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Abstract

This paper is concerned with decision making using imprecise probabilities. In the first part, we
introduce a new decision criterion that allows for explicitly modeling how far decisions that are
optimal in terms of Walley’s maximality are accepted to deviate from being optimal in the sense of
Levi’s E-admissibility. For this criterion, we also provide an efficient and simple algorithm based
on linear programming theory. In the second part of the paper, we propose two new measures for
quantifying the extent of E-admissibility of an E-admissible act, i.e. the size of the set of measures
for which the corresponding act maximizes expected utility. The first measure is the maximal
diameter of this set, while the second one relates to the maximal barycentric cube that can be
inscribed into it. Also here, for both measures, we give linear programming algorithms capable to
deal with them. Finally, we discuss some ideas in the context of ordinal decision theory. The paper
concludes with a stylized application example illustrating all introduced concepts.

Keywords: Decision Making under Uncertainty; Imprecise Probabilities; E-admissibility;
Maximality; Linear Programming; Ordinal Decision Theory; Stochastic Dominance

1. Introduction

A fair amount of the challenges arising in the modern sciences, e.g. parameter estimation and
hypothesis testing in statistics, modeling an agent’s preferences and choice behavior in philosophy
and economics or the formalization of game theoretic problems, can be embedded into the formal
framework of decision theory under uncertainty. If moreover the uncertainty underlying the decision
situation is describable by some classical probability measure on the space of uncertain states of
nature, we find ourselves within the framework of maximizing expected utility and we can draw
on the whole toolbox of this well-investigated and elegant mathematical theory.

However, it is well known that in practice the necessity to specify a precise (i.e. classical)
probability measure on the space of uncertain states might involve too strong consistency conditions
regarding the beliefs of the decision maker of interest: It for instance might be the case that some
decision maker finds it highly probable, say at least 0.8, that she will have had dinner in some
restaurant by 9 p.m. tonight. However, since she doesn’t know at all what the city she is traveling
to has to offer, she cannot split this belief among different types of restaurants. That is even so if
she made the (rather simplifying) assumption that the above probability exactly equals 0.8, there

∗Corresponding author
Email address: christoph.jansen@stat.uni-muenchen.de (C. Jansen)



is too less information for inferring, for instance, the probability of the dinner to take place in
a Chinese restaurant. For situations of this kind (and also for less artificial ones), working with
imprecise probabilities (Walley (1991); Weichselberger (2001), see also, e.g., Augustin et al. (2014)
for an introduction) has become more and more attractive recently, since these allow for utilizing
also partial probabilistic knowledge without the necessity of making assumptions that aren’t met.

Much work has been undertaken on decision making with imprecise probabilities, and several
strategies for optimal decision making have been proposed. Surveys of the theory are given in Sei-
denfeld (2004b); Troffaes (2007); Etner et al. (2012); Huntley et al. (2014). For original sources see,
e.g., Kofler and Menges (1976); Levi (1974); Walley (1991); Gilboa and Schmeidler (1989). In the
present paper, we contribute some new insights especially in the context of Levi’s E-admissibility.

The paper is organized as follows: In Section 2, we recall the basic model of finite decision
theory (Section 2.1) and the most commonly applied decision principles from precise and imprecise
decision making (Section 2.2) for reference. Section 3 is divided into two parts: In Section 3.1
we contrast the criteriaM-maximality and E-admissibility and introduce a new decision criterion
that in some sense lies in between the two. In Section 3.2, we propose two measures, one optimistic
and one pessimistic, for quantifying the extent of E-admissibility of some E-admissible acts under
consideration. In Section 4 we discuss decision problems in which the utility function is only
interpretable in terms of an ordinal utility representation, however, utility differences have no
meaning. Again, we recall and discuss criteria for both the precise and the imprecise case. In
Section 5, we analyze a stylized application example and apply the theory developed in the paper.
Section 6 concludes.

2. The Basic Model

We start our discussion by recalling the classical setup of decision making under uncertainty in
Section 2.1 and the most commonly applied decision criteria under different types of uncertainty
in Section 2.2 for reference.

2.1. Framework

Throughout most parts of the paper1, we will consider the common model of finite decision
theory: Some agent (or decision maker) is asked to decide which act ai to choose from a finite set
A = {a1, . . . , an} of available acts. However, the utility of the chosen act is fraught with uncertainty:
it depends on which state of nature from a finite set Θ = {θ1, . . . , θm} of possible states corresponds
to the true description of reality. Specifically, we assume that the utility of every pair (a, θ) ∈ A×Θ
can be evaluated by some real-valued cardinal utility function u : A×Θ→ R that is unique up to
a positive linear transformation.2 We denote by uij := u(ai, θj) the utility of choosing ai given θj
is the true state. For every act a ∈ A, the utility function u is naturally associated with a random
variable ua : (Θ, 2Θ) → R defined by ua(θ) := u(a, θ) for all θ ∈ Θ. Similarly, for every θ ∈ Θ,
we can define a random variable uθ : (A, 2A) → R by setting uθ(a) := u(a, θ) for all a ∈ A. The
structure of the basic model is visualized in Table 1.

Depending on the situation, the standard model will sometimes be extended for randomized
acts, which are classical probability measures λ on (A, 2A). Choosing λ is then interpreted as

1The one exception is the discussion in Section 4, where we do not assume a cardinal utility representation.
2See Schervish et al. (2013) for the situation where multiple utilities through different currencies are available and

exchange rates have to be taken into account.
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Table 1: The basic model of finite decision theory.

u(ai, θj) θ1 · · · θm

a1 u(a1, θ1) · · · u(a1, θm)
...

... · · · ...
an u(an, θ1) · · · u(an, θm)

leaving the final decision to a random experiment which yields act ai with probability λ({ai}). We
denote the set of randomized acts on (A, 2A) by G(A).

If also randomized acts are considered, the original utility function u on A × Θ can straight-
forwardly be extended to a utility function G(u) on G(A) × Θ by assigning each pair (λ, θ) the
expectation of the random variable uθ under the measure λ, i.e. G(u)(λ, θ) := Eλ

[
uθ
]
, i.e. the

expectation of utility that choosing the randomized act λ will lead to, given θ is the true descrip-
tion of reality. Every act a ∈ A, sometimes called pure act when the difference to randomized
acts needs to be emphasized, then can uniquely be identified with the Dirac-measure δa ∈ G(A),
and we have u(a, θ) = G(u)(δa, θ) for all (a, θ) ∈ A × Θ. Again, for every λ ∈ G(A) fixed, the
extended utility function G(u) is associated with a random variable G(u)λ on (Θ, 2Θ) by setting
G(u)λ(θ) := G(u)(λ, θ) for all θ ∈ Θ. We refer to the triplet (A,Θ, u) as the (finite) decision
problem and to the triplet (G(A),Θ, G(u)) as the corresponding randomized extension.

Finally, note that the standard model of decision theory also contains statistical estimation
and hypothesis testing problems as special cases: If we, in addition to the basic problem (A,Θ, u),
observe some random variable X : Ω → X such that X ∼ Pθ if θ ∈ Θ is the true state of nature,
that is we know the distribution of the random experiment if we know the true state, then statistical
procedures can be viewed as decision functions d : X → A that map observed data on acts. The
utility function u of the original problem then very naturally can be extended to a gain function
U : D×Θ→ R for evaluating decision functions by setting U(d, θ) := EPθ [uθ ◦ d]. Here, D denotes
some appropriate set of possible statistical procedures. Formally, the resulting triplet (D,Θ, U)
then again can be viewed as a basic decision problem. Thus, even if we do not explicitly formulate
our results for statistical procedures in the following, they always also can be interpreted in a
statistical context.3

2.2. Criteria for Decision Making

Given a decision model (A,Θ, u) of the form just recalled, the challenge is quickly explained: De-
termine an (in some sense) optimal act a∗ ∈ A (or, depending on the context, optimal randomized
act λ∗ ∈ G(A)). The subtlety rather comes with the definition of the term optimality, since any

3It should, however, be emphasized that in the context of imprecise probabilistic models (like for instance credal
sets or interval probabilities) the relationship between optimal decision functions in terms of prior risk and posteriori
loss optimal acts may be more subtle than in the context of precise probability: the main theorem of Bayesian
decision theory may fail (cf., e.g., Augustin (2003, Section 2.3)). This failure is in essence a variant of the general
phenomenon of potential sequential incoherence in decision making and discrepancy between extensive and normal
forms, as investigated in depth by Seidenfeld (e.g., Seidenfeld (1988, 1994)). Immediate counter-examples arise from
the phenomenon of dilation, which has intensively been studied by Seidenfeld and co-authors (cf., e.g., Seidenfeld
(1994), Seidenfeld and Wassermann (1993), Wassermann and Seidenfeld (1994)), see also, e.g., Liu (2015).
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meaningful definition necessarily has to depend on (what the decision maker assumes about) the
mechanism generating the states of nature. Here, traditional decision theory mainly covers two
extreme poles: (I) The generation of the states follows a known classical probability measure π
on (Θ, 2Θ) or (II) it can be compared to a game against an omniscient enemy. In these cases
optimality is almost unanimously defined by the following two well-known principles:

(I) Maximizing Expected Utility: Label any act a∗ ∈ A optimal that receives maximal expected
utility with respect to π, i.e. for which Eπ[ua∗ ] ≥ Eπ[ua] for all other a ∈ A. We denote by Aπ the
set of all acts from A that maximize expected utility with respect to π.

(II) Wald’s Maximin Principle: Label any act a∗ ∈ A optimal that receives highest possible utility
value under that state that is worst possible for this particular act, i.e. for which minθ∈Θ u(a∗, θ) ≥
minθ∈Θ u(a∗, θ). We denote by AW the set of all maximin acts.

Straightforwardly, principles (I) and (II) generalize to randomized acts, and we will denote the
corresponding sets of optimal randomized acts by G(A)π and G(A)W , respectively. In contrast,
defining optimality of acts becomes less obvious if (A) the probability measure π is only partially
known (case of imprecise probabilities) or (B) there is uncertainty about the complete appropriate-
ness of it (case of uncertainty about precise probabilities). In situation (A), one commonly assumes
that the available probabilistic information is describable by a polyhedral4 set M of probability
measures on (Θ, 2Θ) of the form

M :=
{
π| bs 6 Eπ(fs) 6 bs ∀s = 1, ..., r

}
(1)

where, for all s = 1, ..., r, we have (bs, bs) ∈ R2 such that bs 6 bs
5 and fs : Θ→ R, which is an

example for a imprecise probabilistic model. Specifically, the available information is assumed to
be describable by lower and upper bounds for the expected values of a finite number of random
variables on the space of states. Note that this also includes models in which the uncertainty arises
from a variety of different (possibly precise) expert opinions: If, for instance, each from a bunch
of experts gives precise expected payoff estimates for a number of stocks, we take M to be the
set of probabilities that yield for every stock an expectation that ranges within the lowest and the
highest expert guess. Most simply, this includes also the case where every expert specifies a precise
probability measure on the state space, since a probability measure is always representable by a
family of indicator functions. The picture of M being the opinions of a committee of experts will
be used at different points in the paper (similarly as also done in, e.g., Bradley (2015)).

Under an imprecise probabilistic model of form (1), several optimality criteria for decision
making had been proposed (cf., e.g., Troffaes (2007); Etner et al. (2012); Huntley et al. (2014) for
general surveys and Utkin and Augustin (2005); Kikuti et al. (2011); Hable and Troffaes (2014);
Jansen et al. (2017a) for computational aspects). We now briefly recall the ones among them which
are most important for our purposes:

4See, however, e.g., Wheeler (2012), Majo-Wilson and Wheeler (2016, Section 2), and the references therein, for
arguments to consider also non-convex sets of probabilities.

5For technical convenience we assume, wlog, that 0 ∈ [bs, bs] for all s = 1, ..., r in the following. Note that if M
is described by functions (f1, . . . , fr) and bounds ((b1, b1), . . . , (br, br)) not meeting this assumptions, we can always

equivalently characterize it by functions (f1 − c1, . . . , fr − cr) and bounds ((b1 − c1, b1 − c1), . . . , (br − cr, br − cr)),
where, for all s = 1, . . . , r, we set cs = bs if bs > 0 and cs = −bs if bs < 0 and cs = 0 if 0 ∈ [bs, bs].
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(A1) M-Maximin (M-Maximax ):6 Label any act a∗ ∈ A optimal that maximizes expected utility
with respect to the worst (best) compatible probability measure, i.e. for which minπ∈M Eπ(ua∗) ≥
minπ∈M Eπ(ua) (resp. maxπ∈M Eπ(ua∗) ≥ maxπ∈M Eπ(ua)) for all a ∈ A. We denote by AM
(resp. AM) the set of M-maximin (resp. M-maximax) acts.

Clearly,M-maximin is a rather pessimistic criterion that reflects the attitude of decision mak-
ers that react averse to the ambiguity between the different compatible probabilities from M.
Contrarily, M-maximax reflects the attitude of ambiguity seeking agents. Note also that in the
extreme cases where either the credal setM is the set of all precise probability measures (vacuous-
ness) or it contains only one such measure (ideal stochasticity), the criterion M-maximin reduces
to Wald’s maximin principle or precise expectation maximization, respectively.

(A2)M-Maximality :7 Label any act a∗ ∈ A optimal that dominates every other available act a ∈ A
in expectation with respect to at least one probability measure πa ∈ M, i.e. if for every a ∈ A
there exists πa ∈ M such that Eπa(ua∗) ≥ Eπa(ua). We denote the set of all M-maximal acts by
Amax.

The idea ofM-maximality thus is to exclude every act a0 from the decision problem for which
there exists another act a1 that dominates it with respect to every compatible probability measure.
Note that M-maximality can be viewed as a local decision criterion: The preference between the
acts a0 and a1 is independent of the other available acts in A \ {a0, a1} or, as Schervish et al.
(2003)8 puts it, M-maximality is induced by pairwise comparisons of acts in A only. Note further
that, in the extreme case of M being a singleton, the criterion reduces to classical expectation
maximization.

(A3) E-Admissibility :9 Label an act a∗ ∈ A optimal if it maximizes expected utility among all
other available acts with respect to a least one compatible probability measure, i.e. if there exists
π∗ ∈M such that a∗ ∈ Aπ∗ . We denote by AM the set of all E-admissible acts from A with respect
to the credal set M.

In contrast to M-maximality, the concept of E-admissibility can rather by viewed as a global
decision criterion: In order to be able to build a preference between two acts a0 and a1, utility
information for all the other available acts in A \ {a0, a1} is required. To put it in the words of
Schervish et al. (2003) again: E-admissibility, in general, is not induced by pairwise comparisons of
acts in A only. Again, in the case of ideal stochasticity the criterion reduces to classical expectation
maximization. Contrarily, in the case of vacuousness every act that is not dominated by another
act in every state is E-admissible.10

Again, if randomized acts are of interest, we denote the corresponding optimal sets by G(A)M,

G(A)M, G(A)max and G(A)M. As easy to see, it holds that G(A)π = conv(Ãπ), where we have

Ãπ := {δa : a ∈ Aπ} and conv(S) denotes the convex hull of S. Thus, we can easily construct

6See, for instance, Kofler and Menges (1976) and Gilboa and Schmeidler (1989). Many authors denote M by Γ,
and thus the name Γ-maximin is common as well.

7This criterion is mainly advocated by Walley (1991) and work following him.
8Compare also Seidenfeld et al. (2010) and Vicig and Seidenfeld (2012, Section 3).
9This criterion is introduced by Levi (1974).

10Both criteria just discussed are also of high interest in forecasting with imprecise probabilities. While for imprecise
probabilities there is no real-valued strictly proper scoring rule, it is possible to formulate an appropriate lexicographic
strictly proper scoring rule with respect to M-maximinity and E-admissibility, supplemented by M-maximinity
(Seidenfeld et al., 2012).
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the set of randomized actions that maximize expected utility with respect to π by taking all
convex combinations of pure acts with the same property. This fact is often used to argue that
randomization does not pay out in the context of maximizing expected utility. Moreover, as
shown by Walley (cf., Walley (1991, p. 163)) and emphasized in Schervish et al. (2003), we have
that G(A)max = G(A)M, i.e. in the context of randomized acts the criteria M-maximality and
E-admissibility coincide in the sense of selecting the same optimal acts.

To complete the section, we now recall one criterion of optimality for situation (B), i.e. the
case of an uncertain precise probability π: The criterion of Hodges and Lehmann (cf. Hodges
and Lehmann (1952)). One motivation of this decision principle is to model the decision maker’s
skepticism in the available probability measure more directly. It is defined as follows:

(B1) Hodges and Lehmann Optimality: Label any act a∗ ∈ A optimal that maximizes the term
αEπ(ua∗) + (1 − α) minθ u(a∗, θ) among all other acts a ∈ A, that is which maximizes a weighted
sum of the expected utility and the worst state utility. The value α ∈ [0, 1] expresses the degree of
trust that the agent assigns to the probability measure π.

Note that Hodges and Lehmann optimality can be viewed as a special case of M-maximinity
(cf., for instance, Jansen et al. (2017a)): If the underlying credal set is chosen to arise from an
ε-contamination model (a.k.a. linear-vacuous mixture model) having the form

M(π0,ε) :=
{

(1− ε)π0 + επ : π ∈ P(Θ)
}

where P(Θ) is the set of all probabilities on (Θ, 2Θ), ε > 0 is a fixed contamination parameter and
π0 ∈ P(Θ) is the central distribution, it holds

EM(π0,ε)
(X) = minπ∈P(Θ)((1− ε)Eπ0(X) + εEπ(X))

= (1− ε)Eπ0(X) + εminπ∈P(Θ) Eπ(X)

= (1− ε)Eπ0(X) + εminθ∈ΘX(θ)

for arbitrary random variables X : (Θ, 2Θ)→ R. Thus, maximizing the lower expectation w.r.t. the
ε-contamination model is equivalent to maximizing the Hodges and Lehmann-criterion with trust
parameter (1 − ε) and probability π0. This connection is also of interest for Bayesian statistical
inference with imprecise probabilities: As pointed out by Seidenfeld and Wassermann (1996) in
the discussion of Walley (1996) and made explicit in Herron et al. (1997), the well-investigated
Imprecise Dirichlet Model (IDM) for generalized Bayesian statistical learning is mathematically
equivalent to an ε-contamination model with the relative frequencies as the central distribution π0.
Taking into account the above calculation, this also shows a very close relation between decision
making in the IDM (e.g., Utkin and Augustin (2007)) and the criterion suggsted by Hodges and
Lehmann.

3. E-admissibility, Maximality and a Criterion in between

We start our discussion by setting focus on the criteria M-maximality and E-admissibility
and develop some new ideas in this context. The discussion is divided in two main parts: In
Section 3.1 we briefly compare the two criteria and then propose a new criterion providing an
adjustable trade-off between them, for which we also derive a linear programming based algorithm.
Afterwards, in Section 3.2, we discuss a new measure for quantifying the extent of E-admissibility
of an E-admissible act of interest.
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3.1. Comparing E-admissibility and Maximality

As already seen in the previous section, when considering also randomized acts, the concepts
of M-maximality and E-admissibility with respect to M induce the same optimal acts and there-
fore coincide. However, for a finite (or more general non-convex) set of acts A the criterion of
M-maximality is the strictly weaker condition in the sense that AM ⊂ Amax. Our first result
describes how to construct the set G(A)M of all randomized E-admissible acts (and therefore also
the set G(A)max of randomized M-maximal acts) from the set AM of pure E-admissible acts.

Proposition 1. Let the decision problems (A,Θ, u) and (G(A),Θ, G(u)) and the setsM, Aπ, AM,
G(A)π, G(A)M be defined as before. The following holds:

G(A)M =
⋃

π∈M
conv(Ãπ)

where Ãπ := {δa : a ∈ Aπ} and conv(S) denotes the convex hull of a set S.

Proof. ⊂: Let λ∗ ∈ G(A)M. Choose π∗ ∈ M such that λ∗ ∈ G(A)π∗ . Assume, for contradiction,
there exists a0 ∈ A such that λ∗({a0}) > 0 and a0 /∈ Aπ∗ . Pick then a1 ∈ Aπ∗ and define a
randomized act λ0 ∈ G(A) by setting λ0({a}) := λ∗({a}) for a ∈ A \ {a0, a1}, λ0({a}) := 0 for
a = a0 and λ0({a}) := λ∗({a0, a1}) for a = a1. Then, the following calculation are immediate:

Eπ∗ [G(u)λ0 ] =
∑

a∈A
λ0({a})Eπ∗(ua)

=
∑

a∈A\{a0,a1}
λ∗({a})Eπ∗(ua) + λ∗({a0, a1})Eπ∗(ua1)

>
∑

a∈A
λ∗({a})Eπ∗(ua) = Eπ∗ [G(u)λ∗ ]

This contradicts λ∗ ∈ G(A)π∗ . Therefore, we have λ∗ ∈ conv(Ãπ∗).

⊃: Let conversely λ∗ ∈ ⋃π∈M conv(Ãπ). Then there exists π∗ ∈M such that λ∗ ∈ conv(Ãπ∗) and
we have Eπ∗ [G(u)λ∗ ] = Eπ∗(ua) for all a ∈ Aπ∗ . Choose a0 ∈ Aπ∗ and observe that for arbitrary
λ ∈ G(A) it holds that

Eπ∗ [G(u)λ] =
∑

a∈A
λ({a})Eπ∗(ua) ≤ Eπ∗(ua0) = Eπ∗ [G(u)λ∗ ]

Thus there exists π∗ ∈ M with respect to which λ∗ maximizes expected utility implying that
λ∗ ∈ G(A)M. �
Since Proposition 1 allows us to construct both sets G(A)M and G(A)max once having computed
the set AM of pure E-admissible acts, we restrict analysis to non-randomized acts for the rest of
the section. For this setting, we now propose a new decision criterion that allows for labeling only
such M-maximal acts optimal that are not too far from being E-admissible with respect to M in
the sense that the probabilities for which the corresponding act expectation dominates the other
acts differ not too much from each other. The deviation of an act from E-admissibility can be
explicitly controlled by an additional parameter ε.

Definition 1. Let (A,Θ, u) and M be defined as before and let ε ≥ 0. An act a∗ ∈ A is called
Eε-admissible if there exists a family of probability measures (πa)a∈A fromM such that the following
two conditions are satisfied:
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i) Eπa(ua∗) ≥ Eπa(ua) for all a ∈ A and

ii) ‖ πa − πa′ ‖≤ ε for all a, a
′ ∈ A, where ‖ · ‖ denotes a norm on M.

We denote by Aε the set of all Eε-admissible acts from A.

Remark 1. Obviously, the set of E0-admissible acts coincides with the set of E-admissible acts
with respect to M, i.e. A0 = AM. Moreover, for ε∗ chosen sufficiently large, namely ε∗ ≥ b :=
supπ,π′∈M ‖ π − π

′ ‖, the set of Eε∗-admissible acts coincides with the set of M-maximal acts,
i.e. Aε∗ = Amax. For ε ∈ (0, b), it usually will hold that AM ( Aε ( Amax and the set Aε
then exactly contains those M-maximal acts that are not too far (controlled by ε) from being
E-admissible. Moreover, the criterion is monotone in the sense that for ε1 ≥ ε2 we have that
Aε2 ⊂ Aε1. Thus, it allows for ranking M-maximal acts with respect to their deviation from being
E-admissible.

If we again take the point of view thatM arises from different expert opinions, it turns out that
the criterion of Eε-admissibility is based on a quite convincing intuition: Consider for instance a
political decision maker that consults an advisory body of experts when it comes to facing difficult
decisions. In this situation, applying E-admissibility corresponds to only choosing acts which one
fixed expert labels optimal among all other options. Contrarily, in terms of M-maximality an act
is already optimal if for each other act there is at least one expert preferring the former to the
latter, no matter how different the involved experts are in opinion. Here, Eε-admissibility builds
a bridge between these two extremes: While the decision maker can still make use of opinions of
different experts, she nevertheless can explicitly control by an additional parameter ε how strong
the experts contributing to the decision process are allowed to differ in opinion.

We now provide an algorithm for checking whether an act in a given decision problem is
Eε-admissible for a fixed value ε. It turns out that this, provided the L1-norm is used for measuring
the distances between the elements ofM, can be done by solving one single, relatively simple, linear
programming problem. We arrive at the following proposition.

Proposition 2. Let (A,Θ, u) and M be defined as before and let ε ≥ 0. For some act az ∈ A,
consider the following linear programming problem:

n∑

i=1

( m∑

j=1

γij

)
−→ max

(γ11,...,γnm)
(2)

with constraints (γ11, . . . , γnm) > 0 and

• ∑m
j=1 γij 6 1 for all i = 1, . . . , n

• bs 6
∑m

j=1 fs(θj) · γij 6 bs for all s = 1, ..., r, i = 1, . . . , n

• ∑m
j=1(uij − uzj) · γij 6 0 for all i = 1, . . . , n

• ∑m
j=1 |γi1j − γi2j | ≤ ε for all i1 > i2 ∈ {1, . . . , n}

Then az ∈ A is Eε-admissible iff the optimal outcome of (2) equals n.
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Proof. Clearly, if (2) possesses an optimal solution (γ∗11, . . . , γ
∗
nm) yielding an objective value

of n, then the constraints guarantee that setting πai({θj}) := γ∗ij for all i = 1, . . . , n and j =
1, . . . ,m defines a family of probability measures (πai)i=1,...n, from M satisfying the properties
from Definition 1. Thus, az ∈ Aε.
If conversely az ∈ Aε, we can choose a family of probability measures (πai)i=1,...n, fromM satisfying
the properties from Definition 1. One then easily verifies that setting γ∗ij := πai({θj}) for all
i = 1, . . . , n and j = 1, . . . ,m defines an admissible solution (γ∗11, . . . , γ

∗
nm) to (2) that yields an

objective value of n. �
Remark 2. To see the linearity of the constraint

∑m
j=1 |γi1j − γi2j | ≤ ε for all i1 > i2 ∈ {1, . . . , n}

in the above linear programming problem, one can proceed as follows: Add 2m decision variables
l1, . . . , lm and o1, . . . , om and replace the above constraints equivalently by the constraints lj ≤ γij ≤
oj for all i = 1, . . . , n and j = 1, . . . ,m as well as

∑m
j=1(oj − lj) ≤ ε. In sum, the programming

problem (2) thus possesses n+rn+n+nm+1 = n(1+r+m)+1 constraints and nm+m = m(n+1)
decision variables.

We conclude the section by illustrating the results so far by a brief toy example, which in parts
is also discussed in Seidenfeld (2004a, p. 2) in order to demonstrate that M-maximinity does not
imply E-admissibility with respect to M and vice versa. We additionally show how the proposed
concept of Eε-admissibility can help to clarify analysis in such situations. The example reads as
follows:

Example 1. Consider the basic decision problem (A,Θ, u) that is defined by the following utility
table

uij θ1 θ2

a1 1 0
a2 0 1
a3 4/10 4/10
a4 6/10 11/35

Moreover, suppose the uncertainty on the states is modeled by the credal set

M =
{
π : 0.3 ≤ π({θ1}) ≤ 0.8

}

In this case, we have AM = {a1, a2}, Amax = A and AM = {a3, a4}. Thus, we have a situation
with two different M-maximin acts, which are both not E-admissible. In order to make a decision
between the acts a3 and a4, we can apply the Eε-criterion to see which of the two is closer to being
E-admissible. We receive the following results:

outcome of (2) for ε = 0.1 ε = 0.2 ε = 0.3 ε = 0.6

a3 ≈ 0.76 ≈ 1.51 ≈ 2.27 4
a4 2.3 4 4 4

The results show that act a4 is that act among theM-maximin acts that is closer to E-admissibility,
since it is Eε-admissible already for an ε-level of 0.2 whereas act a3 is not. Thus, it could be argued
that it a4 is preferable. Finally, if we additionally consider randomized acts, then Proposition 1
and the discussions in Section 2.2 imply that it holds

G(A)M = G(A)max = G(A)ε = conv({δa1 , δa2})
for arbitrary values of ε ≥ 0.
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3.2. The Extents of E-admissible acts

In the previous section, we considered acts optimal that are not too far from being E-admissible.
We accordingly weakened the concept of E-admissibility towards acts that are in some sense al-
most E-admissible. In this section we take rather the opposed direction and address the following
question: Given an E-admissible act a ∈ AM with respect to some credal set M, how large is
the set of compatible probability measures fromM for which act a maximizes expected utility? If
we again use the picture of M modeling the opinions of some committee of experts, the question
translates as follows: How diverse can these experts be in opinion while still all sharing the view
that act a is optimal?

In order to answer this question, we propose two measures for the extent of E-admissibility
of acts in the following: The maximal extent and the uniform extent. While the first concept
measures the maximal diameter of the set of measures for which the considered act maximizes
expected utility, the latter one searches for a maximal set that can be inscribed into this set.
Together, the two measures will be shown to give a pretty good impression about the extent of
E-admissibility. We start by defining the concept of maximal extent.

Definition 2. Let (A,Θ, u) and M be defined as before and let ‖ · ‖ denote some norm on M.
Moreover, let a ∈ AM be an E-admissible act with respect to M and denote by Ma the set
{π ∈M : a ∈ Aπ}. We define the (maximal) extent extM(a) of act a as the number

extM(a) := supπ,π′∈Ma
‖ π − π′ ‖

i.e. as the maximum distance of probability measures π, π
′ ∈Ma with respect to ‖ · ‖ for which act

a maximizes expected utility.

Why is the measure extM(·) sensible for the question motivating the section? To see that, first
note that intuitively if extM(a) is large, then act a maximizes expected utility with respect to
very different (in the sense of highly distant) probability measures from M. To directly connect
this observation to the size of the set Ma, it is important to mention that Ma is a convex set
and therefore all measure lying on the “line” between the two maximum distance measures again
have to be contained in Ma. Thus, extM(a) indeed can be viewed as a measure of the size of
the set of probabilities for which act a is optimal and therefore is sensible for the above questions.
The following proposition gives an algorithm for computing extM(a) by solving a series of linear
programming problems for the case that ‖ · ‖:=‖ · ‖∞.

Proposition 3. Let (A,Θ, u) and M be defined as before and let az ∈ AM. Consider, for every
j = 1, . . . ,m, the linear programming problem

γ1j − γ2j −→ max
(γ11,...,γ1m,γ21,...,γ2m)

(Pj)

with constraints (γ11, . . . , γ1m, γ21, . . . , γ2m) ≥ 0 and

• ∑m
j=1 γij = 1 for all i = 1, 2

• bs 6
∑m

j=1 fs(θj) · γij 6 bs for all s = 1, ..., r and i = 1, 2

• ∑m
j=1(u`j − uzj) · γij 6 0 for all i = 1, 2 and ` = 1, . . . , n

10



Denote by g(j) the optimal objective of problem (Pj). Then the maximal extent of act a with respect
to ‖ · ‖∞ is given by extM(a) = maxj g(j).

Proof. For j ∈ {1, . . . ,m}, let (γj11, . . . , γ
j
1m, γ

j
21, . . . , γ

j
2m) denote an optimal solution to problem

(Pj).
11 Then the constraints guarantee that by setting πj1({θt}) := γj1t and πj2({θt}) := γj2t for all

t = 1, . . . ,m we define two measures πj1, π
j
2 ∈Ma with the property

i) g(j) = |πj1({θj})− πj2({θj})| ≥ |π1({θj})− π2({θj})| for all π1, π2 ∈Ma

Let j∗ ∈ {1, . . . ,m} with g(j∗) = |πj∗1 ({θj∗}) − πj
∗

2 ({θj∗})| = maxj g(j). Due to i), for all j ∈
{1, . . . ,m} arbitrary, it then holds that:

ii) |πj∗1 ({θj∗})− πj
∗

2 ({θj∗})| ≥ |π1({θj})− π2({θj})| for all π1, π2 ∈Ma

This implies that ‖ πj∗1 − πj
∗

2 ‖∞ ≥ ‖ π1 − π2 ‖∞ for all π1, π2 ∈ Ma, which then implies that
extM(az) = g(j∗) = maxj g(j). �

Remark 3. Note that, instead of solving m linear programming problems for computing the value
extM(a) as proposed in Proposition 3, one alternatively could solve one bilinear programming prob-
lem with objective function

m∑

j=1

ξj(γ1j − γ2j) +
m∑

j=1

ξm+j(γ2j − γ1j) −→ max
(γ11,...,γ2m,ξ1,...ξ2m)

(3)

with the same constraints as above and additional constraints ξ1, . . . ξ2m ≥ 0 and
∑2m

j=1 ξj = 1.
This approach has the advantage that the value extM(a) can also be computed with respect to ‖ · ‖1
instead of ‖ · ‖∞. To see that, simply replace the constraint

∑2m
j=1 ξj = 1 by the set of constraints∑2m

j=1 ξj = m and ξj + ξm+j = 1 for all j = 1, . . . ,m. However, note that the resulting bilinear
programming problem then no longer is decomposable into m linear programming problems, since
the solutions of the single problems can no longer be treated independently of each other as in the
case of the ‖ · ‖∞-norm.

Despite its intuitiveness, the extent extM(·) of an E-admissible act has a drawback in certain
situations: It measure the size of set Ma only in one direction, namely the most extreme one.
Therefore, the maximal extent alone might be not capable of distinguishing situations that defi-
nitely are worth to be distinguished in this context. This drawback is most easily explained by the
schematic picture in Figure 1.

In order to react the problem that might arise when only considering the extent extM(a) of an
E-admissible act a ∈ AM for measuring the size of the setMa, we now introduce another concept
for addressing this question, and call it uniform extent. This measure relates to the diameter of
the largest barycentric ε-cube that can be inscribed into Ma.

Definition 3. Let (A,Θ, u) and M be defined as before and let a ∈ AM. We define the uniform
extent uxtM(a) of act a with respect to M as the number

uxtM(a) := max
{
ε : ∃π ∈Ma s.t. Bε(π) ⊂Ma

}
(4)

11Note that, due to standard results from linear programming theory, such an optimal solution always exists since
the constraint set is bounded and there always exists an admissible solution since az ∈ AM.
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Ma1Ma2

extM(a1)extM(a2)

Figure 1: Two sets Ma1 and Ma2 with the same extent, however, quite different size.

where Bε(π) := conv({π1+
ε , π1−

ε , π2+
ε , π2−

ε , . . . , πm+
ε , πm−ε }) with

πj
∗+
ε ({θj}) =

{
π({θj}) + ε if j = j∗

π({θj})− ε
m−1 if j 6= j∗

πj
∗−
ε ({θj}) =

{
π({θj})− ε if j = j∗

π({θj}) + ε
m−1 if j 6= j∗

is the barycentric ε-cube around π. Thus, the uniform extent of act a is half the diameter of the
largest barycentric ε-cube that can be inscribed into Ma.

The uniform extent for the schematic picture discussed earlier is illustrated in Figure 2. We see
that we now can distinguish between the two situations. However, as easy to imagine, also the
uniform extent might sometimes be too pessimistic just as the maximal extent is too optimistic.
Hence, a good approach is to consider both measures ext and uxt simultaneously. Together, they
will give a pretty good impression of the extent of E-admissibility.

We now propose an algorithm for computing the uniform extent of some fixed E-admissible
act with respect to M under consideration. Again, it shows that this can be done by solving one
single, relatively simple, linear programming problem. Here, the main idea is to explicitly model
the distributions π1+

ε , π1−
ε , . . . , πm+

ε , πm−ε from Definition 3 by decision variables and utilizing the
fact that Ma is a convex set. The uniform extent is then computed by maximizing over the value
of ε. Precisely, we arrive at the following proposition.

Proposition 4. Let (A,Θ, u) and M be defined as before and let az ∈ AM. Consider the linear
programming problem

ε −→ max
(γ1,...,γm,ε)

(5)

with constraints (γ1, . . . , γm, ε) ≥ 0 and

• ∑m
j=1 γj = 1

• γj ≥ ε for all j = 1, . . . ,m
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• bs 6
∑m

j=1 fs(θj) · γj + ε · d(j∗, s) 6 bs for all s = 1, ..., r, j∗ = 1, . . . ,m

• bs 6
∑m

j=1 fs(θj) · γj − ε · d(j∗, s) 6 bs for all s = 1, ..., r, j∗ = 1, . . . ,m

• ∑m
j=1(u`j − uzj) · γj + ε · c(j∗, `) 6 0 for ` = 1, . . . , n, j∗ = 1, . . . ,m

• ∑m
j=1(u`j − uzj) · γj − ε · c(j∗, `) 6 0 for ` = 1, . . . , n, j∗ = 1, . . . ,m

where

c(j∗, `) = (u`j∗ − uzj∗)−
1

(m− 1)

∑

j 6=j∗
(u`j − uzj)

and

d(j∗, s) = fs(θj∗)−
1

(m− 1)

∑

j 6=j∗
fs(θj)

Then the uniform extent uxtM(az) of az is given by the optimal value of problem (5).

Proof. First, note that every pair (π, ε) ∈ Maz × R+
0 with Bε(π) ⊂ Maz induces an admissible

solution to (5) with objective value ε by setting γj := π({θj}), since we have
∑m

j=1 fs(θj) · γj + ε · d(j∗, s) = E
πj
∗+
ε

(fs) ∈ (bs, bs)

∑m
j=1 fs(θj) · γj − ε · d(j∗, s) = E

πj
∗−
ε

(fs) ∈ (bs, bs)

for all s = 1, ..., r, j∗ = 1, . . . ,m and it then holds that
∑m

j=1(u`j − uzj) · γj + ε · c(j∗, `) = E
πj
∗+
ε

(u` − uz) 6 0

∑m
j=1(u`j − uzj) · γj − ε · c(j∗, `) = E

πj
∗−
ε

(u` − uz) 6 0

for ` = 1, . . . , n, j∗ = 1, . . . ,m due to the constraints. Since az ∈ AM and, therefore, there exists
π0 ∈ Maz , it is then guaranteed that problem (5) always possesses an admissible solution (just
take the one induced by (π0, 0)). Since the set of admissible solutions is obviously bounded, it also
possesses an optimal solution by standard results on linear programming theory.

Let (γ∗1 , . . . , γ
∗
m, ε

∗) denote such an optimal solution to (5). Utilizing again the above identities
(in the opposite way), we see that setting π∗({θj}) := γ∗j defines a probability measure π∗ ∈ Maz

such that Bε∗(π
∗) ⊂Maz with ε∗ = uxtM(az). �

Remark 4. The linear programming problem (5) possesses m+1 decision variables and 1+2mr+
2mn constraints. It therefore might become computationally expensive for very large problems.

We conclude the section by applying the proposed measures of the extent of E-admissibility to the
toy example that was already introduced at the end of Section 3.1.

Example 2. Consider again the situation of Example 1. We want to compute the extent extM(·)
of both E-admissible acts a1 and a2. Solving the series of linear programming problems from
Proposition 3 for both acts gives extM(a1) = 0.3 and extM(a2) = 0.2 with respect to the ‖ · ‖∞-
norm. Therefore, it could be argued that a1 is the most preferable among the E-admissible acts
with respect to M. Additionally, we are interested in the uniform extent uxtM(·) of the acts
a1 and a2. Solving the linear programming problem introduced in Proposition 4 gives the results
uxtM(a1) = 0.15 and uxtM(a2) = 0.1, even strengthening the argument that act a1 is the most
preferable among the E-admissible acts.
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Ma2
Ma1

uxtM(a1)
uxtM(a2)

Figure 2: The measure uxtM(·) indeed gives different values to the sets Ma1 and Ma2 and therefore resolves the
drawback of the measure extM(·).

4. The Ordinal Case

Up to this point, all decision criteria discussed, with the exception of Wald’s maximin principle,
made explicit use of the cardinality of the utility function u involved in the basic decision problem
(A,Θ, u). However, as widely known, assuming cardinal utility implicitly demands the decision
maker’s preferences to satisfy pretty strong axiomatic assumptions which are often not met in
practice. If the deviation from these axioms is too strong, it often makes sense to work with
decision criteria that can cope with purely ordinal preferences.12 For this reason, in this section
the utility function u in the decision problem (A,Θ, u) is solely interpreted as an ordinal utility
representation. Particularly, utility differences with respect to u have no meaningful interpretation
apart from their sign in what follows.

We again start by briefly summarizing some criteria that still make sense in the presence of
purely ordinal preferences. If, additional to the ordinal utility information, a precise probability
measure π on the state space is available, again several different criteria appear natural:

(C1) Pairwise Stochastic Dominance: Label any act a0 ∈ A optimal for which there does not exist
another act a1 ∈ A \ {a0} such that Eπ(t ◦ ua1) ≥ Eπ(t ◦ ua0) for every non-decreasing function
t : R → R. If, contrarily, it is the case that Eπ(t ◦ ua1) ≥ Eπ(t ◦ ua0) for every non-decreasing
function t : R→ R, we say that a1 stochastically dominates a0 (cf., e.g., Lehmann (1955); Mosler
and Scarsini (1991)).

Clearly, pairwise stochastic dominance can rather be viewed as a local decision criterion, since
the preference between two acts a0, a1 ∈ A does not depend on which other acts from A \ {a0, a1}
are also available to the decision maker. Moreover, it also possesses a very natural interpretation:
Act a1 is preferred to act a0 if every expectation maximizing decision maker with the same ordinal
utility function would have the same preference between the two acts. Note that often acts will be
incomparable with respect to stochastic dominance, since it will hold Eπ(t1 ◦ ua1) > Eπ(t1 ◦ ua0)

12Another, very prominent, way for proceeding in such situations is working with partially cardinal preference
relations as done in Seidenfeld et al. (1995).
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for one function t1 and Eπ(t2 ◦ ua1) < Eπ(t2 ◦ ua0) for another function t2.

(C2) Joint Stochastic Dominance: Label every act a0 ∈ A optimal for which there exists a strictly
increasing function t∗ : R→ R such that Eπ(t∗ ◦ ua0) ≥ Eπ(t∗ ◦ ua) for all a ∈ A, i.e. if there exists
one expectation maximizing agent with the same ordinal utility function for which a0 maximizes
expected utility among all other available acts (cf. Jansen et al. (2017b)).

Obviously, this is an example for a global criterion: If there exists a function t∗ with the
desired properties for all a ∈ A, this does not necessarily imply the existence of such a function
for A∗ := A ∪ {a∗} (simply choose a∗ to have higher utility that every act in A in every state of
nature).

(C3) Pairwise Statistical Preference: Label every act a0 ∈ A optimal for which there exists no
other act a1 ∈ A \ {a0} such that

π({θ : ua1(θ) ≥ ua0(θ)}) > π({θ : ua0(θ) ≥ ua1(θ)})

i.e. if there is no other act a1 which has higher probability of yielding a higher utility value than a0.
If contrarily there exists such an act a1, we say that a1 statistically dominates a0 (cf., e.g., Montes
(2014, Section 2.2.1)).

Clearly, statistical preference can rather be viewed as a local decision criterion, since the pref-
erence between two acts a0 and a1 does not depend on acts from A \ {a0, a1}.

(C4) Joint Statistical Preference: Label every act a0 ∈ A optimal for which it holds that Dπ(a0) ≥
Dπ(a) for all a ∈ A, where

Dπ(a) := π({θ : u(a, θ) ≥ u(a
′
, θ) for all a

′ ∈ A})

that is if a0 has the highest probability to be utility dominant among all other available acts.

This criterion is clearly global: Enlarging the set of acts A to a new set of acts A∗ := A ∪ {a∗}
might completely change the preference between two acts acts a0, a1 ∈ A in the sense that DA

π (a0) >
DA
π (a1) but DA∗

π (a0) < DA∗
π (a1).13

If no precise probability measure π is available and the uncertainty on the state space is again
characterized by a credal set M of the form defined in (1), then there are several possibilities
to generalize the decision criteria (C1), (C2). (C3) and (C4). A detailed study of these different
possibilities as well as algorithmic approaches that are capable to deal with the resulting criteria
is given in Montes (2014, Sections 4.1.1 and 4.1.2) and Jansen et al. (2017b). An algorithm
for detecting stochastic dominance for the case that the different decision consequences are only
partially ordered is introduced in Schollmeyer et al. (2017). Here, we only give a small selection of

13For a simple example consider the decision problems (A,Θ, u) and (A ∪ {a∗},Θ, ũ) given by

θ3 θ2 θ3
a1 2 2 5
a2 3 3 3

θ3 θ2 θ3
a1 2 2 5
a2 3 3 3
a∗ 1 2 6

and the prior π on Θ induced by (π({θ1}), π({θ2}), π({θ3})) = (0.2, 0.2, 0.6). Here we have that DA
π(a1) = 0.6 >

0.4 = DA
π(a2) but DA∗

π (a2) = 0.4 > 0 = DA∗
π (a1).
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the criteria:

(D1) Joint Statistical Preference (Imprecise Version): Label any act a0 ∈ A optimal for which it
holds that minπ∈MDπ(a0) ≥ minπ∈MDπ(a) for all other a ∈ A, i.e. which maximizes the lower
probability of the act to be dominant to all other available acts.

(D2) Joint Stochastic Dominance (Imprecise Version): Label act a0 ∈ A optimal if there exists a
strictly increasing function t∗ : R → R such that Eπ(t∗ ◦ ua0) ≥ Eπ(t∗ ◦ ua) for all a ∈ A and all
π ∈M.

All the ordinal decision criteria just discussed can be handled either by hand or by utilizing
linear programming techniques similar as seen in detail for the criteria discussed in Section 3
(see Jansen et al. (2017b) for details). Here, we only give an impression of how this could be done
for the example of the imprecise version of joint stochastic dominance: To check whether an act
az ∈ A is optimal in the sense of joint stochastic dominance in the imprecise version, we explicitly
model the transformation function t∗ by decision variables. Additionally, we require the extreme
points π(1), . . . , π(T ) of the underlying credal set M. We then consider the linear programming
problem with the objective function

ε −→ max
(ε,t11,...,tnm)

(6)

and constraints (ε, t11, . . . , tnm) ≥ 0 and

• t11, . . . , tnm ≤ 1

• ∑m
j=1(uzjtzj − uijtij) · π(t)({θj}) ≥ 0 for all t = 1, . . . , T, i = 1, . . . , n

• For i, i
′ ∈ {1, . . . , n}, j, j′ ∈ {1, . . . ,m}: uij = ui′j′ ⇒ tij = ti′j′

• For i, i
′ ∈ {1, . . . , n}, j, j′ ∈ {1, . . . ,m}: uij < ui′j′ ⇒ tij + ε ≤ ti′j′

One then can show that act az is optimal in the sense of joint stochastic dominance in the imprecise
version if and only if the optimal objective of the above program is strictly greater than 0. The
idea here is that if there exists an optimal solution (ε∗, t∗11, . . . , t

∗
nm) with ε∗ > 0, then the solution

t∗ij describes the necessary strictly increasing transformation of u, and we receive a desired function
by choosing any increasing function t∗ : R→ R satisfying that t∗(uij) = t∗ij · uij for all i = 1, . . . n
and j = 1, . . . ,m.

Of course solving this linear program might become computationally very expensive and cum-
bersome as the number of extreme points of the setM might become as large as m! (cf., Derks and
Kuipers (2002); Wallner (2007)). However, convenient classes of credal sets exist where furthermore
efficient enumeration procedures are available (such special cases include ordinal probabilities (cf.,
Kofler (1989, p. 26)), comparative probabilities (cf., Miranda and Destercke (2015)), necessity mea-
sures (cf., Schollmeyer (2015)), p-boxes (cf., Montes and Destercke (2017)), probability intervals
(cf., Weichselberger and Pöhlmann (1990, Chapter 2) or de Campos et al. (1994)) or pari-mutual
models (cf., Montes et al. (2017))).

Another easy to handle case appears if the credal set M under consideration directly arises as
the convex hull of a finite number of precise probability estimates πE1 , . . . , πEK of a committee of
experts E1, . . . , EK . In such cases the extreme points of the credal set M are always among the
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experts guesses πE1 , . . . , πEK for the probabilities, and the algorithm described above can directly
be applied without the need for any previous computation of the extreme points. We conclude the
section by a small example that continues Examples 1 and 2.

Example 3. Consider again the situation of Examples 1 and 2. Here, the unique optimal act
with respect to joint statistical preference in the imprecise version is a1 with a value of 0.3. If we
consider joint stochastic dominance in the imprecise version, we first need to compute the extreme
points of M, which are here given by the measures π(1), π(2) induced by π(1)({θ1}) = 0.3 and
π(2)({θ1}) = 0.8. Solving the above linear programming problem (6) for all acts gives that acts a3

and a4 are optimal in terms of joint stochastic dominance in the imprecise version whereas acts a1

and a2 are not.

5. A Stylized Application Example

In this section, we discuss a more realistic, yet stylized, application example in some more detail:
Consider the situation where the decision maker wants to invest money in stocks of some company.
The acts then correspond to the stocks of the different companies. Say the agent compares ten
different stocks collected in A = {a1 . . . , a10}. Moreover, the states of nature then correspond to
different economic scenarios which might or might not occur and which, each differently, would
influence the payoffs of the stocks of the different companies. Say the agent incorporates the
scenarios collected in Θ = {θ1, . . . , θ5} in her market analysis. She summarizes the payoffs of the
different stocks under the different scenarios in the following utility table:

u(ai, θj) θ1 θ2 θ3 θ4 θ5
a1 37 25 23 73 91
a2 50 67 2 44 94
a3 60 4 96 1 83
a4 16 24 31 26 100
a5 3 86 76 85 11
a6 12 49 66 56 14
a7 39 10 92 88 57
a8 62 52 80 71 42
a9 90 8 74 70 38

a10 63 68 36 69 9

Moreover, suppose the decision maker has observed the market development for quite a while,
so that she can specify bounds for the probabilities of the different economic scenarios to occur
(alternatively, the bounds for the scenario probabilities could also come from opinions of different
expert the agent has consulted). Precisely, she specifies the uncertainty underlying the situation
by the credal set

M =
{
π : bs ≤ Eπ[fs] ≤ bs for s = 1, . . . , 5

}

where

• fs : Θ→ R is given by fs(θ) := 1{θs}(θ) for s = 1, . . . , 5 and
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•




b1 b1
b2 b2
b3 b3
b4 b4
b5 b5




=




0.1 0.3
0.05 0.1
0.1 0.2
0.2 0.4
0.15 0.2




Applying the different decision criteria and the other concepts discussed in the paper, the decision
maker arrives at the following results:

• Stock a8 is the unique non-randomized M-maximin act, i.e. AM = {a8}. Thus, for a very
pessimistic and ambiguity averse agent, act a8 is the appropriate investment.

• Solving the programming problem from Proposition 2 for ε set to 0 for each act, we find the set
of E-admissible acts with respect toM is given by AM = {a7, a9} (since the optimal value of
the program is 10 for both acts). Hence, theM-maximin act is not E-admissible with respect
to M. In order to further compare the E-admissible acts a7 and a9, we first compute the
extent extM(·) from Definition 2 for both of them. Solving the series of linear programming
problems described in Proposition 3 gives the results extM(a7) ≈ 0.152 and extM(a9) = 0.2,
for which reason it could be argued that a9 is the most preferable among the E-admissible
acts. To see how informative the extent of the acts is, we are additionally interested in their
uniform extents uxtM(·) in the sense of Definition 3. Solving the linear programming problem
introduced in Proposition 4 gives uxtM(a7) = 0.025 as well as uxtM(a9) = 0.025. Thus, if
we consider the uniform extent in order to measure the amount of E-admissibility of acts, it
could be argued that the decision maker should be indifferent between the E-admissible acts
a7 and a9.

• Solving the programming problem from Proposition 2 for ε set to 100 for each act, we find the
set of M-maximal acts is given by Amax = {a7, a8, a9}. In order to make a decision between
the M-maximin act a8 and the E-admissible acts a7 and a9, it is of interest how far a8 is
from being E-admissible. Solving the linear program from Proposition 2 for varying value of
ε gives that a8 is Eε-admissible in the sense of Definition 1 already for a value of ε = 0.01.
Hence, a8 is very close to being E-admissible and, therefore, could be argued to be preferable
to a7 and a9.

• The unique optimal act with respect to joint statistical preference in the imprecise version
is a7 with a value of 0.2. In order to see which of the acts are optimal in the sense of joint
stochastic dominance in the imprecise version as discussed in the previous section, we first
need to compute the extreme points of M. There are 15 such extreme points.14 They are
given in the Table 2:

Having obtained the extreme points, we can use algorithm (6) from Section 4 for every act
in A = {a1, . . . a10}. We find that the acts a6 and a10 are not optimal in the sense of joint
stochastic dominance in the imprecise version, whereas the acts in A \ {a6, a10} are.

14The calculation was performed with the rcdd package (see Geyer and Meeden (2017)), which provides an
interface for using Fukuda (2017)’s cdd library in the R statistical computing environment (see R Core Team
(2017)).
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{θ1} {θ2} {θ3} {θ4} {θ5}
π(1)(·) 0.30 0.10 0.20 0.20 0.20

π(2)(·) 0.30 0.05 0.20 0.25 0.20

π(3)(·) 0.30 0.10 0.20 0.25 0.15

π(4)(·) 0.30 0.05 0.20 0.30 0.15

π(5)(·) 0.30 0.10 0.10 0.30 0.20

π(6)(·) 0.30 0.05 0.10 0.35 0.20

π(7)(·) 0.30 0.10 0.10 0.35 0.15

π(8)(·) 0.15 0.05 0.20 0.40 0.20

π(9)(·) 0.15 0.10 0.20 0.40 0.15

π(10)(·) 0.20 0.05 0.20 0.40 0.15

π(11)(·) 0.20 0.10 0.10 0.40 0.20

π(12)(·) 0.25 0.05 0.10 0.40 0.20

π(13)(·) 0.25 0.10 0.10 0.40 0.15

π(14)(·) 0.10 0.10 0.20 0.40 0.20

π(15)(·) 0.30 0.05 0.10 0.40 0.15

Table 2: Extreme points in the application example.

6. Summary and Concluding Remarks

In this paper we introduced and discussed some ideas in the context of decision theory using
imprecise probabilistic model. Here, we first introduced a new decision criterion, Eε-admissibility,
that selects acts that are not too far from E-admissibility, where the accepted deviation from
E-admissibility can be explicitly controlled by an additional parameter ε. Subsequently, we inves-
tigated how to measure the extent of E-admissibility of an E-admissible act of interest. Precisely,
we introduced two different measures for this purpose: the maximal extent extM(a) and the uni-
form extent uxtM(a) of an E-admissible act a. While the former corresponds to the maximal
diameter of the set Ma, the latter is related to the side length of the maximal barycentric ε-cube
that can be inscribed into Ma. For all concepts discussed we proposed (bi-)linear programming
driven algorithms for computation. In the second part of the paper we recalled some concepts for
decision making if a cardinal utility function is no longer available and there is (potentially) only
imprecise probabilistic information. For the concept of imprecise joint stochastic dominance, we
also discussed some details about computation.

There are several interesting directions that could be followed in future research of which we
only want to briefly mention one: Consider again the viewpoint that the credal set M arises from
the opinions of a committee of experts. In the discussion directly following Definition 1, we argued
in favor of the concept of Eε-admissibility, since it allows to take into account more than only one
expert opinion while simultaneously allowing to control how far the involved experts may differ
in opinion. This idea could easily be extended: Instead of only controlling how far the involved
experts may differ from each other in terms of opinion, one could also control how far their opinions
differ from some externally given criterion. If we take again our example of some politician with an
advisory body of experts, the external criterion could for instance be the opinion of the politician
herself, so that she only takes expert opinions into account that do not differ too much from her
own one. Of course other examples for external criteria are imaginable.
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