal(r,8) true & ok(q,r) -* true

=> qu(q) -* qu(app(q,r))
end

Please note that this specification already takes a rather operational viewpoint by
describing the incremental construction of a solution (which in fact leads to a

154 I M P L E M E N T Α Π Ο Ν A N D E X A M P L E S

pruning of the search space). An even more optimized specification (or better
program), tuned towards lazy nondeterministic rewriting, can be found in [Narain
88].

In the initial model of QUEENS, the interpretation of the term queens exactly
contains a representation of the solutions for the Eight Queens problem.
Experiments with the RAP system show that this specification is executable,
but that optimizations (like for instance in [Narain 88]) are urgently needed. On
a SUN SPARCstation 10 workstation with 32 MByte RAM the first solution
for the problem in the formulation from above is found after approx. 140 CPU-
seconds. An analoguous five queens problem needs 2 CPU-seconds for the first
solution, all solutions are found within approx. 55 seconds.

5.3.4 The Monkey-Banana Problem

The next example also comes from [Manna 70], inspired by McCarthy. It is
again a search problem, but, according to its origin from the field of "artificial
intelligence", it is formulated as an experiment in animal behaviour.

The experiment is as follows: A monkey sits within a room, where a high box
is placed on the floor and where a banana is fixed at the ceiling in a height
unreachable for the monkey. The room contains nothing else. The following
possibilities now are available for the monkey in order to get the banana: It can
move on the floor of the room, it can climb on the box, and it can move the
box around on the floor. The solution is (obviously) to move the box under the
banana and then to climb onto the box.

A specification of this problem mostly contains the definition of trivial data
structures. The specification WORLD contains the atomic objects which are
needed for the problem description (vertical and horizontal positions, actions):

spec WORLD
sor t VPos, HPos, Action
cons floor, ceiling: VPos,

monkey_pos, banana_pos, box_pos: HPos,
walk, carry: HPos -» Action, climb: Vpos -> Action

end

I M P L E M E N T Α Ή Ο Ν A N D E X A M P L E S 155

The constants monkey_pos, banana_pos, box_pos mean the initial positions of
monkey, banana and box on the floor. (Other positions are of no interest for this
problem.)

The following specification describes states for the description of situations:

spec STATE
sort State, Pair
cons state: Hpos χ VPos χ Hpos -+
end

State, pair: Action χ State -* Pair

The states are to be interpreted as follows: A triple state(mh,mv,b) describes the
actual position of the monkey (mh in horizontal, mv in vertical dimension), as
well as the (horizontal) position of the box (b). Pairs of actions and states are
used to represent the relationship between a particular action and its
consequences. The specification OPERATIONS lists which actions are admitted
in a given state and which is the subsequent state after the action.
Nondeterminism is used here to describe the choice between alternative actions:

spec OPERATIONS
basedon WORLD, STATE
func do: State -> Pair
a x i o m s

do(state(x,floors)) pair(walk(hp),state(hp,floors)),
do(state(x,floor,x)) pair(carry(hp) ,state(hp,floor Jip)),
do(state(x,y,x)) -* pair(climb(vp),state(x,vp,x))

end

These three rules describe exactly how the "world" can be changed by actions of
the monkey. The monkey can move horizontally to an arbitrary position hp; in
this case it remains on the floor (first rule). It can move the box on the floor to
an arbitrary position, provided it is on the floor and at the same horizontal
position as the box (second rule). It can climb onto the box (or down from it), i f
it is at the same horizontal position as the box (third rule).

The last specification part describes how sequences of actions are performed (and
recorded) and how the goal of the game is defined. Let a specification
SEQ_ACTION for sequences of actions be given, analoguously to 5.3.3.

1 5 6 I M P L E M E N T Α Ή Ο Ν A N D E X A M P L E S

spec STEPS
basedon WORLD, STATE, SEQ_ACTION, OPERATIONS
func steps: State SeqAction
a x i o m s

do(s) pair(a,sl) => steps(s) -> append(a,steps(sl)),
steps(state(banana_pos,ceilings)) empty

end

The search itself means an enumeration of all reductions of the term
steps(state(monkey_pos ,floor,box_pos)) .

The RAP system finds the (optimal) constructor term
append(walk(box_pos),
append(carry (banana_pos),
append(climb(ceiling) ,empty)))

after 0.08 CPU seconds (on the machine configuration described above, and
using all possible optimizations).

5.3.5 Printer Scheduling

The last example is intended to give an impression, how nondeterministic
specifications can be used for an abstract description of phenomena out of more
practical fields of computer science. Below, a small sub-aspect of an operating
system is described: the distribution of a sequence of printing jobs under a given
number of printers (scheduling). For the sake of abstractness, any reference to a
notion of time is avoided.

In this example, a printer always has one out of the two possible states: free or
busy.

spec PRINTER_STATE
sort Printers täte
cons busy, free: PrinterState
end

A printer is called busy i f it is currently working on a printing job. At an
arbitrary, unpredictable time the printing job is finished. At this moment the
state of the printer changes from "busy" to "free". To capture this behaviour,

I M P L E M E N T Α Ή Ο Ν A N D E X A M P L E S 1 5 7

below an operation next_status is specified nondeterministically, which is used
to ask for the current state of a printer. The operation gets the current (old) state
of the printer as its argument. It has two possibilities for its result: Either it
delivers the argument state (printer state unchanged) , or it spontaneously
declares the printer to be free (but only i f the old state was "busy"). In this case,
a printing job has been finished since the last query for the printer state.

spec PRINTER
basedon PRINTERJSTATE
func next_status: PrinterState PrinterState
a x i o m s

next_status(s) s,
next_status(s) -> free

end

Two rather trivial specifications describe sequences of printing jobs (represented
by natural numbers) and sequences of events during the execution of printing
jobs. Events in this sense are: "Job i starts on printer j " and "Job i has to wait
for a free printer".

spec JOB_QUEUE
basedon NAT
sort JobQueue
cons empty_Job: JobQueue,

append_Job: Nat χ JobQueue -> JobQueue
end

spec EXEC_QUEUE
basedon NAT
sort ExecQueue
cons empty_Exec: -*· ExecQueue,

append_Exec: Nat χ Nat χ ExecQueue -» ExecQueue,
wait: Nat χ ExecQueue -> ExecQueue

end

The actual administration of the printers now is described by a specification
which is deterministic except of its use of the nondeterministic operation
next_status. The function scheduler transforms a sequence of jobs into a
sequence of events. For this purpose, it uses an auxiliary operation sched, which

158 IMPLEMENTATON AND EXAMPLES

gets the actual states of two printers as its arguments (fixing here the number of
printers to the value 2). A job can be executed only i f a free printer is ready for
it, otherwise it has to wait:

spec SCHEDULER

basedon NAT, JOB_QUEUE, EXEC_QUEUE,
PRINTER, PRINTER.STATE

func scheduler: JobQueue ExecQueue,
sched: JobQueue χ PrinterState χ PrinterState -* ExecQueue

a x i o m s
scheduler(q) -» sched(qjfreeiree),
sched(empty_Job,sl,s2) -> empty_Exec,
next_status(sl) -> free =>

sched(append_Job(jn,q),sl ,s2) -> append_Exec(jn,l ,sched(q,busy,s2)),
next_status(s2) -» free

sched(append_Job(jn,q),sl,s2) -> append_Exec(jn,2,sched(q,sl,busy)),
next_status(sl) -> busy & next_status(s2) - * busy =>

sched(append_Job(jn ,q) ,s 1 ,s2)
wait(jn,sched(append_Job(jn,q),sl ,s2))

end

The following term describes the possible sequences of events for a sequence of
three jobs:

scheduler(append_Job(l ,append_Job(2,append_Job(3 ,empty_Job))))

I f RAP is called to reduce this term, it starts to enumerate a nonterminating list
of event sequences; among them we find the following ones:

append_Exec(l ,1 ,append_Exec(2,l ,append_Exec(3,l ,empty_Exec)))
append_Exec(l ,1 ,append_Exec(2j2,append_Exec(3,l ,empty_Exec)))
append_Exec(l ,1 ,append_Exec(2,2,wait(3 ,append_Exec(3,1 ,empty_Exec))))
append_Exec(l ,1 ,append_Exec(2,2,wait(wait(append_Exec(3 2,cmpty_Exec)))))

The first sequence can be understood as a sequence of three "very short" jobs
which are finished before the next job arrives. In the second case, two jobs are
given to two printers for parallel processing; the first job finishes first, and
before the third job arrives. In the last two cases the third job has to wait for a
free printer. It is interesting that an intuitive understanding of the results is

I M P L E M E N T Α Ή Ο Ν A N D E X A M P L E S 159

easier when a time-oriented formulation is chosen. Nevertheless, the formal
specification completely abstracts from the notion of time.

This example also can be used to demonstrate the use of narrowing for
nondeterministic specifications. For instance, the following equation (with
unknown variables j , j l , e l) can be understood as the question whether a
sequence of events is admissible which starts with a waiting state:

scheduler® = wait(j 1 ,el)
RAP correctly does not find any solution (and terminates rapidly). The next
equation asks whether it is possible that another job is printed before the first
one in the job queue is started:

scheduler(append_Job(1 j)) = append_Exec(j 1 }p 1 ,append_Exec(l ,p2,el))
Two solutions are found:

j = append_Job(l,*0), j l = 1, p i = 1 and
j = append_Job(l,*0),jl = 1, p i =2

(where *0 is a system-generated variable, which stands for an arbitrary natural
number). An interpretation of this solution is: The equation can be fulfilled
only, i f the job number of the first job is equal to the number of the second one.
Here it can be seen, how an experiment with a software tool uncovers problems
or mistakes within a specification: The specification above does not contain an
axiom to exclude explicitly the multiple use of the same job number within a
job queue.

Chapter 6

Partial Nondeterministic
Specifications

Up to this point, only nondeterministic specifications have been considered the
models of which are total algebras. The axioms were restricted to (conditional)
inclusion rules. An important advanced concept for classical equational
specifications is an appropriate treatment of "undefined" situations during the
computation of a value. In order to show that partial nondeterministic
specifications do not evoke essential new problems, a generalization of our
approach to partial specifications is addressed here. The treatment of partiality
follows tightly the concepts in [Broy, Wirsing 82].

6.1 Partial Operations
Partiality is a basic phenomenon in programming. Typical examples are
algorithms which cannot terminate for all inputs (like an interpreter for a
universal programming language) or overflow and underflow situations (for
instance in arithmetic).

6.1.1 Undefined "Values"

A basic idea for the treatment of partial operations is that there are no "undefined
values" in the sense of actual values, but that undefinedness means the non­
existence of a value. Intuitively, such a situation is imagined best as a

1 6 2 PARTIAL NONDETERMINISTIC SPECIFICATIONS

nonterminating computation. I f this point of view is taken, the actual carrier set
of a model can contain only defined (existent) values.

In general, the theory of partial operations presupposes all operations to be
strict. Intuitively spoken, strictness describes the property that the non-existence
of some argument value prohibits the computation of any result value. There
exist generalizations of the theory to the case of non-strict operations (which
obey some monotonicity restrictions, cf. [Möller 82], [Broy 87]). Intuitively,
non-strict operations can compute a result in some cases from an incomplete set
of argument values without "waiting" for some unnecessary argument. The work
presented here does not cover such generalizations. But it can be assumed that
even non-strict operations can be integrated well into the nondeterministic
approach.

In analogy to section 1.1.1, a number of alternative approaches are discussed
first, how to model partial nondeterministic operations mathematically.

Let f: si χ s2 -» s be a function symbol, s i , s2 and s sort symbols of some
underlying signature.

Within an algebra A, let si A , s 2 A and s A denote the respective carrier sets. The
symbol ± is used within the description of the operations to denote undefined
situations. This "pseudo value" JL is not a member of the carrier sets! For an
arbitrary set Μ we use the abbreviation:

M ± = d e f M U { l }

Using the terminology of [Broy, Wirsing 81], there are a number of alternatives
for the interactions between _L and defined values:

(a) Erratic Nondeterminism

Let A be a model of the given specification,
f A : s l A χ s 2 A - * p + t f s ^ 1) ,

where fA is continued strictly, i.e.:
fA(_L,e2) = { 1 } and f A (e l ,±) = {±}

(where e l G s l A , e2Gs2A).

Here 1 is treated similarly to the defined values. In some situations there can be
a choice between J_ and a set of defined values ("choice nondeterminism").

P A R T I A L N O N D E T E R M I N I S T O S P E C B F I C A T O N S 163

[Nipkow 86] and [Hesselink 88] use this form of partial operations. The other
two approaches described below do not allow such a choice between "undefined"
und "defined":

(b) Demonic Nondeterminism

Let Β be a model of the given specification,
f B : s l B χ s2 B - ^ (p + C s 6)) 1 ,

where f B is continued strictly, as above.

An informal explanation of the "demonic" approach is that an operation attempts
to compute the whole set of all possible results. I f the computation of one of
these results does not terminate, the whole set of results is undefined. This can
be observed from the fact that the definition above does not admit a choice
(during the computation) between defined results and "undefined". Demonic
nondeterminism is often called also "backtracking" nondeterminism, since it
appears naturally in search procedures which are described nondeterministically.

From a model A, according to approach (a), a model B, according to approach (b)
can be constructed by defining (for a term t):

'{_!_} i f ± e i A [t]
I^ [t] otherwise I B [t] =

(c) Angelic Nondeterminism

Let C be a model of the given specification,
fC; s l C χ s 2 c -* p (s C) ,

where is continued strictly, and where 0 is considered as the
representation for "undefinedness".

The approach of angelic nondeterminism does not handle undefined values
explicitly. It tries to avoid undefinedness wherever possible, instead. Only i f
none of the possible computations does terminate, the situation is treated as
"undefined", which means that the set of results is empty. Using this approach,
there is no need for a special symbol JL. [Hansoul 83] uses this approach,
because of its technical advantages. However, from a semantic point of view, it
is somehow confusing that the representative value for "error" (i.e. 0) is
contained within any result set (since it is contained in any set, mathematically).

1 6 4 PARTIAL NONDETERMINISTIC SPECIFICATIONS

From a model A, according to approach (a), a model C, according to approach
(c), can be constructed by defining (for a term t):

i c [t] = i A [t] \ { i } .

The approach (a) is the most general one of the alternative approaches. It
corresponds well to the idea that the nondeterministic decision is made locally
within the operation f. Therefore, the following text develops approach (a) to
more detail. In analogy to section 1.1.2, the erratic approach describes the input-
output behaviour of an operational unit

x l -

x 2 -

by observations like:

and

" I f the input lines have the (defined) values x l and x2, then the output
line may have the value y (as one out of all possibilities)."

" I f the input lines have the (defined) values x l and x2, the computation
may not terminate (as one out of all possibilities)."

6.1.2 Partial Multi-Algebras

In the following, the notions which have been defined for nondeterministic
specifications are generalized to the case of partial operations.

Definit ion 6.1 (Partial Σ - M u l t i - A l g e b r a)

Let Σ = (S, F) be a signature. A partial Σ-multi-algebra A is a tuple A
= (S A , F A) , consisting of

• a family S A of non-empty carrier sets
S A = (sA) SES> s A * 0 f o r s G S

a family F A of set-valued functions
F A = (f A)fGF

P A R T I A L N O N D E T E R M I N I S T I C S P E C I F I C A T I O N S 165

such that for [f: si χ ... χ s n s] Ε F:
f A : s i A χ ... χ s n

A -* p + t f s ^ 1)

The class of all partial Σ-multi-algebras is called PAlg(I) .
PGen(2) denotes the term-generated algebras out of PAlg(Z) (according
to definition 2.21). φ

In accordance with the strictness requirement for all operations, the notion of a
environment remains unchanged. Environments do not assign a variable to the
pseudo-value ± .

Definition 6.2 (Interpretation in Partial Algebras)

Let A be a Σ-algebra, β an environment of X in A.
A A

The interpretation Iß = (Iß s)sES is given by (where sES):

using the inductive definition:
(1) I f t = xandxEX s :

I^s[t] = {ßW}
(2) I f t = f (t i , . . . , t n) such that [f: si χ ... χ s n -» s] Ε F:

Iß ? s[f(tl, · · , t n)] = { eEf A (e i , . . . ,en) I e i Q ^ ^ t t i N l } }

U { l | 3 i E { l , . . . , n } : l a j ^ f o] } φ

The notion of interpretation now covers (besides the additive extension) also the
strict extension of the operations to undefined values.

In order to create a specification language which excludes models where all
operations are completely undefined, an additional kind of axioms is introduced.
The definedness predicate DEF (compare [Broy, Wirsing 82]) is used to specify
whether the interpretation of a term is required to be defined.

Definition 6.3 (DEF-Axiom, Validity)

Α(Σ,Χ-) DEF-axiom is a term, written as a formula:
DEF(t) where tEW(Z,X).

166 PARTIAL NONDETERMINISTIC SPECIFICATIONS

For AEPAlg(Z) we define:
A 1= D E F (t)

i ff for all environments ßeENV(XA): -L^Iß [t] .

The validity of DET-axioms and inclusion rules remains as it was
defined in definition 1.8 and 2.2, respectively. φ

Please note that this definition implicitly made a decision for the "strong"
interpretation of the -^-relation, in analogy to [Broy, Wirsing 82]. For instance
i f in A we have:

f A = { ± , a } , g A = { ± } ,
then the both formulae hold:

A 1= f -» g and A 1= D E T (g) .

Alternatively, an "existential" interpretation of —> is possible (analoguously to
the so-called "existential equality"), which could be defined by

A l = t l - * t 2 ο VßGENV(XA): -Lg l jh t l] Λ l£ [t l] D l £ [t 2] .

The notion of an algebraic specification is extended from now on in such a way
that DEF-axioms are admitted as axioms. The class PMod(T) is the class of all
partial multi-algebras from PAlg(2), which are a model of the specification Τ =
(Σ, R), i.e. where all axioms <()ER are valid. PGen(T) denotes the term-generated
algebras in PMod(T).

Example 6.4

A well-known example ([Subrahmanyam 81]) for partial operations is
constituted by the structure of finite sets over a basic sort, together
with a nondeterministic choice operation:

spec SET
basedon E L E M { contains the basic sort El (for "elements") }
sor t El , Set
func empty: - * Set

insert: Set χ El -» Set
choose: Set -> El

a x i o m s
DEF(empty), DET(empty),

PARTIAL NONDETERMINISTIC SPECIFICATIONS 167

DEF(insert(s ,χ)) , DET(insert(s ,χ)),
DEF(choose(insert(s ,χ))),
insert(insert(s,x),y) -* insert(insert(s,y),x),
insert(insert(s,x),x) insert(s,x),
choose(insert(s,x)) -> x,
choose(insert(s,x)) -*· choose(s)

end

A model S of SET is given by:
s e t S = p f i n (E l s) ,

empty s = { 0 } , insert s(M,e) = { MU{e} } ,

choose s(M) = { ^ = 0 (where MCE1 S , eGEl s) .

A "non-standard" model of SET is NS:
set^S = { c } (where c is an arbitrary constant),
emp ty N S = { c } , insertN S(c,e) = { c } (for all eeEl N S),
chooseN S(c) = E l N S .

Both models of SET are independent of the actual choice of a model for
ELEM. Again, we want the model NS to be excluded, since it is not
maximally deterministic. In NS the following fact is valid:

NS 1= choose(empty) -> t
for an arbitrary defined term t£W(I)Ei . 0

6.2 Partiality and Term Rewriting
The literature on term rewriting usually does not address other models than those
of classical equational logic (where all operations are total). A calculus for term
rewriting with partial operations has not yet been studied explicitly. But there
exists a method to build an equational calculus for partial operations on top of
the classcial (total) case ([Broy, Pair, Wirsing 84]). Basically, a "call-by-value"
evaluation is simulated within the calculus. For this purpose, at every
application of an axiom it is taken care that the instances for variables are
defined (similarly to the simulation of "call-time-choice" by conditions formula-
ed with DET-predicates). The following definitions follow this idea.

168 PARTIAL NONDETERMINISTIC SPECIFICATIONS

It is an obvious disadvantage of this approach that the pure term rewriting
calculus is left. Since the original term rewriting calculus admits arbitrary terms
as the instances of variables (including terms with an undefined interpretation),
classical term rewriting can be used as a calculus only i f models with non-strict
operations are admitted. This approach seems to be promising (cf. also [Broy
87]); but it cannot be worked out within this text.

6.2.1 A Calculus for Partial Specifications

A suitable calculus for partial specifications can be constructed in analogy to
definition 2.4. New ingredients are additional preconditions for the instantiation
of variables in axioms and particular rules for the DEF-predicate (including
strictness rules):

Definit ion 6.5 (Term Rewri t ing Calculus wi th DEF and DET)

Let Τ = (Σ, R) be a specification with DET- and DEF-axioms.
A formula <tl -> t2>, <DET(t)>, or <DEF(t)>, respectively, is called
deducible in T, symbolically written

Τ I - t l - * t2, Τ I- DET(t), or Τ I- DEF(t),
iff there is a deduction using the following deduction rules:

(REFL), (TRANS), (CONG), (DET-X), (DET-D), (DET-R)

as in definition 2.4

(AXIOM- 1-D)

DET(ox ι) , . . . , DET(ax n) , DEF(ax ι) , . . . , DEF(ax n)

σΐ -> ox

i f <1 D Ε R, σ Ε SUBST(Z, X) ,
{ x i , . . . , x n } = Vars(l)U Vars(r)

PARTIAL NONDETERMINISTIC SPECIFICATIONS 169

(AXIOM-2-D)

DET(ax i) , . . . , DET(ax n) , DEF(axi) , . . . , DEF(cx n)

DET(ot)

i f <DET(t)> Ε R, σ G SUBST(Z, X) ,
{ x i , . . . , x n } = Vars(t)

(AXI0M-3-D)

DET(axi) , ···> DET(ax n) , DEF(axi) , . . . , DEF(crxn)

DEF(crt)

i f <DEF(t)> Ε R, σ Ε SUBST(Z, X) ,
{ x i , . . . , x n } = Vars(t)

(DEF-X)
DEF(x) i f χ Ε X

(DEF-D) DEF(tl), t l t2

DEF(t2) i f t l , t 2 E W (I , X)

(STR) DEF(f(ti,...,tn))

DEF(ti)

i f i E { l , . . . , n } ,
[f: sj χ ... x s n - * s] 6 F ,
t j E W (I , X) s j f o r a l l j E { l , . . . , n } φ

Theorem 6.6 (Soundness)

Let Τ = (Σ, R) be a specification with DET- and DEF-axioms. Then for
t , t l , t 2 E W (I , X) :

Τ I- t l t2 => PMod(T) 1= t l -* t2
Τ I- DET(t) => PMod(T) 1= DET(t)
Τ I - DEF(t) => PMod(T) 1= DEF(t).

170 P A R T I A L N O M D E T E R M I M S T I C S P E C I F I C A T I O N S

Proof: Analoguously to theorem 2.6, see appendix A. ()

6.2.2 Partial DET-Completeness and DET-
Additivity

In order to generalize the techniques which have been used in chapter 2, DET-
completeness and DET-additivity have to be defined for partial specifications. In
the following, again in analogy to [Broy, Wirsing 82], the existence of a
deterministic -^-successor term is required only for provably defined terms. The
initial model wi l l interpret any term as undefined which cannot be reduced to a
provably defined term.

Definition 6.7 (Partial DET-Completeness and DET-Additivity)

Let Τ = (Σ, R) be a specification with DEF- and DET-axioms.

Τ is called partially DET-complete iff:
V t e W (I) : TI-DEF(t) =>

3 t 'GW(I) : Τ I-1 -> t' Λ Τ I- DET(t') .

A term t E W ^) is called potentially undefined (symbolically: Τ I- f t)
iff:

I t ' 6 W (I) : Τ I-1 t* Λ Τ I- DEF(t') .

Τ is called partially DET-additive i ff the following conditions (1) and
(2) are fulfilled:

(1) V [f : si χ ... χ s n s] Ε F:
V t i G W (I) s l , . . . , t n e w (i) S n , t e W (Z) s :

Τ I- f (t i . . , t n) t Λ Τ I- DET(t) Λ Τ I- DEF(t) =>
3 t i ' E W (^ s 1 , . . . , t n

, E W (^ S n :

Τ I - f (t i \ . . . , t n ') - * t Λ Τ I- t i - Μ ΐ ' Λ ... A T I - t n - * t n ' Λ
Τ I- DET(t i ') Λ ... Λ Τ I- DET(tn') Λ
Τ I - DEF(ti ') Λ ... Λ Τ I- DEF(tn')

(2) V [f : si χ ... χ s n -* s] Ε F:
V t i e W (I) s l , ·. ·, t n E W f f) S n , t e W (Z) s :

T l - f (t i , . . . , t n) - t Λ Τ I- t t =>

PARTIAL NONDETERMINISTIC SPECIFICATIONS 1 7 1

a t i ' G W (Z) s l , . . . , t n ' G W (Z) S n :

Τ I - f (t i \ . . . , t n ') - Μ Λ Τ I- t i - M i ' Λ ... Λ Τ I - t n t n ' Λ
Τ I- DET(t i ') Λ ... Λ Τ I- DET(t n ') Λ
Τ I- DEF(ti ') Λ ... Λ Τ I- DEF(tn') 0

The formulation of DET-additivity contains a new condition (2) which prescribes
an additive behaviour for all operations also with respect to the pseudo-value ± .
Analoguous syntactical criteria for DET-additivity, as they have been formulated
in theorem 2.11, can guarantee partial DET-additivity including condition (2)
(see section 6.3).

In analogy to chapter 2, now a term model can be constructed (which later wil l
turn out to be initial for a particular model class, too). In order to achieve non­
empty carrier sets, the notion of a sensible signature is used in a slightly
modified sense: From now on, a specification Τ = (Σ, R) with signature Σ = (S,
F) is called sensible iff for every sort there exists at least one defined term:

Τ is sensible ^>def V sES: 3 t E W ^) s : Τ I- DEF(t)

Definition 6.8 (Term Model Ρ Σ / R)

Let Τ = (Σ, R) be a partially DET-complete and sensible specification.
A partial Σ-algebra ΡΣ/R is defined by:

s p s / R = {[t] I t E W f f) s Λ TI-DET(t) Λ TI-DEF(t)}
for sES,

fPZ/R. λ ν (Σ) 5 / « χ ... χ W f f) S n / « -> ρ+((\Υ(Σν~μ)
f P 2 / R ([t i] , . . . , [t n]) =

{[t] i tew(Z) s A T i - f (t i , . . . , t n) - M
Λ TI-DET(t) Λ TI-DEF(t)}

U { ± ! 3 t : f (t i , . . . , t n) - t Λ f t }
for [f: si χ ... χ s n -* s] Ε F.

Partial DET-completeness ensures that f P 2 / R ([t i] , . . . , [t n]) * 0 . We
have always s p ^ ^ * 0 , since for every sort there exists at least one
defined term. The term equivalence from definition 2.12 is again used
here, it is denoted by «. φ

1 7 2 P A R T I A L N O N D E T E R M I N I S T I C S P E C I F I C A T I O N S

Theorem 6.9

For a partially DET-complete, partially DET-additive and sensible
specification T=(Z,R), ΡΣ/R is a term-generated model of T.

Proof:
Analoguously to theorem 2.14, see appendix A. (}

A consequence of theorem 6.9 is the following weak completeness result for
PMod(T):

Corollary 6.10 (Weak Completeness for Ground Terms)

Under the preconditions of theorem 6.9 for t l , t2EW(I) the following
holds:

Τ I- DET(t2) Λ Τ I- DEF(t2) Λ PMod(T) 1= t l t2
=> Τ I- t l -* t2 .

PMod(T) 1= t l t2
ΡΣ/R 1= t l t2 (Theorem 6.9)
V t': I- DET(t') Λ I- DEF(t') Λ I-12 Γ => I- t l t '

(Lemma 6.9.1)
Τ I- t l -* t2 (Assumptions, (REFL)). 0

6.3 Partial Specifications with
Constructor Basis
At first sight, the language and calculus for partial nondeterministic
specifications look rather clumsy and difficult to use. However, i f the theory of
partial nondeterministic specifications is combined with constructor-based
specifications, this language can be made not only more expressive, but also
simpler in some sense. The simplification consists in removing the restriction
to constructor-completeness of the axiom set, and it has already been used within
chapter 4 (sections 4.4.1 ff.) Using the technical machinery from above, here the
details are given which justify the simplification.

Proof:

P A R T I A L N O N D E T E R M I N I S T I C S P E C I F I C A T I O N S 173

For this purpose, definition 4.13 for constructor-based specifications is extended
as follows:

Definition 6.11 (Partial Constructor-Based Specification)

Definition 4.13 is extended by the following convention, in order to
interpret a constructor-based specification as an abbreviation for a
specification with DET- and DEF-axioms:

(3) R does not contain DEF-axioms. A l l models of Τ implicitly must
fulfill the following axioms:

DEF(c(xi,. . . ,x n))
for all constructors cEC (where χχ, . . . , x n are pairwise distinct
fresh variables). ()

It is a significant simplification compared to general DET- and DEF-axioms that
the constructor terms are exactly those terms for which definedness and
determinacy can be proven:

V t E W (Z) : t 6 W (Z c) <*> TI-DEF(t) Λ Τ I-DET(t) (*)

Also in comparison to total constructor-based specifications a simplification is
achieved: Analoguously to the criterion for partial sufficient completeness from
[Broy, Wirsing 82] (equations in "output-normal form"), for constructor-based
specifications the check for C-completeness (complete case analysis over
constructor terms) is unnecessary.

Theorem 6.12

Every partial constructor-based specification is partially DET-complete
and partially DET-additive.

Proof:
The partial additivity follows from theorem 2.11 again. From the proof
of theorem 2.11 it can be seen that the additional condition (2) in
definition 6.7 is fulfilled, too.
The partial DET-completeness follows from the fact that the
definedness can be proven only for constructor terms, and (according to
the definition) exactly for these terms the determinacy can be proven. ()

174 PARTIAL NONDETERMINISTIC SPECIFICATIONS

Theorem 4.19 (on hierarchical specifications) can be generalized to the case of
partial specifications, i f a suitable generalization of sufficient completeness to
"partial sufficient completeness" (analoguously to [Broy, Wirsing 82]) is used.
Under the syntactical precondition mentioned in theorem 4.19, partial
constructor-based specifications automatically are partially sufficiently complete
and hierarchy-consistent.

The calculus of constructor-based term rewriting from definition 4.20 is
obviously sound also for partial specifications, since (*) exactly gives the
necessary preconditions to transform any application of (AXIOM-1-C) (see
definition 4.20) into one of (AXIOM-1-D) (see definition 6.5). Al l the deduction
rules in definition 6.5 dealing with the deduction of DET- and DEF-formulae are
unnecessary in constructor-based specifications; they are replaced by (*).

Combining corollary 6.10 with (*), we immediately have the weak complete­
ness result for partial constructor-based specifications:

V t l Ε W (I) , t2 Ε W(2c): PMod(T) 1= t l -* t2 => Τ l-c t l - * t2.

Constructor-based specifications are sufficiently expressive for the description of
many nondeterministic functions which are relevant in practice (cf. chapters 5
and 7). Despite of this power, they are semantically simple: No additional
conditions have to be checked in order to provide a well-defined operational and
mathematical semantics for them. As it has been shown in chapter 4, they are
closely connected with definite logic programs. I f we compare the simple
calculus of SLD-resolution with the calculus from definition 6.5 above, it
becomes evident that logic programming picks a special case out of rather
complex surroundings, which gives a good compromise between technical
simplicity and expressive power.

Due to the results from chapter 4, it is obvious that a translation into Prolog, or
an implementation by graph rewriting are well-suited for experiments with
partial constructor-based specifications. The removal of the constructor-
completeness condition, however, has the consequence that innermost rewriting
is no longer a sound implementation technique. The following example
illustrates a case where constructor-based term rewriting differs from innermost
term rewriting.

P A R T I A L N O N D E T E R M I N I S T C S P E C I F I C A T I O N S 175

Example 6.13

spec STACK
basedon N A T
sor t Stack
cons empty: -» Stack,

append: Stack χ Nat -> Stack
func first: Stack -> Nat

rest: Stack -* Stack
a x i o m s

first(append(s,x)) -» x,
rest(append(s,x)) -*> s

end

There are models AGPMod(STACK) such that the following holds:
first A(empty A) = {J .} , restA(emptyA) = {1},
IA[rest(append(first(empty),empty))J = {J.}.

(For an example of such a model, confer ΡΣ/STACK.)
Constructor-based term rewriting respects this definition. So the term

rest(append(first(empty) ,empty))
is in normal form with respect to l-c (i.e. it cannot be reduced to
constructor form, it is "undefined" in ΡΣ/STACK). Innermost term
rewriting, however, performs the following, unsound, computation:

rest(append(first(empty),empty)) ^ J J T A C K empty . ()

At this point, the study of nondeterminism in algebraic specifications, term
rewriting and algebraic programming has reached a stage of completeness. Partial
nondeterministic specifications provide a rich and powerful framework, where
classical deductive frameworks can be identified as simple special cases.

Chapter 7 below concludes this text with a larger case study. In order to
complete the study also from the semantical point of view, section 6.4 has been
included, which extends the results on the structure of model classes from
chapter 3 to the partial case. This section addresses only readers interested in
model-theoretic semantics of algebraic specifications. For readers interested
mainly in the deductive aspects of the framework, it is recommended to skip
directly to chapter 7 from here.

1 7 6 PARTIAL NONDETERMINISTIC SPEOFICATIONS

6.4 Structure of the Model Classes
This section generalizes the results on the structure of model classes from
chapter 3 (in particular existence of initial and terminal models) to the partial
case. This leads to a rather complex theory, which is mainly burdened with
many slightly different notions. Below, the notions are chosen in such a way
that the proof techniques from chapter 3 can be easily carried over. However,
there may be various ways of fine-tuning the definitions in these respects.

An important and not easy topic is the determination of a suitable notion of
homomorphism for partial nondeterministic algebras. For partial deterministic
algebras appropriate notions have been developed in [Broy, Wirsing 82]: This
work distinguishes between weak, total and strong homomorphisms. In the
following, this work is generalized to the case of set-valued functions. This leads
to an even larger number of different notions, since the distinction between loose
and tight homomorphism must be combined with all three different
homomorphisms. Fortunately, for initiality results only some particular
combinations are of interest.

6.4.1 Homomorphisms

Definition 6.14 (Σ-Homomorphisms for Partial Algebras)

Let Σ = (S, F) be a signature, A, BEPAlgff) .
A loose Σ-homomorphism φ from A to Β is the strict continuation of a
family of mappings

φ = (<Ps)ses, <Ps: sA p+tts 6) 1),
which fulfils the following condition:

For all [f: si χ ... χ s n s] Ε F and all e i E s i A , e n E s n

A :
{e'E(p s (e)leEf A (ei, . . . ,e n) Λ e*±}

C {e 'Ef B (e i ' , . . . , e n ') I e i 'Eqp s l (ei) , . . . , e n ' B p S n (e n) }

φ is called a tight Σ-homomorphism, i f f the stronger condition holds
for all e i , e n :

P A R T I A L N O N D E T E R M I N I S M S P E C I F I C A T I O N S 177

(J _ < £ f A (e i , . . . , e n) =^
{ e'Ecps(e) I e E f A (e i . . ,en) }

- { e ' e t B (e i ' , . . . l e n

,) l e i , e |) s i (e i) })
Λ (J _ E f A (e i , . . . , e n) =>

{ e'Eqps(e) I eEf A (ei, . . . ,e n) Λ e*L }
- { e ' E f B (e i ' > . . . 1 e n

,) l e i , e V s i (e i) Λ e '*± })

φ is called elementary, i f f V eEs A : lcp(e)l = 1.
φ is called total, as usual, i f f V eEs A : -L^cp(e).
φ is called weak , iff for all x i , . . . , x n :

_LEf A (ei , . . . ,e n)

3 e i 'Ecp s l (e i) , e n 'Eqp S n(e n): ± E f B (e i ' , . . . , e n ') .

φ is called strong, i f f φ is total and weak.

A partial multi-algebra A is called loosely initial in a class Κ of partial
multi-algebras, i ff for all BEK there exists a unique total and loose Σ-
homomorphism φ: A -> B. A is called strongly initial, i f f for all BEK
there exists a unique strong and tight Σ-homomorphism φ: A -» B.

A partial multi-algebra A is called weakly terminal in a class Κ of
partial multialgebras, i f f for all BEK there exists an elementary, weak
and loose Σ-homomorphism φ: Β -> A. A is called strongly terminal,
i f f for all B E K there exists an elementary, strong and tight Σ-homo­
morphism φ: Β Α. φ

Similar definitions can be found in [Nipkow 86], but only for the combinations
loose/total and tight/strong (and with different naming conventions). The notion
of homomorphism in [Hansoul 83] is similar to tight homomorphisms, but for
a simpler notion of a partial multi-algebra (approach (c) according to section
6.1.1). The notion of weak terminality has been introduced here only in order to
illustrate similarities and differences to [Broy, Wirsing 82].

The rather complex definition of a tight homomorphism is motivated by the fact
that this definition leads to simpler notions when it is combined with the
property "total" or "weak". This can be seen best for term-generated algebras.

1 7 8 PARTIAL NONDETERMINISTIC SPECIFICATIONS

Lemma 6.15

Let Σ be a signature, Α, Β Ε Ρ β β η (Σ) , φ : A Β a loose Σ -
homomorphism. Then:
(1) φ is total <t>

V tGWGE): { e'Gcp(e) I e Q A [t] \ { l } } C I B [t] \{±}
(2) φ is tight and total <z>

V teW£): { e'Ecp(e) I eGI A [t]\{±}} = I B [t] \{±}
Λ (l G I B [t] => ± G I A [t])

(3) φ is weak <̂>
V teW(Z): { e'Gcp(e) I eGI A [t] } C I B [t]

(4) φ is tight and weak <=>
V teW(Z): { e'Gcp(e) I eGI A [t] } = I B [t]

(5) φ is tight and strong ο
V teW(Z): { e'G9(e) I eGI A [t] } - I B [t]

Λ (± E I A [t] < ^ l G I B [t])

Proof: See appendix A. 0

6.4.2 Initial Algebras

Under the preconditions of theorem 6.9, a loose Σ-homomorphism from ΡΣ/R
into an arbitrary model AEPMod(T) exists (just take the continuation of the
interpretation I A) . Therefore we have:

Theorem 6.16

I f Τ = (Σ, R) is partially DET-complete, partially DET-additive and
sensible, ΡΣ/R is loosely initial in PMod(T) and PGen(T).

Proof:
The proof is conducted in analogy to theorem 3.13 (see appendix A) .
For [t] G s P 2 / R holds: I- DEF(t), therefore ±£ l A [t] . This means that the
continuation of I A is a total Σ-homomorphism from ΡΣ/R to A. ()

In order to state connections to the notions of homomorphism used in the
literature, a similar result to lemma 3.13 was useful. But the generalization of
the lemma would require that for an arbitrary model AEPGen(T) the following

PARTIAL NONDETERMINISTIC SPECIFICATIONS 179

property always holds (which is not the case):
V eEs A : 3 tEW(I) : Τ I- DEF(t) Λ I A [t] = {e}

A particular class of models is characterized by this property.

Definition 6.17 (Minimally Defined Models)

Let Σ be a signature, KCPAlg(Z) a class of algebras, AEPAlg(Z).
A term tEW(Z) is called undefined in A (symbolically: A 1= ft) iff:

I A [t] = {±}.
A is called minimally defined in Κ iff:

V teW(Z): (3 BEK: Β 1= ft) => A 1= ft.

Lemma 6.18

Let Τ = (Σ, R) be a partially DET-complete, partially DET-additive and
sensible specification.

(1) For AEPMod(T):
A is minimally defined in PMod(T)

(V t E W (I) : A 1= f t <=> Τ I- t t)

(2) I f a term-generated model AEPGen(T) is minimally defined in
PMod(T),then:

V e Ε s A : 3 tEW(I) : Τ I- DEF(t) Λ I A [t] = {e}

(3) Let AEPGen(T), BEPMod(T), A minimally defined in PMod(T).
Then all loose and total homomorphisms φ: A -* Β are
elementary.

Proof: See appendix A. ()

Part (1) of this lemma states that ΡΣ/R is minimally defined in PMod(T), part
(3) therefore corresponds to lemma 3.12. As a consequence, only elementary
homomorphisms appear in the initiality results below.

Please note that the notion of minimal definedness from above is not identical to
the notion with the same name in [Broy, Wirsing 82]. The reason for this is that
in a nondeterministic framework from the proposition "t is not defined in A "
(- (A 1= DEF(t)) we cannot conclude that "t is undefined in A " (A 1= TO- The

180 P A R T I A L N O N D E T E R M I N I S T I C S P E C I F I C A T I O N S

interpretation of t in A may contain defined values and the pseudo-value 1 . It is
perfectly adissible that for a term t we have the following:

PZ/RI=DEF(t) Λ 3 AEPGen(T): - (A 1= DEF(t)).

Example 6.19

spec SOME
sort Nat
func zero: Nat,

some: -> Nat
a x i o m s

DET(zero),
DEF(zero),
some -» zero,

end

succ: Nat -» Nat,

DET(succ(x)),
DEF(succ(x)),
some -> succ(some)

The model ΡΣ/SOME is isomorphic to the following model P:
N a t p = N , zero p = { 0 } , succp(n) = {n+1},
some p = Ν .

Another model A is given by:
N a t A = Ν, zeroA = {0} , succ A (n) = {n+1},
some p = NU{±} .

In the notation of [Broy, Wirsing 82], Ρ cannot be called minimally
defined (since Ρ 1= DEF(some), -'(AI=DEF(some))). Using the
definition above, Ρ is minimally defined.

Independent of this question, A lacks the property of maximal
determinacy, since the pseudo-value J. in the interpretation of some
represents a form of "superfluous" nondeterminism, which has no
foundation in the specification text. ()

The example shows that the formal generalization of the notion "maximally
deterministic" has to handle the pseudo-value J_ appropriately. The crucial point
is here the definition of the relation "more deterministic than" for partial
algebras. As a generalization of the definition in the total case, it is obvious
how the sets of defined values are to be compared (for the interpretation of a

PARTIAL NONDETERMINISTIC SPECIFICATIONS 181

certain term in two algebras). In analogy to the notion of partial correctness, this
relation is called "partially more deterministic".

The example above shows that another, "total" notion is needed as well, which
describes whether Ρ is more deterministic than A. The formal definition relies on
lemma 6.15 (1) and (2).

Definition 6.20 (Maximally Deterministic Models in the Partial
Case)

Let A, A ' be partial Σ-multi-algebras.
A ' is called a refinement of A , i f f there is a loose total Σ -
homomorphism φ: A ' -* A.
A ' is called partially more deterministic than A, iff:

V teW(Z): (I I A [t] \ { l } I * I I A ' [t] \ {±} I)
A ' is called (totally) more deterministic than A, iff:

V teW(Z): (I I A [t] \{±} I * I I A ' [t] \ {±} I)
Λ (i e i A ' [t] => ± G I A [t]) .

A is called maximally deterministic, i f f A is totally more deterministic
than any refinement of A.

DPGen(T) denotes the class of maximally deterministic term-generated
models of a specification T. ()

There exists a strong connection between the model class DPGen and the "two-
phase" fixpoint semantics for nondeterministic programs defined in [Broy 86].
The maximality constraint with respect to the relation "partially more
deterministic" corresponds to a designation of "Egli-minimal" algebras, the
treatment of the 1-element leads to an additional minimality constraint with
respect to the set inclusion ordering.

Lemma 6.21

Let Τ be a partially DET-complete, partially DET-additive and sensible
specification. For any AEPGen(T) the following propositions are
equivalent:

(1) A is maximally deterministic.

182 P A R T I A L NONDETERMINISTIC SPECIFICATIONS

(2) V BEPGen(T):
φ: B -*A is a loose and total Σ-homomorphism =>

φ is a tight Σ-homomorphism.

(3) V tew©:
(V e G I A [t] : e * ± => 3ϊΕΨ(Σ):

Τ I-1 -> t' Λ Τ I- DET(t') Λ Τ I- DEF(t') Λ I A [t '] = { e }) Λ
(± E I A [t] = > 3 t ' E W f f) :

Τ I-1 —* t' Λ T l - t f Λ I A [t '] = { l })

Proof: See appendix A. φ

Theorem 6.22

Let Τ be a partially DET-complete, partially DET-additive and sensible
specification.
Then ΡΣ/R is strongly initial in DPGen(T).

Proof :
Let AEDPGen(T). According to theorem 6.16,1A is a unique loose and
total homomorphism from ΡΣ/R to A. With lemma 6.21 (2), is a
tight homomorphism, too.
Let t e W (Z) , ± E I P 2 / R [t] , then 3 t': Τ I-1 -» t' Λ Τ I- f t ' (lemma
6.9.1). I f it was the case that e E I A [t '] , e*±, then Lemma 6.21 (3)
would deliver a contradiction to Τ I - f t ' . Therefore I A [t '] = { ± } , i.e.
± E I A [t] . According to lemma 6.15 (5) this means that I A is a strong
homomorphism, too. (}

From theorem 6.22 and lemma 6.18 (1) it follows that all models in DPGen(T)
are minimally defined in PMod(T) (in the sense of definition 6.17).

A graphical visualization of the lattice structure of the model classes can be
found at the end of the next section.

P A R T I A L N O N D E T E R M I N I S T I C S P E C I F I C A T I O N S 183

6.4.3 Terminal Algebras

In the case of partial specifications, the existence of terminal algebras is a less
trivial question than in the total case. From the definition of weak homo­
morphisms it can be seen directly that a (weakly or strong) terminal algebra A in
a class of algebras Κ has to fulfil the following property ("minimal definedness"
in [Broy, Wirsing 82]):

V tEW(Z): (3 BEK: ± E I B [t]) => l E I A [t] . (MD)
This property does not hold for a trivial algebra construction (like ΖΣ from
definition 3.6). Even one-element carrier sets and partial functions do not suffice
in general to construct a terminal algebra, since partial specifications implicitly
may exclude some possible identifications of elements:

Example 6.23

spec NT
sor t s
func a: -> s, b: -* s, f: s -» s, g: -» s
a x i o m s

DET(a), DEF(a), DET(b), DEF(b),
DEF(f(a)), f(x) a, f(b) g

end

There does not exist a term-generated model of NT, in which a und b
are identified and in which the property (MD) holds:

Let AEPGen(NT), aEs A , a A = b A = { a } .
Because of I-DEF(f(a)) then ±<£fA(a).
In PI/NTEPGen(NT) we have: l E I p s / N T [f (b)] , therefore A does not
fulfil (MD) (otherwise from a A = b A it followed t h a t l E f A (a) ,
contradiction). 0

Another negative statement can be deduced from the example above:

Theorem 6.24

In general, within PGen(T) strong terminal algebras do not exist.

184 PARTIAL NONDETERMINISTO SPEOHCATIONS

Proof :
Consider the specification NT from example 6.23. Two models A and
Β of NT are given by:

s A = s B = { a , b } , a A = a B = { a > , b A = b B = { b } ,
f A (a) = f B(a) = { a } , f A (b) = f B (b) = { a, ± } ,
g A = { a , l } , g B = { b , ± } .

A and Β fulfil (MD). I f there was a model Z, as well as tight and strong
homomorphisms φ: A -* Ζ and ψ: Β -» Ζ, then according to lemma
6.15 (5) the following statements would be valid:

{ φ (Ε) , 1 } = 8 Ζ = { ψ Ο >) , 1 } >

{cp(a)} = a z , { ψ (ο) } = ο Ζ .
From this follows that a z = b z . As in example 6.23, Ζ does not fulfil
(MD), so it cannot be strongly terminal in PGen(T). φ

However, a weakly terminal model for PMod(T) can be constructed. In this
model the operations are in general weaker defined and less deterministic than
those in models of DPGen(T), so the weakly terminal model is not very
interesting for nondeterministic specifications. This is the reason why weakly
terminal models in PMod(T) are not studied here. It is a more interesting
observation that in the most interesting model class DPGen(T) a strongly
terminal model does exist. For the construction of this model we use a relation,
which is defined in analogy to [Broy, Wirsing 82].

Def in i t ion 6.25

On W(Z) a quasi-ordering —»is defined by (t, t ' 6W(I))

t - * f *>def
3 A i , . . . , Ak+1EDPGen(T), t i , . . . , t k Ε W(Z):

A i l= t t i Λ A2 l= t t2 Λ . . . Λ Ak+1 1= t' .

denotes the equivalence relation induced by :

t f <>aef t —* f Λ t' t . 0

It can be seen easily that is reflexive, transitive und congruent with respect
to the term building operations. induces an ordering on the '^-equivalence
classes in W(Z).

P A R T I A L N O N D E T E R M I N I S T I C SPECIFICATIONS 185

Def in i t i on 6.26

Let Τ = (Σ, R) be a partially DET-complete, partially DET-additive and
sensible specification.
An extended axiom set E(R) is defined by

E(R) = R U { <t-*t'> 11, t ' E W (I) Λ

l-DET(t) Λ l-DEF(t) Λ l-DET(t) Λ I-DEF(t) Λ t <**> t' } .

Obviously, E(R) is partially DET-complete and DET-additive, again.

Therefore the algebra P(I)/E(R) is well-defined. 0

Theorem 6.27

Under the preconditions of definition 6.26, ΡΣ/Ε(Ρ) is strongly
terminal in DPGen(T).

Proof: See appendix A. (}

For the specification NT from example 6.23 the strongly initial and the strongly
terminal algebra in DPGen(T) are isomorphic. Essentially only one algebra is
specified here ("monomorphic specification").

Altogether, the structure of the model class of a partially DET-complete,
partially DET-additive and sensible specification Τ = (Σ, R) can be visualized
graphically as follows:

tight and strong homomorphisms

loose and total homomorphisms

loose and weak homomorphisms

PMod(T)

DPGen(T)

Chapter 7

Communicating Processes:
An Example

In this chapter the theory developed above shall be applied to a non-trivial
example, in order to demonstrate that the original aims are fulfilled. Moreover,
the example leads to some ideas how the current state of development can be
improved.

The specification presented in this chapter has been tested (with only a few
modifications) using the RAP system. Some of the experiments are documented
in appendix B.

As an example, the operational semantics of a programming language for
communicating sequential processes is specified. This example is of particular
interest, since one of the main motivations for the treatment of nondeterminism
comes from the field of programming parllel and communicating processes. The
language chosen here is a simplified variant of the language CSP ([Hoare 78]).
Syntax and semantics have been taken from [Olderog, Hoare 86], except of
minimal notational differences. A very similar language constitutes the basis for
the concepts of [Broy 84] .

7.1. Communicating Processes (CP)
The language of Communicating Processes (CP) presupposes a given alphabet
C of elementary actions (communication actions).

1 8 8 COMMUNICATING PROCESSES: AN EXAMPLE

The syntax of CP-programs in Backus-Naur form is as follows:

<Agent> ::= stop I
div I

<Action> -> <Agent> I
<Agent> OR <Agent> I
<Agent> [] <Agent> I
<Agent> II {<ActionSet>} <Agent> I
<Id> :: <Agent> I
<Id>

Here <Action> denotes elements from C, <ActionSet> means finite sets of
elements from C and <Id> denotes identifiers.

The informal meaning of agents is given by the processes they describe. A
process basically can be understood as a sequence (or, i f parallelism is involved,
as a partial order) of communication events, each of which is an instance of
some action out of the set C.

s top
describes a process which has reached its termination already and is no
longer able to communicate. Sometimes this situation occurs within a
system of processes unintentionally; then it is called a deadlock.

div
also describes a process which is unable to further communication. But
here this failure is due to an infinite sequence of internal computation
steps: The process diverges.

a-* ρ
describes the process which is able to perform the action a and which
afterwards behaves like the process p. An action in general means a
communication with another process.

pORq
describes a process which behaves nondeterministically either like ρ or

like q. This form of nondeterminism is called internal nondeterminism,
since the decision is taken by the process itself, completely
independently of its environment.

COMMUNICATING PROCESSES: AN EXAMPLE 189

p [] q
also describes a process which may behave nondeterministically like ρ
or q. But here the decision can be controlled by the environment
(which consists of other processes). The process is only allowed to
choose such an alternative, i f its first action leads to a successful
communication with its environment. Therefore this form of
nondeterminism is called external.

p l l { A } q
is used to compose systems of parallel processes. The action set A
describes the actions for which a synchronization of ρ and q is
necessary (internal communication between ρ and q).

ρ \ a
is used to "hide" internal actions performed by the process p. I f the
process described by ρ performs the action a, this fact is no longer
abservable from the outside. The "hiding" construct admits a modular
construction of more abstract processes from primitive ones.

χ :: ρ and χ
(where χ is an identifier) are used to declare processes recursively.

In the following, some approaches to a semantics of CP are specified. The
notational difference between agents (programs) and processes (evaluations of
programs) is handled less rigidly from now on.

7.2. Semantics of CP
In [Olderog, Hoare 86] a number of mathematical models for CP-processes are
given. It was principally possible to describe those semantical models directly
by nondeterministic specifications, since all these models use additive operations
(besides a few problems with hiding, see below).

But in order to stress the relationship to executable specifications and term
rewriting, the specification below uses the operational semantics of CP as its
starting point. It turns out that the language of nondeterministic algebraic

190 COMMUNICATING PROCESSES: AN EXAMPLE

specifications suffices to abstract from unnecessary technical details, leading to a
rather "abstract" kind of operational semantics.

7.2.1. Transition Semantics

The operational semantics for CP given in [Olderog, Hoare 86] uses transition
systems (labelled term rewrite rules). A rule in this framework is of the form

ρ Λ Ρ '

where ρ, ρ' are agents and χ is an action. The rules can be understood as
follows: The process described by ρ is able to perform the action χ and then
behaves like the process described by ρ' . The transition semantics admits here a
particular psudo-action t ^ C in additon to the communication actions (similarly
to the ε-transitions in nondeterministic automata).

Transition systems are a rather general tool for the definition of operational
semantics, as demonstrated by the "SOS"-style of semantic definition ([Plotkin
81], [Hennessy 90]). Therefore the treatment of transition systems is interesting
for a wider area of applications than the actual language studied here.

For an algebraic specification of the semantics, the main problem is an
appropriate handling of the labels used in the transition systems. Except of these
labels, the concept of non-confluent term rewriting corresponds well to
transition systems. In [Meseguer 92] the whole notion of rewriting has been
extended to cover the notion of labelled rewriting; we prefer to encode the label
associated with a rewriting step. The three basic alternatives for such an
encoding are:

(a) Transition rules as predicates

The transition rule is described by a predicate with three arguments:
OP: Agent χ Action χ Agent -> Bool
OP(p,a,p') = true.

This approach is used in [Broy 84]. It means to simulate nondeterminism on a
deterministic level (similar to [Subrahmanyam 81]). The models of such a
specification do not contain true nondeterministic operations.

COMMUNICATING PROCESSES: AN EXAMPLE 1 9 1

(b) Acceptor approach

The transition rule is described by a function
trans: Agent χ Action -» Agent
trans(p,a) -> p' ,

i . e. the successor state is specified for a given process and a given
action.

(c) Generator approach

The transition rule is described by a function
trans: Agent -» Action χ Agent
trans(p) -> <a,p'>,

i .e . the successor state and a possible action are specified for a given
process.

The difference between variants (b) and (c) can be seen best for an example. In
order to compute the successor states of the agent

(a stop) OR (b div)
the following transition rules from [Olderog, Hoare 86] are needed:

p O R q ^ ρ

ρ OR q J± q ,

i . e. the transition semantics admits the following possibilities for the first step:
(a -» stop) OR (b -* div) J± (a -* stop)

(a stop) OR (b div) J± (b div)

(This corresponds to the intuitive idea that a process composed by OR can
decide "spontaneously" in favour of one of its subprocesses.)

A model Β following approach (b) models this situation like this:

A model C according to approach (c) however defines:
trans^-(p) = { <x,a-»stop>, <x,b-»div> } .

Basically both variants are acceptable models of the considered situation. But the
second variant mirrors more precisely the intuitive idea of a "spontaneous"
action. In approach (c) a process generates the possible τ-actions by itself,
whereas in approach (b) the "spontaneous" actions have to be stimulated from

1 9 2 COMMUNICATING PROCESSES: AN EXAMPLE

the outside by supplying the process with a pseudo-action. Moreover, approach
(c) seems to lead to a technically simpler way of modelling. These are the
reasons why from now on approach (c) is followed.

In order to give an appropriate semantics for CP, all the concepts developed in
the previous chapters must be used (partial specifications, conditional axioms).
It is sufficient, however, to consider constructor-based specifications (according
to section 4.4). Therefore the specifications do not contain explicit DET- or
DEF-axioms; for all constructor terms implicit DET- and DEF-axioms are
assumed instead. It is reasonable to construct the specification in a modular
(hierarchical) way.

The following standard types are used:

BOOL the truth values, containing the sort Bool and the usual operations;

COM the basic alphabet for communication actions, containing the sort Com
and an equality predicate equal_Com: Com χ Com -> Bool;

ID the identifiers (strings), containing the sort Id an an equality predicate
equaljd: Idxld -> Bool .

Actions are described by

spec ACTION
basedon C O M
sort Action
cons tau: -> Action { invisible action }

com: Com -» Action { communication action }
end

The specification for sets of communication actions is omitted here (see
appendix B , specification COM_SET), in order to improve readability standard
notation for sets is used here.

The syntax of agents is easily described as an abstract syntax:

spec AGENT
basedon I D , COM

COMMUNICATING PROCESSES: AN EXAMPLE 193

sort Agent
cons stop: Agent

div: -» Agent
prefix: Com χ Agent - * Agent
OR: Agent χ Agent -* Agent
choice: Agent χ Agent -> Agent
par: Agent χ SET(Com) χ Agent -» Agent
hide: Agent χ Com Agent
rec: Id χ Agent -> Agent
call: Id Agent

{ stop } ,
{ d i v } ,
{ a - p } ,
{ p O R q } ,

{ p [] q } ,
{ p » { A } q } ,
{ p \ a } ,
{ x : : p } ,

{ x }
end

Since all operations in AGENT are syntactical constructors for programs, all the
operations are total and deterministic. This includes the nondeterministic
constructs OR and choice! The sort Agent describes only the (deterministic and
defined) objects of program terms. Nondeterminism or nontermination do not
appear unless such programs are executed.

For the definition of a transition semantics, as it was sketched above, tuples
Action χ Agent

are needed. Again the mathematical notation is preferred over an explicit
specification of these tuples. (The constructor < . , . > for tuples is assumed to be
total and deterministic.) For a more detailed version see appendix Β (specification

The axioms of the specification below are taken directly from [Olderog, Hoare
86], adapted only to the new notational conventions.

spec TRANS
basedon BOOL, ID , ACTION, COM, AGENT, SUBST
func trans: Agent -» ΡAIR(Action,Agent)
a x i o m s

trans(div) <tau,div>,
trans(prefix(i,p)) -* <com(i),p>,
trans(OR(p,q)) <tau,p>,
trans(OR(p,q)) -* <tau,q>,
trans(p) <com(i),p'> trans(choice(p,q)) -*· <com(i),p'>,
trans(q) -» <com(i),q'> => trans(choice(p,q)) -> <com(i),q'>,
trans(p) -» <tau,p'> => trans(choice(p,q)) -> <tau,choice(p,,q)>,

PAIR).

194 COMMUNICATING PROCESSES: AN EXAMPLE

trans(q) -> <tau,q'> => trans(choice(p,q)) -> <tau,choice(p,q')>,
iE A & trans(p) <com(i),p'> & trans(q) <com(i),p'> =>

trans(par(pA,q)) ~* ^omö^parip'A>q')>,
ig. A & trans(p) <com(i),p'> => trans(par(p,A,q)) - >

<com(i) ,par(p' A »q)>,

i ^ A & trans(q) -» <com(i),q'> => trans(par(p,A,q))

<com(i),par(pA,q')>,
trans(p) <tau,p'> => trans(par(p,A,q)) -*· <tau,par(p' A»q)>»
trans(q) <tau,q'> => trans(par(pA,q)) <tau,par(pA,q')>,
trans(p) -> <com(j),p,> & equal_Com(i j) = true =>

trans(hide(p,i)) <tau,p\
trans(p) ~> <com(j),p'> & equal_Com(i j) = false =>

trans(hide(p,i)) -> <b,p'>,
trans(rec(x,p)) -»· <tau,p[x/rec(x,p)]>

end

Recursion has been treated using a substitution operator:
_ [_ / _] · Agent χ Id χ Agent Agent

with its usual meaning (for details see appendix B, specification SUBST).

Because of theorem 6.12, TRANS is partially DET-complete and DET-additive.

The operation trans has been specified as a partial function. The following
terms, for instance, are interpreted as undefined in DPGen(TRANS):

trans(stop)
trans(par(prefix(a,p) ,{a,b} ,prefix(b ,q)))
trans(call(x))

The first both terms correspond to deadlock situations, the third one contains a
"context error" (call of a process name which has not been declared).

The specification TRANS is hierarchy-persistent, as can be seen from the
generalization of theorem 4.19 to the partial case. Since TRANS does not
introduce any non-primitive sort, an analoguous generalization of theorem 2.33
shows that, once a model for the primitive specifications ACTION, COM, and
AGENT has been fixed, the model class DPGen (TRANS) contains essentially
one single model. This corresponds well to the idea of having a fixed operational
semantics as the basis of further considerations.

COMMUNICATING PROCESSES: AN EXAMPLE 195

7.2.2. Trace Semantics

The τ-transitions used in the transition semantics are operational details, an
abstraction from which is interesting. A sequence of actions containing only
communication actions is called a trace. The following specification describes,
in analogy to TRANS, the first possible state transition of a process concerning
an action different from τ .

spec STEPO
basedon ACTION, COM, AGENT, TRANS
func step: Agent -» PAIR(Com,Agent)
a x i o m s

trans(p) -> <com(i),p'> => step(p) -> <i,p'>,
trans(p) -> <tau,p'> => step(p) -> step(p')

end

Again, STEPO has essentially one model extending its primitive parts.

The operation step now can be defined now in a simpler way without using the
transition semantics. (More formally: STEPO is an implementation of the
following specification STEP.)

spec STEP
basedon AGENT, COM, SUBST, ID
func step: Agent -» PAIR(Com,Agent)
a x i o m s

step(prefix(i,p)) -> <i,p>,
step(OR(p,q)) -» step(p),
step(OR(p,q)) -> step(q),
step(choice(p,q)) -» step(p),
step(choice(p,q)) -* step(q),
step(p) -> <i,p'> & step(q) <i,q'> & 16ΞΑ =>

step(par(pA,q)) -* <i,par(p'A,q')>,
step(p) -» <i,p'> & i ^ A => step(par(pA,q)) <i,par(p',A,q)>,
step(q) -> <i,q'> & i ^ A => step(par(pA,q)) ~* <i,par(p,A,q')>,
step(p) -*· <j,p*> & equal_Com(i j) = true =>

step(hide(p,i)) -> step(p'),
step(p) <j,p'> & equal_Com(i j) = false =>

step(hide(p,i)) -> <j,p'>,

196 COMMUNICATING PROCESSES: AN EXAMPLE

step(rec(x,p)) -> step(p[x/rec(x,p)])
end

STEP shows in a rather simple way two typical properties of the trace
semantics: Internal and external nondeterminism are treated identically; and no
difference is made between stop (deadlock) and div (divergence).

The specification TRACES is based on STEP. It describes all possible initial
segments for all traces of a process:

spec TRACES
basedon COM, AGENT, STEP
sort Trace
cons empty: -*· Trace,

append: -> Com χ Trace -> Trace
func trace: Agent -> Trace
a x i o m s

trace(p) -* empty,
step(p) <i,p'> => trace(p) -» append(i,trace(p'))

end

Please note that TRACES admits non-isomorphic models (since it defines a new
sort). The initial model ΡΣ/TRACES for divergence-free process exactly
corresponds to the trace model Τ in [Olderog, Hoare 86]. More abstract models
(for instance corresponding to the counter model C) are admitted as models of
TRACES, too.

As it was mentioned already, in DPGen(TRACES) there is no difference between
div and stop. A model which corresponds better to the intuitive understanding
of the process should have the following properties (call here the model A):

IA[traces(stop)] = { emptyA } , IA[traces(div)] = { empty A , 1} ,
IA[traces(rec(x,call(x)))] = { emptyA, 1 } .

According to lemma 6.21 (3) in DPGen(TRACES) this is possible only, i f there
are terms t l , t2 such that:

TRANS I- trace(div) -* t l , TRANS I- trace(rec(x,call(x))) -* t2,
TRANS I - T t l , TRANS I- ft2

For this purpose, in TRACES the following addition may be made:
func divergence: -*> Trace,

COMMUNICATING PROCESSES: AN EXAMPLE 197

trace(div) -> divergence, trace(rec(x,call(x))) divergence .

In appendix Β another distiction between div and stop is made. Since the RAP
system does not terminate i f it tries to enumerate the traces of div and stop, in
STEP a particular treatment for deadlock situations is introduced. The operation
step there is no longer undefined when applied to a deadlock, but it delivers a
special element to indicate this situation ("totalization"). This allows RAP to
terminate for the process stop and other processes representing a deadlock.
Divergence leads to nontermination of RAP, which corresponds well to the
intuitive understanding of the processes.

7.2.3. Refusal Semantics

Within the trace semantics, internal and external nondeterminism cannot be
distinguished: The traces of a system of processes remain the same, i f internal
nondeterminism is exchanged with external nondeterminism and vice versa. In
[Olderog, Hoare 86] methods for a further refinement of the models are studied,
which also can be modelled in our specification language. Below a specification
is given which corresponds to the failure model F in [Olderog, Hoare 86]
(which is the most refined model there).

A distinction between internal and external nondeterminism can be made by
studying the set of actions which can be refused by a process (refusal sets). This
means just a simple possibility to describe the behaviour of a process within
various contexts (of parallel processes). For instance, the system of processes

((a stop) [] (b -» stop)) ll{a,b} (a -» stop)
does not lead to a deadlock under any nondeterministic choice, however in

((a stop) OR (b -» stop)) ll{a,b} (a -» stop)
a deadlock is possible (if the second alternative of O R is chosen). So, the
process

(a stop) [] (b -» stop)
can refuse only action sets MC(C\{a,b}), but the process

(a stop) O R (b -> stop)
can refuse all sets Μ where {a, b } $ M .

This notion is made more precise by the following specification. The operation
refuse nondeterministically enumerates for a given process all action sets which
can be refused by the process.

198 COMMUNICATING PROCESSES: AN EXAMPLE

spec REFUSE
basedon COM, AGENT, ID
func refuse: Agent -> SET(Com)
ax ioms

refuse(stop) M ,
i ^ M => refuse(prefix(i,p)) -> M ,
refuse(OR(p,q)) -» refuse(p),
refuse(OR(p,q)) refuse(q),
refuse(p)-*M & refuse(q)-*M => refuse(choice(p,q))M,
refuse(par(pA,q)) -* refuse(p)[A]refuse(q),
{ hiding operator omitted here! }
refuse(rec(x,p)) refuse(p[x/rec(x,p)])

end

Here the notation M [A] N (where Μ, A, Ν are action sets) stands for the
"majority" operator introduced in [Olderog, Hoare 86]:

M [A] N = (ΜΠΑ) U (ΝΠΑ) U (ΜΠΝ).
For a more detailed specification (see appendix B) a specification for sets of
actions is necessary. Unfortunately such a specification cannot be described in a
constructor-based style (because of the equalities which hold between the set
constructors). In appendix Β an implementation of sets by sequences is used,
which leads to the disadvantage that a single set is represented by many different
sequences.

Please note that the "hiding" operator has been omitted in REFUSE. The reason
for this is that hiding cannot be easily treated within the framework of
REFUSE. The combination of external nondeterminism and hiding is
problematic. A close examination of the model in [Olderog, Hoare 86] shows
that hiding in this context means a non-additive operation, and so it is basically
outside the scope of our specification framework. In [Olderog, Hoare 86] a
treatment can be found which is in principle transferable to our framework, but
would lead to significant overhead.

REFUSE again has essentially one model extending its primitive parts.
Together with the trace semantics, it gives a description of CP, which
corresponds for divergence free processes exactly to the failure model F in
[Olderog, Hoare 86].

In a hierarchical model AEDPGen(REFUSE) the following equations hold:

COMMUNICATING PROCESSES: AN EXAMPLE 199

Γ6Γ1186^[θ1ΐθία6(ρΓ6Γΐχ(Ε,8ΐθρ),ρΓ6βχ(0,8ΐθρ))] =

{ M C C o m A I a £ M Λ b £ M } ,
refuseA{OR(prefix(a,stop) ,prefix(b,stop))] =

{ M C C o m A I a<£M } U { M C C o m A I b&A } ,
therefore internal and external nondeterminism are now distinguishable.

It is interesting to compare the operation refuse, when it is applied to an OR-
agent and to an agent with the topmost symbol choice. In the first case, refuse
delivers the nondeterministic choice between the refusal sets of both subagents,
in the second case it works deterministically. This means that the construct of
external nondeterminism behaves nondeterministically only in the context of
trace, not in the context of refuse. Therefore the constructor choice itself
should not be considered as truly nondeterministic. The constructor OR for
internal nondeterminism, however, can be called nondeterministically by itself,
since OR-terms in all contexts show exactly the same behaviour as i f the
following axioms were given:

OR(p,q) p, OR(p,q) q .

The next example illustrates the (non-obvious) reason, why refusals of action
sets are considered (instead of the refusal of single actions):

refuseA[OR(OR(prefix(a,stop),prefix(b,stop)),stop)] = { M C C o m A } ,
refuse A[OR(prefix(a,stop) ,prefix(b ,stop))] =

{ M C C o m A I a(£M } U { M C C o m A I b £ M } .
An arbitrary single action can be refused by both processes, but the set of
actions {a,b} can be refused by the first process and cannot be refused by the
second one.

REFUSE moreover gives a possibility to distinguish between divergent and
non-divergent processes. In models AEDPGen(REFUSE) the following
equations hold:

IA[refuse(stop)] = Com A ,
IA[refuse(div)] = { ! } , IA[refuse(rec(x,call(x)))] = { ! } .

200 COMMUNICATING PROCESSES: AN EXAMPLE

7.3. Improvements and Applications
The example CP was intended to give some orientation with respect to the
applicability of nondeterministic algebraic specifications.

First, it can be stated that a simple transition from the given description of CP
to the specification is possible, and that the expressiveness of the framework is
sufficient for modelling this non-trivial language. Necessary (or at least
extremely useful) for this purpose were the following concepts: partial
specifications, conditional axioms and hierarchical specifications.

It is also an interesting observation that all specifications within this chapter are
constructor-based. So this simple sublanguage can be used successfully for non-
trivial applications. The only problem with constructor-based specifications
came from the question how to specify finite sets of a base set. It seems to be
sensible to study the incorporation of equations between constructors.

On the other hand, it is obvious that the border of the expressiveness of our
specification language is reached when some specialized semantic concepts (like
the refusal semantics for the hiding-operator in CP) are considered. For
semantical studies on nondeterministic programming languages, the classical
mathematical framework, as it was used for CP in [Olderog, Hoare 86], always
is superior. But nondeterministic algebraic specifications also bring a new aspect
into the study of semantics by the new flexible and abstract approach to the
operational aspect of nondeterministic programming languages. For the example
of CP, this is illustrated by the fact that the transition semantics can be
described within the same formal framework as the trace and refusal semantics.

The above-mentioned experiments are documented in the appendix B. As it was
formulated as one of the aims of this work, term rewriting (or more precisely,
graph rewriting, according to section 5.2) is used there as an operational
semantics for the CP-specification.

Chapter 8

Concluding Remarks

In this concluding chapter, the results of this monograph are summarized and
briefly evaluated. In addition to that, a number of questions are put together
which could be of particular interest for future research.

8.1. Summary and Evaluation
The starting idea of this work was to integrate nondeterminism into algebraic
specifications in such a way that operations in an algebra and the interpretation
of terms are set-valued. Formulae do no longer denote equations but selection
decisions (or inclusion relations). It has been shown that non-confluent term
rewriting systems are an appropriate specification language for this world of
models, i f a basis of deterministic operations is designated and i f the other
operations work in a particularly simple (additive) way on this deterministic
basis. Syntactical criteria for such additive specifications have been given. It has
been shown that for this nondeterministic specification language the most
important results from the theory of algebraic specifications are still valid. It has
been shown, too, that the generalization can be combined with advanced
concepts from algebraic specifications (for instance partiality, hierarchies) as
well as from term rewriting (narrowing, graph rewriting). The relationship with
logic programming has been investigated, showing that logic programming can
be seen as a particular interesting subcase of the newly developed theory. For a
number of examples from various areas of computer science, the basic
applicability of the language has been demonstrated.

202 CONCLUDING REMARKS

The theory presented here generalizes equational algebraic specifications to
nodeterministic operations, leading to a kind of inequational specifications. This
language is not such an abstract specification language that it may be used for a
mathematical discussion of for instance the semantics of nondeterministic
programs. The language however provides an abstract programming language in
its pure form: A logical calculus is offered, which is executable by a machine
(within some limitations). The algebraic specifications addressed here are
algebraic programs.

Algebraic programs are conceptionally simple. The language is syntactically
slim, the semantics is defined mathematically. Algebraic programs admit a direct
approach to program verification, since a logical calculus is an elementary part
of the underlying theoretical foundations. In principle, algebraic programs can be
executed as fast as Prolog programs [Hanus 90]; the built-in notions of
(deterministic and non-deterministic) functions enable implementations which
follow very closely the mathematical semantics. These aspects designate the
language which has been developed in this manuscript as the starting point for a
balanced compromise between a practically usable programming language and a
theoretically well-founded specification language.

8.2. Future Work
Fortunately, a number of questions, which were called "open" in earlier versions
of this text [Hussmann 88/91], could be treated in detail in this book and in the
recent approach [Walicki 92/93]. However, there are several possibilities to
generalize the current results further, and to integrate it with other concepts for
algebraic specifications. Of particular interest is here the integration of non-strict
operations (at least non-strict constructors) (see for the problems arising here
[Nivat 80], [Möller 82], [Broy 85], [Broy 87]). In combination with the graph
rewriting techniques from section 5.2, a semantic basis for "call-by-need"-
computations without a confluence condition could be obtained. Not only term
reduction techniques, but also narrowing techniques should be considered for this
aspect.

But also a restriction of the current approach could lead to further studies. The
language of constructor-based nondeterministic specifications could serve as the

CONCLUDING REMARKS 203

basis for a powerful abstract programming language (or executable specification
language). For this purpose, mainly a sufficient handling (also from the
operational aspect) of constructor equations must be found. In order to achieve a
good integration of nonconfluent and confluent rewriting, more general results in
the spirit of lemma 5.10 (innermost normalization with a canonical subset of
the axioms) are useful, for rewriting as well as for narrowing.

Another area of extension comes from the connections between the theory
presented here and approaches which try to drop the distinction between sorts and
objects in algebraic specifications ([Mosses 89], [Smolka 88]). Since
nondeterministic operations are set-valued, they can be used for the description of
sorts, too. (For instance, the operation some in example 2.20 exactly describes
the sort Nat.) So polymorphic functions can be integrated into the framework of
nondeterministic algebrac specifications. Such an attempt, however, wi l l need a
few technical extensions of the framework like a second kind of variables which
range over sets (sort variables). This idea of a second kind of variables may also
help in integrating this work more closely with the approach of [Meseguer 92].

Rewriting without confluence restrictions seems to be a framework which
generalizes many important paradigms of computing. Therefore it may form a
good basis for studies comparing various not obviously connected approaches to
a mathematical description of computation.

References
[ADJ 78]

J. A. Goguen, J. W. Thatcher, E. G. Wagner, An initial algebra
approach to the specification, correctness and implementation of
abstract data types, in: R. T. Yeh (ed.), Current trends in programming
methodology, Vol. 3, Data structuring (Prentice-Hall, Englewood
Cliffs, NJ, 1978) 80-149.

[Astesiano, Costa79]

E. Astesiano, G. Costa, Sharing in nondeterminism, in: H . A. Maurer
(ed.), 6th International Colloquium on Automata, Languages and
Programming, Lecture Notes in Computer Science 71 (Springer,
Berlin, 1979), 1-13.

[Barbuti et al. 85]

R. Barbuti, M . Bellia, G. Levi, M . Martelli, LEAF: a language which
integrates logic, equations and function, in: D. DeGroot, G. Lindstr0m
(eds.), Logic Programming: Functions, Relations and Equations
(Prentice-Hall, Englewood Cliffs, NJ, 1985) 201-238.

[Bauer, Wössner 81]

F. L . Bauer, H. Wössner, Algorithmic Language and Program
Development (Springer, Berlin, 1981).

[Brand 75]

D. Brand, Proving theorems with the modification method, SIAM
Journal of Computing 4 (1975) 412-430.

[Benson 79]

D. B. Benson, Parameter passing in nondeterministic recursive
programs, Journal of Computer and System Sciences 19 (1979) 50-62.

[Bergstra, Klop 86]

J. A. Bergstra, J. W. Klop, Conditional rewrite rules: confluence and
termination, Journal of Computer and System Sciences 32 (1986)
323-362.

206 REFERENCES

[Birkhoff 35]

G. Birkhoff, On the structure of abstract algebras, Proceedings of the
Cambridge Philosophical Society 31(1935) 433-454.

[Bosco, Giovannetti, Moiso 88]

P. G. Bosco, E. Giovannetti, C. Moiso, Narrowing vs. SLD-
Resolution, Theoretical Computer Science 59 (1988) 3-23.

[Broy 84]

M . Broy, Semantics of communicating processes, Information and
Control 61 (1984) 202-246.

[Broy 85]

M . Broy, On the Herbrand-Kleene universe for nondeterministic
computations, Theoretical Computer Science 36 (1985) 1-19.

[Broy 86]

M . Broy, A theory for nondeterminism, parallelism, communication,
and concurrency, Theoretical Computer Science 45 (1986) 1-61.

[Broy 87]

M . Broy, Equational specification of partial higher order algebras, in:
M . Broy (ed.), Logic of programming and calculi of discrete design,
(Springer, Berlin, 1987).

[Broy, Pair, Wirsing 84]

Μ. Broy, C. Pair, M . Wirsing, A systematic study of models of
abstract data types, Theoretical Computer Science 33 (1984) 139-174.

[Broy, Wirsing 81]

Μ. Broy, Μ. Wirsing, On the algebraic specification of
nondeterministic programming languages, in: E. Astesiano, C. Böhm
(eds.), 6th Colloquium on Trees in Algebra and Programming, Genua
1981, Lecture Notes in Computer Science 112 (Springer, Berlin,
1981) 162-179.

[Broy, Wirsing 82]

Μ. Broy, Μ. Wirsing, Partial abstract types, Acta Informatica 18
(1982) 47-64.

REFERENCES 207

[Cheong, Fribourg 91]

P. H . Cheong, L . Fribourg, Efficient Integration of Simplification into
Prolog, in: J. Makuszy'nski, M . Wirsing (eds.), Programming
Language Implementation and Logic Programming (PLILP 91),
Lecture Notes in Computer Science 528 (Springer, Berlin, 1991) 359-
370.

[CIP 85]

The CIP Language Group, The Munich Project CIP, Vol. I: The Wide
Spectrum Language CIP-L, Lecture Notes in Computer Science 183
(Springer, Berlin, 1985).

[Corbin,Bidoit 83]

J. Corbin, M . Bidoit, A rehabilitation of Robinson's unification
algorithm, in: R. A. Mason (ed.), Information Processing 83 (North-
Holland, Amsterdam, 1983).

[Deransart 83]

P. Deransart, An operational algebraic semantics of PROLOG
programs, in: Programmation et Logique, Proceedings (Perros-Guirrec,
CNET-Lannion), 1983.

[Dershowitz 87]

N . Dershowitz, Termination of rewriting, Journal of Symbolic
Computation 3 (1987) 69-116.

[Dijkstra 76]

E. W. Dijkstra, A discipline of programming, (Prentice-Hall,
Englewood Cliffs, NJ, 1976).

[Fay 79]

M . Fay, First-order unification in an equational theory, in: Proceedings
of the 4th Workshop on Automated Deduction, Austin, Texas, 1979.

[Floyd 67]

R. M . Floyd, Nondeterministic algorithms, Journal of the ACM 14
(1967) 636-644.

208 REFERENCES

[Fribourg 85a]

L . Fribourg, SLOG: A logic programming language interpreter based
on clausal superposition and rewriting, in: Proceedings Symposium on
Logic Programming, (IEEE Computer Society Press, 1985) 172-184.

[Fribourg 85b]

L . Fribourg, A narrowing procedure for theories with constructors, in:
R. E. Shostak (ed.), 7th International Conference on Automated
Deduction, Lecture Notes in Computer Science 170 (Springer, Berlin,
1985) 259-281.

[Geser 86]

A. Geser, An algebraic specification of the INTEL 8085
microprocessor: a case study, Report ΜΙΡ-86Ό8, University of Passau,
Passau, 1986.

[Geser, Hussmann 86]

A. Geser, H . Hussmann, Experiences with the RAP system - A
specification interpreter combining term rewriting and resolution, in: B.
Robinet, R. Wilhelm (eds.): European Symposium on Programming
(ESOP) 86, Lecture Notes in Computer Science 213 (Springer,
Berlin, 1986) 339-350.

[Geser, Hussmann, Mück 88]

A. Geser, H. Hussmann, A. Mück, A compiler for a class of
conditional rewrite systems, in: S. Kaplan, J.-P. Jouannaud (eds.),
Conditional Term Rewriting Systems, Lecture Notes in Computer
Science 308 (Springer, Berlin, 1988) 84-90.

[Guttag 75]

J. V. Guttag: The specification and application to programming of
abstract data types, Ph. D. Thesis, University of Toronto, Report
CSRG-59, Toronto, 1975.

[Hanus 90]

M . Hanus, Compiling logic programs with equality, in: P. Deransart,
J. Makuszy'nski (eds.): Programming Language Implementation and
Logic Programming (PLILP 90), Lecture Notes in Computer Science
456 (Springer, Berlin, 1990) 387-401.

REFERENCES 209

[Hansoul83]

G. E. Hansoul, A subdirect decomposition theorem for multialgebras,
Algebra Universalis, 16 (1983) 275-281.

[Hennessy80]

M . C. B. Hennessy, The semantics of call-by-value and call-by-name in
a nondeterministic environment, SIAM Journal of Computing 9 (1980)
67-84.

[Hennessy 90]

M . C. B . Hennessy, The semantics of programming languages (J.
Wiley & Sons, Chichester, 1990).

[Hesselink88]

W. H . Hesselink, A mathematical approach to nondeterminism in data
types, ACM Transactions on Programming Languages and Systems 10
(1988) 87-117

[Hoare 78]

C. A. R. Hoare, Communicating sequential processes, Communi­
cations of the ACM 21(1978) 666-677.

[Huet, Hullot 82]

G. Huet, J.-M. Hullot, Proofs by induction in equational theories with
constructors, Journal of Computer and System Sciences 25 (1982)
239-266.

[Huet, Oppen 80]

G. Huet, D. C. Oppen, Equations and rewrite rules: a survey, in: R. V.
Book (ed.), Formal Language Theory: Perspectives and Open
Problems, (Academic Press, New York,1980).

[Hullot 80]

J. M . Hullot, Canonical forms and unification, in: W. Bibel, R.
Kowalski (eds.), 5th Conference on Automated Deduction, Lecture
Notes in Computer Science 87 (Springer, Berlin, 1980) 318-334.

[Hussmann 85/87]

H. Hussmann, Rapid prototyping for algebraic specifications - RAP
system user's manual, Report MIP-8504, University of Passau,
Passau, 1985,2nd extended edition 1987.

210 REFERENCES

[Hussmann 88/91]

Η. Hussmann, Nondeterministic algebraic specifications (in German),
Ph. D. thesis, Universität Passau, 1988. English translation available
as: Technical report no. TUM-I9104, Technische Universität München,
1991.

[Hussmann 92]

Η. Hussmann, Nondeterministic algebraic specifications and
nonconfluent term rewriting, Journal of Logic Programming 12 (1992)
237-255.

[Hussmann, Rank 89]

H. Hussmann, C. Rank, Specification and prototyping of a compiler
for a small applicative language, in: J. A. Bergstra, M . Wirsing (eds.),
Algebraic Methods: Theory, Tools and Applications, Lecture Notes in
Computer Science 394 (Springer, Berlin, 1989) 403-418.

[Johnsson 84]

T. Johnsson, Efficient compilation of lazy evaluation, in: Proceedings
of the SIGPLAN '84 Symposium on Compiler Construction,
Montreal, 1984, SIGPLAN Notices 19 (1984), 58-69.

[Kaplan 84]

S. Kaplan, Conditional rewrite rules, Theoretical Computer Science 33
(1984) 175-193.

[Kaplan88]

S. Kaplan, Rewriting with a nondeterministic choice operator,
Theoretical Computer Science 56 (1988) 37-57'.

[Kapur 80]

D. Kapur, Towards a theory for abstract data types, Ph. D. Thesis,
Massachusetts Institute of Technology, 1980.

[Knuth, Bendix 70]

D. Knuth, P. Bendix, Simple word problems in universal algebras, in:
J. Leech (ed.), Computational Problems in Abstract Algebra (Pergamon
Press, 1970) 263-297.

REFERENCES 211

[Knuth, Morris, Pratt 77]

D. Knuth, J. Morris, V . Pratt, Fast pattern matching in strings, SI AM
Journal of Computing 6 (1977) 323-350.

[Kounalis 85]

E. Kounalis, Completeness in data type specifications, in: B. Caviness
(ed.), EUROCAL '85, Proceedings Vol. 2, Lecture Notes in Computer
Science 204 (Springer, Berlin, 1985) 348-362.

[Lankford 75]

D. S. Lankford, Canonical Inference, Report ATP-32, University of
Texas, 1975.

[Manna 70]

Z . Manna, The correctness of nondeterministic programs, Artificial
Intelligence 1 (1970) 1-26.

[McCarthy 61]

J. McCarthy, A basis for a mathematical theory of computation, in: P.
Braffert, D. Hirschberg (eds.), Computer Programming and Formal
Systems (Amsterdam, 1963).

[Meseguer 92]

J. Meseguer, Conditional rewriting logic as a unified model of
concurrency, Theoretical Computer Science 96 (1992) 73-155.

[Möller 85]

Β. Möller, On the algebraic specification of infinite objects - Ordered
and continuous models of algebraic types, Acta Informatica 22 (1985)
537-578.

[Moreno, Rodriguez 88]

J.J. Moreno-Navarro, M . Rodriguez- Artalejo, BABEL: A functional
and logic language based on constructor discipline and narrowing, in: J.
Grabowski, P. Lescanne, W. Wechler (eds.), Algebraic and Logic
Programming, Lecture Notes in Computer Science 343 (Springer,
Berlin, 1988), pp. 223-232.

212 REFERENCES

[Mosses 89]

P. D. Mosses, Unified algebras and institutions, in: LICS'89, Proc.
4th Annual Symposium on Logic in Computer Science, IEEE (1989),
pp. 304-312.

[Mück 90]

Α. Mück, The compilation of narrowing, in: P. Deransart, J.
Makuszy'nski (eds.): Programming Language Implementation and
Logic Programming (PLILP 90), Lecture Notes in Computer Science
456 (Springer, Berlin, 1990) 16-29.

[Narain 88]

S. Narain, LOG(F): An optimal combination of logic programming,
rewriting, and lazy evaluation, Internal Report, Rand Corporation,
Santa Monica, 1988.

[Nipkow86]

T. Nipkow, Nondeterministic data types: Models and implementations,
Acta Informatica 22(1986) 629-661.

[Nivat 80]

M . Nivat, Nondeterministic programs: an algebraic overview, in: S. H.
Lavington (ed.), Information Processing 80 (North-Holland,
Amsterdam, 1980) 17-28.

[O'Donnell 77]

M . J. O'Donnell, Computing in Systems Described by Equations,
Lecture Notes in Computer Science 58 (Springer, Berlin, 1977).

[O'Donnell 85]

M . J. O'Donnell, Equational logic as a programming language, (The
MIT Press, Cambridge, M A , 1985).

[Olderog, Hoare 86]

E.-R. Olderog, C. A. R. Hoare, Specification-oriented semantics for
communicating processes, Acta Informatica 23 (1986) 9-66.

[Padawitz 83]

P. Padawitz, Correctness, completeness and consistency of equational
data type specifications, Ph. D. Thesis, Technische Universität Berlin,
Berlin, 1983.

REFERENCES 213

[Padawitz 88]

P. Padawitz, Computing in Horn clause theories, EATCS Monographs
in Theoretical Computer Science 16 (Springer, Berlin, 1988).

[Pickert 50]

G. Pickert, Bemerkungen zum Homomorphie-Begriff, Mathematische
Zeitschrift 53 (1950) 375-386.

[Pickett67]

Η. E. Pickett, Homomorphisms and subalgebras of multialgebras,
Pacific Journal of Mathematics 21 (1967) 327-342.

[Pinegger 87]

Τ. Pinegger, From equationally defined functions to parallel processes,
Ph. D. Thesis, Universität Passau, 1987.

[Plotkin 81]

G. D. Plotkin, A structural approach to operational semantics,
Technical Report D A I M I FN-19, Computer Science Dept., Aarhus
University, 1981.

[Slagle 74]

J. R. Slagle, Automated theorem proving for theories with simplifiers,
commutativity and associativity, Journal of the ACM21 (1974) 622-
642.

[Smolka 88]

G. Smolka, Type logic, Lecture at the "6th Workshop on Specification
of Abstract Data Types", August 1988, Berlin.

[Snyder 91]

W. Snyder, A proof theory for general unification, Progress in
Computer Science and Applied Logic 11 (Birkhäuser, Boston, 1991).

[Subrahmanyam 81]

P .A. Subrahmanyam, Nondeterminism in abstract data types, in: S.
Even, O. Kariv (eds.), 8th International Colloquium on Algorithms,
Languages and Programming, Lecture Notes in Computer Science 115
(Springer, Berlin, 1981) 148-164.

214 REFERENCES

[Tamaki 84]

Η. Tamaki, Semantics of a logic programming language with a
reducibility predicate, in: Proc. 1984 Symposium on Logic
Programming (IEEE Computer Society Press, Washington, 1984) 259-
264.

[van Emden, Yukawa 87]

Μ. H . van Emden, Κ. Yukawa, Logic programming with equations,
Journal of Logic Programming 4 (1987) 265-288.

[Walicki 92/93]

M . Walicki, Calculii for nondeterministic specifications: three
completeness results, Technical Report nr. 75, Institutt for
Informatikk, Universitetet i Bergen, December 1992.

[Wirsing et al. 83]

Μ. Wirsing, P. Pepper, Η. Partsch, W. Dosch, M . Broy, On
hierarchies of abstract data types, Acta Informatica 20 (1983) 1-33.

[Wechler91]

W. Wechler, Universal algebra for computer scientists, EATCS
monographs in Theoretical Computer Science 25 (Springer, Berlin,
1991).

Appendix A: Proofs
This section contains proofs which are too long or too technical to be placed
into the running text.

Proof of Lemma 1.17.1
Proof by induction on the term structure of t.

t = x. x E X :

Iß [at] = {γχ I yxGIp [σχ]} = {eGT^[t] I γ χΕΙβ [σχ]}.

t = f f t i^^tnl i
Ip [f (o t i , . . . ,at n)] = {eGf A (ei , . . . ,e n) I e j Q ß [atj]} (definition 1.5)

Δ A A
• {eEf A (e i , . . . ,en) I eiEI^.[ti] Λ V xEVars[t|]: γ ίχΕΙβ [σχ]} (induction hyp.)

2 { e E f A (e i . . , e n) I q E I ^ t i] Λ V xEVars[ti]: γχΕΙβ [σχ]} (*)

= {ee^[t] I V xEVars[t]: γχΕΙ^ [σχ]} (definition 1.5)

Line (*) holds because of Vars[t] • Vars[tj].

I f t is linear, tj and tj for i* j have disjoint variables: Varsft] Π Vars[tj] = 0 ,
Therefore the disjoint valuations γί can be composed to γ = γ ι U . . . ϋ γ η , so in
line (*) the set equality holds instead of set inclusion. (Analoguous arguments
apply in the induction hypothesis.) φ

216 APPENDIX A: PROOFS

Proof of Theorem 1.19:
The proof uses a lemma which is stated below. Please note that a valuation in
WZ/R is a substitution. Therefore, here the letter σ (where oGSUBST(Z,X)) is
used instead of β. The usual properties for substitutions are presupposed.

Lemma 1.19

(1) o t e O t]

(2) I ^ 2 / R [t] C { t 'GW(S^) I Τ I - R C at - * t*}

w y / R
(3) t £ X = * I ™ K [t] = { f eW(Z,X) I Τ I - R C at -* t ' }

Proof of the Lemma:

Part (1):

Induction on the term structure of t

t = x. x E X ;
ot = σχ Ε { σχ } = I [t]

t = ffti U) ;
of (t i , . . . , t n)
G { t ' l I - f(ot\,... ,σΐη) t ' } (because of (REFL))

ς { ΐ Ί ΐ - « η ' , ι η ·) - ι · Λ t i ' G i ^ / K [t i] >

(according to ind. hypothesis)
= { f 11' e f W 2 / R (t i ' , . . . , t n ') } (definition 1.15)

= I W 2 / R W (definition 1.5)

Part (2):
Induction on the term structure of t

t = x. x E X :
wy/R

I™ [t] = { σχ } C { t ' 11- σχ t ' } (because of (REFL))

APPENDIX A: PROOFS 217

t = f(ti t n) :

i ^ 2 / R [t] = { t ' e f W X / R (t l . , . . . i t n .) , t i> eTW2/R[ti]} (d e f i n i t i o n l 5)

C { t ' e f W 2 / R (t i ' , . . . , t n ') 11- crti —» t j ' } (induction hypothesis)
= { t ' 11- f (t i t n ') - * t' Λ I- crtj -* t j ' } (definition 1.18)
C { t ' 11- f (o t i , . . . ,cTtn) -» t ' } ((CONG), (TRANS))

= { t ' l l - o t - » t ' } .

Part (3):
Here we have to show only the "•"-direction of part (2) in the case
t £ X . So let t = f (t i , . . . , t n) and t 'EW(Z,X) where I- at t ' , i . e.

l - f (o t i , . . . , o t n) ^ t ' .
So t ' e { t " l l - f (a t i , . . . , a t n) - > r } C

W57R
{ t " l l - f (t i ' , . . .) t n ') - » t " A t i ' G I ^ / K [t i] }

WZ/R WZ/R
(since according to (1) crt jE^ [tj]), and therefore t ' Q ^ [t] .

0 (lemma 1.19.1)

For the proof of theorem 1.19 itself we have to show for <1 -> r>ER holds:

I ^ 2 / R [l] • I ^ 2 / R [r] . This proof uses lemma 1.19.1:

I™ [1] = { t' I t 'GW(I) Λ I- σΐ -» f } (lemma 1.19.1 (3), since 1 0 0

• { V I t ' E W (I) Λ I- or -+ V } (since I- σΐ -» or using (AXIOM))

• I ^ I / R M . (lemma 1.19.1 (2)) 0

Proof of Theorem 2.6
Lemma 2.6.1

Let β be a valuation of X in the Σ-algebra Α, σ a aubstitution and YCX
such that

V x E Y : I Ιβ [σχ] 1 = 1 .

Then there is a valuation βσ of X in A, defined by

218 APPENDIX A: PROOFS

a , , \ln [σχ] i fxeY
βσ(χ) = ^ ß L

[ß(x) otherwise

and for tEW(Z,X) with Vars[t]CY we have:

I^[a t] = I ^ [t] .

The lemma is proven by induction on the term structure of t (proof is
omitted here).

The proof of theorem 2.6 can be performed by induction on the (length of the)
derivation. The deduction rules (REFL) and (TRANS) do not pose here any
problems because of the corresponding properties of set inclusion. For the other
rules the following arguments can be given (identifiers are as in the definition of
the deduction rule).

(C O N G) :
Let A be a model AEMod(T) and ßEENV(X,A). The premise of the deduction
rule, together with the induction hypothesis, yields:

Iß[ti]2Iß[ti'].
Therefore:

IßV(tl,..,tn)]

= { e e f A (e i , . . . ,e n) I ej G I A [t j] für 1 s j s n}
• {eGf A (e i , . . . ,e n) I ej G I A [t j] für 1 s j s n, j - i , e iGI A [t i]}

= I A [f (t i , . . . , t i . i , t i ' , t i + i , . . . , t n)]

(A X I O M - 1) :

Because of the premise (using the induction hypothesis):

I Ι Α [σ χ] 1=1 for all xGVars(l)UVars(r)
So using lemma 2.6.1 and AGMod(T):

l ^ o l] = I ^ [l] 2 I ^ [r] = ^ [o r] .

(A X I O M - 2) :
Δ

Analoguously to (AXIOM-1) using lemma 2.6.1: I I ß [crt] I = I I Q ß [t] 1 = 1.

(def. 1.5)
(premise)

(def. 1.5)

APPENDIX A: PROOFS 219

(D E T - X) :

H ß M i = l { ß (x) } l = i .

(D E T - D) :

Because of the premise (using the induction hypothesis):

I ß [t l] 2 I ß [t 2] and I Iß [t l] 1 = 1,

So I Iß [t2] I s 1. Since I I^ [t2] I * 0, we have 11£[t2] 1 = 1.

(D E T - R) :
As in the case (DET-D) we have

I ß [t l] 2 I ß [t 2] and I Iß [t l] 1 = 1 ,

So I I ß [t2] I = 1, i . e. I o [t l] = l£[t2] , and therefore l£[12] 2 1 ^ [t l] . 0

Proof of Theorem 2.11
Lemma 2.11.1

l - f (t i , . . . , t n) - t A - (l -DET(f (t i , . . . , t n))) =>

(E t i ' , . . . , t n ' : l - t j - t i ' A I - f (t i t n ') - » t Λ I- DET(tj ')) (a)

ν
(3 t i ' , . . . , t n ' : I - t j ^ t j ' Λ I- f (t i t n ') - » t) Λ - (I - DET(f(t i ' t n '))

(b)

Proof of the Lemma:

By induction on the deduction of I - f(ti , . . . , t n) -» t (the deduction rule

(DET-R) can be excluded here, according to the precondition).

(R E F L) :
Then (b) holds trivially.

220 APPENDIX A: PROOFS

(A X I O M - 1) :
Then ti=oli and < f (l i , . . J n) ^ r > e R . Because of (A l) we have I- DET(lj)
and (since I - DET(ax) for xEVars[li]) also I- DET(crli). So (a) holds.

(C O N G) :
Then t= f (t i ' , . . . , t n ') and I- t i ->t j ' . I f I- DET(f(t i ' , . . . , t n ')) , then because
of (A2) part (a) holds. Otherwise because of - (I- DET(f(ti'» · · part
(b) holds.

(T R A N S) :
Then l - f (t i } . . . , t n)->r, I - r->t.
The induction hypothesis can be applied to l - f (t i , . . . , t n) ^ r .

Case 1: (a)-part of the induction hypothesis holds.
Then using (TRANS) also the (a)-part of the claim holds.

Case 2: (b)-part of the induction hypothesis holds.
Then r=f(n , . . . , r n) , - (I- DET(f(q, . . . , r n)) , I- f(rι,. . . ,r n)-*t.
The induction hypothesis can be applied to I- f(q,...,Τη) -** again.

Case 2.1: (a)-part of the induction hypothesis holds.
Then I- r ^ t f , I - DET(ti '), l - f (t i ' , . . . , t n ') ^ t .

Using l- t j -^r j (as presupposed for case 2) and (TRANS), then part (a)

of the claim holds.

Case 22: (b)-part of the induction hypothesis holds.
Then I - r ^ t i ' , - (I - DET(f(t i ' , . . . , t n ')) , l - f (t i ' , . . . , t n ') -*t . Using l - t ^ r j

(because of case 2) and (TRANS) then part (b) of the claim holds.

0 (lemma 2.11.1)

Theorem 2.11 follows from the lemma: Let I- f (t i , . . . , t n)-*t , I- DET(t).

Case 1: I- DET(f (t i , . . . , t n))

Then because of (A-2) the condition of DET-additivity is given.

Case 2: - (I - DET(f(t i , . . . , t n)))
Then lemma 2.11.1 can be applied. The case (b) has to be excluded (contra-

APPENDIX A: PROOFS 221

diction to I- DET(t)), so part (a) holds, which is equal to the condition of DET-
additivity. 0

Proof of Theorem 2.14
Valuations in ΌΣ/R are represented by substitutions. Below the notation [σ] is
used, which means (aESUBST(Z^C)):

[σ]: Χ -* W(E)/« and for all xEX: [σ](χ) = [σχ] and I- ϋΕΤ(σχ).

Lemma 2.14.1

Let tEW(I,X). Then

l { ^ / R [t] = { [f] I t'EW(Z) Λ l-DET(t') Λ l -crt -M' }

Proof of the Lemma:

Induction on the term structure of t:

t=x. x E X :

I ^ W = { [σ](χ) } = { [σχ] } C { [f] I I- DET(t') Λ I- σχ - V }

(because of (REFL)).
The 2-direction holds, since I- ϋΕΤ(σχ) and therefore from I- σχ -> V
by (DET-R) follows I- V σχ. So ι'Ε[σχ].

I ^ V t ! , . . , ^)]

= { eEf D 2 / R (e i , . . . ,en) I e iElJ^fti] } (definition 1.5)

= { [f] I I- DET(t') Λ I- f (t i t n ') ^ t ' Λ [tna£] [tj]}

(definition 2.13)
= { [f] 11- DET(t') Λ I- f(ti\...,tn')^t' Λ I- DET(tj') Λ |- crti—ti* }

(induction hypothesis)
C { [t'] 11- DET(t') Λ I- crf(ti ,...,tn)^t' } (by (CONG).(TRANS))

222 APPENDIX A: PROOFS

For the-direction, let t= f (t i , . . . , t n) and t ' G W (I) such that I - DET(t')
and I - G f (t i , . . . , t n) - > t \

Because of the DET-additivity there exist t i t n ' such that

I- D E T (t i ') , . | - a t i - t i ' , l - f (t i ' , . . . , t n ') - t , i . e . t ' e i ^ / K [t] .

0 (lemma 2.14.1)

For the proof of theorem 2.14, let <DET(tl)>GR, [σ] a valuation. Then:

I [t l] I = I { [f] I I- DET(t'} Λ I- σίΐ - ^ t ' } I (lemma 2.14.1)

= I { [t l] } I (because of I- DET(crtl), rule (DET-R))
= 1.

Let <tl-*t2>GR, [σ] a valuation. Then:

I^J [t l] = { [t '] l l-DET(t') Λ l - o t l ^ t ' } (lemma 2.14.1)

2 { [f] l l-DET(t') Λ l - o t 2 - » t ' } (since I- crtl-»o"t2 by (AXIOM-1))

O Y / R

= l[d\ [t 2] (lemma 2.14.1).

DZ/R is term-generated: Let [t] e s D 2 / R . Then I- DET(t) and therefore:
jDE/R [t] _ { [f] ι |. DET(t') Λ I - t - * f } (lemma 2.14.1)

= { [t] } (rules (REFL), (DET-R)).<>

Proof of Theorem 3.13
φ is a loose Σ-homomorphism:

{eG9([t]) l [t]Ef D 2/R([t l] , . . . , [t n])}

= { e G I A [t] 11- f (t] . . , t n) - K Λ I- DET(t) (definition of φ, definition 2.13)
C I A [f (t i , . . . , t n)] (theorem 2.6: A 1= f (t i , . . . , t n) - * t)
= {eGf A (e i , . . . ,en) I e i Q A [t i] } (definition 1.5)
= {eGf A (e i , . . . ,en) I eiGqp[ti]} (definition of φ).

φ is unique: Let ψ be another homomorphism ψ: ΌΣ/R -> A, then we have:
ψ(Μ) Q I A [t] for all t G s D 2 / R . (*)

APPENDIX A: PROOFS 223

Proof of the line (*) by induction on the term structure of t:

Let t = f (t i , . . . , t n) . Since [t] E s D I / R , I - DET(t) holds. Using rule

(REFL) this means
[t] Ε { [f] I t 'GW(I) Λ l-DET(t') Λ l - t - H ' } .

Therefore
Ψ(Μ) C {eEuXtt'] I t 'EW(I) Λ I- DET(t') Λ l - t - ^ t ' }
= {eEuX[t'] I t ' E W (I) Λ l-DET(t') Λ I- f (t i , . . . , t n) - K ' }
= {eEiptft'] I [t '] E f D S / R ([t i] , . . . , [t n]) } (definition 2.13)
C {eEf A (e i , . . . ,en) I ei&l)([t|])} (since ψ is homomorphism)
C {eEf A (e i , . . . ,en) I e jEI^[t i]} (induction hypothesis)
= l A [f (t l v . . , t n)] (def. 1.5).

Since I- DET(t), from theorem 2.6 follows I I A [t] l = 1. Since ψ ([Φ * 0 , from (*)
follows:

Ψ(Μ) - I A W = φ(Μ) for all t E s D 2 / R . 0

Proof of Lemma 3.18
(1) => (2):
Let A be maximally deterministic, BEGen(T), φ : Β -> A a loose
homomorphism. Then for a tEW(2):

I {e'E(p(e) I e E I B [t] } I ;> I I B [t] I ;> I I A [t] I
(since A is maximally deterministic) and

{ e ' E ^ e) l e E I B [t] } C I A [t]
(since φ loose homomorphism) So φ is a tight homomorphism.

(2) => (3):
Since Τ is DET-additive and DET-complete, DI/REGen(T). I A is a loose
homomorphism from DZ/R to A.

Due to the precondition, is a tight homomoφhism. With lemma 2.14.1:
{ eE I A [t '] 11-1 — V Λ I- DET(t') } = I A [t] .

So for an eEI A [t] there is a term t' such that
I-1 f Λ I- DET(t') and e E I A [t '] , i . e. I A [t '] = { e } .

(3) => (1):
Let BEGen(T), φ: Β -*· A loose homomoφhism, tEW(Z).

•1
ι

224 APPENDIX A: PROOFS

According to the precondition, for eE I A [t] there is a term f such that
lA[t»] = { e } Λ I-1 - Μ ' Λ I- DET(t').

So there is a e 'Es B such that
I B [t '] = { e ' } Λ e ' e B [t] .

The condition for a homomorphism yields cp(e') C { e } , i . e. qp(e') = { e } . So
there is a surjective pointwise mapping from I B [t] to I A [t] , and therefore

I I A [t] l < ; I I B [t] l . 0

Proof of Theorem 4.8
The proof is performed in exact analogy to the proof of theorem 2.6, except of
the newly added rule. Using the identifiers from the proof of theorem 2.6 and
from definition 4.7 we have:

(A X I O M - 1 - C O N D) :
Let V =def Vars(l)UVars(r)UVars(ti)U.. .UVars(t n)U Vars(ti ')U. . .UVars(t n ')).

Because of the premise (using the induction hypothesis)

I Ιβ [σχ] I = 1 for all xEV

Because of the other premises and lemma 2.6.1

£ ß [t i] = Iß [oti] • Iß [crti'] = l£p[ti'] for i E { l , . . .

Since AEMod(T):

^ =] ί β Π] 2 Ι ^ [Γ] = Ι ^ θ Γ] . 0

Proof of Theorem 4.11:
The construction of a term model is exactly analoguous to theorem 2.14, using
a similar lemma. The only difference appears during the proof for the validity of
conditional axioms:

Let < t i - * t i ' & ... & t n - * t n ' => l-*r> ER, [σ] a valuation, which fulfills the
conditions, i . e. for 1 s i s n:

xD2/R r D D I /R

A P P E N D I X A : P R O O F S 225

Because of l-COND DET(tf) (simplicity condition) and l-COND DET(ax) for
xEX (due to the construction of DI /R) we have l-COND DET(orti'). (This needs

a simple lemma, which can be proven by induction on the term structure.). So
, JDI/R r , i r - J D Z / R r _ .

m i ' e i [a] [t i '] £ I [(j] [t i] , i . e . :

l-COND ati->at i ' .

Therefore (AXIOM-l-COND) can be applied, and gives l-COND σ1-*στ, and so
T D I / R m - ^ T D I / R r i

\o] [1] 2 Ι [σ] Μ·

The proof of
D I / R I = t l - » t 2 ο DGen(T) I = t l - * t 2

is completely analoguous to theorems 2.23 / 2.27. 0

Proof of Lemma 4.26
By induction on the length of the derivation for I - crtl t2:

(R E F L) :

In this case, t2 = σ t l . Choose σ ' = ι, λ = σ, t2' = t l , V = V. Then by (REFL-
N) I - t l -N^ t l and
(i) Vars[t2']=Vars[tl]CV\

Dom [λ] = Dom[a] Q V (by given preconditions),
Vars[a'] = 0 C V \

(ii) σ =[V] σι = λ (trivially),

(iii) t2 = σ t l = λ t2' (due to the special case).

(T R A N S) :
In this case, there is a t3 such that

l - a t l -* t3, I-13 t2.
Using the induction hypothesis on the first one of these derivations, we have
λ ΐ , a l E S U B S T (I c ^) , t 3 ' E W (I , X) , V Q V such that

l - t l - ^ - * σ ι t3 ' ,Vars [t3 ']CVl ,Dom[Xl]CVl ,Vars [a l]CVl ,
σ = [γ] λΐ σ ΐ , t3 = λ1 t3'.

This admits the application of the induction hypothesis to the second derivation
(for I - λΐ t3' t2), giving: λ, Ö 2 E S U B S T (I C , X) , t 2 ' E W (I , X) , V Q V 1 2 V
such that

226 APPENDIX A: PROOFS

I-13' ^V-*o212\ Vars[t2 ']CV\Dom[X]CV\ Vars[o2]CV\
λ ΐ = [ν ΐ] λ σ 2 , ΐ 2 = λ ΐ 2 \

Now define σ ' = o2 al, then by (TRANS-N) I- t l - Λ ^ σ ' t2\

(i) The first two parts are already given by the second induction step. For
the third part of (i), Vais[o']=Vars[o2 ol]Q Vars[ol]UVars[a2] C V \

(ii) We have σ = [γ] λ ΐ σ ΐ and λ ΐ = [V I] λ σ2. Since D o m [X l] C V l , this
means λΐ = λ σ2, hence σ =[V] λ σ2 σ ΐ = λ σ ' .

(iii) Given by the second induction step.

(C O N G) :
For the sake of simplicity, we assume without loss of generality the typical case
of n = 2 , i = 2, t l =f(ui ,u2) .
So there is an T2 such that

o t l = f(crui,cru2), t2 = f(crui,r2) and I- QU2 r2.
By induction hypothesis there are λ, o ' G S U B S T (Z c , X) , r 2 \ V with

I- U2 -ΛΗ> σ ' T2\ Vars[r2 ']CV, Dom[X]CV\ Vars[o']CV\
σ = [ν] λσ ' ,Γ2 = λΓ2'.

Choose now t2' = f (a ' u i B y (CONG-N) holds

I- t l = f (u i ,u 2) -tf+o' K°9*M') = t2'.
(i) Vars[t2 ,]CVars[σ']UVars[ul]UVars[r2 ,]£V , , due to the induction step

and V a r s [u i] C V a r s [t l] C V C V \ The other parts are given by the
induction step.

(ii) Given by the induction step.
(iii) Xt2' = f (Xa 'u i , λΓ2') = f(aui ,r2) = t2, due to the induction step and

Vars[u]]CV.

(A X I O M) :
This means that there is an axiom <1 r> Ε R and a constructor substitution
T G S U B S T (I C , X) such that o t l = τΐ, t2 = t r . It follows immediately that t l £ X .
(If t l = x, xEX, then σχ contains at least the topmost symbol of 1 which is a
non-constructor in a constructor-based system. This contradicts to

The substitution χ can always be splitted into another substitution τ ' and a
renaming ρ (which assigns "fresh" names to all the variables of the axiom) such
that

τ ' ρ = τ , Dom(x')nV = 0 , Dom(o)n(Vars(pl)UVars(pr)) = 0 , and
Dom(x')nDom(a) = 0 .

APPENDIX A: PROOFS 227

Then τ ' ϋ σ is well-defined and

(t ' U a) t l = crtl =τ1 = τ'ρ1 = (x'Uo)(pl).
Thus t l and pi are unifiable by the unifier (τ ' ϋ σ) (which is in SUBST(2c,X),
since τ and σ are in there). Define σ ' as the most general unifier of t l and p i ,
and η as the corresponding specialization, such that:

η σ ' = (τ ' ϋ σ) .
Obviously, η and σ ' are in SUBST(Ic ,X) (as t ' U a is). Rule (AXIOM-N)
yields now I- t l - /ν -» σ ' t 2 \ Define the remaining items as

λ = η Ι ν , ΐ 2 ' = o'pr, V = VUVars[cr'] UVars[p].
(i) Since ρ renames all variables of the axiom, Vars[t2'] = Varsfö'pr] C

Vars[o']UVars[p] C V ' . B y definition, we have Dom[X] = Donu j j l y]
C V andVars [o ']CV\

(ii) Since Dom(x')nV = 0 , σ = [γ] (τ ' ϋ σ) = η σ ' . Since Vars [ö ']CV\ η σ '
= (ηΙν ')σ ' = λ σ ' .

(iii) Kt29 - (ηΙγΟσ'ρΓ = ησ'ρΓ = (x , Uö)pr = x'pr = xr = t2. 0

Proof of Lemma 4.39:
The following proof omits technical detail at a few points. A more general proof
can be found in the literature ([Bosco et al. 88]). The proof of the lemma
proceeds by induction on the derivation in the narrowing calculus.

(R E F L - N) :
In this case, t l = t2 and θ = ι. It is sufficient to choose θ'=θ=ι.

(T R A N S - N) :
Here we have

I- t l -/V-*ei t 2 \ I-12' -N-*%212 and θ = Θ2 Θ1.

Let 0[t2 '] = (c2\ B2'). By induction hypothesis
B l where σ I - B2' where ΘΓσ and
B2' where σ ' I- B2 where Θ 2 ' σ \

This means by transitivity of resolution steps
B l where σ I- B2 where θ 'σ ,

i f θ ' is defined as θ ' = Θ2' ΘΓ. Using the other parts of the induction hypothesis
and the variable restrictions for λ ΐ , λ2:

0 ' c l = 0 2 , e i , c l = 9 2 , c 2 , = c 2 ;
θ ' = Θ2' ΘΓ = (Θ2 U λ2)(θ1 U λ ΐ) = Θ2 Θ1 U λ2 λΐ = θ U λ2 λ ΐ .

228 APPENDIX A: PROOFS

(C O N G - N) :
Using a typical subcase (n=2, i=2) , we have here

t l = f (u l , u2), t2 = f(0ul , u2'), and u2 u2'.
Let Ofu l] = (d l , C I) , Φ [υ 2] = (d2, C2), Φ [υ 2 '] = (d2\ C2'). By induction
hypothesis,

C2 where σ I - C2' where θ'σ
and0'd2 = d2'.

Case 1: f E C
In this case,

0 [t l] = (f(dl,d2), C1-C2), Φ [ί 2] = (f(0dl,d2'), 0C1«C2')
(using the fact that Φ [ι] = (c,B) => Φ (θ ί) = (0c,0B), and abstracting from
renamings into "fresh" variables). This means B l = C1*C2, B2 = 0C1»C2 ' .
Using the induction hypothesis and (RES),

B l where σ I - Θ ' Ο Κ Ώ ' where θ 'σ .
The variable restrictions for λ ensure that 0'C1 = 0C1, so

B l where σ I- B2 where θ 'σ .
Moreover 0'cl = 0'f(dl,d2) = f(0'dl ,0'd2) = f(0'dl ,d2') = c2.

Case 2: f £ C
In this case,

0 [t l] = (z, f(dl,d2,z>Cl»C2), 0[t2] = (z, f(0dl,d2',z) · Θ 0 1 ^ 2 ')
(abstracting from renamings into "fresh" variables again). This means B l =
f(dl ,d2,z)»Cl*C2, B2 = f(0dl,d2',z)·ΘCl·C2 ,. Using the induction hypothesis,

B l where σ I- f ^ ' d l ^ ' ^ ' z ^ ' C K ^ ' where θ 'σ.
Since ζ is a fresh variable, 0'z=z. The variable restrictions for λ ensure that 0 'dl
= 0dl a n d O ' C ^ O C ^ s o

B l where σ I - B2 where θ 'σ .
Moreover, 0 'cl = θ'ζ = θζ = ζ = c2.

(A X I O M N) :
In this case,

t l = f (d i , . . . ,d n) , t2 = 0r and <f(ci,... ,c n) r>ER,
0 is a mgu. of t l and f (c i , . . . , c n) (omitting the technicalities of the renaming p).
Since f^C and the d| are constructor terms, Oftl] = (z, f(di , . . . ,d n ,z)) , i.e. B l =
f (d i , . . . ,d n,z), c l = z. Due to the construction of Φ (Τ) , there is a program clause
<f(ci, . . . ,c n ,c) :- B> where (c, Β) = Φ [Γ] . Define now 0* = [c / z]0, which is a
mgu. of f(ci, . . . ,c n ,c) and f(di, . . . ,d n ,z) . Using (RES),

B l where σ I- ΘΈ where θ 'σ .

APPENDIX A: PROOFS 229

We have Φ[ι2] = Φ [Θ Γ] = (9c, ΘΒ), i.e. B2 = ΘΒ = ΘΈ, which shows that the
derivation from above is the needed one. Moreover, c2 = 0c = c, due to the fact
that c contains only variables created during the flattening of r, which are not
affected by Θ. So e ' c l = θ'ζ = c = c2. 0

Proof of Lemma 5.10:
Part (1):
First we show the following proposition:

VuEOcc[t], <l-*r>ER\D, aESUBST(Zc): (1)

t l / u = ol => (i™[t l]) /u = al .

The proof is done by induction on the length of an arbitrary term rewriting
sequence, which reduces t l to (D-innermost-)normal form:

im im im im ^ . i m , . . ,
t i = t o - * D t i - > D t 2 - * D . . . - * D t n = l D [t i] .

So we have to show (by induction on n):
VuEOcc[t], <l-*r>ER\D, Ö E S U B S T (I C) : t l /u = σΐ => t n /u = σΐ .

η = 0:

Here t n /u = tQ/n = t l /u = σΐ, according to the precondition.

η > 0:
In this case, there are vEOcc[t n _i] , < 1 D ^ T) > E D , C J D E S U B S T (Z C) such that

tn-l/v = C J D I D , t n = t n - l [ν«-στο] .
Let t l / u = σ ΐ , then the induction hypothesis yields t n _ i / u = σΐ . The
nonoverlapping condition allows to exclude the case u = v. Due to the innermost
rewriting (σ , ar j)ESUBST(Zc)) it is impossible that u is a prefix of ν or
reversely. So u and ν are independent occurrences, and we have:

t n / u = (t n _i [v^oDrD]) to = σΐ .
Due to the precondition there are fixed uEOcc[t], <l->r>ER\D, oESUBST(Zc)
such that t l /u = σΐ.

Part (2):
Now we can show by an analoguous induction:

/ , i m r i n x r , im* . i m r . r x ~
U D [t l])[u«-or] - * D i D [tl[u«-or]] (2)

230 APPENDIX A: PROOFS

η = 0:
im* im

Here t n [u ^ a r] = to[u«-ar] = tl[u«-ar] | D [tl[u«-crr]]

(by the definition of i™)-
η > 0:

There are vGOcc[t n_i], <lD^q)>GD, C F D E S U B S T (I C) such that
tn-l/v = O Q I D , t n = t n - l [v« -o rD] .

From (1) follows that t n /u = σΐ. As above, ν and u are independent. So,
according to the induction hypothesis:

t n [u ^ a r] t n[v<-ODrD, u«-or]

r ., im* . i m r = t n _i[u<-ar] - > D 1Ό [tl[u«-crr]].

I f we choose t2' = (l™[tl]) [u«-or] , so line (1) gives the fact

. i m , . , im T . , . im* . i m r 1 D [t l] t2' . Line (2) means here that t2' J D [t2],

and because of the normal form property of J,™ follows:

Proof of Theorem 5.17:
The proof sketch uses the identifiers from definition 5.15. Let val3 be the given
valuation for the graph G3. In a first step, a valuation val' for the graph G is
constructed, together with an environment β ' , assigning values to the variables
in the axiom (Vars[l]UVars[r]). Let nEN. We start with a valuation val,
assigning values only to the nodes in GlrootR.

l a b i n l E X :
This means that xEVars[l]UVars[r] , n = n x . Due to the variable-
restriction xEVars[l], therefore φ(η χ) is defined.

x E V a r s i r l :
Then φ (η χ) is reachable from root2, due to the construction of G2.

Hence val3(<(>(nx)) is defined. In this case val(n x) =def ν ^3(Φ(ηχ))·

APPENDIX A: PROOFS 231

x ^ V a r s f r l :

Then the variable χ "deletes" some term at axiom application. Let va l"
be an arbitrary extension of valß to the nodes reachable from the φ-
images of these variables, and val(n x) =def ν ^ " (Φ (η χ)) ·

l a b (n) £ X :
Since we treat here only nodes reachable from rootR, η is reachable
from root2, and val(n) =def val3(n).

From val, a definition of the valuation β' can be derived, by ß'(x) =def val(n x).
A A

Using this environment, val(rootR)EIß,[l], and therefore val(rootR)EIß,[r].

So there is an extension val' of val to all variables in G (including those not
reachable from rootR) such that val'(rootL) = val'(rootR). It is an important
consequence of the constructor-based form of the axiom that the valuation val' is
uniquely determined for all nodes in the left hand side, except of rootL- More
formally:

VnEN: η reachable from rootL and n^rootL =>
valXn) = (v a l v a l ' ') (φ (η »

(Exact proof by induction on the structure of the graph representing the right
hand side.)

Using these preliminaries, the given valuation val3 can be extended to a
valuation val2 for G2. For this purpose, we have to study the nodes nEN2\N3
removed by garbage collection. There are two cases:

Case 1: Parts of Go "deleted" by the rule application:
In this case, there is an xEVars[l]\Vars[r], and η is reachable from φ(η χ) , there is
no other way to reach η from root2- Here val2(n) =def val"(n) (as above).

Case 2: Parts of the pattern which are replaced:
In this case, there is an n 'EN, such that η is reachable from rootL and φ(η') = η.
Here val2(n) =def vaP^ ' l (n)) . This definition is admissible only i f val '^~l(n))
is unique. For n'*rootL, this is ensured by the above-mentioned observation
(which relies on the constructor-based form). For rootL the definition is unique,
since φ"*(rootL) is unique.

We have to check now that the constructed val2 is a proper valuation of G2. For
variable nodes, this is obvious from val2(n x) = val3(n x) = βχ. For a non-

232 APPENDIX A: PROOFS

variable node η (i.e. lab(n) = f), the only problematic case is where a node nEN
has a successor arg(n)iEN(). This is only the case i f there is a n x E N such that
arg(n)i = φ (η χ) . Therefore val2(arg(n)j) = val(x) = val'(x) = β'χ, which means
that val2 takes its value for arg(n)i from a proper valuation for G. For the nodes
"below" arg(n)i, val2 takes its values from a proper valuation of G3 (if
xEVars[r]) or G2l(|>(nx) (if x^Varsfr]).

In order to validate the step from a valuation val2 for G2 to a valuation vali for
G i , we simply define vali =def v a l 2 - The valuation vali is also a proper
valuation for G i , since the values assigned to Φ (Γ Ο Ο ^) (the node to be replaced)
and n r (the replacement node) are equal:

val2^(rootTj) = vaF (rootL) = val (rootR).

Here we have two cases:

Case 1: lab(rootR)EX:

Then val(rootR) = val3^(rootR)) = val3(n r) = val2(n r).

Case 2: lab(rootR)0t :
Then val(rootR) = val3(rootR) = val3(n r) = val2(n r).

The final step from vali tc> a valuation valo for Go is achieved by valo =def
valilNo.

It remains to show that valo(rooto) = val3(root3). Again there are two cases:

Case 1: Rewriting below the root of Go:

This means that root3ENo and rooto = root3. Then val3(root3) = val3(rooto) =
valo(rooto) (since val3 coincides with valo o n No)-

Case 2: Rewriting at the root of Go:
This means that root3=n r and rooto = Φ (Γ Ο Ο ^) . Then val3(root3) = val3(n r) =
val2(φ(rootL)) = val2(rooto) = valo(rooto). 0

Proof of Theorem 5.21:
It suffices here to show the lemma

wf [Gl] Λ TM[G1] = t l Λ l-c t l t2 =>

APPENDIX A: PROOFS 233

3 G2: wf[G2] Λ TM[G2] = t2 Λ G l - * * Q R G2.

The proof for this lemma proceeds by induction on the l-C-derivation for the
formula t l -* t2. The case (REFL) is trivial, (TRANS) is obvious by the
syntactical form of the lemma. The remaining cases are (CONG) and (AXIOM-
1-C), where the (CONG) case must show that the anomaly from example 5.18
cannot happen under the given preconditions.

(C O N G) :
In this case, t l = f (t [, t i , . . . , t n) , t2 = f (t] , t j ' , t n) . G l contains a
subgraph Gi = Gllarg(rootl)j such that TM[Gj] = t{. By induction hypothesis,

there is a graph Gi ' such that G\ ~^QJ^ Gi ' - There are two cases (let root] be the

root of Gj):

Case 1: is_shared(rj):
Since w f [G l] (and therefore wf[Gi]), G] is irreducible with constructor-based
axioms. Hence Gi ' = G\, and the claim of the lemma holds trivially.

Case 2: -«is_shared(ri):
In this case, none of the tj (j*i) is represented by the same graph as t[. Therefore
the same graph context building G l from Gj can be built around Gj ' , giving G2.
Since there is only one path from the root of G2 to the replaced parts (in Gj ') ,
TM[G2] = t2 and wf[G2].

(A X I O M - 1 - C)
In this case, lab(rootl) = f, f^C (due to the constructor-based form of the
axioms), and <1 -> r>ER such that t l = σΐ. A redex for GR(<1 -> r>) in G l is
constructed by φΟυ) = Gl /u , and by φ (η χ) = G l / u x , where u x is the unique
position of the variable χ in 1 (due to left-linearity). Here we use the convention

G/e=def root,
G/im =def (Glarg(root)i)/u).

The graph G2 is constructed due to definition 5.15. Since σ is a constructor-
substitution, G l l u x contains only constructor- and variable-labels. Together with
the construction of GR(<1 —> r>) this means wf[G2]. The fact that TM[G2] = σΓ =
t2 is obvious from the construction of GR(<1 —> r>). ()

234 APPENDIX A: PROOFS

Proof of Theorem 6.6:
The lemma 2.6.1 can be taken over from the proof of theorem 2.6, i f for the
substitution σ we claim additionally:

± £ ΐ ρ [σ χ] Λ I Iß [σχ] 1 = 1 .

The premises in the deduction rules (AXIOM-1-D) and (AXIOM-2-D) allow the
applicability of the lemma, even after this extension. Except of this, the proof
of theorem 2.6 can be identically adapted for the rules which belong to the
"total" calculus. For the new rules we have:

(A X I O M - 3 - D) :

Using the analoguous lemma to lemma 2.6.1, with AEMod(T):

± < ß [t] = I ^ [a t] .

(D E F - X) :

Here ± ί { β(χ) } = Iß [χ], because of ß(x)*-L

(D E F - D) :

Because of the premises, ±<£lß [t l] , Iß [t l] 2 I ß [t2], so ± £ l ß [t2].

(S T R) :

Due to the premise J-9=Iß [f(tι , . . . , t n)] . Using definition 6.2 (strictness),

± 0 ß [f (t i , . . . , t n)] implies [t[] φ

Proof of Theorem 6.9
As in theorem 2.14, valuations in ΡΣ/R are represented by substitutions.

Lemma 6.9.1

i j j j [t] = { [t '] I t 'eW(X) Λ I- DET(t') Λ I- DEF(t') Λ I- crt -» t ' }

U { 11 3 t'GW(Z): I- at — t' Λ I - t O (for t G W (I , X)) .

APPENDIX A: PROOFS 235

Proof of the lemma:

Induction on the term structure of t, analoguous to lemma 2.14.1:

t=x. x E X :

ig j W = { [σ] (χ) } = { [σ χ] }

C { [t '] l l-DET(t ') Λ l-DEF(t') Λ I- σ χ - Η ' } .

The 2-direction holds, too, in analogy to theorem 2.14.

t = f (t j t n) / C - d i r e c t i o n :

p y / p
Case l : 1 0 ^ / K [f (t i , t n)]

ΡΣ/R
The property [t']EI|- a-j [f(tχ,... , t n)] implies by definitions 6.2, 6.8

and the induction hypothesis that
3 t i ' , . . . , t n ' :

l-DET(ti ') Λ l-DEF(tj') Λ l - o t j - > t i ' Λ l - f (t i , , . . . , t n ') - > t '

Using (CONG), (TRANS), we have I - crt-*t'

.ΡΣ/R
l[o]

There are again two subcases.

Case 2: l E l ^ m , . . . ^ }

Case 2.1: 3 i E { l , . . . , n } : 1 Ε ΐ [σ] [tj]

For i we can apply the induction hypothesis, giving
3 tO: I - ot i tO Λ I- ftO

Using (CONG), we have
I- f (ot ι , . . . ,oti , . . . , c t n) f(otι,... ,t0,... ,<jtn)

I f there was a term t l such that
I- f(crti,...,tO,...,crt n) -* t l and I- DEF(tl),

then, because of the partial DET-completeness and the DET-additivity
there had to be terms t i t 0 \ . . . , t n ' such that

I - f (t i t O ' , . . . , t n ') - t l

and (besides other facts)
I- tO -* tO' Λ I- DEF(tO') Λ I- DET(tO'),

236 APPENDIX A: PROOFS

which contradicts to the definition of I- ftO. So I- f f(oti , . . . , tO,. . . ,at n).

Using (TRANS), this yields the claim.

Case 2.2:
I f the condition for case 2.1 is not fulfilled, the undefined result value
must come from the semantics of the function symbol f:
3 t f t n ' :

P57R
I - DET(tj') Λ I- DEF(ti') Λ I- a t i - t i ' Λ 1 G I ^ / R [f (t l ^ . . . , t n ,)]

From definition 2.8 follows
3 tO: I- f (t i t n ') - * tO Λ I- t tO,

which gives using (TRANS), (CONG):l- f(crti, . . . ,at n) tO.

t = f(t\ t n) / 3 -Direc t ion:

P Y / P
Case I : ± i l ^ / K [f (t i , . . . , t n)]

Let t 'EW(Z) such that
I- DET(t') Λ I- DEF(t') Λ l-f(mi,...,CFtn) t' .

Because of the partial DET-additivity (1) there exist terms t j t n '
such that

l-DET(ti ') Λ l-DEF(ti') Λ l - a t i - ^ t i ' Λ l - f (t i ' , . . . , t n ') - ^ t ' ,

that is t ' E l g p t] .

p y / p

Case 2: l G I ^ j [f (t i , . . . , t n)]
Let t 'GW(I) such that

l - f (t i , . . . , t n) - t ' Λ l -T t ' .
Because of the partial DET-additivity (2), there exist terms t i t n '

ΡΣ/R
such that I - f (t i t n ') t \ that is - L Q [a] [t] . 0 (lemma 6.9.1)

For the proof of theorem 6.9, we proceed differently according to the three types
of formulas.

Let <DET(t)>ER, [σ] a valuation. Then, using lemma 6.9.1:

T(t') Λ I- DEF(t') Λ I- ot-

U { ± l 3 t ' : l - a t - > t ' Λ I - f t ' }

py/p
[t] = { [f] I I - DET(t') Λ I- DEF(t') Λ I- o t ^ t ' }

APPENDIX A: PROOFS 237

p y / P PT7R

I f l (£ l ^ [t] , we have as in theorem 2.14: I [t] 1 = 1.

ΡΣ/R
I f ±GI [(~j [t] , the rules (AXIOM-2-D) and (DET-R) give

I- DET(crt), I -1 ' -» at.
I f there was now a term t " such that

I- DET(t") , I - DEF(t") and I- at -» t " ,
this would lead to a contradiction to ft' (because of (TRANS)).

So I ^ / R [t] = a } , i . e . l ^ / R [t] l = l .

Let <DEF(t)>ER, [σ] a valuation. Then with (AXIOM-3-D) l-DEF(ot). I f now
ΡΣ/R

we had - L ^ - Q J Μ » l -
 e - according to lemma 4.9.1

3 f : I- at t ' , I - T t \
then using (DEF-D) we could deduce I - DEF(t'), in contradiction to the

p y rn
definition of ft'. So 1 0 Λ [t] .

Let <tl t2>ER, [σ] a valuation. Then analoguously to theorem 2.14:
r \ y / p ΌΣ/R

[f] G i f j] [t2] [f] G [t l] and

By lemma 6.9.1 this gives
at': otl^V Λ I - | t '

and by (AXIOM-1-D), (TRANS) I- a t l t ' . Using lemma 6.9.1 again:
, „ D Z / R . 1 Ί

i e i [o] [ti]

Proof of Lemma 6.15:
By induction on the term structure of t it can be shown that:

φ is a loose homomorphism
<*> V t E W £) : {e'E(p(e) I e E I A [t] \ { l } } C I B [t] . (**)

For the proof of the lemma we use the fact (**) from above.

(1) : I f φ is total, then l£{e'Ecp(e) I e E I A [t] \ { l } } , So "=>" holds because of
(**). The inverse direction holds because of AEPGenff).

238 APPENDIX A: PROOFS

(2) : I f l G I A [t] , the claim can be shown easily by induction on the term
structure of t.
So let ± £ l A [t] , i . e. I A [t] \ { ± } = I A [t] . From the definition of a tight
homomorphism follows that 1 0 B [t] , since φ is total. So I B [t] \ {±} =
I B [t] . This means ± E I B [t] => ± E I A [t] . The same chain of arguments
holds also in inverse direction.

(3) : For e E I A [t] , e^J. because of (**) there is to nothing to show. I f
± E I A [t] and φ is weak, from (**) follows that {e'Eqp(e) I e E I A [t] } C
I B [t] . Inversely, from this proposition follows the weakness of φ, too.

(4) : I f ± £ l A [t] , there is nothing to show.
So let ± E I A [t] . Since φ is strict, the definition of a tight homomor­
phism yields:
{e'Ecp(e) I eEI A [t]} = {e'Eq)(e) I eQ A [t] \ { l}}U{±} = (I B [t] \ { J L }) U { ± } .
This last term is equal to I B [t] i f f J_EI B [t] , i . e. i f φ is weak.

(5) : Follows from (2) and (4). 0

Proof of Lemma 6.18:
(1) : For tEW(Z), AEPMod(T) we have: A 1= f t => Τ I- f t .

(If there was a term t' such that I - t -* t ' , I - DET(t'), I - DEF(t'), then
according to theorem 6.6. we had I A [t] * {1} , in contradiction to A 1=
Tt.)
So we still have to show that for a minimally defined A holds: I - ft =>
A 1= | t . According to theorem 6.9 PZ/REPMod(T). From I - Tt
follows ΡΣ/R 1= ft, so (since A is minimally defined) A 1= ft.

(2) : Let eEs A . Since A is term-generated, there is a term ί 'Ελν(Σ) such that
I A [t '] = {e} . So ->(A 1= ft'). According to part (1) of the lemma follows
- (Τ I - f t) ' . This means by definition 6.7: 3 t: I - t ' - * t Λ I- DEF(t).
Using theorem 6.6 follows I A [t] = {e} .

(3) : Let eEs A . According to part (2) of the lemma there is a ιΕ\¥(Σ) with Τ
I- DEF(t) Λ I A [t] = {e} . Because of the partial DET-completenenss of
Τ there is now a f with I - t -*t ' Λ I - DET(t') Λ I- DEF(t'). According

APPENDIX A: PROOFS 239

to theorem 6.6 follows I A [t '] = {e} . The rest of the proof is in
complete analogy to lemma 3.12. φ

Proof of Lemma 6.21:

(1) => (2):
Let A be partially maximally deterministic, BEPGen(T), φ: Β -» A loose and
total. Then for tEW(Z) we have the following facts (since A is partially more
deterministic than B):

l{e'e<p(e) I eEI B[t]\{±}}l a I I B [t] \{±} I a I I A [t] \{±} 1.
Using lemma 6.15 (1):

{e'Ecp(e) I eeiB[t]\{±}} C I A [t] \{±} , and so
{e'Ecp(e) I eQ B [t] \ {±}} = I A [t] \{±} .

Since A is totally more deterministic than B, we have i e i A [t] = > ± e i B [t] . S o
from lemma 6.15 (2) it follows that φ is tight.

(2) => (3):
The continuation φ of I A is a loose total homomorphism from ΡΣ/R to A.
According to the precondition, φ is tight, i . e. with lemma 6.15 (2) :

{ e E I A [t '] 11- t-*t ' Λ I- DEF(t') Λ I- DET(t') } = I A [t] \{±} .
So for any e E I A [t] , e*_L, there is a term t' such that

I- t -*t ' Λ I - DEF(t') Λ I- DET(t') .
Here I I A [t '] I = 1 and (because of theorem 6.6) e E I A [t '] , i . e. I A [t '] = { e } .
I f _LEI A [t] , according to lemma 6.15 (2): ± E I P I / R [t] , i . e.

3 t ': 1-1 —t* Λ I - t t \
Since φ is a tight homomoφhism, we have:

{ e E I A [t "] 11- t ' - * f Λ I- DEF(t") Λ I- DET(t") } = I A [t '] \ { l } = 0
(the last equation because of I- f t ') . So I A [t '] = { ! } .

(3) (1):
Let Β be a refinement of A, i . e. BEPGen(T), φ: Β -> A a total loose homomor­
phism, t e W (I) .
For e E I A [t] \ { l } , according to the precondition, there is a term t' such that

Ι Α [ι Ί = { e } Λ I- t-*t ' Λ I- DEF(t') Λ I- DET(t').
So there is an e'Es B with

I B [t '] = { e ' } Λ e V l Λ e 'EI B [t] .

240 APPENDIX A: PROOFS

The homomorphism condition gives cp(e') = {e} . So φ is a surjective pointwise
mapping from I B [t] \{±} to I A [t] \ {±} , i . e. I I B [t] \ { l } l ;> IIA[t]\{±}l.

Moreover, due to the precondition
±EI A [t] => 3 t ' : I-1 t ' Λ I- f f Λ I A [t '] = { ! } .

The homomorphism condition for t' gives:
{e'Eq>(e) I eEI B [t '] \{_L}} C I A [t '] \ { J L } = 0 .

This is only possible (since I B [t '] * 0) , i f I B [t '] = { ! } . So ±EI B [t] . φ

Proof of Theorem 6.27:
Let AEDPGen(T). The proof uses the following lemma:

Lemma 6.27.1

E(R) I - t l t2 Λ R I-t2 — t3 Λ I - DET(t3) Λ I- DEF(t3) =>
3 e E I A [t l] , t ' E W (I) :

I A [t '] = {e} Λ f » t3 Λ I- DET(t') Λ I- DEF(t')

Proof of the lemma:

By induction on the deduction of E(R) I - t l -» t2.

(R E F L) :

In this case we have t l = t2. Choose t' = t3 and accordingly I A [t 3] = {e} .

(T R A N S) :

There is a tO with E(R) I - t l -> tO and E(R) I- tO - M 2 .

According to the induction hypothesis there are e0EI A [t0] , tO' with tO' t3,

I- DEF(tO'), I- DET(tO'). By lemma 6.21 (3) there is a tO" such that

R I- tO -» tO" Λ I- DEF(tO") Λ I- DET(tO") Λ I A [t 0 "] = { e 0 } .

Using definition 6.25 we have now tO' < ^ tO".

According to the induction hypothesis there are e E I A [t l] , t' with

I A | y] = { e } , t' tO", I- DET(t'), I- DEF(t').

The transitivity of +*> gives t' t3.

APPENDIX A: PROOFS 241

(C O N G) :
Let t l = f (t i , . . . , t i , . . . , t n) , t2 = f (t i , . . . , t i ' , . . . , t n) , E(R) I - t i - M f . Since Τ is
partially DET-additive, there are t\'',... , t j " , . . . , t n ' ' with

I- DET(tj") , l- DEF(tj"),

R I- t i - t i " , R I- t i ' - ^ t i " , R l - t n - * t n \ R I - f (t i " , . . . , t n ") - t 3 .

So the induction hypothesis can be applied. Therefore there are e ' E I A [t j] , t "

with I A [t "] = { e ' } , t " ^ t i " , I- DEF(t"), I- DET(t").

Because of R I - f (t i " , t n t3 and t " « t i " there are B i ,

Bk +lEDPGen(T) where

B i l = f (t i " , . . . , t " , . . . , t n ") - u i , . . . , B k + i l = u k - t 3 .

By lemma 6.21 (3) we have

R l - u k -*t3 , . . . , R I - f (t i " , . . . , t " , . . . , t n ") - * t 3 .

Let now t' = t3. Then, trivially,

t' ^ t3 , l - DET(t ') , l - DEF(t').
Moreover

I A [t 3] C l A f (t j t " , . . . e t n ")
(because of R I- f (t ι " , . . . , t " , . . . , t n ")-*t3) and for i*j I A [t j "] C IA[tj](because of
R I - t j - * t p and I A [t "] Q A [t i] (consequence of the induction hypothesis). Using

the additivity of f A :
I A [t 3] C l A [f (t l v . . , t n)] .

(A X I O M - I D) :
We distinguish according to the axiom applied.

Case 1: Application of an axiom <l->r>ER
Then R I- t l -* t2 , and so we can choose t' = t3.

Case 2: Application of an axiom <l->r>EE(R)\R

Then t l « t2, i . e. I - DET(tl) , I- DET(t2), and therefore t2 t3. We can

choose t' = t2, and e such that I A [t 2]={e} . 0 (lemma 6.27.1)

For the proof of theorem 6.27, we define the needed homomorphism by
cp(e) = {[t]} such that I A [t] = {e} Λ I-DEF(t) Λ I-DET(e) .

The existence of such a t follows from the partial DET-completeness and from
the fact that A is term-generated. The uniqueness follows from the definition of
E(R):

I A [t '] = {e} Λ l-DEF(t') Λ l-DET(t')

242 APPENDIX A: PROOFS

=> E(R) I - t - * f

=> [t] = [t '] .

By theorem 6.22 we have:
±GI A [t]

<J*> 3 t ' : R l - t - * f Λ R l - f t '

ο 3 t ': E(R) I- t -*t ' Λ E(R) I- Tf (since R I- DEF(t) <=> E(R) I- DEF(t))
Ä 1 Q P 2 y E (R) [t] e

For the condition of a strong homomorphism in lemma 6.15 (5) we have to
show:

{[f]ep(e) I eGI A [t]\{±}} = Ι Ρ Σ / Ε (* \ { ± } .

Let [t']Ecp(e), i . e. I A [t '] = {e} and eGI A [t] . According to lemma 6.21 (3) there
is a t ' ' such that I A [t "] = {e} and R I- t " , so because of the definition of
E(R): E(R) I- t " ^ t and E(R) I- t-*t". So [t "] G I P 2 / E (R) [t] .

Let [t '] e i p 2 / E (R) [t] , i . e. E(R) I- t - » t \ I - DEF(t'), I - DET(t'). By lemma 6.27.1
there are eGI A [t] , t ' ' such that I A [t "] = {e} and [f '] = [t '] , i . e. [t']G(p(e). 0

Appendix Β: Experiments with RAP
This appendix shows how the example specification from chapter 7 can be used
to obtain directly a running (but not very efficient) interpreter for CP.

B. l . General Remarks
The experiments reported here have been performed with RAP Version 3.0 on a
SUN SPARCstation 10 computer with 32 MByte RAM.

The syntax of RAP specifications (types) is very similar to the syntax used in
this book. In order to improve the readability of terms, RAP is able to display
terms in a so-called mixfix-notation. For instance for the operation prefix the
notation:

_ -> _: (Com,Agent)Agent
can be used instead of

prefix: Com χ Agent Agent .
The term

prefix(a,prefix(b ,stop))
in this case is shown as like

a -> b -> stop.
Also the empty string can be used to represent an operation (see for instance the
operation generating an empty set in COM_SET).

Texts printed in a t y p e w r i t e r font are original in- or output of the RAP
system (except of some brackets which have been inserted at a few places by
hand to improve the readability).

In general, all specifications have been formulated in a constructor-oriented style,
since RAP supports the notion of a constructor. As it was shown above, RAP
then automatically respects the DET-axioms for the constructor operations (and
DET-axioms then are superfluous).

244 APPENDIX Β: EXPERIMENTS WITH RAP

Β .2. Specifications (types)
The specification COM is restricted to three elementary communication actions,
in order to keep the search space small:

type COM
basedon BOOL

s o r t Com
cons a: Com, b: Com, c: Com
func _ == _: (Com,Com)Bool

axioms a l l (i : Com)

(1) i == i -> true,
(3) a == c -> f a l s e ,
(5) b == c -> f a l s e ,
(7) c == b -> f a l s e

endoftype

COM_SET specifies finite sets of communication actions. Sets are here
implemented by sequences, since axioms for commutativity, associativity or
idempotence (for insert) would violate the restrictions of constructor-based
specifications. The operation _ [_] _ describes the "majori ty"-operator for sets
which is needed later on.

type COM_SET
basedon COM,BOOL

s o r t ComSet
cons : ComSet, {empty s e t as empty symbol}

: (ComSet,Com)ComSet

func _ IN _: (Com,ComSet)Bool,

_ [_] _ : (ComSet,ComSet,ComSet)ComSet

axioms a l l (i , j : Com, s, s i , s2: ComSet)

(1) i IN -> f a l s e ,
(2) i IN s j -> i == j or (i IN s) ,
(3) [] s -> ,
(4) j IN s2 -> t r u e => s i j [] s2 -> s l [] s 2 j ,
(5) j IN s2 -> f a l s e => s i j [] s2 -> s l [] s 2 ,
(6) j IN s i -> t r u e => s l [s j] s 2 -> s l [s] s 2 j ,
(7) j IN s2 -> t r u e => s l [s j] s 2 -> s l [s] s 2 j ,

(2) a == b -> f a l s e ,
(4) b == a -> f a l s e ,
(6) c == a -> f a l s e ,

A P P E N D I X Β : E X P E R I M E N T S W I T H R A P 245

(8) j IN s i -> f a l s e & j IN s2 = f a l s e =>
s l [s j] s 2 -> s l [s] s 2

endoftype

The specification AGENT is identical to the version in chapter 7:

type AGENT
basedon ID,COM,COM_SET

s o r t Agent
cons STOP: Agent, DIV: Agent,

_ -> _: (Com,Agent)Agent,
(_ OR _) : (Agent,Agent)Agent,
(_ [] _) : (Agent,Agent)Agent,
(_ I I {_} _) : (Agent,ComSet,Agent)Agent,
(_ :: _) : (Id,Agent)Agent,
_: (Id)Agent

endoftype

The specification PAIR basically introduces a Cartesian product between Action
and Agent. Moreover it admits a special element (LOCK), which is used below
in STEP for the totalization with respect to deadlock:

type PAIR
basedon COM,AGENT

s o r t P a i r

cons <_,_>: (Com,Agent)Pair, LOCK: P a i r

endoftype
The auxiliary specification SUBST provides a syntactical substitution operation
on the sort Agent:

type SUBST
basedon ID,COM,BOOL,AGENT,COM_SET

func _ [_ / _] : (Agent,Id,Agent)Agent

axioms a l l (i , j : I d , p, q, q l , q2: Agent,
A: ComSet, x: Com)

(1) STOP[i/p] -> STOP,
(2) D I V [i / p] -> DIV,
(3) (x -> q [i / p]) -> (x -> q [i / p]) ,
(4) (q l OR q 2) [i / p] -> (q l [i / p] 0 R q 2 [i / p]) ,

246 APPENDIX Β: EXPERIMENTS WITH RAP

(5) (q l [] q 2) [i / p] -> (q l [i / p] [] q 2 [i / p])
(6) (q l I I {A} q2) [i / p] ->

(q l [i / p] I I{A} q 2 [i / p]) ,
(7) (i == j) -> t r u e => j [i / p] -> p,
(8) (i == j) -> f a l s e => j [i / p] -> j ,
(9) (i == j) -> t r u e =>

(j : : q) [i / p] -> (j : : q) ,
(10) (i == j) -> f a l s e =>

(j :: q) [i / p] -> (j :: q [i / p])

endoftype

STEP contains, compared to chapter 7, additional axioms for the totalization in
the case of deadlock:

type STEP
basedon AGENT,COM,COM_SET/PAIR,SUBST,BOOL,ID

func s t e p (_) : (Agent)Pair

axioms a l l (i , j : Com, p, p i , q, q l : Agent,
A: ComSet, x: Id)

(STOP) step(STOP) -> LOCK,
(PREFIX) s t e p (i -> p) -> <i,p>,
(OR1) s t e p ((p OR q)) -> s t e p (p) ,
(OR2) s t e p ((p OR q)) -> s t e p (q) ,
(CHC1) s t e p ((p [] q)) -> s t e p (p) ,
(CHC2) s t e p ((p [] q)) -> s t e p (q) ,
(PARI) step(p) -> <i,pl> & step(q) -> <j, q l > &

(i IN A) -> tr u e & i == j -> t r u e =>
s t e p ((p I I{A} q)) -> <i, (p i | |{A} q l) > ,

(PAR2) step(p) -> <i,pl> & step(q) -> <j , q l > &
(i IN A) -> tr u e & (j IN A) -> t r u e &
i == j -> f a l s e =>

s t e p ((p I I{A} q)) -> LOCK,
(PAR3) step(p) -> <i,pl> & (i IN A) -> f a l s e =>

s t e p ((p I I{A} q)) -> < i , (p l | |{A} q)>,
(PAR4) step(q) -> <i,ql> & (i IN A) -> f a l s e =>

s t e p ((p I I{A} q)) -> <i, (ρ | | {A} q l) > ,
(REC) s t e p ((x :: p)) -> s t e p (p [x / (x :: p)])

endoftype

The trace and refusal semantics now can be defined like in chapter 7.

APPENDIX Β: EXPERIMENTS WITH RAP 247

type TRACE
basedon COM,AGENT,PAIR,STEP

s o r t Trace
cons <>: Trace,

(Com,Trace)Trace

func t r a c e (_) : (Agent)Trace

axioms a l l (p, p i : Agent, i : Com)

(TRC1) t r a c e (p) -> <>,
(TRC2) s t e p (p) -> <i,pl> =>

t r a c e (p) -> i . t r a c e (p i)

endoftype

type REFUSE
basedon COM,COM_SET,AGENT,SUBST,ID,BOOL

func r e f u s e (_) : (Agent)ComSet

axioms a l l (p, q: Agent, i : Com, A, M: ComSet,
x: Id)

(REF_STOP) refuse(STOP) -> M,
(REF_PREFIX) i IN Μ -> f a l s e =>

r e f u s e (i -> ρ) -> M,
(REF_0R1) r e f u s e ((p OR q)) -> r e f u s e (p) ,
(REF_OR2) r e f u s e ((p OR q)) -> r e f u s e (q) ,
(REF_CHC) refuse(ρ) -> Μ & r e f u s e (q) -> Μ

refuse((ρ [] q)) -> M,
(REF_PAR) refuse((ρ ||{A} q)) ->

r e f u s e (p) [A] r e f u s e (q) ,
(REF_REC) r e f u s e ((x :: p)) ->

r e f u s e (p [x / (x :: p)])

endoftype

B.3. Experiments (tasks)
The RAP system is able to enumerate solutions for a system of equations based
on a given specification. This mechanism can be used to simulate processes in

248 APPENDIX Β: EXPERIMENTS WITH RAP

CP. Below for each experiment the equation to be solved is given (x is the
unknown variable); then the solutions found by RAP are reported, giving also
the approximative CPU time needed.

The first agent consists of two (sequential) parts which run in parallel, without
any synchronization. The traces consist here in all so-called interleavings of both
processes.

trace((a->b->STOP | | { } b->a->STOP)) = χ

13 s o l u t i o n s found.

[x = <>]
[x = a.<>]
[x = b . o]
[x = a . b . o]
[x = b . a . o]
[x = a.b.b.o]
[x = a.b.a.o]
[x = b.a.b.o]
[x = b . a . a . o]
[x = a.b.b.a.o]
[x = a.b.a.b.o]
[x = b.a.b.a.o]
[x = b.a.a.b.o]

CPU time: 0.3 8 sees

The subprocesses from above can be forced to synchronize in one particular
action (for instance the action a). Then the whole system behaves sequentially:

trace((a->b->STOP | | { a} b->a->STOP)) = χ

4 s o l u t i o n s found.

[x = <>]
[x = b . o]
[x = b . a . o]
[x = b.a.b.o]

CPU time: 0.12 sees

I f synchronization in both actions is required, only the trivial trace exists
(deadlock):

APPENDIX Β: EXPERIMENTS WITH RAP 249

t r a c e ((a ->b->STOP ||{ a b } b->a->STOP)) = χ

1 s o l u t i o n found,

[x = <>]

CPU time: 0.05 sees

The following examples address the distiction between internal and external
nondeterminism. First, an example for the traces of a system of processes which
uses OR:

trace(((a->STOP OR b->STOP) ||{ a b } a->STOP)) = χ

2 s o l u t i o n s found.

[x = <>]
[x = a.<>]

CPU time: 0.08 sees

The same system using [] : As expected, the same set of traces is computed:

trace(((a->STOP [] b->STOP) ||{ a b } a->STOP)) = χ

2 s o l u t i o n s found.

[x = <>]
[x = a.<>]

CPU time: 0.10 sees

The refusal remantics can distinguish between the processes. Below the refusal
sets for both variants of the example (using OR and choice, respectively) are
given, as they are computed by RAP. Both enumerations do not terminate (and
have been terminated by user interaction). Please remember that the set of
communication actions has been fixed to { a, b, c }:

refuse((a->STOP OR b-> TOP)) = χ

33 s o l u t i o n s found.

[x =] [x = b]
[x = a] [x = b b]
[x = b c] [x = c c]
[x = c a] [x = a c]

[x = c]
[x = c b]
[x = a a]
[x = b b b]

250 APPENDIX Β: EXPERIMENTS WITH RAP

[χ = C b b] [x = b c b] [x = C c b]
[χ = b b c] [x = c b c] [x = b c c]
[χ = C c c] [x = a a a] [x = c a a]
[χ = a c a] [χ = c c a] [x = a a c]
[χ = c a c] [X = a c c] [X = b b b b]
[χ = c b b b] [χ = b c b b] [χ = c c b b]
[χ = b b c b] [X = c b c b] [X = b c c b]

CPU time: 0.50 sees

refuse((a->STOP [] b->STOP)) = χ

5 s o l u t i o n s found.

[x =]
[x = c]
[x = c c]
[x = c c c]
[x = c c c c]

CPU time: 0.83 sees

This example clearly shows a disadvantage of the set implementation (by
sequences) used here: The same set is printed many times using various
equivalent representations.

The following examples demonstrate that the trace semantics (with the artificial
totalization with respect to deadlock) can distinguish between stop and div: The
enumeration of the traces of div does not terminate. But also the refusal
semantics is able to distinguish between both processes:

trace(STOP) = χ

1 s o l u t i o n found,

[x = <>]

CPU time: 0.02 sees

t r a c e (D I V) = χ
1 s o l u t i o n found.

A P P E N D I X Β : E X P E R I M E N T S W I T H R A P 251

[x = <>]

A b o r t e d b y t i m e l i m i t , (i.e. non termination)

r e f u s e(STOP) = χ

1 s o l u t i o n f o u n d ,

[x = *0]

CPU t i m e : 0 .02 sees

r e f u s e(DIV) = χ

No s o l u t i o n s f o u n d .

CPU t i m e : 0 .02 sees

The term *0 in the output above is a system-generated variable which stands for
an arbitrary set of communication actions.

Concludingly, the results of a larger example shall be presented, in order to give
an impression of the current state of (in-)efficiency of the RAP-generated
interpreter for CP. We give a CP process for the famous problem of the "Dining
Philosophers" by E. W. Dijkstra. For the sake of simplicity, only two
philosophers are considered here, which sit at the opposite sides of a table. There
are only two forks for the philosophers to eat their meals. The philosophers are
called below PI and P2, the forks F l and F2. Possible actions are here (leading
to a suitable type COM):

pic(Pi,Fj) Philosopher i picks up fork j
put(Pi ,Fj) Philosopher i puts back fork j .

The following equation contains recursive processes for the philosophers and for
the forks. Each of the forks is represented by a recursive process (with labels ' f 1
and T2); each of the philosophers is represented by another recursive process
(with labels ' p i and 'ρ2). The two fork processes run in parallel without any
synchronization, giving a compund fork process. The two philosopher processes
run in parrallel without any synchronization, giving a compund philosopher
process. The compund fork and the compund philosopher process run in parallel,
synchronized by all possible pic- and put-actions.

252 APPENDIX Β: EXPERIMENTS WITH RAP

t r a c e (
(

((' f l : : (p i c (P l , F l) - > p u t (P l , F l) ->'f1
[] p i c (P 2 / F l) - > p u t (P 2 / F l) - > ' f l))

I I o
(' f 2 : : (p i c (P l / F 2) - > p u t (P l , F 2) ->'f2

[] pic(P2,F2)->put(P2,F2) ->'f2))
)

I I { p i c (P l , F l) p i c (P l , F 2) p i c (P 2 , F l) p i c (P 2 , F 2)
p u t (P I , F l) p u t (P l , F 2) p u t (P 2 , F l) put(P2,F2)}
((' p i : : p i c (P l / F l) - > p i c (P l / F 2) - >

p u t (P I , F l) - > p u t (P i , F 2) - > ' p i)
I I {} ('p2: : p i c (P 2 , F 2) - > p i c (P 2 , F l) - >

put(P2,F2)->put(P2,Fl)->'p2)
)

)) = x

The set of traces computed by RAP is infinite; the enumeration has been
stopped again by user interaction. Please note that there are some finite traces
(for instance

p i c (P l , F l) .pic(P2,F2) .<>),
which are not "continued", i.e., which do no not appear as a non-trivial prefix of
any other trace. These traces correspond to the situations where the philosophers
die of starvation.

23 s o l u t i o n s found.

[x = <>]
[x = p i c (P l , F l) . < >]
[x = pi c (P 2 / F 2) . < >]
[x = p i c (P l , F l) . p i c (P l , F 2) . < >]
[x = p i c (P 2 / F 2) . p i c (P 2 , F l) . < >]
[x = p i c (P l , F l) . p i c (P 2 , F 2) . < >]
[x = p i c (P 2 , F 2) . p i c (P l , F l) . < >]
[x = p i c (P l , F l) . p i c (P l , F 2) . p u t (P I , F l) . < >]
[χ = p i c (P 2 , F 2) . p i c (P 2 , F l) . p u t (P 2 , F 2) . < >]
[x = p i c (P l , F l) . p i c (P l , F 2) . p u t (P I , F l) . p u t (P l , F 2) . < >]
[x = p i c (P 2 , F 2) . p i c (P 2 , F l) . p u t (P 2 , F 2) . p u t (P 2 , F 1) . < >]
[x = p i c (P l , F l) . p i c (P l , F 2) . p u t (P I , F l) . p u t (P 1 , F 2) .

p i c (P l , F l) . < >]
[x = p i c (P l , F l) . p i c (P l , F 2) . p u t (P I , F l) . p u t (P l , F 2) .

pic(P2,F2).<>]
[x = p i c (P 2 , F 2) . p i c (P 2 , F l) . p u t (P 2 , F 2) . p u t (P 2 , F 1) .

p i c (P l , F l) . < >]
[x = p i c (P 2 , F 2) . p i c (P 2 , F l) . p u t (P 2 , F 2) . p u t (P 2 , F 1) .

pic(P2,F2).<>]

APPENDIX Β: EXPERIMENTS WITH RAP 253

[χ = p i c (P l , F l) . p i c (P l , F 2) . p u t (P I , F l) . p u t (P l , F 2) .
p i c (P I , F l) .

p i c (P l , F 2) . < >]
[x = p i c (P l , F l) . p i c (P l , F 2) . p u t (P I , F l) . p u t (P 1 , F 2) .

p i c (P 2 , F 2) . p i c (P 2 , F l) . < >]
[x = p i c (P 2 , F 2) . p i c (P 2 , F l) . p u t (P 2 , F 2) . p u t (P 2 , F l) .

p i c (P l , F l) . p i c (P l , F 2) . < >]
[x = p i c (P 2 , F 2) . p i c (P 2 , F l) . p u t (P 2 , F 2) . p u t (P 2 , F l) .

p i c (P 2 , F 2) . p i c (P 2 , F l) . < >]
[x = p i c (P l , F l) . p i c (P l , F 2) . p u t (P I , F l) . p u t (P l , F 2) .

p i c (P l , F l) . p i c (P 2 , F 2) . < >]
[x = p i c (P l , F l) . p i c (P l , F 2) . p u t (P I , F l) . p u t (P 1 , F 2) .

p i c (P 2 , F 2) . p i c (P l , F l) . < >]
fx = p i c (P 2 , F 2) . p i c (P 2 , F l) . p u t (P 2 , F 2) . p u t (P 2 , F 1) .

p i c (P l , F l) . p i c (P 2 , F 2) . < >]
[x = p i c (P 2 , F 2) . p i c (P 2 , F l) . p u t (P 2 , F 2) . p u t (P 2 , F l) .

p i c (P 2 , F 2) . p i c (P l , F l) . < >]

CPU time: 20.33 sees

It is worth noting that the same experiment in 1988 (with RAP 2.1 on a SUN
3/160 computer) needed more than 500 seconds of CPU time. It is obvious that
this gain in performance will help in the process of bringing "very high level
programming languages" like RAP into practice.

Progress in Theoretical Computer Science
Editor
Ronald V. Book
Department of Mathematics
University of California
Santa Barbara, CA 93106

Editorial Board
Erwin Engeler
Mathematik
ΕΤΗ Zentrum
CH-8092 Zurich, Switzerland

Gorard Huet
INRIA
Domaine de Voluceau-Rocquencourt
B. P. 105
78150 Le Chesnay Cedex, France

Jean-Pierre Jouannaud
Laboratoire de Recherche

en Informatique Bat. 490
Universito de Paris-Sud
Centre d'Orsay
91405 Orsay Cedex, France

Robin Milner
Department of Computer Science
University of Edinburgh
Edinburgh EH9 3JZ, Scotland

Maurice Nivat
Universito de Paris VII
2, place Jussieu
75251 Paris Cedex 05
France

Martin Wirsing
Universität Passau
Fakultät für Mathematik

und Informatik
Postfach 2540
D-8390 Passau, Germany

Progress in Theoretical Computer Science is a series that focuses on the theoretical aspects
of computer science and on the logical and mathematical foundations of computer science,
as well as the applications of computer theory. It addresses itself to research workers and
graduate students in computer and information science departments and research labora­
tories, as well as to departments of mathematics and electrical engineering where an interest
in computer theory is found.

The series publishes research monographs, graduate texts, and polished lectures from
seminars and lecture series. We encourage preparation of manuscripts in some form of TeX
for delivery in camera-ready copy, which leads to rapid publication, or in electronic form for
interfacing with laser printers or typesetters.

Proposals should be sent directly to the Editor, any member of the Editorial Board, or to:
Birkhäuser Boston, 675 Massachusetts Ave., Cambridge, MA 02139. The Series includes:
1. Leo Bachmair, Canonical Equational Proofs
2. Howard Karloff, Linear Programming
3. Ker-I Ko, Complexity Theory of Real Functions
4. Guo-Qiang Zhang, Logic of Domains
5. Thomas Streicher, Semantics of Type Theory: Correctness, Completeness

and Independence Results
6. Julian Charles Bradfield, Verifying Temporal Properties of Systems
7. Alistair Sinclair, Algorithms for Random Generation and Counting
8. Heinrich Hussmann, Nondeterminism in Algebraic Specifications and

Algebraic Programs
9. Pierre-Louis Curien, Categorical Combinators, Sequential Algorithms and

Functional Programming
10. J. Köbler, U. Schöning, and J. Toran, The Graph Isomorphism Problem:

Its Structural Complexity

